]> git.sur5r.net Git - u-boot/blob - arch/arm/mach-uniphier/dram/umc-proxstream2.c
ARM: uniphier: move cmd_ddrmphy.c to fix build error
[u-boot] / arch / arm / mach-uniphier / dram / umc-proxstream2.c
1 /*
2  * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
3  *
4  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
5  * Copyright (C) 2015 Socionext Inc.
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <linux/err.h>
12 #include <linux/io.h>
13 #include <linux/sizes.h>
14 #include <asm/processor.h>
15
16 #include "../init.h"
17 #include "../soc-info.h"
18 #include "ddrmphy-regs.h"
19 #include "umc-regs.h"
20
21 enum dram_freq {
22         FREQ_1866M,
23         FREQ_2133M,
24         FREQ_NR,
25 };
26
27 enum dram_size {
28         SIZE_0,
29         SIZE_512M,
30         SIZE_1G,
31         SIZE_NR,
32 };
33
34 static u32 ddrphy_pgcr2[FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
35 static u32 ddrphy_ptr0[FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
36 static u32 ddrphy_ptr1[FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
37 static u32 ddrphy_ptr3[FREQ_NR] = {0x15171e45, 0x18182357};
38 static u32 ddrphy_ptr4[FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
39 static u32 ddrphy_dtpr0[FREQ_NR] = {0x35a00d88, 0x39e40e88};
40 static u32 ddrphy_dtpr1[FREQ_NR] = {0x2288cc2c, 0x228a04d0};
41 static u32 ddrphy_dtpr2[FREQ_NR] = {0x50005e00, 0x50006a00};
42 static u32 ddrphy_dtpr3[FREQ_NR] = {0x0010cb49, 0x0010ec89};
43 static u32 ddrphy_mr0[FREQ_NR] = {0x00000115, 0x00000125};
44 static u32 ddrphy_mr2[FREQ_NR] = {0x000002a0, 0x000002a8};
45
46 static u32 umc_cmdctla[FREQ_NR] = {0x66DD131D, 0x77EE1722};
47 /*
48  * The ch2 is a different generation UMC core.
49  * The register spec is different, unfortunately.
50  */
51 static u32 umc_cmdctlb_ch01[FREQ_NR] = {0x13E87C44, 0x18F88C44};
52 static u32 umc_cmdctlb_ch2[FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
53 static u32 umc_spcctla[FREQ_NR][SIZE_NR] = {
54         {0x00000000, 0x004A071D, 0x0078071D},
55         {0x00000000, 0x0055081E, 0x0089081E},
56 };
57
58 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
59 /* The ch2 is different for some reason only hardware guys know... */
60 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
61 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
62
63 /* DDR multiPHY */
64 static inline int ddrphy_get_rank(int dx)
65 {
66         return dx / 2;
67 }
68
69 static void ddrphy_fifo_reset(void __iomem *phy_base)
70 {
71         u32 tmp;
72
73         tmp = readl(phy_base + DMPHY_PGCR0);
74         tmp &= ~DMPHY_PGCR0_PHYFRST;
75         writel(tmp, phy_base + DMPHY_PGCR0);
76
77         udelay(1);
78
79         tmp |= DMPHY_PGCR0_PHYFRST;
80         writel(tmp, phy_base + DMPHY_PGCR0);
81
82         udelay(1);
83 }
84
85 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
86 {
87         u32 tmp;
88
89         tmp = readl(phy_base + DMPHY_PGCR1);
90
91         if (enable)
92                 tmp &= ~DMPHY_PGCR1_INHVT;
93         else
94                 tmp |= DMPHY_PGCR1_INHVT;
95
96         writel(tmp, phy_base + DMPHY_PGCR1);
97
98         if (!enable) {
99                 while (!(readl(phy_base + DMPHY_PGSR1) & DMPHY_PGSR1_VTSTOP))
100                         cpu_relax();
101         }
102 }
103
104 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
105 {
106         int dx;
107         u32 lcdlr1, rdqsd;
108         void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
109
110         ddrphy_vt_ctrl(phy_base, 0);
111
112         for (dx = 0; dx < nr_dx; dx++) {
113                 lcdlr1 = readl(dx_base + DMPHY_DX_LCDLR1);
114                 rdqsd = (lcdlr1 >> 8) & 0xff;
115                 rdqsd = clamp(rdqsd + step, 0U, 0xffU);
116                 lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
117                 writel(lcdlr1, dx_base + DMPHY_DX_LCDLR1);
118                 readl(dx_base + DMPHY_DX_LCDLR1); /* relax */
119                 dx_base += DMPHY_DX_STRIDE;
120         }
121
122         ddrphy_vt_ctrl(phy_base, 1);
123 }
124
125 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
126 {
127         void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
128         const int nr_dx = width / 8;
129         int dx, rank;
130         u32 gtr;
131         int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
132
133         for (dx = 0; dx < nr_dx; dx++) {
134                 gtr = readl(dx_base + DMPHY_DX_GTR);
135                 for (rank = 0; rank < 4; rank++) {
136                         dgsl = gtr & 0x7;
137                         /* if dgsl is zero, this rank was not trained. skip. */
138                         if (dgsl) {
139                                 dgsl_min = min(dgsl_min, dgsl);
140                                 dgsl_max = max(dgsl_max, dgsl);
141                         }
142                         gtr >>= 3;
143                 }
144                 dx_base += DMPHY_DX_STRIDE;
145         }
146
147         if (dgsl_min != dgsl_max)
148                 printf("DQS Gateing System Latencies are not all leveled.\n");
149
150         return dgsl_max;
151 }
152
153 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width)
154 {
155         u32 tmp;
156         void __iomem *zq_base, *dx_base;
157         int zq, dx;
158         int nr_dx;
159
160         nr_dx = width / 8;
161
162         writel(DMPHY_PIR_ZCALBYP,        phy_base + DMPHY_PIR);
163         /*
164          * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
165          * to avoid read error issue.
166          */
167         writel(0x07d81e37,         phy_base + DMPHY_PGCR0);
168         writel(0x0200c4e0,         phy_base + DMPHY_PGCR1);
169
170         tmp = ddrphy_pgcr2[freq];
171         if (width >= 32)
172                 tmp |= DMPHY_PGCR2_DUALCHN | DMPHY_PGCR2_ACPDDC;
173         writel(tmp, phy_base + DMPHY_PGCR2);
174
175         writel(ddrphy_ptr0[freq],  phy_base + DMPHY_PTR0);
176         writel(ddrphy_ptr1[freq],  phy_base + DMPHY_PTR1);
177         writel(0x00083def,         phy_base + DMPHY_PTR2);
178         writel(ddrphy_ptr3[freq],  phy_base + DMPHY_PTR3);
179         writel(ddrphy_ptr4[freq],  phy_base + DMPHY_PTR4);
180
181         writel(0x55555555, phy_base + DMPHY_ACIOCR1);
182         writel(0x00000000, phy_base + DMPHY_ACIOCR2);
183         writel(0x55555555, phy_base + DMPHY_ACIOCR3);
184         writel(0x00000000, phy_base + DMPHY_ACIOCR4);
185         writel(0x00000055, phy_base + DMPHY_ACIOCR5);
186         writel(0x00181aa4, phy_base + DMPHY_DXCCR);
187
188         writel(0x0024641e, phy_base + DMPHY_DSGCR);
189         writel(0x0000040b, phy_base + DMPHY_DCR);
190         writel(ddrphy_dtpr0[freq], phy_base + DMPHY_DTPR0);
191         writel(ddrphy_dtpr1[freq], phy_base + DMPHY_DTPR1);
192         writel(ddrphy_dtpr2[freq], phy_base + DMPHY_DTPR2);
193         writel(ddrphy_dtpr3[freq], phy_base + DMPHY_DTPR3);
194         writel(ddrphy_mr0[freq], phy_base + DMPHY_MR0);
195         writel(0x00000006,       phy_base + DMPHY_MR1);
196         writel(ddrphy_mr2[freq], phy_base + DMPHY_MR2);
197         writel(0x00000000,       phy_base + DMPHY_MR3);
198
199         tmp = 0;
200         for (dx = 0; dx < nr_dx; dx++)
201                 tmp |= BIT(DMPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
202         writel(0x90003087 | tmp, phy_base + DMPHY_DTCR);
203
204         writel(0x00000000, phy_base + DMPHY_DTAR0);
205         writel(0x00000008, phy_base + DMPHY_DTAR1);
206         writel(0x00000010, phy_base + DMPHY_DTAR2);
207         writel(0x00000018, phy_base + DMPHY_DTAR3);
208         writel(0xdd22ee11, phy_base + DMPHY_DTDR0);
209         writel(0x7788bb44, phy_base + DMPHY_DTDR1);
210
211         /* impedance control settings */
212         writel(0x04048900, phy_base + DMPHY_ZQCR);
213
214         zq_base = phy_base + DMPHY_ZQ_BASE;
215         for (zq = 0; zq < 4; zq++) {
216                 /*
217                  * board-dependent
218                  * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
219                  */
220                 writel(0x0007BB5D, zq_base + DMPHY_ZQ_PR);
221                 zq_base += DMPHY_ZQ_STRIDE;
222         }
223
224         /* DATX8 settings */
225         dx_base = phy_base + DMPHY_DX_BASE;
226         for (dx = 0; dx < 4; dx++) {
227                 tmp = readl(dx_base + DMPHY_DX_GCR0);
228                 tmp &= ~DMPHY_DX_GCR0_WLRKEN_MASK;
229                 tmp |= BIT(DMPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
230                                                 DMPHY_DX_GCR0_WLRKEN_MASK;
231                 writel(tmp, dx_base + DMPHY_DX_GCR0);
232
233                 writel(0x00000000, dx_base + DMPHY_DX_GCR1);
234                 writel(0x00000000, dx_base + DMPHY_DX_GCR2);
235                 writel(0x00000000, dx_base + DMPHY_DX_GCR3);
236                 dx_base += DMPHY_DX_STRIDE;
237         }
238
239         while (!(readl(phy_base + DMPHY_PGSR0) & DMPHY_PGSR0_IDONE))
240                 cpu_relax();
241
242         ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
243 }
244
245 struct ddrphy_init_sequence {
246         char *description;
247         u32 init_flag;
248         u32 done_flag;
249         u32 err_flag;
250 };
251
252 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
253         {
254                 "Impedance Calibration",
255                 DMPHY_PIR_ZCAL,
256                 DMPHY_PGSR0_ZCDONE,
257                 DMPHY_PGSR0_ZCERR,
258         },
259         { /* sentinel */ }
260 };
261
262 static const struct ddrphy_init_sequence dram_init_sequence[] = {
263         {
264                 "DRAM Initialization",
265                 DMPHY_PIR_DRAMRST | DMPHY_PIR_DRAMINIT,
266                 DMPHY_PGSR0_DIDONE,
267                 0,
268         },
269         { /* sentinel */ }
270 };
271
272 static const struct ddrphy_init_sequence training_sequence[] = {
273         {
274                 "Write Leveling",
275                 DMPHY_PIR_WL,
276                 DMPHY_PGSR0_WLDONE,
277                 DMPHY_PGSR0_WLERR,
278         },
279         {
280                 "Read DQS Gate Training",
281                 DMPHY_PIR_QSGATE,
282                 DMPHY_PGSR0_QSGDONE,
283                 DMPHY_PGSR0_QSGERR,
284         },
285         {
286                 "Write Leveling Adjustment",
287                 DMPHY_PIR_WLADJ,
288                 DMPHY_PGSR0_WLADONE,
289                 DMPHY_PGSR0_WLAERR,
290         },
291         {
292                 "Read Bit Deskew",
293                 DMPHY_PIR_RDDSKW,
294                 DMPHY_PGSR0_RDDONE,
295                 DMPHY_PGSR0_RDERR,
296         },
297         {
298                 "Write Bit Deskew",
299                 DMPHY_PIR_WRDSKW,
300                 DMPHY_PGSR0_WDDONE,
301                 DMPHY_PGSR0_WDERR,
302         },
303         {
304                 "Read Eye Training",
305                 DMPHY_PIR_RDEYE,
306                 DMPHY_PGSR0_REDONE,
307                 DMPHY_PGSR0_REERR,
308         },
309         {
310                 "Write Eye Training",
311                 DMPHY_PIR_WREYE,
312                 DMPHY_PGSR0_WEDONE,
313                 DMPHY_PGSR0_WEERR,
314         },
315         { /* sentinel */ }
316 };
317
318 static int __ddrphy_training(void __iomem *phy_base,
319                              const struct ddrphy_init_sequence *seq)
320 {
321         const struct ddrphy_init_sequence *s;
322         u32 pgsr0;
323         u32 init_flag = DMPHY_PIR_INIT;
324         u32 done_flag = DMPHY_PGSR0_IDONE;
325         int timeout = 50000; /* 50 msec is long enough */
326 #ifdef DISPLAY_ELAPSED_TIME
327         ulong start = get_timer(0);
328 #endif
329
330         for (s = seq; s->description; s++) {
331                 init_flag |= s->init_flag;
332                 done_flag |= s->done_flag;
333         }
334
335         writel(init_flag, phy_base + DMPHY_PIR);
336
337         do {
338                 if (--timeout < 0) {
339                         printf("%s: error: timeout during DDR training\n",
340                                __func__);
341                         return -ETIMEDOUT;
342                 }
343                 udelay(1);
344                 pgsr0 = readl(phy_base + DMPHY_PGSR0);
345         } while ((pgsr0 & done_flag) != done_flag);
346
347         for (s = seq; s->description; s++) {
348                 if (pgsr0 & s->err_flag) {
349                         printf("%s: error: %s failed\n", __func__,
350                                s->description);
351                         return -EIO;
352                 }
353         }
354
355 #ifdef DISPLAY_ELAPSED_TIME
356         printf("%s: info: elapsed time %ld msec\n", get_timer(start));
357 #endif
358
359         return 0;
360 }
361
362 static int ddrphy_impedance_calibration(void __iomem *phy_base)
363 {
364         int ret;
365         u32 tmp;
366
367         ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
368         if (ret)
369                 return ret;
370
371         /*
372          * Because of a hardware bug, IDONE flag is set when the first ZQ block
373          * is calibrated.  The flag does not guarantee the completion for all
374          * the ZQ blocks.  Wait a little more just in case.
375          */
376         udelay(1);
377
378         /* reflect ZQ settings and enable average algorithm*/
379         tmp = readl(phy_base + DMPHY_ZQCR);
380         tmp |= DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
381         writel(tmp, phy_base + DMPHY_ZQCR);
382         tmp &= ~DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
383         tmp |= DMPHY_ZQCR_AVGEN;
384         writel(tmp, phy_base + DMPHY_ZQCR);
385
386         return 0;
387 }
388
389 static int ddrphy_dram_init(void __iomem *phy_base)
390 {
391         return __ddrphy_training(phy_base, dram_init_sequence);
392 }
393
394 static int ddrphy_training(void __iomem *phy_base)
395 {
396         return __ddrphy_training(phy_base, training_sequence);
397 }
398
399 /* UMC */
400 static void umc_set_system_latency(void __iomem *umc_dc_base, int phy_latency)
401 {
402         u32 val;
403         int latency;
404
405         val = readl(umc_dc_base + UMC_RDATACTL_D0);
406         latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
407         latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
408                                                 UMC_RDATACTL_RAD2LTY_SHIFT;
409         /*
410          * UMC works at the half clock rate of the PHY.
411          * The LSB of latency is ignored
412          */
413         latency += phy_latency & ~1;
414
415         val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
416         if (latency > 0xf) {
417                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
418                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
419         } else {
420                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
421         }
422
423         writel(val, umc_dc_base + UMC_RDATACTL_D0);
424         writel(val, umc_dc_base + UMC_RDATACTL_D1);
425
426         readl(umc_dc_base + UMC_RDATACTL_D1); /* relax */
427 }
428
429 /* enable/disable auto refresh */
430 void umc_refresh_ctrl(void __iomem *umc_dc_base, int enable)
431 {
432         u32 tmp;
433
434         tmp = readl(umc_dc_base + UMC_SPCSETB);
435         tmp &= ~UMC_SPCSETB_AREFMD_MASK;
436
437         if (enable)
438                 tmp |= UMC_SPCSETB_AREFMD_ARB;
439         else
440                 tmp |= UMC_SPCSETB_AREFMD_REG;
441
442         writel(tmp, umc_dc_base + UMC_SPCSETB);
443         udelay(1);
444 }
445
446 static void umc_ud_init(void __iomem *umc_base, int ch)
447 {
448         writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
449
450         if (ch == 2)
451                 writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
452 }
453
454 static void umc_dc_init(void __iomem *umc_dc_base, enum dram_freq freq,
455                         enum dram_size size, int ch, int width)
456 {
457         int latency;
458         u32 val;
459
460         writel(umc_cmdctla[freq], umc_dc_base + UMC_CMDCTLA);
461
462         writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
463                umc_dc_base + UMC_CMDCTLB);
464
465         writel(umc_spcctla[freq][size / (width / 16)],
466                umc_dc_base + UMC_SPCCTLA);
467         writel(umc_spcctlb[freq], umc_dc_base + UMC_SPCCTLB);
468
469         val = 0x000e000e;
470         latency = 12;
471         /* ES2 inserted one more FF to the logic. */
472         if (uniphier_get_soc_model() >= 2)
473                 latency += 2;
474
475         if (latency > 0xf) {
476                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
477                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
478         } else {
479                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
480         }
481
482         writel(val, umc_dc_base + UMC_RDATACTL_D0);
483         if (width >= 32)
484                 writel(val, umc_dc_base + UMC_RDATACTL_D1);
485
486         writel(0x04060A02, umc_dc_base + UMC_WDATACTL_D0);
487         if (width >= 32)
488                 writel(0x04060A02, umc_dc_base + UMC_WDATACTL_D1);
489         writel(0x04000000, umc_dc_base + UMC_DATASET);
490         writel(0x00400020, umc_dc_base + UMC_DCCGCTL);
491         writel(0x00000084, umc_dc_base + UMC_FLOWCTLG);
492         writel(0x00000000, umc_dc_base + UMC_ACSSETA);
493
494         writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
495                umc_dc_base + UMC_FLOWCTLA);
496
497         writel(0x00004400, umc_dc_base + UMC_FLOWCTLC);
498         writel(0x200A0A00, umc_dc_base + UMC_SPCSETB);
499         writel(0x00000520, umc_dc_base + UMC_DFICUPDCTLA);
500         writel(0x0000000D, umc_dc_base + UMC_RESPCTL);
501
502         if (ch != 2) {
503                 writel(0x00202000, umc_dc_base + UMC_FLOWCTLB);
504                 writel(0xFDBFFFFF, umc_dc_base + UMC_FLOWCTLOB0);
505                 writel(0xFFFFFFFF, umc_dc_base + UMC_FLOWCTLOB1);
506                 writel(0x00080700, umc_dc_base + UMC_BSICMAPSET);
507         } else {
508                 writel(0x00200000, umc_dc_base + UMC_FLOWCTLB);
509                 writel(0x00000000, umc_dc_base + UMC_BSICMAPSET);
510         }
511
512         writel(0x00000000, umc_dc_base + UMC_ERRMASKA);
513         writel(0x00000000, umc_dc_base + UMC_ERRMASKB);
514 }
515
516 static int umc_init(void __iomem *umc_base, enum dram_freq freq, int ch,
517                     enum dram_size size, int width)
518 {
519         void __iomem *umc_dc_base = umc_base + 0x00011000;
520         void __iomem *phy_base = umc_base + 0x00030000;
521         int ret;
522
523         writel(0x00000002, umc_dc_base + UMC_INITSET);
524         while (readl(umc_dc_base + UMC_INITSTAT) & BIT(2))
525                 cpu_relax();
526
527         /* deassert PHY reset signals */
528         writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
529                umc_dc_base + UMC_DIOCTLA);
530
531         ddrphy_init(phy_base, freq, width);
532
533         ret = ddrphy_impedance_calibration(phy_base);
534         if (ret)
535                 return ret;
536
537         ddrphy_dram_init(phy_base);
538         if (ret)
539                 return ret;
540
541         umc_dc_init(umc_dc_base, freq, size, ch, width);
542
543         umc_ud_init(umc_base, ch);
544
545         if (size) {
546                 ret = ddrphy_training(phy_base);
547                 if (ret)
548                         return ret;
549         }
550
551         udelay(1);
552
553         /* match the system latency between UMC and PHY */
554         umc_set_system_latency(umc_dc_base,
555                                ddrphy_get_system_latency(phy_base, width));
556
557         udelay(1);
558
559         /* stop auto refresh before clearing FIFO in PHY */
560         umc_refresh_ctrl(umc_dc_base, 0);
561         ddrphy_fifo_reset(phy_base);
562         umc_refresh_ctrl(umc_dc_base, 1);
563
564         udelay(10);
565
566         return 0;
567 }
568
569 static void um_init(void __iomem *um_base)
570 {
571         writel(0x000000ff, um_base + UMC_MBUS0);
572         writel(0x000000ff, um_base + UMC_MBUS1);
573         writel(0x000000ff, um_base + UMC_MBUS2);
574         writel(0x000000ff, um_base + UMC_MBUS3);
575 }
576
577 int proxstream2_umc_init(const struct uniphier_board_data *bd)
578 {
579         void __iomem *um_base = (void __iomem *)0x5b600000;
580         void __iomem *umc_ch0_base = (void __iomem *)0x5b800000;
581         void __iomem *umc_ch1_base = (void __iomem *)0x5ba00000;
582         void __iomem *umc_ch2_base = (void __iomem *)0x5bc00000;
583         enum dram_freq freq;
584         int ret;
585
586         switch (bd->dram_freq) {
587         case 1866:
588                 freq = FREQ_1866M;
589                 break;
590         case 2133:
591                 freq = FREQ_2133M;
592                 break;
593         default:
594                 printf("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
595                 return -EINVAL;
596         }
597
598         ret = umc_init(umc_ch0_base, freq, 0, bd->dram_ch0_size / SZ_256M,
599                        bd->dram_ch0_width);
600         if (ret) {
601                 printf("failed to initialize UMC ch0\n");
602                 return ret;
603         }
604
605         ret = umc_init(umc_ch1_base, freq, 1, bd->dram_ch1_size / SZ_256M,
606                        bd->dram_ch1_width);
607         if (ret) {
608                 printf("failed to initialize UMC ch1\n");
609                 return ret;
610         }
611
612         ret = umc_init(umc_ch2_base, freq, 2, bd->dram_ch2_size / SZ_256M,
613                        bd->dram_ch2_width);
614         if (ret) {
615                 printf("failed to initialize UMC ch2\n");
616                 return ret;
617         }
618
619         um_init(um_base);
620
621         return 0;
622 }