]> git.sur5r.net Git - u-boot/blob - board/esd/cpci750/sdram_init.c
CPCI750 board support added
[u-boot] / board / esd / cpci750 / sdram_init.c
1 /*
2  * (C) Copyright 2001
3  * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23
24 /*************************************************************************
25  * adaption for the Marvell DB64360 Board
26  * Ingo Assmus (ingo.assmus@keymile.com)
27  *
28  * adaption for the cpci750 Board
29  * Reinhard Arlt (reinhard.arlt@esd-electronics.com)
30  *************************************************************************/
31
32
33 /* sdram_init.c - automatic memory sizing */
34
35 #include <common.h>
36 #include <74xx_7xx.h>
37 #include "../../Marvell/include/memory.h"
38 #include "../../Marvell/include/pci.h"
39 #include "../../Marvell/include/mv_gen_reg.h"
40 #include <net.h>
41
42 #include "eth.h"
43 #include "mpsc.h"
44 #include "../../Marvell/common/i2c.h"
45 #include "64360.h"
46 #include "mv_regs.h"
47
48
49 #undef  DEBUG
50 /* #define DEBUG */
51 #ifdef CONFIG_PCI
52 #define MAP_PCI
53 #endif /* of CONFIG_PCI */
54
55 #ifdef DEBUG
56 #define DP(x) x
57 #else
58 #define DP(x)
59 #endif
60
61 int set_dfcdlInit(void);        /* setup delay line of Mv64360 */
62
63 /* ------------------------------------------------------------------------- */
64
65 int
66 memory_map_bank(unsigned int bankNo,
67                 unsigned int bankBase,
68                 unsigned int bankLength)
69 {
70 #ifdef MAP_PCI
71         PCI_HOST host;
72 #endif
73
74
75 #ifdef DEBUG
76         if (bankLength > 0) {
77                 printf("mapping bank %d at %08x - %08x\n",
78                        bankNo, bankBase, bankBase + bankLength - 1);
79         } else {
80                 printf("unmapping bank %d\n", bankNo);
81         }
82 #endif
83
84         memoryMapBank(bankNo, bankBase, bankLength);
85
86 #ifdef MAP_PCI
87         for (host=PCI_HOST0;host<=PCI_HOST1;host++) {
88                 const int features=
89                         PREFETCH_ENABLE |
90                         DELAYED_READ_ENABLE |
91                         AGGRESSIVE_PREFETCH |
92                         READ_LINE_AGGRESSIVE_PREFETCH |
93                         READ_MULTI_AGGRESSIVE_PREFETCH |
94                         MAX_BURST_4 |
95                         PCI_NO_SWAP;
96
97                 pciMapMemoryBank(host, bankNo, bankBase, bankLength);
98
99                 pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase,
100                                 bankLength);
101
102                 pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength);
103         }
104 #endif
105         return 0;
106 }
107
108 #define GB         (1 << 30)
109
110 /* much of this code is based on (or is) the code in the pip405 port */
111 /* thanks go to the authors of said port - Josh */
112
113 /* structure to store the relevant information about an sdram bank */
114 typedef struct sdram_info {
115         uchar drb_size;
116         uchar registered, ecc;
117         uchar tpar;
118         uchar tras_clocks;
119         uchar burst_len;
120         uchar banks, slot;
121 } sdram_info_t;
122
123 /* Typedefs for 'gtAuxilGetDIMMinfo' function */
124
125 typedef enum _memoryType {SDRAM, DDR} MEMORY_TYPE;
126
127 typedef enum _voltageInterface {TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
128                                 SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
129                                } VOLTAGE_INTERFACE;
130
131 typedef enum _max_CL_supported_DDR {DDR_CL_1=1, DDR_CL_1_5=2, DDR_CL_2=4, DDR_CL_2_5=8, DDR_CL_3=16, DDR_CL_3_5=32, DDR_CL_FAULT} MAX_CL_SUPPORTED_DDR;
132 typedef enum _max_CL_supported_SD {SD_CL_1=1,  SD_CL_2,  SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, SD_FAULT} MAX_CL_SUPPORTED_SD;
133
134
135 /* SDRAM/DDR information struct */
136 typedef struct _gtMemoryDimmInfo
137 {
138     MEMORY_TYPE          memoryType;
139     unsigned int         numOfRowAddresses;
140     unsigned int         numOfColAddresses;
141     unsigned int         numOfModuleBanks;
142     unsigned int         dataWidth;
143     VOLTAGE_INTERFACE    voltageInterface;
144     unsigned int         errorCheckType;                                /* ECC , PARITY..*/
145     unsigned int         sdramWidth;                                    /* 4,8,16 or 32 */;
146     unsigned int         errorCheckDataWidth;                           /* 0 - no, 1 - Yes */
147     unsigned int         minClkDelay;
148     unsigned int         burstLengthSupported;
149     unsigned int         numOfBanksOnEachDevice;
150     unsigned int         suportedCasLatencies;
151     unsigned int         RefreshInterval;
152     unsigned int         maxCASlatencySupported_LoP;                    /* LoP left of point (measured in ns) */
153     unsigned int         maxCASlatencySupported_RoP;                    /* RoP right of point (measured in ns)*/
154     MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
155     MAX_CL_SUPPORTED_SD  maxClSupported_SD;
156     unsigned int         moduleBankDensity;
157     /* module attributes (true for yes) */
158     bool                 bufferedAddrAndControlInputs;
159     bool                 registeredAddrAndControlInputs;
160     bool                 onCardPLL;
161     bool                 bufferedDQMBinputs;
162     bool                 registeredDQMBinputs;
163     bool                 differentialClockInput;
164     bool                 redundantRowAddressing;
165
166     /* module general attributes */
167     bool                 suportedAutoPreCharge;
168     bool                 suportedPreChargeAll;
169     bool                 suportedEarlyRasPreCharge;
170     bool                 suportedWrite1ReadBurst;
171     bool                 suported5PercentLowVCC;
172     bool                 suported5PercentUpperVCC;
173     /* module timing parameters */
174     unsigned int         minRasToCasDelay;
175     unsigned int         minRowActiveRowActiveDelay;
176     unsigned int         minRasPulseWidth;
177     unsigned int         minRowPrechargeTime;                           /* measured in ns */
178
179     int                  addrAndCommandHoldTime;                        /* LoP left of point (measured in ns) */
180     int                  addrAndCommandSetupTime;                               /* (measured in ns/100) */
181     int                  dataInputSetupTime;                            /* LoP left of point (measured in ns) */
182     int                  dataInputHoldTime;                             /* LoP left of point (measured in ns) */
183 /* tAC times for highest 2nd and 3rd highest CAS Latency values */
184     unsigned int         clockToDataOut_LoP;                            /* LoP left of point (measured in ns) */
185     unsigned int         clockToDataOut_RoP;                            /* RoP right of point (measured in ns)*/
186     unsigned int         clockToDataOutMinus1_LoP;                              /* LoP left of point (measured in ns) */
187     unsigned int         clockToDataOutMinus1_RoP;                      /* RoP right of point (measured in ns)*/
188     unsigned int         clockToDataOutMinus2_LoP;                              /* LoP left of point (measured in ns) */
189     unsigned int         clockToDataOutMinus2_RoP;                      /* RoP right of point (measured in ns)*/
190
191     unsigned int         minimumCycleTimeAtMaxCasLatancy_LoP;           /* LoP left of point (measured in ns) */
192     unsigned int         minimumCycleTimeAtMaxCasLatancy_RoP;           /* RoP right of point (measured in ns)*/
193
194     unsigned int         minimumCycleTimeAtMaxCasLatancyMinus1_LoP;     /* LoP left of point (measured in ns) */
195     unsigned int         minimumCycleTimeAtMaxCasLatancyMinus1_RoP;     /* RoP right of point (measured in ns)*/
196
197     unsigned int         minimumCycleTimeAtMaxCasLatancyMinus2_LoP;     /* LoP left of point (measured in ns) */
198     unsigned int         minimumCycleTimeAtMaxCasLatancyMinus2_RoP;     /* RoP right of point (measured in ns)*/
199
200     /* Parameters calculated from
201        the extracted DIMM information */
202     unsigned int         size;
203     unsigned int         deviceDensity;                                 /* 16,64,128,256 or 512 Mbit */
204     unsigned int         numberOfDevices;
205     uchar                drb_size;                                      /* DRAM size in n*64Mbit */
206     uchar                slot;                                          /* Slot Number this module is inserted in */
207     uchar                spd_raw_data[128];                             /* Content of SPD-EEPROM copied 1:1 */
208 #ifdef DEBUG
209     uchar                manufactura[8];                                /* Content of SPD-EEPROM Byte 64-71 */
210     uchar                modul_id[18];                                  /* Content of SPD-EEPROM Byte 73-90 */
211     uchar                vendor_data[27];                               /* Content of SPD-EEPROM Byte 99-125 */
212     unsigned long        modul_serial_no;                               /* Content of SPD-EEPROM Byte 95-98 */
213     unsigned int         manufac_date;                                  /* Content of SPD-EEPROM Byte 93-94 */
214     unsigned int         modul_revision;                                /* Content of SPD-EEPROM Byte 91-92 */
215     uchar                manufac_place;                                 /* Content of SPD-EEPROM Byte 72 */
216
217 #endif
218 } AUX_MEM_DIMM_INFO;
219
220
221 /*
222  * translate ns.ns/10 coding of SPD timing values
223  * into 10 ps unit values
224  */
225 static inline unsigned short
226 NS10to10PS(unsigned char spd_byte)
227 {
228         unsigned short ns, ns10;
229
230         /* isolate upper nibble */
231         ns = (spd_byte >> 4) & 0x0F;
232         /* isolate lower nibble */
233         ns10 = (spd_byte & 0x0F);
234
235         return(ns*100 + ns10*10);
236 }
237
238 /*
239  * translate ns coding of SPD timing values
240  * into 10 ps unit values
241  */
242 static inline unsigned short
243 NSto10PS(unsigned char spd_byte)
244 {
245         return(spd_byte*100);
246 }
247
248 /* This code reads the SPD chip on the sdram and populates
249  * the array which is passed in with the relevant information */
250 /* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
251 static int
252 check_dimm(uchar slot, AUX_MEM_DIMM_INFO *dimmInfo)
253
254 {
255  DECLARE_GLOBAL_DATA_PTR;
256
257      unsigned long spd_checksum;
258
259         uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
260         int ret;
261         unsigned int        i,j,density = 1,devicesForErrCheck = 0;
262 #ifdef DEBUG
263         unsigned int        k;
264 #endif
265         unsigned int    rightOfPoint = 0,leftOfPoint = 0, mult, div, time_tmp;
266         int                 sign = 1,shift,maskLeftOfPoint,maskRightOfPoint;
267         uchar supp_cal, cal_val;
268         ulong memclk, tmemclk;
269         ulong tmp;
270         uchar trp_clocks=0, trcd_clocks, tras_clocks, trrd_clocks;
271         uchar data[128];
272
273         memclk = gd->bus_clk;
274         tmemclk = 1000000000 / (memclk / 100);  /* in 10 ps units */
275
276         memset(data, 0, sizeof(data));
277
278
279         ret = 0;
280
281         DP(puts("before i2c read\n"));
282
283         ret = i2c_read(addr, 0, 2, data, 128);
284
285         DP(puts("after i2c read\n"));
286
287         if ((data[64] != 'e') || (data[65] != 's') || (data[66] != 'd') || (data[67] != '-') ||
288             (data[68] != 'g') || (data[69] != 'm') || (data[70] != 'b') || (data[71] != 'h'))
289             {
290             ret = -1;
291             }
292
293         if ((ret != 0) && (slot == 0))
294             {
295             memset(data, 0, sizeof(data));
296             data[ 0] = 0x80; data[ 1] = 0x08; data[ 2] = 0x07; data[ 3] = 0x0c;
297             data[ 4] = 0x09; data[ 5] = 0x01; data[ 6] = 0x48; data[ 7] = 0x00;
298             data[ 8] = 0x04; data[ 9] = 0x75; data[10] = 0x80; data[11] = 0x02;
299             data[12] = 0x80; data[13] = 0x10; data[14] = 0x08; data[15] = 0x01;
300             data[16] = 0x0e; data[17] = 0x04; data[18] = 0x0c; data[19] = 0x01;
301             data[20] = 0x02; data[21] = 0x20; data[22] = 0x00; data[23] = 0xa0;
302             data[24] = 0x80; data[25] = 0x00; data[26] = 0x00; data[27] = 0x50;
303             data[28] = 0x3c; data[29] = 0x50; data[30] = 0x32; data[31] = 0x10;
304             data[32] = 0xb0; data[33] = 0xb0; data[34] = 0x60; data[35] = 0x60;
305             data[64] = 'e' ; data[65] = 's' ; data[66] = 'd' ; data[67] = '-' ;
306             data[68] = 'g' ; data[69] = 'm' ; data[70] = 'b' ; data[71] = 'h' ;
307             ret = 0;
308             }
309
310         /* zero all the values */
311         memset(dimmInfo, 0, sizeof(*dimmInfo));
312
313         /* copy the SPD content 1:1 into the dimmInfo structure*/
314         for(i = 0 ; i <= 127 ; i++)
315         {
316           dimmInfo->spd_raw_data[i] = data[i];
317         }
318
319         if (ret) {
320                 DP(printf("No DIMM in slot %d [err = %x]\n", slot, ret));
321                 return 0;
322         }
323         else
324         dimmInfo->slot = slot;          /* start to fill up dimminfo for this "slot" */
325
326 #ifdef CFG_DISPLAY_DIMM_SPD_CONTENT
327
328     for(i = 0 ; i <= 127 ; i++)
329     {
330         printf("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i], data[i]);
331     }
332
333 #endif
334 #ifdef DEBUG
335 /* find Manufactura of Dimm Module */
336     for(i = 0 ; i < sizeof(dimmInfo->manufactura) ; i++)
337     {
338         dimmInfo->manufactura[i] = data[64+i];
339     }
340     printf("\nThis RAM-Module is produced by:           %s\n", dimmInfo->manufactura);
341
342 /* find Manul-ID of Dimm Module */
343     for(i = 0 ; i < sizeof(dimmInfo->modul_id) ; i++)
344     {
345         dimmInfo->modul_id[i] = data[73+i];
346     }
347     printf("The Module-ID of this RAM-Module is:                %s\n", dimmInfo->modul_id);
348
349 /* find Vendor-Data of Dimm Module */
350     for(i = 0 ; i < sizeof(dimmInfo->vendor_data) ; i++)
351     {
352         dimmInfo->vendor_data[i] = data[99+i];
353     }
354     printf("Vendor Data of this RAM-Module is:          %s\n", dimmInfo->vendor_data);
355
356 /* find modul_serial_no of Dimm Module */
357     dimmInfo->modul_serial_no = (*((unsigned long *)(&data[95])));
358     printf("Serial No. of this RAM-Module is:           %ld (%lx)\n", dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);
359
360 /* find Manufac-Data of Dimm Module */
361     dimmInfo->manufac_date = (*((unsigned int *)(&data[93])));
362     printf("Manufactoring Date of this RAM-Module is:   %d.%d\n", data[93], data [94]); /*dimmInfo->manufac_date*/
363
364 /* find modul_revision of Dimm Module */
365     dimmInfo->modul_revision = (*((unsigned int *)(&data[91])));
366     printf("Module Revision of this RAM-Module is:              %d.%d\n", data[91], data [92]); /* dimmInfo->modul_revision*/
367
368 /* find manufac_place of Dimm Module */
369     dimmInfo->manufac_place = (*((unsigned char *)(&data[72])));
370     printf("manufac_place of this RAM-Module is:                %d\n", dimmInfo->manufac_place);
371
372 #endif
373 /*------------------------------------------------------------------------------------------------------------------------------*/
374 /* calculate SPD checksum */
375 /*------------------------------------------------------------------------------------------------------------------------------*/
376     spd_checksum = 0;
377 #if 0 /* test-only */
378     for(i = 0 ; i <= 62 ; i++)
379     {
380      spd_checksum += data[i];
381     }
382
383     if ((spd_checksum & 0xff) != data[63])
384     {
385         printf("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int)(spd_checksum & 0xff), data[63]);
386                 hang();
387     }
388
389     else
390         printf("SPD Checksum ok!\n");
391 #endif /* test-only */
392
393 /*------------------------------------------------------------------------------------------------------------------------------*/
394     for(i = 2 ; i <= 35 ; i++)
395     {
396         switch(i)
397         {
398         case 2:  /* Memory type (DDR / SDRAM) */
399             dimmInfo->memoryType = (data[i] == 0x7)? DDR:SDRAM;
400         #ifdef DEBUG
401         if (dimmInfo->memoryType == 0)
402                 DP(printf("Dram_type in slot %d is:                     SDRAM\n", dimmInfo->slot));
403         if (dimmInfo->memoryType == 1)
404                 DP(printf("Dram_type in slot %d is:                     DDRAM\n", dimmInfo->slot));
405         #endif
406             break;
407 /*------------------------------------------------------------------------------------------------------------------------------*/
408
409         case 3:  /* Number Of Row Addresses */
410             dimmInfo->numOfRowAddresses = data[i];
411             DP(printf("Module Number of row addresses:          %d\n", dimmInfo->numOfRowAddresses));
412             break;
413 /*------------------------------------------------------------------------------------------------------------------------------*/
414
415         case 4:  /* Number Of Column Addresses */
416             dimmInfo->numOfColAddresses = data[i];
417             DP(printf("Module Number of col addresses:          %d\n", dimmInfo->numOfColAddresses));
418             break;
419 /*------------------------------------------------------------------------------------------------------------------------------*/
420
421         case 5:  /* Number Of Module Banks */
422             dimmInfo->numOfModuleBanks = data[i];
423             DP(printf("Number of Banks on Mod. :                                %d\n", dimmInfo->numOfModuleBanks));
424             break;
425 /*------------------------------------------------------------------------------------------------------------------------------*/
426
427         case 6:  /* Data Width */
428             dimmInfo->dataWidth = data[i];
429             DP(printf("Module Data Width:                               %d\n", dimmInfo->dataWidth));
430             break;
431 /*------------------------------------------------------------------------------------------------------------------------------*/
432
433         case 8:  /* Voltage Interface */
434             switch(data[i])
435             {
436             case 0x0:
437                 dimmInfo->voltageInterface = TTL_5V_TOLERANT;
438                 DP(printf("Module is                                    TTL_5V_TOLERANT\n"));
439                 break;
440             case 0x1:
441                 dimmInfo->voltageInterface = LVTTL;
442                 DP(printf("Module is                                    LVTTL\n"));
443                 break;
444             case 0x2:
445                 dimmInfo->voltageInterface = HSTL_1_5V;
446             DP(printf("Module is                                        TTL_5V_TOLERANT\n"));
447                 break;
448             case 0x3:
449                 dimmInfo->voltageInterface = SSTL_3_3V;
450                 DP(printf("Module is                                    HSTL_1_5V\n"));
451                 break;
452             case 0x4:
453                 dimmInfo->voltageInterface = SSTL_2_5V;
454                 DP(printf("Module is                                    SSTL_2_5V\n"));
455                 break;
456             default:
457                 dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
458                 DP(printf("Module is                                    VOLTAGE_UNKNOWN\n"));
459                 break;
460             }
461             break;
462 /*------------------------------------------------------------------------------------------------------------------------------*/
463
464         case 9:  /* Minimum Cycle Time At Max CasLatancy */
465             shift = (dimmInfo->memoryType == DDR)? 4:2;
466             mult = (dimmInfo->memoryType == DDR)? 10:25;
467             maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xf0:0xfc;
468             maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0xf:0x03;
469             leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
470             rightOfPoint = (data[i] & maskRightOfPoint)* mult;
471             dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP = leftOfPoint;
472             dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP = rightOfPoint;
473             DP(printf("Minimum Cycle Time At Max CasLatancy:            %d.%d [ns]\n",leftOfPoint, rightOfPoint));
474             break;
475 /*------------------------------------------------------------------------------------------------------------------------------*/
476
477         case 10: /* Clock To Data Out */
478             div = (dimmInfo->memoryType == DDR)? 100:10;
479             time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
480             leftOfPoint     = time_tmp / div;
481             rightOfPoint    = time_tmp % div;
482             dimmInfo->clockToDataOut_LoP = leftOfPoint;
483             dimmInfo->clockToDataOut_RoP = rightOfPoint;
484             DP(printf("Clock To Data Out:                               %d.%2d [ns]\n",leftOfPoint,  rightOfPoint ));
485             /*dimmInfo->clockToDataOut*/
486             break;
487 /*------------------------------------------------------------------------------------------------------------------------------*/
488
489 #ifdef CONFIG_ECC
490         case 11: /* Error Check Type */
491             dimmInfo->errorCheckType = data[i];
492         DP(printf("Error Check Type (0=NONE):                   %d\n", dimmInfo->errorCheckType));
493             break;
494 #endif
495 /*------------------------------------------------------------------------------------------------------------------------------*/
496
497         case 12: /* Refresh Interval */
498             dimmInfo->RefreshInterval = data[i];
499         DP(printf("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n", dimmInfo->RefreshInterval));
500             break;
501 /*------------------------------------------------------------------------------------------------------------------------------*/
502
503         case 13: /* Sdram Width */
504             dimmInfo->sdramWidth = data[i];
505         DP(printf("Sdram Width:                                         %d\n", dimmInfo->sdramWidth));
506             break;
507 /*------------------------------------------------------------------------------------------------------------------------------*/
508
509         case 14: /* Error Check Data Width */
510             dimmInfo->errorCheckDataWidth = data[i];
511         DP(printf("Error Check Data Width:                      %d\n", dimmInfo->errorCheckDataWidth));
512             break;
513 /*------------------------------------------------------------------------------------------------------------------------------*/
514
515         case 15: /* Minimum Clock Delay */
516             dimmInfo->minClkDelay = data[i];
517         DP(printf("Minimum Clock Delay:                                 %d\n", dimmInfo->minClkDelay));
518             break;
519 /*------------------------------------------------------------------------------------------------------------------------------*/
520
521         case 16: /* Burst Length Supported */
522                            /******-******-******-*******
523                            * bit3 | bit2 | bit1 | bit0 *
524                            *******-******-******-*******
525             burst length = *  8   |  4   |   2  |   1  *
526                            *****************************
527
528             If for example bit0 and bit2 are set, the burst
529             length supported are 1 and 4. */
530
531             dimmInfo->burstLengthSupported = data[i];
532 #ifdef DEBUG
533         DP(printf("Burst Length Supported:                      "));
534         if (dimmInfo->burstLengthSupported & 0x01)
535                 DP(printf("1, "));
536         if (dimmInfo->burstLengthSupported & 0x02)
537                 DP(printf("2, "));
538         if (dimmInfo->burstLengthSupported & 0x04)
539                 DP(printf("4, "));
540         if (dimmInfo->burstLengthSupported & 0x08)
541                 DP(printf("8, "));
542         DP(printf(" Bit \n"));
543 #endif
544             break;
545 /*------------------------------------------------------------------------------------------------------------------------------*/
546
547         case 17: /* Number Of Banks On Each Device */
548             dimmInfo->numOfBanksOnEachDevice = data[i];
549             DP(printf("Number Of Banks On Each Chip:                    %d\n", dimmInfo->numOfBanksOnEachDevice));
550             break;
551 /*------------------------------------------------------------------------------------------------------------------------------*/
552
553         case 18: /* Suported Cas Latencies */
554
555           /*     DDR:
556                    *******-******-******-******-******-******-******-*******
557                    * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
558                    *******-******-******-******-******-******-******-*******
559            CAS =   * TBD  | TBD  | 3.5  |   3  | 2.5  |  2   | 1.5  |   1  *
560                    *********************************************************
561            SDRAM:
562                    *******-******-******-******-******-******-******-*******
563                    * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
564                    *******-******-******-******-******-******-******-*******
565            CAS =   * TBD  |  7   |  6   |  5   |  4   |  3   |   2  |   1  *
566                    ********************************************************/
567           dimmInfo->suportedCasLatencies = data[i];
568 #ifdef DEBUG
569           DP(printf("Suported Cas Latencies: (CL)                       "));
570           if (dimmInfo->memoryType == 0)                /* SDRAM*/
571             {
572               for (k = 0; k <=7; k++)
573                 {
574                   if (dimmInfo->suportedCasLatencies & (1 << k))
575                     DP(printf("%d,                      ", k+1));
576                 }
577
578             }
579           else                                  /* DDR-RAM*/
580             {
581               if (dimmInfo->suportedCasLatencies & 1)
582                 DP(printf("1, "));
583               if (dimmInfo->suportedCasLatencies & 2)
584                 DP(printf("1.5, "));
585               if (dimmInfo->suportedCasLatencies & 4)
586                 DP(printf("2, "));
587               if (dimmInfo->suportedCasLatencies & 8)
588                 DP(printf("2.5, "));
589               if (dimmInfo->suportedCasLatencies & 16)
590                 DP(printf("3, "));
591               if (dimmInfo->suportedCasLatencies & 32)
592                 DP(printf("3.5, "));
593
594             }
595           DP(printf("\n"));
596 #endif
597           /* Calculating MAX CAS latency */
598           for(j = 7 ; j > 0 ; j--)
599             {
600               if(((dimmInfo->suportedCasLatencies >> j) & 0x1) == 1)
601                 {
602                   switch(dimmInfo->memoryType)
603                     {
604                     case DDR:
605                       /* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
606                       switch (j)
607                         {
608                         case 7:
609                           DP(printf("Max. Cas Latencies (DDR):                  ERROR !!!\n"));
610                           dimmInfo->maxClSupported_DDR = DDR_CL_FAULT;
611                           hang();
612                           break;
613                         case 6:
614                           DP(printf("Max. Cas Latencies (DDR):                  ERROR !!!\n"));
615                           dimmInfo->maxClSupported_DDR = DDR_CL_FAULT;
616                           hang();
617                           break;
618                         case 5:
619                           DP(printf("Max. Cas Latencies (DDR):                  3.5 clk's\n"));
620                           dimmInfo->maxClSupported_DDR = DDR_CL_3_5;
621                           break;
622                         case 4:
623                           DP(printf("Max. Cas Latencies (DDR):                  3 clk's \n"));
624                           dimmInfo->maxClSupported_DDR = DDR_CL_3;
625                           break;
626                         case 3:
627                           DP(printf("Max. Cas Latencies (DDR):                  2.5 clk's \n"));
628                           dimmInfo->maxClSupported_DDR = DDR_CL_2_5;
629                           break;
630                         case 2:
631                           DP(printf("Max. Cas Latencies (DDR):                  2 clk's \n"));
632                           dimmInfo->maxClSupported_DDR = DDR_CL_2;
633                           break;
634                         case 1:
635                           DP(printf("Max. Cas Latencies (DDR):                  1.5 clk's \n"));
636                           dimmInfo->maxClSupported_DDR = DDR_CL_1_5;
637                           break;
638                         }
639                       dimmInfo->maxCASlatencySupported_LoP = 1 + (int) (5 * j /10);
640                       if (((5*j) % 10) != 0)
641                         dimmInfo->maxCASlatencySupported_RoP =  5;
642                       else
643                         dimmInfo->maxCASlatencySupported_RoP =  0;
644                       DP(printf("Max. Cas Latencies (DDR LoP.RoP Notation):     %d.%d \n", dimmInfo->maxCASlatencySupported_LoP, dimmInfo->maxCASlatencySupported_RoP));
645                       break;
646                     case SDRAM:
647                       /* CAS latency 1, 2, 3, 4, 5, 6, 7 */
648                       dimmInfo->maxClSupported_SD = j;                  /*  Cas Latency DDR-RAM Coded                   */
649                       DP(printf("Max. Cas Latencies (SD): %d\n", dimmInfo->maxClSupported_SD));
650                       dimmInfo->maxCASlatencySupported_LoP =  j ;
651                       dimmInfo->maxCASlatencySupported_RoP =  0;
652                       DP(printf("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", dimmInfo->maxCASlatencySupported_LoP, dimmInfo->maxCASlatencySupported_RoP));
653                       break;
654                     }
655                   break;
656                 }
657             }
658           break;
659 /*------------------------------------------------------------------------------------------------------------------------------*/
660
661         case 21: /* Buffered Address And Control Inputs */
662             DP(printf("\nModul Attributes (SPD Byte 21): \n"));
663             dimmInfo->bufferedAddrAndControlInputs = data[i] & BIT0;
664             dimmInfo->registeredAddrAndControlInputs = (data[i] & BIT1) >> 1;
665             dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
666             dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
667             dimmInfo->registeredDQMBinputs = (data[i] & BIT4) >> 4;
668             dimmInfo->differentialClockInput = (data[i] & BIT5) >> 5;
669             dimmInfo->redundantRowAddressing = (data[i] & BIT6) >> 6;
670 #ifdef DEBUG
671             if (dimmInfo->bufferedAddrAndControlInputs == 1)
672                    DP(printf(" - Buffered Address/Control Input:                Yes \n"));
673             else
674                    DP(printf(" - Buffered Address/Control Input:                No \n"));
675
676             if (dimmInfo->registeredAddrAndControlInputs == 1)
677                    DP(printf(" - Registered Address/Control Input:              Yes \n"));
678             else
679                    DP(printf(" - Registered Address/Control Input:              No \n"));
680
681             if (dimmInfo->onCardPLL == 1)
682                    DP(printf(" - On-Card PLL (clock):                           Yes \n"));
683             else
684                    DP(printf(" - On-Card PLL (clock):                           No \n"));
685
686             if (dimmInfo->bufferedDQMBinputs == 1)
687                    DP(printf(" - Bufferd DQMB Inputs:                           Yes \n"));
688             else
689                    DP(printf(" - Bufferd DQMB Inputs:                           No \n"));
690
691             if (dimmInfo->registeredDQMBinputs == 1)
692                    DP(printf(" - Registered DQMB Inputs:                        Yes \n"));
693             else
694                    DP(printf(" - Registered DQMB Inputs:                        No \n"));
695
696             if (dimmInfo->differentialClockInput == 1)
697                    DP(printf(" - Differential Clock Input:                      Yes \n"));
698             else
699                    DP(printf(" - Differential Clock Input:                      No \n"));
700
701             if (dimmInfo->redundantRowAddressing == 1)
702                    DP(printf(" - redundant Row Addressing:                      Yes \n"));
703             else
704                    DP(printf(" - redundant Row Addressing:                      No \n"));
705
706 #endif
707             break;
708 /*------------------------------------------------------------------------------------------------------------------------------*/
709
710         case 22: /* Suported AutoPreCharge */
711             DP(printf("\nModul Attributes (SPD Byte 22): \n"));
712             dimmInfo->suportedEarlyRasPreCharge= data[i] & BIT0;
713             dimmInfo->suportedAutoPreCharge = (data[i] & BIT1) >> 1;
714             dimmInfo->suportedPreChargeAll = (data[i] & BIT2) >> 2;
715             dimmInfo->suportedWrite1ReadBurst= (data[i] & BIT3) >> 3;
716             dimmInfo->suported5PercentLowVCC= (data[i] & BIT4) >> 4;
717             dimmInfo->suported5PercentUpperVCC= (data[i] & BIT5) >> 5;
718 #ifdef DEBUG
719             if (dimmInfo->suportedEarlyRasPreCharge == 1)
720                    DP(printf(" - Early Ras Precharge:                   Yes \n"));
721             else
722                    DP(printf(" -  Early Ras Precharge:                  No \n"));
723
724             if (dimmInfo->suportedAutoPreCharge == 1)
725                    DP(printf(" - AutoPreCharge:                         Yes \n"));
726             else
727                    DP(printf(" -  AutoPreCharge:                                No \n"));
728
729             if (dimmInfo->suportedPreChargeAll == 1)
730                    DP(printf(" - Precharge All:                         Yes \n"));
731             else
732                    DP(printf(" -  Precharge All:                                No \n"));
733
734             if (dimmInfo->suportedWrite1ReadBurst == 1)
735                    DP(printf(" - Write 1/ReadBurst:                             Yes \n"));
736             else
737                    DP(printf(" -  Write 1/ReadBurst:                            No \n"));
738
739             if (dimmInfo->suported5PercentLowVCC == 1)
740                    DP(printf(" - lower VCC tolerance:                   5 Percent \n"));
741             else
742                    DP(printf("  - lower VCC tolerance:                  10 Percent \n"));
743
744             if (dimmInfo->suported5PercentUpperVCC == 1)
745                    DP(printf(" - upper VCC tolerance:                   5 Percent \n"));
746             else
747                    DP(printf(" -  upper VCC tolerance:                  10 Percent \n"));
748
749 #endif
750             break;
751 /*------------------------------------------------------------------------------------------------------------------------------*/
752
753         case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
754             shift = (dimmInfo->memoryType == DDR)? 4:2;
755             mult = (dimmInfo->memoryType == DDR)? 10:25;
756             maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xf0:0xfc;
757             maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0xf:0x03;
758             leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
759             rightOfPoint = (data[i] & maskRightOfPoint)* mult;
760             dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP = leftOfPoint;
761             dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP = rightOfPoint;
762             DP(printf("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",leftOfPoint, rightOfPoint ));
763             /*dimmInfo->minimumCycleTimeAtMaxCasLatancy*/
764             break;
765 /*------------------------------------------------------------------------------------------------------------------------------*/
766
767         case 24: /* Clock To Data Out 2nd highest Cas Latency Value*/
768             div = (dimmInfo->memoryType == DDR)? 100:10;
769             time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
770             leftOfPoint     = time_tmp / div;
771             rightOfPoint    = time_tmp % div;
772             dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
773             dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
774             DP(printf("Clock To Data Out (2nd CL value):                %d.%2d [ns]\n",leftOfPoint,  rightOfPoint ));
775             break;
776 /*------------------------------------------------------------------------------------------------------------------------------*/
777
778         case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
779             shift = (dimmInfo->memoryType == DDR)? 4:2;
780             mult = (dimmInfo->memoryType == DDR)? 10:25;
781             maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xf0:0xfc;
782             maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0xf:0x03;
783             leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
784             rightOfPoint = (data[i] & maskRightOfPoint)* mult;
785             dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP = leftOfPoint;
786             dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP = rightOfPoint;
787             DP(printf("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",leftOfPoint, rightOfPoint ));
788             /*dimmInfo->minimumCycleTimeAtMaxCasLatancy*/
789             break;
790 /*------------------------------------------------------------------------------------------------------------------------------*/
791
792         case 26: /* Clock To Data Out 3rd highest Cas Latency Value*/
793             div = (dimmInfo->memoryType == DDR)? 100:10;
794             time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
795             leftOfPoint     = time_tmp / div;
796             rightOfPoint    = time_tmp % div;
797             dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
798             dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
799             DP(printf("Clock To Data Out (3rd CL value):                %d.%2d [ns]\n",leftOfPoint,  rightOfPoint ));
800             break;
801 /*------------------------------------------------------------------------------------------------------------------------------*/
802
803         case 27: /* Minimum Row Precharge Time */
804             shift = (dimmInfo->memoryType == DDR)? 2:0;
805             maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xfc:0xff;
806             maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0x03:0x00;
807             leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
808             rightOfPoint = (data[i] & maskRightOfPoint)*25;
809
810             dimmInfo->minRowPrechargeTime = ((leftOfPoint*100) + rightOfPoint); /* measured in n times 10ps Intervals */
811         trp_clocks = (dimmInfo->minRowPrechargeTime + (tmemclk-1)) /  tmemclk;
812         DP(printf("*** 1 clock cycle = %ld  10ps intervalls = %ld.%ld ns****\n", tmemclk, tmemclk/100, tmemclk%100 ));
813         DP(printf("Minimum Row Precharge Time [ns]:             %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks));
814             break;
815 /*------------------------------------------------------------------------------------------------------------------------------*/
816
817         case 28: /* Minimum Row Active to Row Active Time */
818             shift = (dimmInfo->memoryType == DDR)? 2:0;
819             maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xfc:0xff;
820             maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0x03:0x00;
821             leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
822             rightOfPoint = (data[i] & maskRightOfPoint)*25;
823
824             dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint*100) + rightOfPoint);  /* measured in 100ns Intervals */
825         trrd_clocks = (dimmInfo->minRowActiveRowActiveDelay + (tmemclk-1)) / tmemclk;
826         DP(printf("Minimum Row Active -To- Row Active Delay [ns]:       %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks));
827             break;
828 /*------------------------------------------------------------------------------------------------------------------------------*/
829
830         case 29: /* Minimum Ras-To-Cas Delay */
831             shift = (dimmInfo->memoryType == DDR)? 2:0;
832             maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xfc:0xff;
833             maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0x03:0x00;
834             leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
835             rightOfPoint = (data[i] & maskRightOfPoint)*25;
836
837             dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint*100) + rightOfPoint);  /* measured in 100ns Intervals */
838         trcd_clocks = (dimmInfo->minRowActiveRowActiveDelay + (tmemclk-1) )/ tmemclk;
839         DP(printf("Minimum Ras-To-Cas Delay [ns]:                       %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks));
840             break;
841 /*------------------------------------------------------------------------------------------------------------------------------*/
842
843         case 30: /* Minimum Ras Pulse Width */
844             dimmInfo->minRasPulseWidth = data[i];
845         tras_clocks = (NSto10PS(data[i])+(tmemclk-1)) / tmemclk;
846         DP(printf("Minimum Ras Pulse Width [ns]:                        %d = in Clk cycles %d\n", dimmInfo->minRasPulseWidth, tras_clocks));
847
848             break;
849 /*------------------------------------------------------------------------------------------------------------------------------*/
850
851         case 31: /* Module Bank Density */
852             dimmInfo->moduleBankDensity = data[i];
853         DP(printf("Module Bank Density:                                 %d\n", dimmInfo->moduleBankDensity));
854 #ifdef DEBUG
855         DP(printf("*** Offered Densities (more than 1 = Multisize-Module): "));
856         {
857                 if (dimmInfo->moduleBankDensity & 1)
858                         DP(printf("4MB, "));
859                 if (dimmInfo->moduleBankDensity & 2)
860                         DP(printf("8MB, "));
861                 if (dimmInfo->moduleBankDensity & 4)
862                         DP(printf("16MB, "));
863                 if (dimmInfo->moduleBankDensity & 8)
864                         DP(printf("32MB, "));
865                 if (dimmInfo->moduleBankDensity & 16)
866                         DP(printf("64MB, "));
867                 if (dimmInfo->moduleBankDensity & 32)
868                         DP(printf("128MB, "));
869                 if ((dimmInfo->moduleBankDensity & 64) || (dimmInfo->moduleBankDensity & 128)) {
870                         DP(printf("ERROR, "));
871                                 hang();
872                         }
873         }
874         DP(printf("\n"));
875 #endif
876             break;
877 /*------------------------------------------------------------------------------------------------------------------------------*/
878
879         case 32: /* Address And Command Setup Time (measured in ns/1000) */
880             sign = 1;
881             switch(dimmInfo->memoryType)
882             {
883             case DDR:
884                   time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
885                 leftOfPoint = time_tmp / 100;
886                 rightOfPoint = time_tmp % 100;
887                 break;
888             case SDRAM:
889                 leftOfPoint = (data[i] & 0xf0) >> 4;
890                 if(leftOfPoint > 7)
891                 {
892                     leftOfPoint = data[i] & 0x70 >> 4;
893                     sign = -1;
894                 }
895                 rightOfPoint = (data[i] & 0x0f);
896                 break;
897             }
898             dimmInfo->addrAndCommandSetupTime = (leftOfPoint*100 + rightOfPoint) * sign;
899         DP(printf("Address And Command Setup Time [ns]:                 %d.%d\n", sign*leftOfPoint, rightOfPoint));
900             break;
901 /*------------------------------------------------------------------------------------------------------------------------------*/
902
903         case 33: /* Address And Command Hold Time */
904             sign = 1;
905             switch(dimmInfo->memoryType)
906             {
907             case DDR:
908                   time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
909                 leftOfPoint = time_tmp / 100;
910                 rightOfPoint = time_tmp % 100;
911                 break;
912             case SDRAM:
913                 leftOfPoint = (data[i] & 0xf0) >> 4;
914                 if(leftOfPoint > 7)
915                 {
916                     leftOfPoint = data[i] & 0x70 >> 4;
917                     sign = -1;
918                 }
919                 rightOfPoint = (data[i] & 0x0f) ;
920                 break;
921             }
922             dimmInfo->addrAndCommandHoldTime = (leftOfPoint * 100 + rightOfPoint) * sign;
923         DP(printf("Address And Command Hold Time [ns]:          %d.%d\n", sign*leftOfPoint, rightOfPoint));
924             break;
925 /*------------------------------------------------------------------------------------------------------------------------------*/
926
927         case 34: /* Data Input Setup Time */
928             sign = 1;
929             switch(dimmInfo->memoryType)
930             {
931             case DDR:
932                   time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
933                 leftOfPoint = time_tmp / 100;
934                 rightOfPoint = time_tmp % 100;
935                 break;
936             case SDRAM:
937                 leftOfPoint = (data[i] & 0xf0) >> 4;
938                 if( leftOfPoint > 7)
939                 {
940                     leftOfPoint = data[i] & 0x70 >> 4;
941                     sign = -1;
942                 }
943                 rightOfPoint = (data[i] & 0x0f );
944                 break;
945             }
946             dimmInfo->dataInputSetupTime = (leftOfPoint *100 + rightOfPoint) * sign;
947         DP(printf("Data Input Setup Time [ns]:                  %d.%d\n", sign*leftOfPoint, rightOfPoint));
948             break;
949 /*------------------------------------------------------------------------------------------------------------------------------*/
950
951         case 35: /* Data Input Hold Time */
952             sign = 1;
953             switch(dimmInfo->memoryType)
954             {
955             case DDR:
956                   time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
957                 leftOfPoint = time_tmp / 100;
958                 rightOfPoint = time_tmp % 100;
959                 break;
960             case SDRAM:
961                 leftOfPoint = (data[i] & 0xf0) >> 4;
962                 if( leftOfPoint > 7)
963                 {
964                     leftOfPoint = data[i] & 0x70 >> 4;
965                     sign = -1;
966                 }
967                 rightOfPoint = (data[i] & 0x0f) ;
968                 break;
969             }
970             dimmInfo->dataInputHoldTime = (leftOfPoint *100 + rightOfPoint) * sign;
971         DP(printf("Data Input Hold Time [ns]:                   %d.%d\n\n", sign*leftOfPoint, rightOfPoint));
972             break;
973 /*------------------------------------------------------------------------------------------------------------------------------*/
974         }
975     }
976     /* calculating the sdram density */
977     for(i = 0;i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;i++)
978     {
979         density = density*2;
980     }
981     dimmInfo->deviceDensity = density*dimmInfo->numOfBanksOnEachDevice*
982                              dimmInfo->sdramWidth;
983     dimmInfo->numberOfDevices = (dimmInfo->dataWidth / dimmInfo->sdramWidth)*
984                                  dimmInfo->numOfModuleBanks;
985     devicesForErrCheck = (dimmInfo->dataWidth - 64) / dimmInfo->sdramWidth ;
986     if((dimmInfo->errorCheckType == 0x1) ||
987        (dimmInfo->errorCheckType == 0x2) ||
988        (dimmInfo->errorCheckType == 0x3))
989     {
990         dimmInfo->size = (dimmInfo->deviceDensity / 8)*
991                          (dimmInfo->numberOfDevices - devicesForErrCheck);
992     }
993     else
994     {
995         dimmInfo->size = (dimmInfo->deviceDensity/8)*dimmInfo->numberOfDevices;
996     }
997
998     /* compute the module DRB size */
999     tmp = (1 << (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
1000     tmp *= dimmInfo->numOfModuleBanks;
1001     tmp *= dimmInfo->sdramWidth;
1002     tmp = tmp >> 24;    /* div by 0x4000000 (64M)       */
1003     dimmInfo->drb_size = (uchar)tmp;
1004     DP(printf("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size));
1005
1006         /* try a CAS latency of 3 first... */
1007
1008         /* bit 1 is CL2, bit 2 is CL3 */
1009         supp_cal = (dimmInfo->suportedCasLatencies & 0x1c) >> 1;
1010
1011         cal_val = 0;
1012         if (supp_cal & 8) {
1013                 if (NS10to10PS(data[9]) <= tmemclk)
1014                         cal_val = 6;
1015         }
1016         if (supp_cal & 4) {
1017                 if (NS10to10PS(data[9]) <= tmemclk)
1018                         cal_val = 5;
1019         }
1020
1021         /* then 2... */
1022         if (supp_cal & 2) {
1023                 if (NS10to10PS(data[23]) <= tmemclk)
1024                         cal_val = 4;
1025         }
1026
1027         DP(printf("cal_val = %d\n", cal_val*5));
1028
1029         /* bummer, did't work... */
1030         if (cal_val == 0) {
1031                 DP(printf("Couldn't find a good CAS latency\n"));
1032                         hang();
1033                 return 0;
1034         }
1035
1036     return true;
1037 }
1038
1039 /* sets up the GT properly with information passed in */
1040 int
1041 setup_sdram(AUX_MEM_DIMM_INFO *info)
1042 {
1043         ulong tmp, check;
1044               ulong tmp_sdram_mode=0;           /* 0x141c*/
1045               ulong tmp_dunit_control_low=0;    /* 0x1404*/
1046         int i;
1047
1048         /* sanity checking */
1049         if (! info->numOfModuleBanks) {
1050                 printf("setup_sdram called with 0 banks\n");
1051                 return 1;
1052         }
1053
1054         /* delay line */
1055
1056         /* Program the GT with the discovered data */
1057         if (info->registeredAddrAndControlInputs == true)
1058                 DP(printf("Module is registered, but we do not support registered Modules !!!\n"));
1059
1060
1061         /* delay line */
1062         set_dfcdlInit(); /* may be its not needed */
1063         DP(printf("Delay line set done\n"));
1064
1065         /* set SDRAM mode NOP*/ /* To_do check it*/
1066         GT_REG_WRITE(SDRAM_OPERATION, 0x5);
1067         while (GTREGREAD(SDRAM_OPERATION) != 0) {
1068                 DP(printf("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n"));
1069                 }
1070
1071         /* SDRAM configuration */
1072         GT_REG_WRITE(SDRAM_CONFIG, 0x58200400);
1073         DP(printf("sdram_conf 0x1400: %08x\n", GTREGREAD(SDRAM_CONFIG)));
1074
1075         /* SDRAM open pages controll keep open as much as I can*/
1076         GT_REG_WRITE(SDRAM_OPEN_PAGES_CONTROL, 0x0);
1077         DP(printf("sdram_open_pages_controll 0x1414: %08x\n", GTREGREAD(SDRAM_OPEN_PAGES_CONTROL)));
1078
1079
1080         /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
1081         tmp = (GTREGREAD(D_UNIT_CONTROL_LOW) & 0x01);           /* Clock Domain Sync from power on reset*/
1082         if (tmp == 0)
1083                 DP(printf("Core Signals are sync (by HW-Setting)!!!\n"));
1084         else
1085                 DP(printf("Core Signals syncs. are bypassed (by HW-Setting)!!!\n"));
1086
1087         /* SDRAM set CAS Lentency according to SPD information*/
1088         switch(info->memoryType)
1089           {
1090           case SDRAM:
1091             DP(printf("### SD-RAM not supported yet !!!\n"));
1092             hang();
1093             /* ToDo fill SD-RAM if needed !!!!!*/
1094             break;
1095
1096           case DDR:
1097             DP(printf("### SET-CL for DDR-RAM\n"));
1098
1099             switch (info->maxClSupported_DDR)
1100               {
1101               case DDR_CL_3:
1102                 tmp_dunit_control_low = 0x3c000000;             /* Read-Data sampled on falling edge of Clk*/
1103                 tmp_sdram_mode = 0x32;                          /* CL=3 Burstlength = 4*/
1104                 DP(printf("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
1105                 break;
1106
1107               case DDR_CL_2_5:
1108                 if (tmp == 1)   /* clocks sync*/
1109                   {
1110                     tmp_dunit_control_low = 0x24000000;         /* Read-Data sampled on falling edge of Clk*/
1111                     tmp_sdram_mode = 0x62;                      /* CL=2,5 Burstlength = 4*/
1112                     DP(printf("Max. CL is 2,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
1113                   }
1114                 else    /* clk sync. bypassed   */
1115                   {
1116                     tmp_dunit_control_low = 0x03000000;         /* Read-Data sampled on rising edge of Clk*/
1117                     tmp_sdram_mode = 0x62;                      /* CL=2,5 Burstlength = 4*/
1118                     DP(printf("Max. CL is 2,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
1119                   }
1120                 break;
1121
1122               case DDR_CL_2:
1123                 if (tmp == 1)   /* Sync*/
1124                   {
1125                     tmp_dunit_control_low = 0x03000000;         /* Read-Data sampled on rising edge of Clk*/
1126                     tmp_sdram_mode = 0x22;                      /* CL=2 Burstlength = 4*/
1127                     DP(printf("Max. CL is 2s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
1128                   }
1129                 else    /* Not sync.    */
1130                   {
1131                     tmp_dunit_control_low = 0x3b000000;         /* Read-Data sampled on rising edge of Clk*/
1132                     tmp_sdram_mode = 0x22;                      /* CL=2 Burstlength = 4*/
1133                     DP(printf("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
1134                   }
1135                 break;
1136
1137               case DDR_CL_1_5:
1138                 if (tmp == 1)   /* Sync*/
1139                   {
1140                     tmp_dunit_control_low = 0x23000000;         /* Read-Data sampled on falling edge of Clk*/
1141                     tmp_sdram_mode = 0x52;                      /* CL=1,5 Burstlength = 4*/
1142                     DP(printf("Max. CL is 1,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
1143                   }
1144                 else    /* not sync*/
1145                   {
1146                     tmp_dunit_control_low = 0x1a000000;         /* Read-Data sampled on rising edge of Clk*/
1147                     tmp_sdram_mode = 0x52;                      /* CL=1,5 Burstlength = 4*/
1148                     DP(printf("Max. CL is 1,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
1149                   }
1150                 break;
1151
1152               default:
1153                 printf("Max. CL is out of range %d\n", info->maxClSupported_DDR);
1154                 hang();
1155                 break;
1156               }
1157             break;
1158           }
1159
1160         /* Write results of CL detection procedure */
1161         GT_REG_WRITE(SDRAM_MODE, tmp_sdram_mode);
1162         /* set SDRAM mode SetCommand 0x1418*/
1163         GT_REG_WRITE(SDRAM_OPERATION, 0x3);
1164         while (GTREGREAD(SDRAM_OPERATION) != 0) {
1165                 DP(printf("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"));
1166                 }
1167
1168
1169         /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
1170         tmp = (GTREGREAD(D_UNIT_CONTROL_LOW) & 0x01);           /* Clock Domain Sync from power on reset*/
1171         if (tmp != 1)   /*clocks are not sync*/
1172          {
1173                 /* asyncmode*/
1174                 GT_REG_WRITE(D_UNIT_CONTROL_LOW ,
1175                 (GTREGREAD(D_UNIT_CONTROL_LOW) & 0x7F) | 0x18110780 | tmp_dunit_control_low );
1176          }
1177         else
1178          {
1179                 /* syncmode*/
1180                 GT_REG_WRITE(D_UNIT_CONTROL_LOW ,
1181                 (GTREGREAD(D_UNIT_CONTROL_LOW) & 0x7F) | 0x00110000 | tmp_dunit_control_low );
1182           }
1183
1184         /* set SDRAM mode SetCommand 0x1418*/
1185         GT_REG_WRITE(SDRAM_OPERATION, 0x3);
1186         while (GTREGREAD(SDRAM_OPERATION) != 0) {
1187                 DP(printf("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n"));
1188                 }
1189
1190 /*------------------------------------------------------------------------------ */
1191
1192
1193         /* bank parameters */
1194         /* SDRAM address decode register */
1195         /* program this with the default value */
1196         tmp = 0x02;
1197
1198
1199         DP(printf("drb_size (n*64Mbit): %d\n", info->drb_size));
1200         switch (info->drb_size) {
1201         case 1:                 /* 64 Mbit */
1202         case 2:                 /* 128 Mbit */
1203                 DP(printf("RAM-Device_size 64Mbit or 128Mbit)\n"));
1204                 tmp |= (0x00 << 4);
1205                 break;
1206         case 4:                 /* 256 Mbit */
1207         case 8:                 /* 512 Mbit */
1208                 DP(printf("RAM-Device_size 256Mbit or 512Mbit)\n"));
1209                 tmp |= (0x01 << 4);
1210                 break;
1211         case 16:                        /* 1 Gbit */
1212         case 32:                        /* 2 Gbit */
1213                 DP(printf("RAM-Device_size 1Gbit or 2Gbit)\n"));
1214                 tmp |= (0x02 << 4);
1215                 break;
1216         default:
1217                 printf("Error in dram size calculation\n");
1218                 DP(printf("Assume: RAM-Device_size 1Gbit or 2Gbit)\n"));
1219                 tmp |= (0x02 << 4);
1220                 return 1;
1221         }
1222
1223         /* SDRAM bank parameters */
1224         /* the param registers for slot 1 (banks 2+3) are offset by 0x8 */
1225         DP(printf("setting up slot %d config with: %08lx \n", info->slot, tmp));
1226         GT_REG_WRITE(SDRAM_ADDR_CONTROL, tmp);
1227
1228 /* ------------------------------------------------------------------------------ */
1229
1230         DP(printf("setting up sdram_timing_control_low with: %08x \n", 0x11511220));
1231         GT_REG_WRITE(SDRAM_TIMING_CONTROL_LOW, 0x11511220);
1232
1233
1234 /* ------------------------------------------------------------------------------ */
1235
1236         /* SDRAM configuration */
1237         tmp = GTREGREAD(SDRAM_CONFIG);
1238
1239         if (info->registeredAddrAndControlInputs || info->registeredDQMBinputs) {
1240         tmp |= (1 << 17);
1241         DP(printf("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",info->registeredAddrAndControlInputs, info->registeredDQMBinputs));
1242         }
1243
1244         /* Use buffer 1 to return read data to the CPU
1245          * Page 426 MV64360 */
1246         tmp |= (1 << 26);
1247         DP(printf("Before Buffer assignment - sdram_conf: %08x\n", GTREGREAD(SDRAM_CONFIG)));
1248         DP(printf("After Buffer assignment - sdram_conf: %08x\n", GTREGREAD(SDRAM_CONFIG)));
1249
1250         /* SDRAM timing To_do:*/
1251
1252
1253         tmp = GTREGREAD(SDRAM_TIMING_CONTROL_HIGH);
1254         DP(printf("# sdram_timing_control_high is : %08lx \n", tmp));
1255
1256         /* SDRAM address decode register */
1257         /* program this with the default value */
1258         tmp = GTREGREAD(SDRAM_ADDR_CONTROL);
1259         DP(printf("SDRAM address control (before: decode): %08x  ",  GTREGREAD(SDRAM_ADDR_CONTROL)));
1260         GT_REG_WRITE(SDRAM_ADDR_CONTROL, (tmp | 0x2));
1261         DP(printf("SDRAM address control (after: decode): %08x\n",  GTREGREAD(SDRAM_ADDR_CONTROL)));
1262
1263         /* set the SDRAM configuration for each bank */
1264
1265 /*      for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
1266         {
1267                 i = info->slot;
1268                 DP(printf("\n*** Running a MRS cycle for bank %d ***\n", i));
1269
1270                 /* map the bank */
1271                 memory_map_bank(i, 0, GB/4);
1272 #if 1 /* test only */
1273                 /* set SDRAM mode */ /* To_do check it*/
1274                 GT_REG_WRITE(SDRAM_OPERATION, 0x3);
1275                 check = GTREGREAD(SDRAM_OPERATION);
1276                 DP(printf("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n", check));
1277
1278
1279                 /* switch back to normal operation mode */
1280                 GT_REG_WRITE(SDRAM_OPERATION, 0);
1281                 check = GTREGREAD(SDRAM_OPERATION);
1282                 DP(printf("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n", check));
1283 #endif /* test only */
1284                 /* unmap the bank */
1285                 memory_map_bank(i, 0, 0);
1286         }
1287
1288         return 0;
1289 }
1290
1291 /*
1292  * Check memory range for valid RAM. A simple memory test determines
1293  * the actually available RAM size between addresses `base' and
1294  * `base + maxsize'. Some (not all) hardware errors are detected:
1295  * - short between address lines
1296  * - short between data lines
1297  */
1298 long int
1299 dram_size(long int *base, long int maxsize)
1300 {
1301     volatile long int    *addr, *b=base;
1302     long int     cnt, val, save1, save2;
1303
1304 #define STARTVAL (1<<20)        /* start test at 1M */
1305     for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) {
1306             addr = base + cnt;  /* pointer arith! */
1307
1308             save1=*addr;                /* save contents of addr */
1309             save2=*b;           /* save contents of base */
1310
1311             *addr=cnt;          /* write cnt to addr */
1312             *b=0;                       /* put null at base */
1313
1314             /* check at base address */
1315             if ((*b) != 0) {
1316                 *addr=save1;    /* restore *addr */
1317                 *b=save2;       /* restore *b */
1318                 return (0);
1319             }
1320             val = *addr;                /* read *addr */
1321             val = *addr;                /* read *addr */
1322
1323             *addr=save1;
1324             *b=save2;
1325
1326             if (val != cnt) {
1327                     DP(printf("Found %08x  at Address %08x (failure)\n", (unsigned int)val, (unsigned int) addr));
1328                     /* fix boundary condition.. STARTVAL means zero */
1329                     if(cnt==STARTVAL/sizeof(long)) cnt=0;
1330                     return (cnt * sizeof(long));
1331             }
1332     }
1333     return maxsize;
1334 }
1335
1336 /* ------------------------------------------------------------------------- */
1337
1338 /* ppcboot interface function to SDRAM init - this is where all the
1339  * controlling logic happens */
1340 long int
1341 initdram(int board_type)
1342 {
1343         int s0 = 0, s1 = 0;
1344         int checkbank[4] = { [0 ... 3] = 0 };
1345                 ulong bank_no, realsize, total, check;
1346         AUX_MEM_DIMM_INFO dimmInfo1;
1347         AUX_MEM_DIMM_INFO dimmInfo2;
1348         int nhr;
1349
1350         /* first, use the SPD to get info about the SDRAM/ DDRRAM */
1351
1352         /* check the NHR bit and skip mem init if it's already done */
1353         nhr = get_hid0() & (1 << 16);
1354
1355         if (nhr) {
1356                 printf("Skipping SD- DDRRAM setup due to NHR bit being set\n");
1357         } else {
1358                 /* DIMM0 */
1359                 s0 = check_dimm(0, &dimmInfo1);
1360
1361                 /* DIMM1 */
1362                 s1 = check_dimm(1, &dimmInfo2);
1363
1364                 memory_map_bank(0, 0, 0);
1365                 memory_map_bank(1, 0, 0);
1366                 memory_map_bank(2, 0, 0);
1367                 memory_map_bank(3, 0, 0);
1368
1369                 if (dimmInfo1.numOfModuleBanks && setup_sdram(&dimmInfo1)) {
1370                         printf("Setup for DIMM1 failed.\n");
1371                 }
1372
1373                 if (dimmInfo2.numOfModuleBanks && setup_sdram(&dimmInfo2)) {
1374                         printf("Setup for DIMM2 failed.\n");
1375                 }
1376
1377                 /* set the NHR bit */
1378                 set_hid0(get_hid0() | (1 << 16));
1379         }
1380         /* next, size the SDRAM banks */
1381
1382         realsize = total = 0;
1383         check = GB/4;
1384         if (dimmInfo1.numOfModuleBanks > 0) {checkbank[0] = 1; printf("-- DIMM1 has 1 bank\n");}
1385         if (dimmInfo1.numOfModuleBanks > 1) {checkbank[1] = 1; printf("-- DIMM1 has 2 banks\n");}
1386         if (dimmInfo1.numOfModuleBanks > 2)
1387                 printf("Error, SPD claims DIMM1 has >2 banks\n");
1388
1389         if (dimmInfo2.numOfModuleBanks > 0) {checkbank[2] = 1; printf("-- DIMM2 has 1 bank\n");}
1390         if (dimmInfo2.numOfModuleBanks > 1) {checkbank[3] = 1; printf("-- DIMM2 has 2 banks\n");}
1391         if (dimmInfo2.numOfModuleBanks > 2)
1392                 printf("Error, SPD claims DIMM2 has >2 banks\n");
1393
1394         for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) {
1395                 /* skip over banks that are not populated */
1396                 if (! checkbank[bank_no])
1397                         continue;
1398
1399                 if ((total + check) > CFG_GT_REGS)
1400                         check = CFG_GT_REGS - total;
1401
1402                 memory_map_bank(bank_no, total, check);
1403                 realsize = dram_size((long int *)total, check);
1404                 memory_map_bank(bank_no, total, realsize);
1405
1406                 total += realsize;
1407         }
1408
1409 /*      Setup Ethernet DMA Adress window to DRAM Area */
1410         return(total);
1411 }
1412
1413 /* ***************************************************************************************
1414 ! *                             SDRAM INIT                                              *
1415 ! *  This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb       *
1416 ! *               This procedure fits only the Atlantis                                *
1417 ! *                                                                                     *
1418 ! *************************************************************************************** */
1419
1420
1421 /* ***************************************************************************************
1422 ! *                             DFCDL initialize MV643xx Design Considerations             *
1423 ! *                                                                                     *
1424 ! *************************************************************************************** */
1425 int
1426 set_dfcdlInit(void)
1427 {
1428      int i;
1429      unsigned int dfcdl_word = 0x0000014f;
1430       for (i=0 ; i < 64; i++)
1431       {
1432         GT_REG_WRITE(SRAM_DATA0, dfcdl_word);
1433       }
1434      GT_REG_WRITE(DFCDL_CONFIG0, 0x00300000);   /* enable dynamic delay line updating */
1435
1436
1437      return (0);
1438 }
1439