1 /* flush.S - low level cache flushing routines
2 * Copyright (C) 2003-2007 Analog Devices Inc.
3 * Licensed under the GPL-2 or later.
7 #include <asm/blackfin.h>
9 #include <asm/mach-common/bits/mpu.h>
13 /* This is an external function being called by the user
14 * application through __flush_cache_all. Currently this function
15 * serves the purpose of flushing all the pending writes in
19 ENTRY(_flush_data_cache)
20 [--SP] = ( R7:6, P5:4 );
23 P5.H = HI(DCPLB_ADDR0);
24 P5.L = LO(DCPLB_ADDR0);
25 P4.H = HI(DCPLB_DATA0);
26 P4.L = LO(DCPLB_DATA0);
27 R7 = CPLB_VALID | CPLB_L1_CHBL | CPLB_DIRTY (Z);
31 CC = BITTST(R1, 14); /* Is it write-through?*/
32 IF CC JUMP .Lskip; /* If so, ignore it.*/
33 R2 = R1 & R7; /* Is it a dirty, cached page?*/
35 IF !CC JUMP .Lskip; /* If not, ignore it.*/
37 CALL _dcplb_flush; /* R0 = page, R1 = data*/
45 ( R7:6, P5:4 ) = [SP++];
47 ENDPROC(_flush_data_cache)
49 /* This is an internal function to flush all pending
50 * writes in the cache associated with a particular DCPLB.
52 * R0 - page's start address
53 * R1 - CPLB's data field.
58 [--SP] = ( R7:0, P5:0 );
66 /* If it's a 1K or 4K page, then it's quickest to
67 * just systematically flush all the addresses in
68 * the page, regardless of whether they're in the
69 * cache, or dirty. If it's a 1M or 4M page, there
70 * are too many addresses, and we have to search the
71 * cache for lines corresponding to the page.
74 CC = BITTST(R1, 17); /* 1MB or 4MB */
75 IF !CC JUMP .Ldflush_whole_page;
77 /* We're only interested in the page's size, so extract
78 * this from the CPLB (bits 17:16), and scale to give an
79 * offset into the page_size and page_prefix tables.
86 /* The page could be mapped into Bank A or Bank B, depending
87 * on (a) whether both banks are configured as cache, and
88 * (b) on whether address bit A[x] is set. x is determined
89 * by DCBS in DMEM_CONTROL
92 R2 = 0; /* Default to Bank A (Bank B would be 1)*/
94 P0.L = LO(DMEM_CONTROL);
95 P0.H = HI(DMEM_CONTROL);
97 R3 = [P0]; /* If Bank B is not enabled as cache*/
98 CC = BITTST(R3, 2); /* then Bank A is our only option.*/
99 IF CC JUMP .Lbank_chosen;
101 R4 = 1<<14; /* If DCBS==0, use A[14].*/
102 R5 = R4 << 7; /* If DCBS==1, use A[23];*/
104 IF CC R4 = R5; /* R4 now has either bit 14 or bit 23 set.*/
105 R5 = R0 & R4; /* Use it to test the Page address*/
106 CC = R5; /* and if that bit is set, we use Bank B,*/
107 R2 = CC; /* else we use Bank A.*/
108 R2 <<= 23; /* The Bank selection's at posn 23.*/
112 /* We can also determine the sub-bank used, because this is
113 * taken from bits 13:12 of the address.
116 R3 = ((12<<8)|2); /* Extraction pattern */
117 nop; /*Anamoly 05000209*/
118 R4 = EXTRACT(R0, R3.L) (Z); /* Extract bits*/
119 /* Save in extraction pattern for later deposit.*/
124 * R1 = Page length (actually, offset into size/prefix tables)
125 * R2 = Bank select mask
126 * R3 = sub-bank deposit values
128 * The cache has 2 Ways, and 64 sets, so we iterate through
129 * the sets, accessing the tag for each Way, for our Bank and
130 * sub-bank, looking for dirty, valid tags that match our
134 P5.L = LO(DTEST_COMMAND);
135 P5.H = HI(DTEST_COMMAND);
136 P4.L = LO(DTEST_DATA0);
137 P4.H = HI(DTEST_DATA0);
139 P0.L = page_prefix_table;
140 P0.H = page_prefix_table;
142 R5 = 0; /* Set counter*/
144 R4 = [P0]; /* This is the address prefix*/
147 /* We're reading (bit 1==0) the tag (bit 2==0), and we
148 * don't care about which double-word, since we're only
149 * fetching tags, so we only have to set Set, Bank,
154 LSETUP (.Lfs1, .Lfe1) LC1 = P2;
155 .Lfs1: P0 = 64; /* iterate over all sets*/
156 LSETUP (.Lfs0, .Lfe0) LC0 = P0;
157 .Lfs0: R6 = R5 << 5; /* Combine set*/
158 R6.H = R3.H << 0 ; /* and sub-bank*/
159 R6 = R6 | R2; /* and Bank. Leave Way==0 at first.*/
161 [P5] = R6; /* Issue Command*/
163 R7 = [P4]; /* and read Tag.*/
164 CC = BITTST(R7, 0); /* Check if valid*/
165 IF !CC JUMP .Lfskip; /* and skip if not.*/
166 CC = BITTST(R7, 1); /* Check if dirty*/
167 IF !CC JUMP .Lfskip; /* and skip if not.*/
169 /* Compare against the page address. First, plant bits 13:12
170 * into the tag, since those aren't part of the returned data.
173 R7 = DEPOSIT(R7, R3); /* set 13:12*/
174 R1 = R7 & R4; /* Mask off lower bits*/
175 CC = R1 == R0; /* Compare against page start.*/
176 IF !CC JUMP .Lfskip; /* Skip it if it doesn't match.*/
178 /* Tag address matches against page, so this is an entry
182 R7 >>= 10; /* Mask off the non-address bits*/
186 FLUSHINV [P3]; /* And flush the entry*/
188 .Lfe0: R5 += 1; /* Advance to next Set*/
189 .Lfe1: BITSET(R2, 26); /* Go to next Way.*/
192 SSYNC; /* Ensure the data gets out to mem.*/
194 /*Finished. Restore context.*/
201 ( R7:0, P5:0 ) = [SP++];
206 /* It's a 1K or 4K page, so quicker to just flush the
210 P1 = 32; /* For 1K pages*/
211 P2 = P1 << 2; /* For 4K pages*/
212 P0 = R0; /* Start of page*/
213 CC = BITTST(R1, 16); /* Whether 1K or 4K*/
215 P1 += -1; /* Unroll one iteration*/
217 FLUSHINV [P0++]; /* because CSYNC can't end loops.*/
218 LSETUP (.Leall, .Leall) LC0 = P1;
219 .Leall: FLUSHINV [P0++];
222 ENDPROC(_dcplb_flush)
226 .byte4 0xFFFFFC00; /* 1K */
227 .byte4 0xFFFFF000; /* 4K */
228 .byte4 0xFFF00000; /* 1M */
229 .byte4 0xFFC00000; /* 4M */
230 .page_prefix_table.end: