3 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
5 * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6 * Marius Groeger <mgroeger@sysgo.de>
8 * See file CREDITS for list of people who contributed to this
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 of
14 * the License, or (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 #if defined(CONFIG_HARD_I2C)
31 #include <asm/cpm_8260.h>
34 /* define to enable debug messages */
37 DECLARE_GLOBAL_DATA_PTR;
39 /* uSec to wait between polls of the i2c */
41 /* uSec to wait for the CPM to start processing the buffer */
42 #define START_DELAY_US 1000
45 * tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the
46 * timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP
50 /*-----------------------------------------------------------------------
54 #define CFG_I2C_SPEED 50000
58 #define CFG_I2C_SLAVE 0xFE
60 /*-----------------------------------------------------------------------
63 typedef void (*i2c_ecb_t)(int, int, void *); /* error callback function */
65 /* This structure keeps track of the bd and buffer space usage. */
66 typedef struct i2c_state {
67 int rx_idx; /* index to next free Rx BD */
68 int tx_idx; /* index to next free Tx BD */
69 void *rxbd; /* pointer to next free Rx BD */
70 void *txbd; /* pointer to next free Tx BD */
71 int tx_space; /* number of Tx bytes left */
72 unsigned char *tx_buf; /* pointer to free Tx area */
73 i2c_ecb_t err_cb; /* error callback function */
74 void *cb_data; /* private data to be passed */
77 /* flags for i2c_send() and i2c_receive() */
78 #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
79 #define I2CF_START_COND 0x02 /* tx: generate start condition */
80 #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
83 #define I2CERR_NO_BUFFERS 1 /* no more BDs or buffer space */
84 #define I2CERR_MSG_TOO_LONG 2 /* tried to send/receive to much data */
85 #define I2CERR_TIMEOUT 3 /* timeout in i2c_doio() */
86 #define I2CERR_QUEUE_EMPTY 4 /* i2c_doio called without send/receive */
87 #define I2CERR_IO_ERROR 5 /* had an error during comms */
89 /* error callback flags */
90 #define I2CECB_RX_ERR 0x10 /* this is a receive error */
91 #define I2CECB_RX_OV 0x02 /* receive overrun error */
92 #define I2CECB_RX_MASK 0x0f /* mask for error bits */
93 #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
94 #define I2CECB_TX_CL 0x01 /* transmit collision error */
95 #define I2CECB_TX_UN 0x02 /* transmit underflow error */
96 #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
97 #define I2CECB_TX_MASK 0x0f /* mask for error bits */
98 #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
100 #define ERROR_I2C_NONE 0
101 #define ERROR_I2C_LENGTH 1
103 #define I2C_WRITE_BIT 0x00
104 #define I2C_READ_BIT 0x01
106 #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
111 #define MAX_TX_SPACE 256
113 typedef struct I2C_BD
115 unsigned short status;
116 unsigned short length;
119 #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
121 #define BD_I2C_TX_CL 0x0001 /* collision error */
122 #define BD_I2C_TX_UN 0x0002 /* underflow error */
123 #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
124 #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
126 #define BD_I2C_RX_ERR BD_SC_OV
129 #define PRINTD(x) printf x
135 * Returns the best value of I2BRG to meet desired clock speed of I2C with
136 * input parameters (clock speed, filter, and predivider value).
137 * It returns computer speed value and the difference between it and desired
141 i2c_roundrate(int hz, int speed, int filter, int modval,
142 int *brgval, int *totspeed)
144 int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
146 PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
147 hz, speed, filter, modval));
149 div = moddiv * speed;
150 brgdiv = (hz + div - 1) / div;
152 PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
154 *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
156 if ((*brgval < 0) || (*brgval > 255)) {
157 PRINTD(("\t\trejected brgval=%d\n", *brgval));
161 brgdiv = 2 * (*brgval + 3 + (2 * filter));
162 div = moddiv * brgdiv ;
163 *totspeed = hz / div;
165 PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
171 * Sets the I2C clock predivider and divider to meet required clock speed.
173 static int i2c_setrate(int hz, int speed)
175 immap_t *immap = (immap_t *)CFG_IMMR ;
176 volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
179 bestspeed_diff = speed,
184 filter = 0; /* Use this fixed value */
186 for (modval = 0; modval < 4; modval++)
188 if (i2c_roundrate (hz, speed, filter, modval, &brgval, &totspeed) == 0)
190 int diff = speed - totspeed ;
192 if ((diff >= 0) && (diff < bestspeed_diff))
194 bestspeed_diff = diff ;
195 bestspeed_modval = modval;
196 bestspeed_brgval = brgval;
197 bestspeed_filter = filter;
202 PRINTD(("[I2C] Best is:\n"));
203 PRINTD(("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
205 bestspeed_filter, bestspeed_modval, bestspeed_brgval,
208 i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
209 i2c->i2c_i2brg = bestspeed_brgval & 0xff;
211 PRINTD(("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg));
216 void i2c_init(int speed, int slaveadd)
218 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
219 volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm;
220 volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
223 volatile I2C_BD *rxbd, *txbd;
226 #ifdef CFG_I2C_INIT_BOARD
227 /* call board specific i2c bus reset routine before accessing the */
228 /* environment, which might be in a chip on that bus. For details */
229 /* about this problem see doc/I2C_Edge_Conditions. */
233 dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
235 /* need to allocate dual port ram */
236 dpaddr = m8260_cpm_dpalloc(64 +
237 (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
239 *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])) = dpaddr;
243 * initialise data in dual port ram:
245 * dpaddr -> parameter ram (64 bytes)
246 * rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
247 * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
248 * tx buffer (MAX_TX_SPACE bytes)
251 iip = (iic_t *)&immap->im_dprambase[dpaddr];
252 memset((void*)iip, 0, sizeof(iic_t));
255 tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
257 /* Disable interrupts */
258 i2c->i2c_i2mod = 0x00;
259 i2c->i2c_i2cmr = 0x00;
260 i2c->i2c_i2cer = 0xff;
261 i2c->i2c_i2add = slaveadd;
264 * Set the I2C BRG Clock division factor from desired i2c rate
265 * and current CPU rate (we assume sccr dfbgr field is 0;
266 * divide BRGCLK by 1)
268 PRINTD(("[I2C] Setting rate...\n"));
269 i2c_setrate (gd->brg_clk, CFG_I2C_SPEED) ;
271 /* Set I2C controller in master mode */
272 i2c->i2c_i2com = 0x01;
274 /* Initialize Tx/Rx parameters */
275 iip->iic_rbase = rbase;
276 iip->iic_tbase = tbase;
277 rxbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_rbase]);
278 txbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_tbase]);
280 PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
281 PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
282 PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
283 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
285 /* Set big endian byte order */
286 iip->iic_tfcr = 0x10;
287 iip->iic_rfcr = 0x10;
289 /* Set maximum receive size. */
290 iip->iic_mrblr = I2C_RXTX_LEN;
292 cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE,
295 CPM_CR_INIT_TRX) | CPM_CR_FLG;
297 __asm__ __volatile__ ("eieio");
298 } while (cp->cp_cpcr & CPM_CR_FLG);
300 /* Clear events and interrupts */
301 i2c->i2c_i2cer = 0xff;
302 i2c->i2c_i2cmr = 0x00;
306 void i2c_newio(i2c_state_t *state)
308 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
312 PRINTD(("[I2C] i2c_newio\n"));
314 dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
315 iip = (iic_t *)&immap->im_dprambase[dpaddr];
318 state->rxbd = (void*)&immap->im_dprambase[iip->iic_rbase];
319 state->txbd = (void*)&immap->im_dprambase[iip->iic_tbase];
320 state->tx_space = MAX_TX_SPACE;
321 state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
322 state->err_cb = NULL;
323 state->cb_data = NULL;
325 PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
326 PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
327 PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
329 /* clear the buffer memory */
330 memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
334 int i2c_send(i2c_state_t *state,
335 unsigned char address,
336 unsigned char secondary_address,
339 unsigned char *dataout)
341 volatile I2C_BD *txbd;
344 PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
345 address, secondary_address, flags, size));
347 /* trying to send message larger than BD */
348 if (size > I2C_RXTX_LEN)
349 return I2CERR_MSG_TOO_LONG;
351 /* no more free bds */
352 if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
353 return I2CERR_NO_BUFFERS;
355 txbd = (I2C_BD *)state->txbd;
356 txbd->addr = state->tx_buf;
358 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
360 if (flags & I2CF_START_COND)
362 PRINTD(("[I2C] Formatting addresses...\n"));
363 if (flags & I2CF_ENABLE_SECONDARY)
365 txbd->length = size + 2; /* Length of message plus dest addresses */
366 txbd->addr[0] = address << 1;
367 txbd->addr[1] = secondary_address;
372 txbd->length = size + 1; /* Length of message plus dest address */
373 txbd->addr[0] = address << 1; /* Write destination address to BD */
379 txbd->length = size; /* Length of message */
384 txbd->status = BD_SC_READY;
385 if (flags & I2CF_START_COND)
386 txbd->status |= BD_I2C_TX_START;
387 if (flags & I2CF_STOP_COND)
388 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
390 /* Copy data to send into buffer */
391 PRINTD(("[I2C] copy data...\n"));
392 for(j = 0; j < size; i++, j++)
393 txbd->addr[i] = dataout[j];
395 PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
402 state->tx_buf += txbd->length;
403 state->tx_space -= txbd->length;
405 state->txbd = (void*)(txbd + 1);
411 int i2c_receive(i2c_state_t *state,
412 unsigned char address,
413 unsigned char secondary_address,
415 unsigned short size_to_expect,
416 unsigned char *datain)
418 volatile I2C_BD *rxbd, *txbd;
420 PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
422 /* Expected to receive too much */
423 if (size_to_expect > I2C_RXTX_LEN)
424 return I2CERR_MSG_TOO_LONG;
426 /* no more free bds */
427 if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
428 || state->tx_space < 2)
429 return I2CERR_NO_BUFFERS;
431 rxbd = (I2C_BD *)state->rxbd;
432 txbd = (I2C_BD *)state->txbd;
434 PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
435 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
437 txbd->addr = state->tx_buf;
439 /* set up TXBD for destination address */
440 if (flags & I2CF_ENABLE_SECONDARY)
443 txbd->addr[0] = address << 1; /* Write data */
444 txbd->addr[1] = secondary_address; /* Internal address */
445 txbd->status = BD_SC_READY;
449 txbd->length = 1 + size_to_expect;
450 txbd->addr[0] = (address << 1) | 0x01;
451 txbd->status = BD_SC_READY;
452 memset(&txbd->addr[1], 0, txbd->length);
455 /* set up rxbd for reception */
456 rxbd->status = BD_SC_EMPTY;
457 rxbd->length = size_to_expect;
460 txbd->status |= BD_I2C_TX_START;
461 if (flags & I2CF_STOP_COND)
463 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
464 rxbd->status |= BD_SC_WRAP;
467 PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
472 PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
479 state->tx_buf += txbd->length;
480 state->tx_space -= txbd->length;
482 state->txbd = (void*)(txbd + 1);
484 state->rxbd = (void*)(rxbd + 1);
491 int i2c_doio(i2c_state_t *state)
493 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
495 volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
496 volatile I2C_BD *txbd, *rxbd;
497 int n, i, b, rxcnt = 0, rxtimeo = 0, txcnt = 0, txtimeo = 0, rc = 0;
500 PRINTD(("[I2C] i2c_doio\n"));
502 if (state->tx_idx <= 0 && state->rx_idx <= 0) {
503 PRINTD(("[I2C] No I/O is queued\n"));
504 return I2CERR_QUEUE_EMPTY;
507 dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
508 iip = (iic_t *)&immap->im_dprambase[dpaddr];
509 iip->iic_rbptr = iip->iic_rbase;
510 iip->iic_tbptr = iip->iic_tbase;
513 PRINTD(("[I2C] Enabling I2C...\n"));
514 i2c->i2c_i2mod |= 0x01;
516 /* Begin transmission */
517 i2c->i2c_i2com |= 0x80;
519 /* Loop until transmit & receive completed */
521 if ((n = state->tx_idx) > 0) {
523 txbd = ((I2C_BD*)state->txbd) - n;
524 for (i = 0; i < n; i++) {
525 txtimeo += TOUT_LOOP * txbd->length;
529 txbd--; /* wait until last in list is done */
531 PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
533 udelay(START_DELAY_US); /* give it time to start */
534 while((txbd->status & BD_SC_READY) && (++txcnt < txtimeo)) {
538 __asm__ __volatile__ ("eieio");
542 if (txcnt < txtimeo && (n = state->rx_idx) > 0) {
544 rxbd = ((I2C_BD*)state->rxbd) - n;
545 for (i = 0; i < n; i++) {
546 rxtimeo += TOUT_LOOP * rxbd->length;
550 rxbd--; /* wait until last in list is done */
552 PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
554 udelay(START_DELAY_US); /* give it time to start */
555 while((rxbd->status & BD_SC_EMPTY) && (++rxcnt < rxtimeo)) {
559 __asm__ __volatile__ ("eieio");
564 i2c->i2c_i2mod &= ~0x01;
566 if ((n = state->tx_idx) > 0) {
567 for (i = 0; i < n; i++) {
568 txbd = ((I2C_BD*)state->txbd) - (n - i);
569 if ((b = txbd->status & BD_I2C_TX_ERR) != 0) {
570 if (state->err_cb != NULL)
571 (*state->err_cb)(I2CECB_TX_ERR|b, i,
574 rc = I2CERR_IO_ERROR;
579 if ((n = state->rx_idx) > 0) {
580 for (i = 0; i < n; i++) {
581 rxbd = ((I2C_BD*)state->rxbd) - (n - i);
582 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) {
583 if (state->err_cb != NULL)
584 (*state->err_cb)(I2CECB_RX_ERR|b, i,
587 rc = I2CERR_IO_ERROR;
592 if ((txtimeo > 0 && txcnt >= txtimeo) || \
593 (rxtimeo > 0 && rxcnt >= rxtimeo)) {
594 if (state->err_cb != NULL)
595 (*state->err_cb)(I2CECB_TIMEOUT, -1, state->cb_data);
604 i2c_probe_callback(int flags, int xnum, void *data)
607 * the only acceptable errors are a transmit NAK or a receive
608 * overrun - tx NAK means the device does not exist, rx OV
609 * means the device must have responded to the slave address
610 * even though the transfer failed
612 if (flags == (I2CECB_TX_ERR|I2CECB_TX_NAK))
614 if (flags == (I2CECB_RX_ERR|I2CECB_RX_OV))
619 i2c_probe(uchar chip)
627 state.err_cb = i2c_probe_callback;
628 state.cb_data = (void *) &err_flag;
631 rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
634 return (rc); /* probe failed */
636 rc = i2c_doio(&state);
639 return (0); /* device exists - read succeeded */
641 if (rc == I2CERR_TIMEOUT)
642 return (-1); /* device does not exist - timeout */
644 if (rc != I2CERR_IO_ERROR || err_flag == 0)
645 return (rc); /* probe failed */
648 return (-1); /* device does not exist - had transmit NAK */
650 return (0); /* device exists - had receive overrun */
655 i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
661 xaddr[0] = (addr >> 24) & 0xFF;
662 xaddr[1] = (addr >> 16) & 0xFF;
663 xaddr[2] = (addr >> 8) & 0xFF;
664 xaddr[3] = addr & 0xFF;
666 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
668 * EEPROM chips that implement "address overflow" are ones
669 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
670 * and the extra bits end up in the "chip address" bit slots.
671 * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
674 * Note that we consider the length of the address field to still
675 * be one byte because the extra address bits are hidden in the
678 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
683 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
685 printf("i2c_read: i2c_send failed (%d)\n", rc);
689 rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
691 printf("i2c_read: i2c_receive failed (%d)\n", rc);
695 rc = i2c_doio(&state);
697 printf("i2c_read: i2c_doio failed (%d)\n", rc);
704 i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
710 xaddr[0] = (addr >> 24) & 0xFF;
711 xaddr[1] = (addr >> 16) & 0xFF;
712 xaddr[2] = (addr >> 8) & 0xFF;
713 xaddr[3] = addr & 0xFF;
715 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
717 * EEPROM chips that implement "address overflow" are ones
718 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
719 * and the extra bits end up in the "chip address" bit slots.
720 * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
723 * Note that we consider the length of the address field to still
724 * be one byte because the extra address bits are hidden in the
727 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
732 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
734 printf("i2c_write: first i2c_send failed (%d)\n", rc);
738 rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
740 printf("i2c_write: second i2c_send failed (%d)\n", rc);
744 rc = i2c_doio(&state);
746 printf("i2c_write: i2c_doio failed (%d)\n", rc);
753 i2c_reg_read(uchar chip, uchar reg)
757 i2c_read(chip, reg, 1, &buf, 1);
763 i2c_reg_write(uchar chip, uchar reg, uchar val)
765 i2c_write(chip, reg, 1, &val, 1);
768 #endif /* CONFIG_HARD_I2C */