]> git.sur5r.net Git - u-boot/blob - doc/README.x86
x86: Update README for new developments
[u-boot] / doc / README.x86
1 #
2 # Copyright (C) 2014, Simon Glass <sjg@chromium.org>
3 # Copyright (C) 2014, Bin Meng <bmeng.cn@gmail.com>
4 #
5 # SPDX-License-Identifier:      GPL-2.0+
6 #
7
8 U-Boot on x86
9 =============
10
11 This document describes the information about U-Boot running on x86 targets,
12 including supported boards, build instructions, todo list, etc.
13
14 Status
15 ------
16 U-Boot supports running as a coreboot [1] payload on x86. So far only Link
17 (Chromebook Pixel) and QEMU [2] x86 targets have been tested, but it should
18 work with minimal adjustments on other x86 boards since coreboot deals with
19 most of the low-level details.
20
21 U-Boot also supports booting directly from x86 reset vector, without coreboot.
22 In this case, known as bare mode, from the fact that it runs on the
23 'bare metal', U-Boot acts like a BIOS replacement. The following platforms
24 are supported:
25
26    - Bayley Bay
27    - Cougar Canyon 2 CRB
28    - Crown Bay CRB
29    - Galileo
30    - Link (Chromebook Pixel)
31    - Minnowboard MAX
32    - Samus (Chromebook Pixel 2015)
33    - QEMU x86
34
35 As for loading an OS, U-Boot supports directly booting a 32-bit or 64-bit
36 Linux kernel as part of a FIT image. It also supports a compressed zImage.
37 U-Boot supports loading an x86 VxWorks kernel. Please check README.vxworks
38 for more details.
39
40 Build Instructions for U-Boot as coreboot payload
41 -------------------------------------------------
42 Building U-Boot as a coreboot payload is just like building U-Boot for targets
43 on other architectures, like below:
44
45 $ make coreboot-x86_defconfig
46 $ make all
47
48 Note this default configuration will build a U-Boot payload for the QEMU board.
49 To build a coreboot payload against another board, you can change the build
50 configuration during the 'make menuconfig' process.
51
52 x86 architecture  --->
53         ...
54         (qemu-x86) Board configuration file
55         (qemu-x86_i440fx) Board Device Tree Source (dts) file
56         (0x01920000) Board specific Cache-As-RAM (CAR) address
57         (0x4000) Board specific Cache-As-RAM (CAR) size
58
59 Change the 'Board configuration file' and 'Board Device Tree Source (dts) file'
60 to point to a new board. You can also change the Cache-As-RAM (CAR) related
61 settings here if the default values do not fit your new board.
62
63 Build Instructions for U-Boot as BIOS replacement (bare mode)
64 -------------------------------------------------------------
65 Building a ROM version of U-Boot (hereafter referred to as u-boot.rom) is a
66 little bit tricky, as generally it requires several binary blobs which are not
67 shipped in the U-Boot source tree. Due to this reason, the u-boot.rom build is
68 not turned on by default in the U-Boot source tree. Firstly, you need turn it
69 on by enabling the ROM build:
70
71 $ export BUILD_ROM=y
72
73 This tells the Makefile to build u-boot.rom as a target.
74
75 ---
76
77 Chromebook Link specific instructions for bare mode:
78
79 First, you need the following binary blobs:
80
81 * descriptor.bin - Intel flash descriptor
82 * me.bin - Intel Management Engine
83 * mrc.bin - Memory Reference Code, which sets up SDRAM
84 * video ROM - sets up the display
85
86 You can get these binary blobs by:
87
88 $ git clone http://review.coreboot.org/p/blobs.git
89 $ cd blobs
90
91 Find the following files:
92
93 * ./mainboard/google/link/descriptor.bin
94 * ./mainboard/google/link/me.bin
95 * ./northbridge/intel/sandybridge/systemagent-r6.bin
96
97 The 3rd one should be renamed to mrc.bin.
98 As for the video ROM, you can get it here [3] and rename it to vga.bin.
99 Make sure all these binary blobs are put in the board directory.
100
101 Now you can build U-Boot and obtain u-boot.rom:
102
103 $ make chromebook_link_defconfig
104 $ make all
105
106 ---
107
108 Intel Crown Bay specific instructions for bare mode:
109
110 U-Boot support of Intel Crown Bay board [4] relies on a binary blob called
111 Firmware Support Package [5] to perform all the necessary initialization steps
112 as documented in the BIOS Writer Guide, including initialization of the CPU,
113 memory controller, chipset and certain bus interfaces.
114
115 Download the Intel FSP for Atom E6xx series and Platform Controller Hub EG20T,
116 install it on your host and locate the FSP binary blob. Note this platform
117 also requires a Chipset Micro Code (CMC) state machine binary to be present in
118 the SPI flash where u-boot.rom resides, and this CMC binary blob can be found
119 in this FSP package too.
120
121 * ./FSP/QUEENSBAY_FSP_GOLD_001_20-DECEMBER-2013.fd
122 * ./Microcode/C0_22211.BIN
123
124 Rename the first one to fsp.bin and second one to cmc.bin and put them in the
125 board directory.
126
127 Note the FSP release version 001 has a bug which could cause random endless
128 loop during the FspInit call. This bug was published by Intel although Intel
129 did not describe any details. We need manually apply the patch to the FSP
130 binary using any hex editor (eg: bvi). Go to the offset 0x1fcd8 of the FSP
131 binary, change the following five bytes values from orginally E8 42 FF FF FF
132 to B8 00 80 0B 00.
133
134 As for the video ROM, you need manually extract it from the Intel provided
135 BIOS for Crown Bay here [6], using the AMI MMTool [7]. Check PCI option ROM
136 ID 8086:4108, extract and save it as vga.bin in the board directory.
137
138 Now you can build U-Boot and obtain u-boot.rom
139
140 $ make crownbay_defconfig
141 $ make all
142
143 ---
144
145 Intel Cougar Canyon 2 specific instructions for bare mode:
146
147 This uses Intel FSP for 3rd generation Intel Core and Intel Celeron processors
148 with mobile Intel HM76 and QM77 chipsets platform. Download it from Intel FSP
149 website and put the .fd file (CHIEFRIVER_FSP_GOLD_001_09-OCTOBER-2013.fd at the
150 time of writing) in the board directory and rename it to fsp.bin.
151
152 Now build U-Boot and obtain u-boot.rom
153
154 $ make cougarcanyon2_defconfig
155 $ make all
156
157 The board has two 8MB SPI flashes mounted, which are called SPI-0 and SPI-1 in
158 the board manual. The SPI-0 flash should have flash descriptor plus ME firmware
159 and SPI-1 flash is used to store U-Boot. For convenience, the complete 8MB SPI-0
160 flash image is included in the FSP package (named Rom00_8M_MB_PPT.bin). Program
161 this image to the SPI-0 flash according to the board manual just once and we are
162 all set. For programming U-Boot we just need to program SPI-1 flash.
163
164 ---
165
166 Intel Bay Trail based board instructions for bare mode:
167
168 This uses as FSP as with Crown Bay, except it is for the Atom E3800 series.
169 Two boards that use this configuration are Bayley Bay and Minnowboard MAX.
170 Download this and get the .fd file (BAYTRAIL_FSP_GOLD_003_16-SEP-2014.fd at
171 the time of writing). Put it in the corresponding board directory and rename
172 it to fsp.bin.
173
174 Obtain the VGA RAM (Vga.dat at the time of writing) and put it into the same
175 board directory as vga.bin.
176
177 You still need two more binary blobs. For Bayley Bay, they can be extracted
178 from the sample SPI image provided in the FSP (SPI.bin at the time of writing).
179
180    $ ./tools/ifdtool -x BayleyBay/SPI.bin
181    $ cp flashregion_0_flashdescriptor.bin board/intel/bayleybay/descriptor.bin
182    $ cp flashregion_2_intel_me.bin board/intel/bayleybay/me.bin
183
184 For Minnowboard MAX, we can reuse the same ME firmware above, but for flash
185 descriptor, we need get that somewhere else, as the one above does not seem to
186 work, probably because it is not designed for the Minnowboard MAX. Now download
187 the original firmware image for this board from:
188
189 http://firmware.intel.com/sites/default/files/2014-WW42.4-MinnowBoardMax.73-64-bit.bin_Release.zip
190
191 Unzip it:
192
193    $ unzip 2014-WW42.4-MinnowBoardMax.73-64-bit.bin_Release.zip
194
195 Use ifdtool in the U-Boot tools directory to extract the images from that
196 file, for example:
197
198    $ ./tools/ifdtool -x MNW2MAX1.X64.0073.R02.1409160934.bin
199
200 This will provide the descriptor file - copy this into the correct place:
201
202    $ cp flashregion_0_flashdescriptor.bin board/intel/minnowmax/descriptor.bin
203
204 Now you can build U-Boot and obtain u-boot.rom
205 Note: below are examples/information for Minnowboard MAX.
206
207 $ make minnowmax_defconfig
208 $ make all
209
210 Checksums are as follows (but note that newer versions will invalidate this):
211
212 $ md5sum -b board/intel/minnowmax/*.bin
213 ffda9a3b94df5b74323afb328d51e6b4  board/intel/minnowmax/descriptor.bin
214 69f65b9a580246291d20d08cbef9d7c5  board/intel/minnowmax/fsp.bin
215 894a97d371544ec21de9c3e8e1716c4b  board/intel/minnowmax/me.bin
216 a2588537da387da592a27219d56e9962  board/intel/minnowmax/vga.bin
217
218 The ROM image is broken up into these parts:
219
220 Offset   Description         Controlling config
221 ------------------------------------------------------------
222 000000   descriptor.bin      Hard-coded to 0 in ifdtool
223 001000   me.bin              Set by the descriptor
224 500000   <spare>
225 6f0000   MRC cache           CONFIG_ENABLE_MRC_CACHE
226 700000   u-boot-dtb.bin      CONFIG_SYS_TEXT_BASE
227 790000   vga.bin             CONFIG_VGA_BIOS_ADDR
228 7c0000   fsp.bin             CONFIG_FSP_ADDR
229 7f8000   <spare>             (depends on size of fsp.bin)
230 7fe000   Environment         CONFIG_ENV_OFFSET
231 7ff800   U-Boot 16-bit boot  CONFIG_SYS_X86_START16
232
233 Overall ROM image size is controlled by CONFIG_ROM_SIZE.
234
235 ---
236
237 Intel Galileo instructions for bare mode:
238
239 Only one binary blob is needed for Remote Management Unit (RMU) within Intel
240 Quark SoC. Not like FSP, U-Boot does not call into the binary. The binary is
241 needed by the Quark SoC itself.
242
243 You can get the binary blob from Quark Board Support Package from Intel website:
244
245 * ./QuarkSocPkg/QuarkNorthCluster/Binary/QuarkMicrocode/RMU.bin
246
247 Rename the file and put it to the board directory by:
248
249    $ cp RMU.bin board/intel/galileo/rmu.bin
250
251 Now you can build U-Boot and obtain u-boot.rom
252
253 $ make galileo_defconfig
254 $ make all
255
256 ---
257
258 QEMU x86 target instructions for bare mode:
259
260 To build u-boot.rom for QEMU x86 targets, just simply run
261
262 $ make qemu-x86_defconfig
263 $ make all
264
265 Note this default configuration will build a U-Boot for the QEMU x86 i440FX
266 board. To build a U-Boot against QEMU x86 Q35 board, you can change the build
267 configuration during the 'make menuconfig' process like below:
268
269 Device Tree Control  --->
270         ...
271         (qemu-x86_q35) Default Device Tree for DT control
272
273 Test with coreboot
274 ------------------
275 For testing U-Boot as the coreboot payload, there are things that need be paid
276 attention to. coreboot supports loading an ELF executable and a 32-bit plain
277 binary, as well as other supported payloads. With the default configuration,
278 U-Boot is set up to use a separate Device Tree Blob (dtb). As of today, the
279 generated u-boot-dtb.bin needs to be packaged by the cbfstool utility (a tool
280 provided by coreboot) manually as coreboot's 'make menuconfig' does not provide
281 this capability yet. The command is as follows:
282
283 # in the coreboot root directory
284 $ ./build/util/cbfstool/cbfstool build/coreboot.rom add-flat-binary \
285   -f u-boot-dtb.bin -n fallback/payload -c lzma -l 0x1110000 -e 0x1110000
286
287 Make sure 0x1110000 matches CONFIG_SYS_TEXT_BASE, which is the symbol address
288 of _x86boot_start (in arch/x86/cpu/start.S).
289
290 If you want to use ELF as the coreboot payload, change U-Boot configuration to
291 use CONFIG_OF_EMBED instead of CONFIG_OF_SEPARATE.
292
293 To enable video you must enable these options in coreboot:
294
295    - Set framebuffer graphics resolution (1280x1024 32k-color (1:5:5))
296    - Keep VESA framebuffer
297
298 At present it seems that for Minnowboard Max, coreboot does not pass through
299 the video information correctly (it always says the resolution is 0x0). This
300 works correctly for link though.
301
302 Test with QEMU for bare mode
303 ----------------------------
304 QEMU is a fancy emulator that can enable us to test U-Boot without access to
305 a real x86 board. Please make sure your QEMU version is 2.3.0 or above test
306 U-Boot. To launch QEMU with u-boot.rom, call QEMU as follows:
307
308 $ qemu-system-i386 -nographic -bios path/to/u-boot.rom
309
310 This will instantiate an emulated x86 board with i440FX and PIIX chipset. QEMU
311 also supports emulating an x86 board with Q35 and ICH9 based chipset, which is
312 also supported by U-Boot. To instantiate such a machine, call QEMU with:
313
314 $ qemu-system-i386 -nographic -bios path/to/u-boot.rom -M q35
315
316 Note by default QEMU instantiated boards only have 128 MiB system memory. But
317 it is enough to have U-Boot boot and function correctly. You can increase the
318 system memory by pass '-m' parameter to QEMU if you want more memory:
319
320 $ qemu-system-i386 -nographic -bios path/to/u-boot.rom -m 1024
321
322 This creates a board with 1 GiB system memory. Currently U-Boot for QEMU only
323 supports 3 GiB maximum system memory and reserves the last 1 GiB address space
324 for PCI device memory-mapped I/O and other stuff, so the maximum value of '-m'
325 would be 3072.
326
327 QEMU emulates a graphic card which U-Boot supports. Removing '-nographic' will
328 show QEMU's VGA console window. Note this will disable QEMU's serial output.
329 If you want to check both consoles, use '-serial stdio'.
330
331 Multicore is also supported by QEMU via '-smp n' where n is the number of cores
332 to instantiate. Note, the maximum supported CPU number in QEMU is 255.
333
334 The fw_cfg interface in QEMU also provides information about kernel data, initrd,
335 command-line arguments and more. U-Boot supports directly accessing these informtion
336 from fw_cfg interface, this saves the time of loading them from hard disk or
337 network again, through emulated devices. To use it , simply providing them in
338 QEMU command line:
339
340 $ qemu-system-i386 -nographic -bios path/to/u-boot.rom -m 1024 -kernel /path/to/bzImage
341     -append 'root=/dev/ram console=ttyS0' -initrd /path/to/initrd -smp 8
342
343 Note: -initrd and -smp are both optional
344
345 Then start QEMU, in U-Boot command line use the following U-Boot command to setup kernel:
346
347  => qfw
348 qfw - QEMU firmware interface
349
350 Usage:
351 qfw <command>
352     - list                             : print firmware(s) currently loaded
353     - cpus                             : print online cpu number
354     - load <kernel addr> <initrd addr> : load kernel and initrd (if any) and setup for zboot
355
356 => qfw load
357 loading kernel to address 01000000 size 5d9d30 initrd 04000000 size 1b1ab50
358
359 Here the kernel (bzImage) is loaded to 01000000 and initrd is to 04000000. Then, 'zboot'
360 can be used to boot the kernel:
361
362 => zboot 02000000 - 04000000 1b1ab50
363
364 CPU Microcode
365 -------------
366 Modern CPUs usually require a special bit stream called microcode [8] to be
367 loaded on the processor after power up in order to function properly. U-Boot
368 has already integrated these as hex dumps in the source tree.
369
370 SMP Support
371 -----------
372 On a multicore system, U-Boot is executed on the bootstrap processor (BSP).
373 Additional application processors (AP) can be brought up by U-Boot. In order to
374 have an SMP kernel to discover all of the available processors, U-Boot needs to
375 prepare configuration tables which contain the multi-CPUs information before
376 loading the OS kernel. Currently U-Boot supports generating two types of tables
377 for SMP, called Simple Firmware Interface (SFI) [9] and Multi-Processor (MP)
378 [10] tables. The writing of these two tables are controlled by two Kconfig
379 options GENERATE_SFI_TABLE and GENERATE_MP_TABLE.
380
381 Driver Model
382 ------------
383 x86 has been converted to use driver model for serial, GPIO, SPI, SPI flash,
384 keyboard, real-time clock, USB. Video is in progress.
385
386 Device Tree
387 -----------
388 x86 uses device tree to configure the board thus requires CONFIG_OF_CONTROL to
389 be turned on. Not every device on the board is configured via device tree, but
390 more and more devices will be added as time goes by. Check out the directory
391 arch/x86/dts/ for these device tree source files.
392
393 Useful Commands
394 ---------------
395 In keeping with the U-Boot philosophy of providing functions to check and
396 adjust internal settings, there are several x86-specific commands that may be
397 useful:
398
399 fsp  - Display information about Intel Firmware Support Package (FSP).
400          This is only available on platforms which use FSP, mostly Atom.
401 iod  - Display I/O memory
402 iow  - Write I/O memory
403 mtrr - List and set the Memory Type Range Registers (MTRR). These are used to
404          tell the CPU whether memory is cacheable and if so the cache write
405          mode to use. U-Boot sets up some reasonable values but you can
406          adjust then with this command.
407
408 Booting Ubuntu
409 --------------
410 As an example of how to set up your boot flow with U-Boot, here are
411 instructions for starting Ubuntu from U-Boot. These instructions have been
412 tested on Minnowboard MAX with a SATA driver but are equally applicable on
413 other platforms and other media. There are really only four steps and its a
414 very simple script, but a more detailed explanation is provided here for
415 completeness.
416
417 Note: It is possible to set up U-Boot to boot automatically using syslinux.
418 It could also use the grub.cfg file (/efi/ubuntu/grub.cfg) to obtain the
419 GUID. If you figure these out, please post patches to this README.
420
421 Firstly, you will need Ubunutu installed on an available disk. It should be
422 possible to make U-Boot start a USB start-up disk but for now let's assume
423 that you used another boot loader to install Ubuntu.
424
425 Use the U-Boot command line to find the UUID of the partition you want to
426 boot. For example our disk is SCSI device 0:
427
428 => part list scsi 0
429
430 Partition Map for SCSI device 0  --   Partition Type: EFI
431
432    Part Start LBA       End LBA         Name
433         Attributes
434         Type GUID
435         Partition GUID
436    1    0x00000800      0x001007ff      ""
437         attrs:  0x0000000000000000
438         type:   c12a7328-f81f-11d2-ba4b-00a0c93ec93b
439         guid:   9d02e8e4-4d59-408f-a9b0-fd497bc9291c
440    2    0x00100800      0x037d8fff      ""
441         attrs:  0x0000000000000000
442         type:   0fc63daf-8483-4772-8e79-3d69d8477de4
443         guid:   965c59ee-1822-4326-90d2-b02446050059
444    3    0x037d9000      0x03ba27ff      ""
445         attrs:  0x0000000000000000
446         type:   0657fd6d-a4ab-43c4-84e5-0933c84b4f4f
447         guid:   2c4282bd-1e82-4bcf-a5ff-51dedbf39f17
448    =>
449
450 This shows that your SCSI disk has three partitions. The really long hex
451 strings are called Globally Unique Identifiers (GUIDs). You can look up the
452 'type' ones here [11]. On this disk the first partition is for EFI and is in
453 VFAT format (DOS/Windows):
454
455    => fatls scsi 0:1
456                efi/
457
458    0 file(s), 1 dir(s)
459
460
461 Partition 2 is 'Linux filesystem data' so that will be our root disk. It is
462 in ext2 format:
463
464    => ext2ls scsi 0:2
465    <DIR>       4096 .
466    <DIR>       4096 ..
467    <DIR>      16384 lost+found
468    <DIR>       4096 boot
469    <DIR>      12288 etc
470    <DIR>       4096 media
471    <DIR>       4096 bin
472    <DIR>       4096 dev
473    <DIR>       4096 home
474    <DIR>       4096 lib
475    <DIR>       4096 lib64
476    <DIR>       4096 mnt
477    <DIR>       4096 opt
478    <DIR>       4096 proc
479    <DIR>       4096 root
480    <DIR>       4096 run
481    <DIR>      12288 sbin
482    <DIR>       4096 srv
483    <DIR>       4096 sys
484    <DIR>       4096 tmp
485    <DIR>       4096 usr
486    <DIR>       4096 var
487    <SYM>         33 initrd.img
488    <SYM>         30 vmlinuz
489    <DIR>       4096 cdrom
490    <SYM>         33 initrd.img.old
491    =>
492
493 and if you look in the /boot directory you will see the kernel:
494
495    => ext2ls scsi 0:2 /boot
496    <DIR>       4096 .
497    <DIR>       4096 ..
498    <DIR>       4096 efi
499    <DIR>       4096 grub
500             3381262 System.map-3.13.0-32-generic
501             1162712 abi-3.13.0-32-generic
502              165611 config-3.13.0-32-generic
503              176500 memtest86+.bin
504              178176 memtest86+.elf
505              178680 memtest86+_multiboot.bin
506             5798112 vmlinuz-3.13.0-32-generic
507              165762 config-3.13.0-58-generic
508             1165129 abi-3.13.0-58-generic
509             5823136 vmlinuz-3.13.0-58-generic
510            19215259 initrd.img-3.13.0-58-generic
511             3391763 System.map-3.13.0-58-generic
512             5825048 vmlinuz-3.13.0-58-generic.efi.signed
513            28304443 initrd.img-3.13.0-32-generic
514    =>
515
516 The 'vmlinuz' files contain a packaged Linux kernel. The format is a kind of
517 self-extracting compressed file mixed with some 'setup' configuration data.
518 Despite its size (uncompressed it is >10MB) this only includes a basic set of
519 device drivers, enough to boot on most hardware types.
520
521 The 'initrd' files contain a RAM disk. This is something that can be loaded
522 into RAM and will appear to Linux like a disk. Ubuntu uses this to hold lots
523 of drivers for whatever hardware you might have. It is loaded before the
524 real root disk is accessed.
525
526 The numbers after the end of each file are the version. Here it is Linux
527 version 3.13. You can find the source code for this in the Linux tree with
528 the tag v3.13. The '.0' allows for additional Linux releases to fix problems,
529 but normally this is not needed. The '-58' is used by Ubuntu. Each time they
530 release a new kernel they increment this number. New Ubuntu versions might
531 include kernel patches to fix reported bugs. Stable kernels can exist for
532 some years so this number can get quite high.
533
534 The '.efi.signed' kernel is signed for EFI's secure boot. U-Boot has its own
535 secure boot mechanism - see [12] [13] and cannot read .efi files at present.
536
537 To boot Ubuntu from U-Boot the steps are as follows:
538
539 1. Set up the boot arguments. Use the GUID for the partition you want to
540 boot:
541
542    => setenv bootargs root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro
543
544 Here root= tells Linux the location of its root disk. The disk is specified
545 by its GUID, using '/dev/disk/by-partuuid/', a Linux path to a 'directory'
546 containing all the GUIDs Linux has found. When it starts up, there will be a
547 file in that directory with this name in it. It is also possible to use a
548 device name here, see later.
549
550 2. Load the kernel. Since it is an ext2/4 filesystem we can do:
551
552    => ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic
553
554 The address 30000000 is arbitrary, but there seem to be problems with using
555 small addresses (sometimes Linux cannot find the ramdisk). This is 48MB into
556 the start of RAM (which is at 0 on x86).
557
558 3. Load the ramdisk (to 64MB):
559
560    => ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic
561
562 4. Start up the kernel. We need to know the size of the ramdisk, but can use
563 a variable for that. U-Boot sets 'filesize' to the size of the last file it
564 loaded.
565
566    => zboot 03000000 0 04000000 ${filesize}
567
568 Type 'help zboot' if you want to see what the arguments are. U-Boot on x86 is
569 quite verbose when it boots a kernel. You should see these messages from
570 U-Boot:
571
572    Valid Boot Flag
573    Setup Size = 0x00004400
574    Magic signature found
575    Using boot protocol version 2.0c
576    Linux kernel version 3.13.0-58-generic (buildd@allspice) #97-Ubuntu SMP Wed Jul 8 02:56:15 UTC 2015
577    Building boot_params at 0x00090000
578    Loading bzImage at address 100000 (5805728 bytes)
579    Magic signature found
580    Initial RAM disk at linear address 0x04000000, size 19215259 bytes
581    Kernel command line: "console=ttyS0,115200 root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro"
582
583    Starting kernel ...
584
585 U-Boot prints out some bootstage timing. This is more useful if you put the
586 above commands into a script since then it will be faster.
587
588    Timer summary in microseconds:
589           Mark    Elapsed  Stage
590              0          0  reset
591        241,535    241,535  board_init_r
592      2,421,611  2,180,076  id=64
593      2,421,790        179  id=65
594      2,428,215      6,425  main_loop
595     48,860,584 46,432,369  start_kernel
596
597    Accumulated time:
598                   240,329  ahci
599                 1,422,704  vesa display
600
601 Now the kernel actually starts:
602
603    [    0.000000] Initializing cgroup subsys cpuset
604    [    0.000000] Initializing cgroup subsys cpu
605    [    0.000000] Initializing cgroup subsys cpuacct
606    [    0.000000] Linux version 3.13.0-58-generic (buildd@allspice) (gcc version 4.8.2 (Ubuntu 4.8.2-19ubuntu1) ) #97-Ubuntu SMP Wed Jul 8 02:56:15 UTC 2015 (Ubuntu 3.13.0-58.97-generic 3.13.11-ckt22)
607    [    0.000000] Command line: console=ttyS0,115200 root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro
608
609 It continues for a long time. Along the way you will see it pick up your
610 ramdisk:
611
612    [    0.000000] RAMDISK: [mem 0x04000000-0x05253fff]
613 ...
614    [    0.788540] Trying to unpack rootfs image as initramfs...
615    [    1.540111] Freeing initrd memory: 18768K (ffff880004000000 - ffff880005254000)
616 ...
617
618 Later it actually starts using it:
619
620    Begin: Running /scripts/local-premount ... done.
621
622 You should also see your boot disk turn up:
623
624    [    4.357243] scsi 1:0:0:0: Direct-Access     ATA      ADATA SP310      5.2  PQ: 0 ANSI: 5
625    [    4.366860] sd 1:0:0:0: [sda] 62533296 512-byte logical blocks: (32.0 GB/29.8 GiB)
626    [    4.375677] sd 1:0:0:0: Attached scsi generic sg0 type 0
627    [    4.381859] sd 1:0:0:0: [sda] Write Protect is off
628    [    4.387452] sd 1:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
629    [    4.399535]  sda: sda1 sda2 sda3
630
631 Linux has found the three partitions (sda1-3). Mercifully it doesn't print out
632 the GUIDs. In step 1 above we could have used:
633
634    setenv bootargs root=/dev/sda2 ro
635
636 instead of the GUID. However if you add another drive to your board the
637 numbering may change whereas the GUIDs will not. So if your boot partition
638 becomes sdb2, it will still boot. For embedded systems where you just want to
639 boot the first disk, you have that option.
640
641 The last thing you will see on the console is mention of plymouth (which
642 displays the Ubuntu start-up screen) and a lot of 'Starting' messages:
643
644  * Starting Mount filesystems on boot                                    [ OK ]
645
646 After a pause you should see a login screen on your display and you are done.
647
648 If you want to put this in a script you can use something like this:
649
650    setenv bootargs root=UUID=b2aaf743-0418-4d90-94cc-3e6108d7d968 ro
651    setenv boot zboot 03000000 0 04000000 \${filesize}
652    setenv bootcmd "ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic; ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic; run boot"
653    saveenv
654
655 The \ is to tell the shell not to evaluate ${filesize} as part of the setenv
656 command.
657
658 You will also need to add this to your board configuration file, e.g.
659 include/configs/minnowmax.h:
660
661    #define CONFIG_BOOTDELAY     2
662
663 Now when you reset your board it wait a few seconds (in case you want to
664 interrupt) and then should boot straight into Ubuntu.
665
666 You can also bake this behaviour into your build by hard-coding the
667 environment variables if you add this to minnowmax.h:
668
669 #undef CONFIG_BOOTARGS
670 #undef CONFIG_BOOTCOMMAND
671
672 #define CONFIG_BOOTARGS         \
673         "root=/dev/sda2 ro"
674 #define CONFIG_BOOTCOMMAND      \
675         "ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic; " \
676         "ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic; " \
677         "run boot"
678
679 #undef CONFIG_EXTRA_ENV_SETTINGS
680 #define CONFIG_EXTRA_ENV_SETTINGS "boot=zboot 03000000 0 04000000 ${filesize}"
681
682 Test with SeaBIOS
683 -----------------
684 SeaBIOS [14] is an open source implementation of a 16-bit x86 BIOS. It can run
685 in an emulator or natively on x86 hardware with the use of U-Boot. With its
686 help, we can boot some OSes that require 16-bit BIOS services like Windows/DOS.
687
688 As U-Boot, we have to manually create a table where SeaBIOS gets various system
689 information (eg: E820) from. The table unfortunately has to follow the coreboot
690 table format as SeaBIOS currently supports booting as a coreboot payload.
691
692 To support loading SeaBIOS, U-Boot should be built with CONFIG_SEABIOS on.
693 Booting SeaBIOS is done via U-Boot's bootelf command, like below:
694
695    => tftp bios.bin.elf;bootelf
696    Using e1000#0 device
697    TFTP from server 10.10.0.100; our IP address is 10.10.0.108
698    ...
699    Bytes transferred = 122124 (1dd0c hex)
700    ## Starting application at 0x000ff06e ...
701    SeaBIOS (version rel-1.9.0)
702    ...
703
704 bios.bin.elf is the SeaBIOS image built from SeaBIOS source tree.
705 Make sure it is built as follows:
706
707    $ make menuconfig
708
709 Inside the "General Features" menu, select "Build for coreboot" as the
710 "Build Target". Inside the "Debugging" menu, turn on "Serial port debugging"
711 so that we can see something as soon as SeaBIOS boots. Leave other options
712 as in their default state. Then,
713
714    $ make
715    ...
716    Total size: 121888  Fixed: 66496  Free: 9184 (used 93.0% of 128KiB rom)
717    Creating out/bios.bin.elf
718
719 Currently this is tested on QEMU x86 target with U-Boot chain-loading SeaBIOS
720 to install/boot a Windows XP OS (below for example command to install Windows).
721
722    # Create a 10G disk.img as the virtual hard disk
723    $ qemu-img create -f qcow2 disk.img 10G
724
725    # Install a Windows XP OS from an ISO image 'winxp.iso'
726    $ qemu-system-i386 -serial stdio -bios u-boot.rom -hda disk.img -cdrom winxp.iso -smp 2 -m 512
727
728    # Boot a Windows XP OS installed on the virutal hard disk
729    $ qemu-system-i386 -serial stdio -bios u-boot.rom -hda disk.img -smp 2 -m 512
730
731 This is also tested on Intel Crown Bay board with a PCIe graphics card, booting
732 SeaBIOS then chain-loading a GRUB on a USB drive, then Linux kernel finally.
733
734
735 Development Flow
736 ----------------
737 These notes are for those who want to port U-Boot to a new x86 platform.
738
739 Since x86 CPUs boot from SPI flash, a SPI flash emulator is a good investment.
740 The Dediprog em100 can be used on Linux. The em100 tool is available here:
741
742    http://review.coreboot.org/p/em100.git
743
744 On Minnowboard Max the following command line can be used:
745
746    sudo em100 -s -p LOW -d u-boot.rom -c W25Q64DW -r
747
748 A suitable clip for connecting over the SPI flash chip is here:
749
750    http://www.dediprog.com/pd/programmer-accessories/EM-TC-8
751
752 This allows you to override the SPI flash contents for development purposes.
753 Typically you can write to the em100 in around 1200ms, considerably faster
754 than programming the real flash device each time. The only important
755 limitation of the em100 is that it only supports SPI bus speeds up to 20MHz.
756 This means that images must be set to boot with that speed. This is an
757 Intel-specific feature - e.g. tools/ifttool has an option to set the SPI
758 speed in the SPI descriptor region.
759
760 If your chip/board uses an Intel Firmware Support Package (FSP) it is fairly
761 easy to fit it in. You can follow the Minnowboard Max implementation, for
762 example. Hopefully you will just need to create new files similar to those
763 in arch/x86/cpu/baytrail which provide Bay Trail support.
764
765 If you are not using an FSP you have more freedom and more responsibility.
766 The ivybridge support works this way, although it still uses a ROM for
767 graphics and still has binary blobs containing Intel code. You should aim to
768 support all important peripherals on your platform including video and storage.
769 Use the device tree for configuration where possible.
770
771 For the microcode you can create a suitable device tree file using the
772 microcode tool:
773
774   ./tools/microcode-tool -d microcode.dat -m <model> create
775
776 or if you only have header files and not the full Intel microcode.dat database:
777
778   ./tools/microcode-tool -H BAY_TRAIL_FSP_KIT/Microcode/M0130673322.h \
779         -H BAY_TRAIL_FSP_KIT/Microcode/M0130679901.h \
780         -m all create
781
782 These are written to arch/x86/dts/microcode/ by default.
783
784 Note that it is possible to just add the micrcode for your CPU if you know its
785 model. U-Boot prints this information when it starts
786
787    CPU: x86_64, vendor Intel, device 30673h
788
789 so here we can use the M0130673322 file.
790
791 If you platform can display POST codes on two little 7-segment displays on
792 the board, then you can use post_code() calls from C or assembler to monitor
793 boot progress. This can be good for debugging.
794
795 If not, you can try to get serial working as early as possible. The early
796 debug serial port may be useful here. See setup_internal_uart() for an example.
797
798 During the U-Boot porting, one of the important steps is to write correct PIRQ
799 routing information in the board device tree. Without it, device drivers in the
800 Linux kernel won't function correctly due to interrupt is not working. Please
801 refer to U-Boot doc [15] for the device tree bindings of Intel interrupt router.
802 Here we have more details on the intel,pirq-routing property below.
803
804         intel,pirq-routing = <
805                 PCI_BDF(0, 2, 0) INTA PIRQA
806                 ...
807         >;
808
809 As you see each entry has 3 cells. For the first one, we need describe all pci
810 devices mounted on the board. For SoC devices, normally there is a chapter on
811 the chipset datasheet which lists all the available PCI devices. For example on
812 Bay Trail, this is chapter 4.3 (PCI configuration space). For the second one, we
813 can get the interrupt pin either from datasheet or hardware via U-Boot shell.
814 The reliable source is the hardware as sometimes chipset datasheet is not 100%
815 up-to-date. Type 'pci header' plus the device's pci bus/device/function number
816 from U-Boot shell below.
817
818   => pci header 0.1e.1
819     vendor ID =                 0x8086
820     device ID =                 0x0f08
821     ...
822     interrupt line =            0x09
823     interrupt pin =             0x04
824     ...
825
826 It shows this PCI device is using INTD pin as it reports 4 in the interrupt pin
827 register. Repeat this until you get interrupt pins for all the devices. The last
828 cell is the PIRQ line which a particular interrupt pin is mapped to. On Intel
829 chipset, the power-up default mapping is INTA/B/C/D maps to PIRQA/B/C/D. This
830 can be changed by registers in LPC bridge. So far Intel FSP does not touch those
831 registers so we can write down the PIRQ according to the default mapping rule.
832
833 Once we get the PIRQ routing information in the device tree, the interrupt
834 allocation and assignment will be done by U-Boot automatically. Now you can
835 enable CONFIG_GENERATE_PIRQ_TABLE for testing Linux kernel using i8259 PIC and
836 CONFIG_GENERATE_MP_TABLE for testing Linux kernel using local APIC and I/O APIC.
837
838 This script might be useful. If you feed it the output of 'pci long' from
839 U-Boot then it will generate a device tree fragment with the interrupt
840 configuration for each device (note it needs gawk 4.0.0):
841
842    $ cat console_output |awk '/PCI/ {device=$4} /interrupt line/ {line=$4} \
843         /interrupt pin/ {pin = $4; if (pin != "0x00" && pin != "0xff") \
844         {patsplit(device, bdf, "[0-9a-f]+"); \
845         printf "PCI_BDF(%d, %d, %d) INT%c PIRQ%c\n", strtonum("0x" bdf[1]), \
846         strtonum("0x" bdf[2]), bdf[3], strtonum(pin) + 64, 64 + strtonum(pin)}}'
847
848 Example output:
849    PCI_BDF(0, 2, 0) INTA PIRQA
850    PCI_BDF(0, 3, 0) INTA PIRQA
851 ...
852
853 Porting Hints
854 -------------
855
856 Quark-specific considerations:
857
858 To port U-Boot to other boards based on the Intel Quark SoC, a few things need
859 to be taken care of. The first important part is the Memory Reference Code (MRC)
860 parameters. Quark MRC supports memory-down configuration only. All these MRC
861 parameters are supplied via the board device tree. To get started, first copy
862 the MRC section of arch/x86/dts/galileo.dts to your board's device tree, then
863 change these values by consulting board manuals or your hardware vendor.
864 Available MRC parameter values are listed in include/dt-bindings/mrc/quark.h.
865 The other tricky part is with PCIe. Quark SoC integrates two PCIe root ports,
866 but by default they are held in reset after power on. In U-Boot, PCIe
867 initialization is properly handled as per Quark's firmware writer guide.
868 In your board support codes, you need provide two routines to aid PCIe
869 initialization, which are board_assert_perst() and board_deassert_perst().
870 The two routines need implement a board-specific mechanism to assert/deassert
871 PCIe PERST# pin. Care must be taken that in those routines that any APIs that
872 may trigger PCI enumeration process are strictly forbidden, as any access to
873 PCIe root port's configuration registers will cause system hang while it is
874 held in reset. For more details, check how they are implemented by the Intel
875 Galileo board support codes in board/intel/galileo/galileo.c.
876
877 coreboot:
878
879 See scripts/coreboot.sed which can assist with porting coreboot code into
880 U-Boot drivers. It will not resolve all build errors, but will perform common
881 transformations. Remember to add attribution to coreboot for new files added
882 to U-Boot. This should go at the top of each file and list the coreboot
883 filename where the code originated.
884
885
886 TODO List
887 ---------
888 - Audio
889 - Chrome OS verified boot
890 - SMI and ACPI support, to provide platform info and facilities to Linux
891
892 References
893 ----------
894 [1] http://www.coreboot.org
895 [2] http://www.qemu.org
896 [3] http://www.coreboot.org/~stepan/pci8086,0166.rom
897 [4] http://www.intel.com/content/www/us/en/embedded/design-tools/evaluation-platforms/atom-e660-eg20t-development-kit.html
898 [5] http://www.intel.com/fsp
899 [6] http://www.intel.com/content/www/us/en/secure/intelligent-systems/privileged/e6xx-35-b1-cmc22211.html
900 [7] http://www.ami.com/products/bios-uefi-tools-and-utilities/bios-uefi-utilities/
901 [8] http://en.wikipedia.org/wiki/Microcode
902 [9] http://simplefirmware.org
903 [10] http://www.intel.com/design/archives/processors/pro/docs/242016.htm
904 [11] https://en.wikipedia.org/wiki/GUID_Partition_Table
905 [12] http://events.linuxfoundation.org/sites/events/files/slides/chromeos_and_diy_vboot_0.pdf
906 [13] http://events.linuxfoundation.org/sites/events/files/slides/elce-2014.pdf
907 [14] http://www.seabios.org/SeaBIOS
908 [15] doc/device-tree-bindings/misc/intel,irq-router.txt