]> git.sur5r.net Git - u-boot/blob - drivers/ddr/altera/sequencer.c
SPDX: Convert all of our single license tags to Linux Kernel style
[u-boot] / drivers / ddr / altera / sequencer.c
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * Copyright Altera Corporation (C) 2012-2015
4  */
5
6 #include <common.h>
7 #include <asm/io.h>
8 #include <asm/arch/sdram.h>
9 #include <errno.h>
10 #include "sequencer.h"
11
12 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
13         (struct socfpga_sdr_rw_load_manager *)
14                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
15 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
16         (struct socfpga_sdr_rw_load_jump_manager *)
17                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
18 static struct socfpga_sdr_reg_file *sdr_reg_file =
19         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
20 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
21         (struct socfpga_sdr_scc_mgr *)
22                 (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
23 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
24         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
25 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
26         (struct socfpga_phy_mgr_cfg *)
27                 (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
28 static struct socfpga_data_mgr *data_mgr =
29         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
30 static struct socfpga_sdr_ctrl *sdr_ctrl =
31         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
32
33 const struct socfpga_sdram_rw_mgr_config *rwcfg;
34 const struct socfpga_sdram_io_config *iocfg;
35 const struct socfpga_sdram_misc_config *misccfg;
36
37 #define DELTA_D         1
38
39 /*
40  * In order to reduce ROM size, most of the selectable calibration steps are
41  * decided at compile time based on the user's calibration mode selection,
42  * as captured by the STATIC_CALIB_STEPS selection below.
43  *
44  * However, to support simulation-time selection of fast simulation mode, where
45  * we skip everything except the bare minimum, we need a few of the steps to
46  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
47  * check, which is based on the rtl-supplied value, or we dynamically compute
48  * the value to use based on the dynamically-chosen calibration mode
49  */
50
51 #define DLEVEL 0
52 #define STATIC_IN_RTL_SIM 0
53 #define STATIC_SKIP_DELAY_LOOPS 0
54
55 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
56         STATIC_SKIP_DELAY_LOOPS)
57
58 /* calibration steps requested by the rtl */
59 static u16 dyn_calib_steps;
60
61 /*
62  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
63  * instead of static, we use boolean logic to select between
64  * non-skip and skip values
65  *
66  * The mask is set to include all bits when not-skipping, but is
67  * zero when skipping
68  */
69
70 static u16 skip_delay_mask;     /* mask off bits when skipping/not-skipping */
71
72 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
73         ((non_skip_value) & skip_delay_mask)
74
75 static struct gbl_type *gbl;
76 static struct param_type *param;
77
78 static void set_failing_group_stage(u32 group, u32 stage,
79         u32 substage)
80 {
81         /*
82          * Only set the global stage if there was not been any other
83          * failing group
84          */
85         if (gbl->error_stage == CAL_STAGE_NIL)  {
86                 gbl->error_substage = substage;
87                 gbl->error_stage = stage;
88                 gbl->error_group = group;
89         }
90 }
91
92 static void reg_file_set_group(u16 set_group)
93 {
94         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
95 }
96
97 static void reg_file_set_stage(u8 set_stage)
98 {
99         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
100 }
101
102 static void reg_file_set_sub_stage(u8 set_sub_stage)
103 {
104         set_sub_stage &= 0xff;
105         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
106 }
107
108 /**
109  * phy_mgr_initialize() - Initialize PHY Manager
110  *
111  * Initialize PHY Manager.
112  */
113 static void phy_mgr_initialize(void)
114 {
115         u32 ratio;
116
117         debug("%s:%d\n", __func__, __LINE__);
118         /* Calibration has control over path to memory */
119         /*
120          * In Hard PHY this is a 2-bit control:
121          * 0: AFI Mux Select
122          * 1: DDIO Mux Select
123          */
124         writel(0x3, &phy_mgr_cfg->mux_sel);
125
126         /* USER memory clock is not stable we begin initialization  */
127         writel(0, &phy_mgr_cfg->reset_mem_stbl);
128
129         /* USER calibration status all set to zero */
130         writel(0, &phy_mgr_cfg->cal_status);
131
132         writel(0, &phy_mgr_cfg->cal_debug_info);
133
134         /* Init params only if we do NOT skip calibration. */
135         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
136                 return;
137
138         ratio = rwcfg->mem_dq_per_read_dqs /
139                 rwcfg->mem_virtual_groups_per_read_dqs;
140         param->read_correct_mask_vg = (1 << ratio) - 1;
141         param->write_correct_mask_vg = (1 << ratio) - 1;
142         param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
143         param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
144 }
145
146 /**
147  * set_rank_and_odt_mask() - Set Rank and ODT mask
148  * @rank:       Rank mask
149  * @odt_mode:   ODT mode, OFF or READ_WRITE
150  *
151  * Set Rank and ODT mask (On-Die Termination).
152  */
153 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
154 {
155         u32 odt_mask_0 = 0;
156         u32 odt_mask_1 = 0;
157         u32 cs_and_odt_mask;
158
159         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
160                 odt_mask_0 = 0x0;
161                 odt_mask_1 = 0x0;
162         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
163                 switch (rwcfg->mem_number_of_ranks) {
164                 case 1: /* 1 Rank */
165                         /* Read: ODT = 0 ; Write: ODT = 1 */
166                         odt_mask_0 = 0x0;
167                         odt_mask_1 = 0x1;
168                         break;
169                 case 2: /* 2 Ranks */
170                         if (rwcfg->mem_number_of_cs_per_dimm == 1) {
171                                 /*
172                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
173                                  *   OR
174                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
175                                  *
176                                  * Since MEM_NUMBER_OF_RANKS is 2, they
177                                  * are both single rank with 2 CS each
178                                  * (special for RDIMM).
179                                  *
180                                  * Read: Turn on ODT on the opposite rank
181                                  * Write: Turn on ODT on all ranks
182                                  */
183                                 odt_mask_0 = 0x3 & ~(1 << rank);
184                                 odt_mask_1 = 0x3;
185                         } else {
186                                 /*
187                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
188                                  *
189                                  * Read: Turn on ODT off on all ranks
190                                  * Write: Turn on ODT on active rank
191                                  */
192                                 odt_mask_0 = 0x0;
193                                 odt_mask_1 = 0x3 & (1 << rank);
194                         }
195                         break;
196                 case 4: /* 4 Ranks */
197                         /* Read:
198                          * ----------+-----------------------+
199                          *           |         ODT           |
200                          * Read From +-----------------------+
201                          *   Rank    |  3  |  2  |  1  |  0  |
202                          * ----------+-----+-----+-----+-----+
203                          *     0     |  0  |  1  |  0  |  0  |
204                          *     1     |  1  |  0  |  0  |  0  |
205                          *     2     |  0  |  0  |  0  |  1  |
206                          *     3     |  0  |  0  |  1  |  0  |
207                          * ----------+-----+-----+-----+-----+
208                          *
209                          * Write:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Write To  +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  1  |
216                          *     1     |  1  |  0  |  1  |  0  |
217                          *     2     |  0  |  1  |  0  |  1  |
218                          *     3     |  1  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          */
221                         switch (rank) {
222                         case 0:
223                                 odt_mask_0 = 0x4;
224                                 odt_mask_1 = 0x5;
225                                 break;
226                         case 1:
227                                 odt_mask_0 = 0x8;
228                                 odt_mask_1 = 0xA;
229                                 break;
230                         case 2:
231                                 odt_mask_0 = 0x1;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 3:
235                                 odt_mask_0 = 0x2;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         }
239                         break;
240                 }
241         }
242
243         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
244                           ((0xFF & odt_mask_0) << 8) |
245                           ((0xFF & odt_mask_1) << 16);
246         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
247                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
248 }
249
250 /**
251  * scc_mgr_set() - Set SCC Manager register
252  * @off:        Base offset in SCC Manager space
253  * @grp:        Read/Write group
254  * @val:        Value to be set
255  *
256  * This function sets the SCC Manager (Scan Chain Control Manager) register.
257  */
258 static void scc_mgr_set(u32 off, u32 grp, u32 val)
259 {
260         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
261 }
262
263 /**
264  * scc_mgr_initialize() - Initialize SCC Manager registers
265  *
266  * Initialize SCC Manager registers.
267  */
268 static void scc_mgr_initialize(void)
269 {
270         /*
271          * Clear register file for HPS. 16 (2^4) is the size of the
272          * full register file in the scc mgr:
273          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
274          *                             MEM_IF_READ_DQS_WIDTH - 1);
275          */
276         int i;
277
278         for (i = 0; i < 16; i++) {
279                 debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
280                            __func__, __LINE__, i);
281                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
282         }
283 }
284
285 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
286 {
287         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
288 }
289
290 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
291 {
292         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
293 }
294
295 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
296 {
297         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
298 }
299
300 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
301 {
302         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
303 }
304
305 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
306 {
307         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
308 }
309
310 static void scc_mgr_set_dqs_io_in_delay(u32 delay)
311 {
312         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
313                     delay);
314 }
315
316 static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
317 {
318         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
319                     rwcfg->mem_dq_per_write_dqs + 1 + dm,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dqs_out1_delay(u32 delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
331                     delay);
332 }
333
334 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
335 {
336         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
337                     rwcfg->mem_dq_per_write_dqs + 1 + dm,
338                     delay);
339 }
340
341 /* load up dqs config settings */
342 static void scc_mgr_load_dqs(u32 dqs)
343 {
344         writel(dqs, &sdr_scc_mgr->dqs_ena);
345 }
346
347 /* load up dqs io config settings */
348 static void scc_mgr_load_dqs_io(void)
349 {
350         writel(0, &sdr_scc_mgr->dqs_io_ena);
351 }
352
353 /* load up dq config settings */
354 static void scc_mgr_load_dq(u32 dq_in_group)
355 {
356         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
357 }
358
359 /* load up dm config settings */
360 static void scc_mgr_load_dm(u32 dm)
361 {
362         writel(dm, &sdr_scc_mgr->dm_ena);
363 }
364
365 /**
366  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
367  * @off:        Base offset in SCC Manager space
368  * @grp:        Read/Write group
369  * @val:        Value to be set
370  * @update:     If non-zero, trigger SCC Manager update for all ranks
371  *
372  * This function sets the SCC Manager (Scan Chain Control Manager) register
373  * and optionally triggers the SCC update for all ranks.
374  */
375 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
376                                   const int update)
377 {
378         u32 r;
379
380         for (r = 0; r < rwcfg->mem_number_of_ranks;
381              r += NUM_RANKS_PER_SHADOW_REG) {
382                 scc_mgr_set(off, grp, val);
383
384                 if (update || (r == 0)) {
385                         writel(grp, &sdr_scc_mgr->dqs_ena);
386                         writel(0, &sdr_scc_mgr->update);
387                 }
388         }
389 }
390
391 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
392 {
393         /*
394          * USER although the h/w doesn't support different phases per
395          * shadow register, for simplicity our scc manager modeling
396          * keeps different phase settings per shadow reg, and it's
397          * important for us to keep them in sync to match h/w.
398          * for efficiency, the scan chain update should occur only
399          * once to sr0.
400          */
401         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
402                               read_group, phase, 0);
403 }
404
405 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
406                                                      u32 phase)
407 {
408         /*
409          * USER although the h/w doesn't support different phases per
410          * shadow register, for simplicity our scc manager modeling
411          * keeps different phase settings per shadow reg, and it's
412          * important for us to keep them in sync to match h/w.
413          * for efficiency, the scan chain update should occur only
414          * once to sr0.
415          */
416         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
417                               write_group, phase, 0);
418 }
419
420 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
421                                                u32 delay)
422 {
423         /*
424          * In shadow register mode, the T11 settings are stored in
425          * registers in the core, which are updated by the DQS_ENA
426          * signals. Not issuing the SCC_MGR_UPD command allows us to
427          * save lots of rank switching overhead, by calling
428          * select_shadow_regs_for_update with update_scan_chains
429          * set to 0.
430          */
431         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
432                               read_group, delay, 1);
433 }
434
435 /**
436  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
437  * @write_group:        Write group
438  * @delay:              Delay value
439  *
440  * This function sets the OCT output delay in SCC manager.
441  */
442 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
443 {
444         const int ratio = rwcfg->mem_if_read_dqs_width /
445                           rwcfg->mem_if_write_dqs_width;
446         const int base = write_group * ratio;
447         int i;
448         /*
449          * Load the setting in the SCC manager
450          * Although OCT affects only write data, the OCT delay is controlled
451          * by the DQS logic block which is instantiated once per read group.
452          * For protocols where a write group consists of multiple read groups,
453          * the setting must be set multiple times.
454          */
455         for (i = 0; i < ratio; i++)
456                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
457 }
458
459 /**
460  * scc_mgr_set_hhp_extras() - Set HHP extras.
461  *
462  * Load the fixed setting in the SCC manager HHP extras.
463  */
464 static void scc_mgr_set_hhp_extras(void)
465 {
466         /*
467          * Load the fixed setting in the SCC manager
468          * bits: 0:0 = 1'b1     - DQS bypass
469          * bits: 1:1 = 1'b1     - DQ bypass
470          * bits: 4:2 = 3'b001   - rfifo_mode
471          * bits: 6:5 = 2'b01    - rfifo clock_select
472          * bits: 7:7 = 1'b0     - separate gating from ungating setting
473          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
474          */
475         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
476                           (1 << 2) | (1 << 1) | (1 << 0);
477         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
478                          SCC_MGR_HHP_GLOBALS_OFFSET |
479                          SCC_MGR_HHP_EXTRAS_OFFSET;
480
481         debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
482                    __func__, __LINE__);
483         writel(value, addr);
484         debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
485                    __func__, __LINE__);
486 }
487
488 /**
489  * scc_mgr_zero_all() - Zero all DQS config
490  *
491  * Zero all DQS config.
492  */
493 static void scc_mgr_zero_all(void)
494 {
495         int i, r;
496
497         /*
498          * USER Zero all DQS config settings, across all groups and all
499          * shadow registers
500          */
501         for (r = 0; r < rwcfg->mem_number_of_ranks;
502              r += NUM_RANKS_PER_SHADOW_REG) {
503                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
504                         /*
505                          * The phases actually don't exist on a per-rank basis,
506                          * but there's no harm updating them several times, so
507                          * let's keep the code simple.
508                          */
509                         scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
510                         scc_mgr_set_dqs_en_phase(i, 0);
511                         scc_mgr_set_dqs_en_delay(i, 0);
512                 }
513
514                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
515                         scc_mgr_set_dqdqs_output_phase(i, 0);
516                         /* Arria V/Cyclone V don't have out2. */
517                         scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
518                 }
519         }
520
521         /* Multicast to all DQS group enables. */
522         writel(0xff, &sdr_scc_mgr->dqs_ena);
523         writel(0, &sdr_scc_mgr->update);
524 }
525
526 /**
527  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
528  * @write_group:        Write group
529  *
530  * Set bypass mode and trigger SCC update.
531  */
532 static void scc_set_bypass_mode(const u32 write_group)
533 {
534         /* Multicast to all DQ enables. */
535         writel(0xff, &sdr_scc_mgr->dq_ena);
536         writel(0xff, &sdr_scc_mgr->dm_ena);
537
538         /* Update current DQS IO enable. */
539         writel(0, &sdr_scc_mgr->dqs_io_ena);
540
541         /* Update the DQS logic. */
542         writel(write_group, &sdr_scc_mgr->dqs_ena);
543
544         /* Hit update. */
545         writel(0, &sdr_scc_mgr->update);
546 }
547
548 /**
549  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
550  * @write_group:        Write group
551  *
552  * Load DQS settings for Write Group, do not trigger SCC update.
553  */
554 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
555 {
556         const int ratio = rwcfg->mem_if_read_dqs_width /
557                           rwcfg->mem_if_write_dqs_width;
558         const int base = write_group * ratio;
559         int i;
560         /*
561          * Load the setting in the SCC manager
562          * Although OCT affects only write data, the OCT delay is controlled
563          * by the DQS logic block which is instantiated once per read group.
564          * For protocols where a write group consists of multiple read groups,
565          * the setting must be set multiple times.
566          */
567         for (i = 0; i < ratio; i++)
568                 writel(base + i, &sdr_scc_mgr->dqs_ena);
569 }
570
571 /**
572  * scc_mgr_zero_group() - Zero all configs for a group
573  *
574  * Zero DQ, DM, DQS and OCT configs for a group.
575  */
576 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
577 {
578         int i, r;
579
580         for (r = 0; r < rwcfg->mem_number_of_ranks;
581              r += NUM_RANKS_PER_SHADOW_REG) {
582                 /* Zero all DQ config settings. */
583                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
584                         scc_mgr_set_dq_out1_delay(i, 0);
585                         if (!out_only)
586                                 scc_mgr_set_dq_in_delay(i, 0);
587                 }
588
589                 /* Multicast to all DQ enables. */
590                 writel(0xff, &sdr_scc_mgr->dq_ena);
591
592                 /* Zero all DM config settings. */
593                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
594                         if (!out_only)
595                                 scc_mgr_set_dm_in_delay(i, 0);
596                         scc_mgr_set_dm_out1_delay(i, 0);
597                 }
598
599                 /* Multicast to all DM enables. */
600                 writel(0xff, &sdr_scc_mgr->dm_ena);
601
602                 /* Zero all DQS IO settings. */
603                 if (!out_only)
604                         scc_mgr_set_dqs_io_in_delay(0);
605
606                 /* Arria V/Cyclone V don't have out2. */
607                 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
608                 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
609                 scc_mgr_load_dqs_for_write_group(write_group);
610
611                 /* Multicast to all DQS IO enables (only 1 in total). */
612                 writel(0, &sdr_scc_mgr->dqs_io_ena);
613
614                 /* Hit update to zero everything. */
615                 writel(0, &sdr_scc_mgr->update);
616         }
617 }
618
619 /*
620  * apply and load a particular input delay for the DQ pins in a group
621  * group_bgn is the index of the first dq pin (in the write group)
622  */
623 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
624 {
625         u32 i, p;
626
627         for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
628                 scc_mgr_set_dq_in_delay(p, delay);
629                 scc_mgr_load_dq(p);
630         }
631 }
632
633 /**
634  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
635  * @delay:              Delay value
636  *
637  * Apply and load a particular output delay for the DQ pins in a group.
638  */
639 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
640 {
641         int i;
642
643         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
644                 scc_mgr_set_dq_out1_delay(i, delay);
645                 scc_mgr_load_dq(i);
646         }
647 }
648
649 /* apply and load a particular output delay for the DM pins in a group */
650 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
651 {
652         u32 i;
653
654         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
655                 scc_mgr_set_dm_out1_delay(i, delay1);
656                 scc_mgr_load_dm(i);
657         }
658 }
659
660
661 /* apply and load delay on both DQS and OCT out1 */
662 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
663                                                     u32 delay)
664 {
665         scc_mgr_set_dqs_out1_delay(delay);
666         scc_mgr_load_dqs_io();
667
668         scc_mgr_set_oct_out1_delay(write_group, delay);
669         scc_mgr_load_dqs_for_write_group(write_group);
670 }
671
672 /**
673  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
674  * @write_group:        Write group
675  * @delay:              Delay value
676  *
677  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
678  */
679 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
680                                                   const u32 delay)
681 {
682         u32 i, new_delay;
683
684         /* DQ shift */
685         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
686                 scc_mgr_load_dq(i);
687
688         /* DM shift */
689         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
690                 scc_mgr_load_dm(i);
691
692         /* DQS shift */
693         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
694         if (new_delay > iocfg->io_out2_delay_max) {
695                 debug_cond(DLEVEL >= 1,
696                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
697                            __func__, __LINE__, write_group, delay, new_delay,
698                            iocfg->io_out2_delay_max,
699                            new_delay - iocfg->io_out2_delay_max);
700                 new_delay -= iocfg->io_out2_delay_max;
701                 scc_mgr_set_dqs_out1_delay(new_delay);
702         }
703
704         scc_mgr_load_dqs_io();
705
706         /* OCT shift */
707         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
708         if (new_delay > iocfg->io_out2_delay_max) {
709                 debug_cond(DLEVEL >= 1,
710                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
711                            __func__, __LINE__, write_group, delay,
712                            new_delay, iocfg->io_out2_delay_max,
713                            new_delay - iocfg->io_out2_delay_max);
714                 new_delay -= iocfg->io_out2_delay_max;
715                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
716         }
717
718         scc_mgr_load_dqs_for_write_group(write_group);
719 }
720
721 /**
722  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
723  * @write_group:        Write group
724  * @delay:              Delay value
725  *
726  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
727  */
728 static void
729 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
730                                                 const u32 delay)
731 {
732         int r;
733
734         for (r = 0; r < rwcfg->mem_number_of_ranks;
735              r += NUM_RANKS_PER_SHADOW_REG) {
736                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
737                 writel(0, &sdr_scc_mgr->update);
738         }
739 }
740
741 /**
742  * set_jump_as_return() - Return instruction optimization
743  *
744  * Optimization used to recover some slots in ddr3 inst_rom could be
745  * applied to other protocols if we wanted to
746  */
747 static void set_jump_as_return(void)
748 {
749         /*
750          * To save space, we replace return with jump to special shared
751          * RETURN instruction so we set the counter to large value so that
752          * we always jump.
753          */
754         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
755         writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
756 }
757
758 /**
759  * delay_for_n_mem_clocks() - Delay for N memory clocks
760  * @clocks:     Length of the delay
761  *
762  * Delay for N memory clocks.
763  */
764 static void delay_for_n_mem_clocks(const u32 clocks)
765 {
766         u32 afi_clocks;
767         u16 c_loop;
768         u8 inner;
769         u8 outer;
770
771         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772
773         /* Scale (rounding up) to get afi clocks. */
774         afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
775         if (afi_clocks) /* Temporary underflow protection */
776                 afi_clocks--;
777
778         /*
779          * Note, we don't bother accounting for being off a little
780          * bit because of a few extra instructions in outer loops.
781          * Note, the loops have a test at the end, and do the test
782          * before the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         c_loop = afi_clocks >> 16;
786         outer = c_loop ? 0xff : (afi_clocks >> 8);
787         inner = outer ? 0xff : afi_clocks;
788
789         /*
790          * rom instructions are structured as follows:
791          *
792          *    IDLE_LOOP2: jnz cntr0, TARGET_A
793          *    IDLE_LOOP1: jnz cntr1, TARGET_B
794          *                return
795          *
796          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
797          * TARGET_B is set to IDLE_LOOP2 as well
798          *
799          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
800          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
801          *
802          * a little confusing, but it helps save precious space in the inst_rom
803          * and sequencer rom and keeps the delays more accurate and reduces
804          * overhead
805          */
806         if (afi_clocks < 0x100) {
807                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
808                        &sdr_rw_load_mgr_regs->load_cntr1);
809
810                 writel(rwcfg->idle_loop1,
811                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
812
813                 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
814                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
815         } else {
816                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
817                        &sdr_rw_load_mgr_regs->load_cntr0);
818
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
820                        &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(rwcfg->idle_loop2,
823                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
824
825                 writel(rwcfg->idle_loop2,
826                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
827
828                 do {
829                         writel(rwcfg->idle_loop2,
830                                SDR_PHYGRP_RWMGRGRP_ADDRESS |
831                                RW_MGR_RUN_SINGLE_GROUP_OFFSET);
832                 } while (c_loop-- != 0);
833         }
834         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
835 }
836
837 /**
838  * rw_mgr_mem_init_load_regs() - Load instruction registers
839  * @cntr0:      Counter 0 value
840  * @cntr1:      Counter 1 value
841  * @cntr2:      Counter 2 value
842  * @jump:       Jump instruction value
843  *
844  * Load instruction registers.
845  */
846 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
847 {
848         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
850
851         /* Load counters */
852         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
853                &sdr_rw_load_mgr_regs->load_cntr0);
854         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
855                &sdr_rw_load_mgr_regs->load_cntr1);
856         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
857                &sdr_rw_load_mgr_regs->load_cntr2);
858
859         /* Load jump address */
860         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
861         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
862         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
863
864         /* Execute count instruction */
865         writel(jump, grpaddr);
866 }
867
868 /**
869  * rw_mgr_mem_load_user() - Load user calibration values
870  * @fin1:       Final instruction 1
871  * @fin2:       Final instruction 2
872  * @precharge:  If 1, precharge the banks at the end
873  *
874  * Load user calibration values and optionally precharge the banks.
875  */
876 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
877                                  const int precharge)
878 {
879         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
880                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
881         u32 r;
882
883         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
884                 /* set rank */
885                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
886
887                 /* precharge all banks ... */
888                 if (precharge)
889                         writel(rwcfg->precharge_all, grpaddr);
890
891                 /*
892                  * USER Use Mirror-ed commands for odd ranks if address
893                  * mirrorring is on
894                  */
895                 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
896                         set_jump_as_return();
897                         writel(rwcfg->mrs2_mirr, grpaddr);
898                         delay_for_n_mem_clocks(4);
899                         set_jump_as_return();
900                         writel(rwcfg->mrs3_mirr, grpaddr);
901                         delay_for_n_mem_clocks(4);
902                         set_jump_as_return();
903                         writel(rwcfg->mrs1_mirr, grpaddr);
904                         delay_for_n_mem_clocks(4);
905                         set_jump_as_return();
906                         writel(fin1, grpaddr);
907                 } else {
908                         set_jump_as_return();
909                         writel(rwcfg->mrs2, grpaddr);
910                         delay_for_n_mem_clocks(4);
911                         set_jump_as_return();
912                         writel(rwcfg->mrs3, grpaddr);
913                         delay_for_n_mem_clocks(4);
914                         set_jump_as_return();
915                         writel(rwcfg->mrs1, grpaddr);
916                         set_jump_as_return();
917                         writel(fin2, grpaddr);
918                 }
919
920                 if (precharge)
921                         continue;
922
923                 set_jump_as_return();
924                 writel(rwcfg->zqcl, grpaddr);
925
926                 /* tZQinit = tDLLK = 512 ck cycles */
927                 delay_for_n_mem_clocks(512);
928         }
929 }
930
931 /**
932  * rw_mgr_mem_initialize() - Initialize RW Manager
933  *
934  * Initialize RW Manager.
935  */
936 static void rw_mgr_mem_initialize(void)
937 {
938         debug("%s:%d\n", __func__, __LINE__);
939
940         /* The reset / cke part of initialization is broadcasted to all ranks */
941         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
942                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
943
944         /*
945          * Here's how you load register for a loop
946          * Counters are located @ 0x800
947          * Jump address are located @ 0xC00
948          * For both, registers 0 to 3 are selected using bits 3 and 2, like
949          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
950          * I know this ain't pretty, but Avalon bus throws away the 2 least
951          * significant bits
952          */
953
954         /* Start with memory RESET activated */
955
956         /* tINIT = 200us */
957
958         /*
959          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
960          * If a and b are the number of iteration in 2 nested loops
961          * it takes the following number of cycles to complete the operation:
962          * number_of_cycles = ((2 + n) * a + 2) * b
963          * where n is the number of instruction in the inner loop
964          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
965          * b = 6A
966          */
967         rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
968                                   misccfg->tinit_cntr1_val,
969                                   misccfg->tinit_cntr2_val,
970                                   rwcfg->init_reset_0_cke_0);
971
972         /* Indicate that memory is stable. */
973         writel(1, &phy_mgr_cfg->reset_mem_stbl);
974
975         /*
976          * transition the RESET to high
977          * Wait for 500us
978          */
979
980         /*
981          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
982          * If a and b are the number of iteration in 2 nested loops
983          * it takes the following number of cycles to complete the operation
984          * number_of_cycles = ((2 + n) * a + 2) * b
985          * where n is the number of instruction in the inner loop
986          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
987          * b = FF
988          */
989         rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
990                                   misccfg->treset_cntr1_val,
991                                   misccfg->treset_cntr2_val,
992                                   rwcfg->init_reset_1_cke_0);
993
994         /* Bring up clock enable. */
995
996         /* tXRP < 250 ck cycles */
997         delay_for_n_mem_clocks(250);
998
999         rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1000                              0);
1001 }
1002
1003 /**
1004  * rw_mgr_mem_handoff() - Hand off the memory to user
1005  *
1006  * At the end of calibration we have to program the user settings in
1007  * and hand off the memory to the user.
1008  */
1009 static void rw_mgr_mem_handoff(void)
1010 {
1011         rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1012         /*
1013          * Need to wait tMOD (12CK or 15ns) time before issuing other
1014          * commands, but we will have plenty of NIOS cycles before actual
1015          * handoff so its okay.
1016          */
1017 }
1018
1019 /**
1020  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021  * @group:      Write Group
1022  * @use_dm:     Use DM
1023  *
1024  * Issue write test command. Two variants are provided, one that just tests
1025  * a write pattern and another that tests datamask functionality.
1026  */
1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028                                                   u32 test_dm)
1029 {
1030         const u32 quick_write_mode =
1031                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032                 misccfg->enable_super_quick_calibration;
1033         u32 mcc_instruction;
1034         u32 rw_wl_nop_cycles;
1035
1036         /*
1037          * Set counter and jump addresses for the right
1038          * number of NOP cycles.
1039          * The number of supported NOP cycles can range from -1 to infinity
1040          * Three different cases are handled:
1041          *
1042          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043          *    mechanism will be used to insert the right number of NOPs
1044          *
1045          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046          *    issuing the write command will jump straight to the
1047          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1048          *    data (for RLD), skipping
1049          *    the NOP micro-instruction all together
1050          *
1051          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052          *    turned on in the same micro-instruction that issues the write
1053          *    command. Then we need
1054          *    to directly jump to the micro-instruction that sends out the data
1055          *
1056          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057          *       (2 and 3). One jump-counter (0) is used to perform multiple
1058          *       write-read operations.
1059          *       one counter left to issue this command in "multiple-group" mode
1060          */
1061
1062         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063
1064         if (rw_wl_nop_cycles == -1) {
1065                 /*
1066                  * CNTR 2 - We want to execute the special write operation that
1067                  * turns on DQS right away and then skip directly to the
1068                  * instruction that sends out the data. We set the counter to a
1069                  * large number so that the jump is always taken.
1070                  */
1071                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072
1073                 /* CNTR 3 - Not used */
1074                 if (test_dm) {
1075                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1076                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1077                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1079                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080                 } else {
1081                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1082                         writel(rwcfg->lfsr_wr_rd_bank_0_data,
1083                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1085                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086                 }
1087         } else if (rw_wl_nop_cycles == 0) {
1088                 /*
1089                  * CNTR 2 - We want to skip the NOP operation and go straight
1090                  * to the DQS enable instruction. We set the counter to a large
1091                  * number so that the jump is always taken.
1092                  */
1093                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094
1095                 /* CNTR 3 - Not used */
1096                 if (test_dm) {
1097                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1098                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1099                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100                 } else {
1101                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1102                         writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1103                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104                 }
1105         } else {
1106                 /*
1107                  * CNTR 2 - In this case we want to execute the next instruction
1108                  * and NOT take the jump. So we set the counter to 0. The jump
1109                  * address doesn't count.
1110                  */
1111                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113
1114                 /*
1115                  * CNTR 3 - Set the nop counter to the number of cycles we
1116                  * need to loop for, minus 1.
1117                  */
1118                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119                 if (test_dm) {
1120                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1121                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1122                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123                 } else {
1124                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1125                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1126                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127                 }
1128         }
1129
1130         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132
1133         if (quick_write_mode)
1134                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135         else
1136                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137
1138         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139
1140         /*
1141          * CNTR 1 - This is used to ensure enough time elapses
1142          * for read data to come back.
1143          */
1144         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145
1146         if (test_dm) {
1147                 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1148                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149         } else {
1150                 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1151                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152         }
1153
1154         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156                                 (group << 2));
1157 }
1158
1159 /**
1160  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161  * @rank_bgn:           Rank number
1162  * @write_group:        Write Group
1163  * @use_dm:             Use DM
1164  * @all_correct:        All bits must be correct in the mask
1165  * @bit_chk:            Resulting bit mask after the test
1166  * @all_ranks:          Test all ranks
1167  *
1168  * Test writes, can check for a single bit pass or multiple bit pass.
1169  */
1170 static int
1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172                                 const u32 use_dm, const u32 all_correct,
1173                                 u32 *bit_chk, const u32 all_ranks)
1174 {
1175         const u32 rank_end = all_ranks ?
1176                                 rwcfg->mem_number_of_ranks :
1177                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178         const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1179                                 rwcfg->mem_virtual_groups_per_write_dqs;
1180         const u32 correct_mask_vg = param->write_correct_mask_vg;
1181
1182         u32 tmp_bit_chk, base_rw_mgr;
1183         int vg, r;
1184
1185         *bit_chk = param->write_correct_mask;
1186
1187         for (r = rank_bgn; r < rank_end; r++) {
1188                 /* Set rank */
1189                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1190
1191                 tmp_bit_chk = 0;
1192                 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1193                      vg >= 0; vg--) {
1194                         /* Reset the FIFOs to get pointers to known state. */
1195                         writel(0, &phy_mgr_cmd->fifo_reset);
1196
1197                         rw_mgr_mem_calibrate_write_test_issue(
1198                                 write_group *
1199                                 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1200                                 use_dm);
1201
1202                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1203                         tmp_bit_chk <<= shift_ratio;
1204                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1205                 }
1206
1207                 *bit_chk &= tmp_bit_chk;
1208         }
1209
1210         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1211         if (all_correct) {
1212                 debug_cond(DLEVEL >= 2,
1213                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1214                            write_group, use_dm, *bit_chk,
1215                            param->write_correct_mask,
1216                            *bit_chk == param->write_correct_mask);
1217                 return *bit_chk == param->write_correct_mask;
1218         } else {
1219                 debug_cond(DLEVEL >= 2,
1220                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1221                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1222                 return *bit_chk != 0x00;
1223         }
1224 }
1225
1226 /**
1227  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1228  * @rank_bgn:   Rank number
1229  * @group:      Read/Write Group
1230  * @all_ranks:  Test all ranks
1231  *
1232  * Performs a guaranteed read on the patterns we are going to use during a
1233  * read test to ensure memory works.
1234  */
1235 static int
1236 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1237                                         const u32 all_ranks)
1238 {
1239         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241         const u32 addr_offset =
1242                          (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1243         const u32 rank_end = all_ranks ?
1244                                 rwcfg->mem_number_of_ranks :
1245                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1246         const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1247                                 rwcfg->mem_virtual_groups_per_read_dqs;
1248         const u32 correct_mask_vg = param->read_correct_mask_vg;
1249
1250         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1251         int vg, r;
1252         int ret = 0;
1253
1254         bit_chk = param->read_correct_mask;
1255
1256         for (r = rank_bgn; r < rank_end; r++) {
1257                 /* Set rank */
1258                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1259
1260                 /* Load up a constant bursts of read commands */
1261                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1262                 writel(rwcfg->guaranteed_read,
1263                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1264
1265                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1266                 writel(rwcfg->guaranteed_read_cont,
1267                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1268
1269                 tmp_bit_chk = 0;
1270                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1271                      vg >= 0; vg--) {
1272                         /* Reset the FIFOs to get pointers to known state. */
1273                         writel(0, &phy_mgr_cmd->fifo_reset);
1274                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1275                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1276                         writel(rwcfg->guaranteed_read,
1277                                addr + addr_offset + (vg << 2));
1278
1279                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1280                         tmp_bit_chk <<= shift_ratio;
1281                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1282                 }
1283
1284                 bit_chk &= tmp_bit_chk;
1285         }
1286
1287         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1288
1289         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290
1291         if (bit_chk != param->read_correct_mask)
1292                 ret = -EIO;
1293
1294         debug_cond(DLEVEL >= 1,
1295                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1296                    __func__, __LINE__, group, bit_chk,
1297                    param->read_correct_mask, ret);
1298
1299         return ret;
1300 }
1301
1302 /**
1303  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1304  * @rank_bgn:   Rank number
1305  * @all_ranks:  Test all ranks
1306  *
1307  * Load up the patterns we are going to use during a read test.
1308  */
1309 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1310                                                     const int all_ranks)
1311 {
1312         const u32 rank_end = all_ranks ?
1313                         rwcfg->mem_number_of_ranks :
1314                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1315         u32 r;
1316
1317         debug("%s:%d\n", __func__, __LINE__);
1318
1319         for (r = rank_bgn; r < rank_end; r++) {
1320                 /* set rank */
1321                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1322
1323                 /* Load up a constant bursts */
1324                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1325
1326                 writel(rwcfg->guaranteed_write_wait0,
1327                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1328
1329                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1330
1331                 writel(rwcfg->guaranteed_write_wait1,
1332                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1333
1334                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1335
1336                 writel(rwcfg->guaranteed_write_wait2,
1337                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1338
1339                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1340
1341                 writel(rwcfg->guaranteed_write_wait3,
1342                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1343
1344                 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1345                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1346         }
1347
1348         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1349 }
1350
1351 /**
1352  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1353  * @rank_bgn:           Rank number
1354  * @group:              Read/Write group
1355  * @num_tries:          Number of retries of the test
1356  * @all_correct:        All bits must be correct in the mask
1357  * @bit_chk:            Resulting bit mask after the test
1358  * @all_groups:         Test all R/W groups
1359  * @all_ranks:          Test all ranks
1360  *
1361  * Try a read and see if it returns correct data back. Test has dummy reads
1362  * inserted into the mix used to align DQS enable. Test has more thorough
1363  * checks than the regular read test.
1364  */
1365 static int
1366 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1367                                const u32 num_tries, const u32 all_correct,
1368                                u32 *bit_chk,
1369                                const u32 all_groups, const u32 all_ranks)
1370 {
1371         const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1372                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1373         const u32 quick_read_mode =
1374                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1375                  misccfg->enable_super_quick_calibration);
1376         u32 correct_mask_vg = param->read_correct_mask_vg;
1377         u32 tmp_bit_chk;
1378         u32 base_rw_mgr;
1379         u32 addr;
1380
1381         int r, vg, ret;
1382
1383         *bit_chk = param->read_correct_mask;
1384
1385         for (r = rank_bgn; r < rank_end; r++) {
1386                 /* set rank */
1387                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1388
1389                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1390
1391                 writel(rwcfg->read_b2b_wait1,
1392                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1393
1394                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1395                 writel(rwcfg->read_b2b_wait2,
1396                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1397
1398                 if (quick_read_mode)
1399                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1400                         /* need at least two (1+1) reads to capture failures */
1401                 else if (all_groups)
1402                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1403                 else
1404                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1405
1406                 writel(rwcfg->read_b2b,
1407                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1408                 if (all_groups)
1409                         writel(rwcfg->mem_if_read_dqs_width *
1410                                rwcfg->mem_virtual_groups_per_read_dqs - 1,
1411                                &sdr_rw_load_mgr_regs->load_cntr3);
1412                 else
1413                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1414
1415                 writel(rwcfg->read_b2b,
1416                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1417
1418                 tmp_bit_chk = 0;
1419                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1420                      vg--) {
1421                         /* Reset the FIFOs to get pointers to known state. */
1422                         writel(0, &phy_mgr_cmd->fifo_reset);
1423                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1425
1426                         if (all_groups) {
1427                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1429                         } else {
1430                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1431                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1432                         }
1433
1434                         writel(rwcfg->read_b2b, addr +
1435                                ((group *
1436                                  rwcfg->mem_virtual_groups_per_read_dqs +
1437                                  vg) << 2));
1438
1439                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1440                         tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1441                                         rwcfg->mem_virtual_groups_per_read_dqs;
1442                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1443                 }
1444
1445                 *bit_chk &= tmp_bit_chk;
1446         }
1447
1448         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1450
1451         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1452
1453         if (all_correct) {
1454                 ret = (*bit_chk == param->read_correct_mask);
1455                 debug_cond(DLEVEL >= 2,
1456                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1457                            __func__, __LINE__, group, all_groups, *bit_chk,
1458                            param->read_correct_mask, ret);
1459         } else  {
1460                 ret = (*bit_chk != 0x00);
1461                 debug_cond(DLEVEL >= 2,
1462                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1463                            __func__, __LINE__, group, all_groups, *bit_chk,
1464                            0, ret);
1465         }
1466
1467         return ret;
1468 }
1469
1470 /**
1471  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1472  * @grp:                Read/Write group
1473  * @num_tries:          Number of retries of the test
1474  * @all_correct:        All bits must be correct in the mask
1475  * @all_groups:         Test all R/W groups
1476  *
1477  * Perform a READ test across all memory ranks.
1478  */
1479 static int
1480 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1481                                          const u32 all_correct,
1482                                          const u32 all_groups)
1483 {
1484         u32 bit_chk;
1485         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1486                                               &bit_chk, all_groups, 1);
1487 }
1488
1489 /**
1490  * rw_mgr_incr_vfifo() - Increase VFIFO value
1491  * @grp:        Read/Write group
1492  *
1493  * Increase VFIFO value.
1494  */
1495 static void rw_mgr_incr_vfifo(const u32 grp)
1496 {
1497         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1498 }
1499
1500 /**
1501  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1502  * @grp:        Read/Write group
1503  *
1504  * Decrease VFIFO value.
1505  */
1506 static void rw_mgr_decr_vfifo(const u32 grp)
1507 {
1508         u32 i;
1509
1510         for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1511                 rw_mgr_incr_vfifo(grp);
1512 }
1513
1514 /**
1515  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1516  * @grp:        Read/Write group
1517  *
1518  * Push VFIFO until a failing read happens.
1519  */
1520 static int find_vfifo_failing_read(const u32 grp)
1521 {
1522         u32 v, ret, fail_cnt = 0;
1523
1524         for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1525                 debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1526                            __func__, __LINE__, v);
1527                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1528                                                 PASS_ONE_BIT, 0);
1529                 if (!ret) {
1530                         fail_cnt++;
1531
1532                         if (fail_cnt == 2)
1533                                 return v;
1534                 }
1535
1536                 /* Fiddle with FIFO. */
1537                 rw_mgr_incr_vfifo(grp);
1538         }
1539
1540         /* No failing read found! Something must have gone wrong. */
1541         debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1542         return 0;
1543 }
1544
1545 /**
1546  * sdr_find_phase_delay() - Find DQS enable phase or delay
1547  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1548  * @delay:      If 1, look for delay, if 0, look for phase
1549  * @grp:        Read/Write group
1550  * @work:       Working window position
1551  * @work_inc:   Working window increment
1552  * @pd:         DQS Phase/Delay Iterator
1553  *
1554  * Find working or non-working DQS enable phase setting.
1555  */
1556 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1557                                 u32 *work, const u32 work_inc, u32 *pd)
1558 {
1559         const u32 max = delay ? iocfg->dqs_en_delay_max :
1560                                 iocfg->dqs_en_phase_max;
1561         u32 ret;
1562
1563         for (; *pd <= max; (*pd)++) {
1564                 if (delay)
1565                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1566                 else
1567                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1568
1569                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1570                                         PASS_ONE_BIT, 0);
1571                 if (!working)
1572                         ret = !ret;
1573
1574                 if (ret)
1575                         return 0;
1576
1577                 if (work)
1578                         *work += work_inc;
1579         }
1580
1581         return -EINVAL;
1582 }
1583 /**
1584  * sdr_find_phase() - Find DQS enable phase
1585  * @working:    If 1, look for working phase, if 0, look for non-working phase
1586  * @grp:        Read/Write group
1587  * @work:       Working window position
1588  * @i:          Iterator
1589  * @p:          DQS Phase Iterator
1590  *
1591  * Find working or non-working DQS enable phase setting.
1592  */
1593 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1594                           u32 *i, u32 *p)
1595 {
1596         const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1597         int ret;
1598
1599         for (; *i < end; (*i)++) {
1600                 if (working)
1601                         *p = 0;
1602
1603                 ret = sdr_find_phase_delay(working, 0, grp, work,
1604                                            iocfg->delay_per_opa_tap, p);
1605                 if (!ret)
1606                         return 0;
1607
1608                 if (*p > iocfg->dqs_en_phase_max) {
1609                         /* Fiddle with FIFO. */
1610                         rw_mgr_incr_vfifo(grp);
1611                         if (!working)
1612                                 *p = 0;
1613                 }
1614         }
1615
1616         return -EINVAL;
1617 }
1618
1619 /**
1620  * sdr_working_phase() - Find working DQS enable phase
1621  * @grp:        Read/Write group
1622  * @work_bgn:   Working window start position
1623  * @d:          dtaps output value
1624  * @p:          DQS Phase Iterator
1625  * @i:          Iterator
1626  *
1627  * Find working DQS enable phase setting.
1628  */
1629 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1630                              u32 *p, u32 *i)
1631 {
1632         const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1633                                    iocfg->delay_per_dqs_en_dchain_tap;
1634         int ret;
1635
1636         *work_bgn = 0;
1637
1638         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1639                 *i = 0;
1640                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1641                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1642                 if (!ret)
1643                         return 0;
1644                 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1645         }
1646
1647         /* Cannot find working solution */
1648         debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1649                    __func__, __LINE__);
1650         return -EINVAL;
1651 }
1652
1653 /**
1654  * sdr_backup_phase() - Find DQS enable backup phase
1655  * @grp:        Read/Write group
1656  * @work_bgn:   Working window start position
1657  * @p:          DQS Phase Iterator
1658  *
1659  * Find DQS enable backup phase setting.
1660  */
1661 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1662 {
1663         u32 tmp_delay, d;
1664         int ret;
1665
1666         /* Special case code for backing up a phase */
1667         if (*p == 0) {
1668                 *p = iocfg->dqs_en_phase_max;
1669                 rw_mgr_decr_vfifo(grp);
1670         } else {
1671                 (*p)--;
1672         }
1673         tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1674         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1675
1676         for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1677              d++) {
1678                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1679
1680                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1681                                         PASS_ONE_BIT, 0);
1682                 if (ret) {
1683                         *work_bgn = tmp_delay;
1684                         break;
1685                 }
1686
1687                 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1688         }
1689
1690         /* Restore VFIFO to old state before we decremented it (if needed). */
1691         (*p)++;
1692         if (*p > iocfg->dqs_en_phase_max) {
1693                 *p = 0;
1694                 rw_mgr_incr_vfifo(grp);
1695         }
1696
1697         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1698 }
1699
1700 /**
1701  * sdr_nonworking_phase() - Find non-working DQS enable phase
1702  * @grp:        Read/Write group
1703  * @work_end:   Working window end position
1704  * @p:          DQS Phase Iterator
1705  * @i:          Iterator
1706  *
1707  * Find non-working DQS enable phase setting.
1708  */
1709 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1710 {
1711         int ret;
1712
1713         (*p)++;
1714         *work_end += iocfg->delay_per_opa_tap;
1715         if (*p > iocfg->dqs_en_phase_max) {
1716                 /* Fiddle with FIFO. */
1717                 *p = 0;
1718                 rw_mgr_incr_vfifo(grp);
1719         }
1720
1721         ret = sdr_find_phase(0, grp, work_end, i, p);
1722         if (ret) {
1723                 /* Cannot see edge of failing read. */
1724                 debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1725                            __func__, __LINE__);
1726         }
1727
1728         return ret;
1729 }
1730
1731 /**
1732  * sdr_find_window_center() - Find center of the working DQS window.
1733  * @grp:        Read/Write group
1734  * @work_bgn:   First working settings
1735  * @work_end:   Last working settings
1736  *
1737  * Find center of the working DQS enable window.
1738  */
1739 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1740                                   const u32 work_end)
1741 {
1742         u32 work_mid;
1743         int tmp_delay = 0;
1744         int i, p, d;
1745
1746         work_mid = (work_bgn + work_end) / 2;
1747
1748         debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1749                    work_bgn, work_end, work_mid);
1750         /* Get the middle delay to be less than a VFIFO delay */
1751         tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1752
1753         debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1754         work_mid %= tmp_delay;
1755         debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1756
1757         tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1758         if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1759                 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1760         p = tmp_delay / iocfg->delay_per_opa_tap;
1761
1762         debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1763
1764         d = DIV_ROUND_UP(work_mid - tmp_delay,
1765                          iocfg->delay_per_dqs_en_dchain_tap);
1766         if (d > iocfg->dqs_en_delay_max)
1767                 d = iocfg->dqs_en_delay_max;
1768         tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1769
1770         debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1771
1772         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1773         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1774
1775         /*
1776          * push vfifo until we can successfully calibrate. We can do this
1777          * because the largest possible margin in 1 VFIFO cycle.
1778          */
1779         for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1780                 debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1781                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1782                                                              PASS_ONE_BIT,
1783                                                              0)) {
1784                         debug_cond(DLEVEL >= 2,
1785                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1786                                    __func__, __LINE__, p, d);
1787                         return 0;
1788                 }
1789
1790                 /* Fiddle with FIFO. */
1791                 rw_mgr_incr_vfifo(grp);
1792         }
1793
1794         debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1795                    __func__, __LINE__);
1796         return -EINVAL;
1797 }
1798
1799 /**
1800  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1801  * @grp:        Read/Write Group
1802  *
1803  * Find a good DQS enable to use.
1804  */
1805 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1806 {
1807         u32 d, p, i;
1808         u32 dtaps_per_ptap;
1809         u32 work_bgn, work_end;
1810         u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1811         int ret;
1812
1813         debug("%s:%d %u\n", __func__, __LINE__, grp);
1814
1815         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1816
1817         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1818         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1819
1820         /* Step 0: Determine number of delay taps for each phase tap. */
1821         dtaps_per_ptap = iocfg->delay_per_opa_tap /
1822                          iocfg->delay_per_dqs_en_dchain_tap;
1823
1824         /* Step 1: First push vfifo until we get a failing read. */
1825         find_vfifo_failing_read(grp);
1826
1827         /* Step 2: Find first working phase, increment in ptaps. */
1828         work_bgn = 0;
1829         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1830         if (ret)
1831                 return ret;
1832
1833         work_end = work_bgn;
1834
1835         /*
1836          * If d is 0 then the working window covers a phase tap and we can
1837          * follow the old procedure. Otherwise, we've found the beginning
1838          * and we need to increment the dtaps until we find the end.
1839          */
1840         if (d == 0) {
1841                 /*
1842                  * Step 3a: If we have room, back off by one and
1843                  *          increment in dtaps.
1844                  */
1845                 sdr_backup_phase(grp, &work_bgn, &p);
1846
1847                 /*
1848                  * Step 4a: go forward from working phase to non working
1849                  * phase, increment in ptaps.
1850                  */
1851                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1852                 if (ret)
1853                         return ret;
1854
1855                 /* Step 5a: Back off one from last, increment in dtaps. */
1856
1857                 /* Special case code for backing up a phase */
1858                 if (p == 0) {
1859                         p = iocfg->dqs_en_phase_max;
1860                         rw_mgr_decr_vfifo(grp);
1861                 } else {
1862                         p = p - 1;
1863                 }
1864
1865                 work_end -= iocfg->delay_per_opa_tap;
1866                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1867
1868                 d = 0;
1869
1870                 debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
1871                            __func__, __LINE__, p);
1872         }
1873
1874         /* The dtap increment to find the failing edge is done here. */
1875         sdr_find_phase_delay(0, 1, grp, &work_end,
1876                              iocfg->delay_per_dqs_en_dchain_tap, &d);
1877
1878         /* Go back to working dtap */
1879         if (d != 0)
1880                 work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1881
1882         debug_cond(DLEVEL >= 2,
1883                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1884                    __func__, __LINE__, p, d - 1, work_end);
1885
1886         if (work_end < work_bgn) {
1887                 /* nil range */
1888                 debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
1889                            __func__, __LINE__);
1890                 return -EINVAL;
1891         }
1892
1893         debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
1894                    __func__, __LINE__, work_bgn, work_end);
1895
1896         /*
1897          * We need to calculate the number of dtaps that equal a ptap.
1898          * To do that we'll back up a ptap and re-find the edge of the
1899          * window using dtaps
1900          */
1901         debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1902                    __func__, __LINE__);
1903
1904         /* Special case code for backing up a phase */
1905         if (p == 0) {
1906                 p = iocfg->dqs_en_phase_max;
1907                 rw_mgr_decr_vfifo(grp);
1908                 debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
1909                            __func__, __LINE__, p);
1910         } else {
1911                 p = p - 1;
1912                 debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
1913                            __func__, __LINE__, p);
1914         }
1915
1916         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1917
1918         /*
1919          * Increase dtap until we first see a passing read (in case the
1920          * window is smaller than a ptap), and then a failing read to
1921          * mark the edge of the window again.
1922          */
1923
1924         /* Find a passing read. */
1925         debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
1926                    __func__, __LINE__);
1927
1928         initial_failing_dtap = d;
1929
1930         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1931         if (found_passing_read) {
1932                 /* Find a failing read. */
1933                 debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
1934                            __func__, __LINE__);
1935                 d++;
1936                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1937                                                            &d);
1938         } else {
1939                 debug_cond(DLEVEL >= 1,
1940                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1941                            __func__, __LINE__);
1942         }
1943
1944         /*
1945          * The dynamically calculated dtaps_per_ptap is only valid if we
1946          * found a passing/failing read. If we didn't, it means d hit the max
1947          * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1948          * statically calculated value.
1949          */
1950         if (found_passing_read && found_failing_read)
1951                 dtaps_per_ptap = d - initial_failing_dtap;
1952
1953         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1954         debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1955                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1956
1957         /* Step 6: Find the centre of the window. */
1958         ret = sdr_find_window_center(grp, work_bgn, work_end);
1959
1960         return ret;
1961 }
1962
1963 /**
1964  * search_stop_check() - Check if the detected edge is valid
1965  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1966  * @d:                  DQS delay
1967  * @rank_bgn:           Rank number
1968  * @write_group:        Write Group
1969  * @read_group:         Read Group
1970  * @bit_chk:            Resulting bit mask after the test
1971  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1972  * @use_read_test:      Perform read test
1973  *
1974  * Test if the found edge is valid.
1975  */
1976 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1977                              const u32 write_group, const u32 read_group,
1978                              u32 *bit_chk, u32 *sticky_bit_chk,
1979                              const u32 use_read_test)
1980 {
1981         const u32 ratio = rwcfg->mem_if_read_dqs_width /
1982                           rwcfg->mem_if_write_dqs_width;
1983         const u32 correct_mask = write ? param->write_correct_mask :
1984                                          param->read_correct_mask;
1985         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1986                                     rwcfg->mem_dq_per_read_dqs;
1987         u32 ret;
1988         /*
1989          * Stop searching when the read test doesn't pass AND when
1990          * we've seen a passing read on every bit.
1991          */
1992         if (write) {                    /* WRITE-ONLY */
1993                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1994                                                          0, PASS_ONE_BIT,
1995                                                          bit_chk, 0);
1996         } else if (use_read_test) {     /* READ-ONLY */
1997                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1998                                                         NUM_READ_PB_TESTS,
1999                                                         PASS_ONE_BIT, bit_chk,
2000                                                         0, 0);
2001         } else {                        /* READ-ONLY */
2002                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2003                                                 PASS_ONE_BIT, bit_chk, 0);
2004                 *bit_chk = *bit_chk >> (per_dqs *
2005                         (read_group - (write_group * ratio)));
2006                 ret = (*bit_chk == 0);
2007         }
2008         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2009         ret = ret && (*sticky_bit_chk == correct_mask);
2010         debug_cond(DLEVEL >= 2,
2011                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2012                    __func__, __LINE__, d,
2013                    *sticky_bit_chk, correct_mask, ret);
2014         return ret;
2015 }
2016
2017 /**
2018  * search_left_edge() - Find left edge of DQ/DQS working phase
2019  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2020  * @rank_bgn:           Rank number
2021  * @write_group:        Write Group
2022  * @read_group:         Read Group
2023  * @test_bgn:           Rank number to begin the test
2024  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2025  * @left_edge:          Left edge of the DQ/DQS phase
2026  * @right_edge:         Right edge of the DQ/DQS phase
2027  * @use_read_test:      Perform read test
2028  *
2029  * Find left edge of DQ/DQS working phase.
2030  */
2031 static void search_left_edge(const int write, const int rank_bgn,
2032         const u32 write_group, const u32 read_group, const u32 test_bgn,
2033         u32 *sticky_bit_chk,
2034         int *left_edge, int *right_edge, const u32 use_read_test)
2035 {
2036         const u32 delay_max = write ? iocfg->io_out1_delay_max :
2037                                       iocfg->io_in_delay_max;
2038         const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2039                                     iocfg->dqs_in_delay_max;
2040         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2041                                     rwcfg->mem_dq_per_read_dqs;
2042         u32 stop, bit_chk;
2043         int i, d;
2044
2045         for (d = 0; d <= dqs_max; d++) {
2046                 if (write)
2047                         scc_mgr_apply_group_dq_out1_delay(d);
2048                 else
2049                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2050
2051                 writel(0, &sdr_scc_mgr->update);
2052
2053                 stop = search_stop_check(write, d, rank_bgn, write_group,
2054                                          read_group, &bit_chk, sticky_bit_chk,
2055                                          use_read_test);
2056                 if (stop == 1)
2057                         break;
2058
2059                 /* stop != 1 */
2060                 for (i = 0; i < per_dqs; i++) {
2061                         if (bit_chk & 1) {
2062                                 /*
2063                                  * Remember a passing test as
2064                                  * the left_edge.
2065                                  */
2066                                 left_edge[i] = d;
2067                         } else {
2068                                 /*
2069                                  * If a left edge has not been seen
2070                                  * yet, then a future passing test
2071                                  * will mark this edge as the right
2072                                  * edge.
2073                                  */
2074                                 if (left_edge[i] == delay_max + 1)
2075                                         right_edge[i] = -(d + 1);
2076                         }
2077                         bit_chk >>= 1;
2078                 }
2079         }
2080
2081         /* Reset DQ delay chains to 0 */
2082         if (write)
2083                 scc_mgr_apply_group_dq_out1_delay(0);
2084         else
2085                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2086
2087         *sticky_bit_chk = 0;
2088         for (i = per_dqs - 1; i >= 0; i--) {
2089                 debug_cond(DLEVEL >= 2,
2090                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2091                            __func__, __LINE__, i, left_edge[i],
2092                            i, right_edge[i]);
2093
2094                 /*
2095                  * Check for cases where we haven't found the left edge,
2096                  * which makes our assignment of the the right edge invalid.
2097                  * Reset it to the illegal value.
2098                  */
2099                 if ((left_edge[i] == delay_max + 1) &&
2100                     (right_edge[i] != delay_max + 1)) {
2101                         right_edge[i] = delay_max + 1;
2102                         debug_cond(DLEVEL >= 2,
2103                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2104                                    __func__, __LINE__, i, right_edge[i]);
2105                 }
2106
2107                 /*
2108                  * Reset sticky bit
2109                  * READ: except for bits where we have seen both
2110                  *       the left and right edge.
2111                  * WRITE: except for bits where we have seen the
2112                  *        left edge.
2113                  */
2114                 *sticky_bit_chk <<= 1;
2115                 if (write) {
2116                         if (left_edge[i] != delay_max + 1)
2117                                 *sticky_bit_chk |= 1;
2118                 } else {
2119                         if ((left_edge[i] != delay_max + 1) &&
2120                             (right_edge[i] != delay_max + 1))
2121                                 *sticky_bit_chk |= 1;
2122                 }
2123         }
2124 }
2125
2126 /**
2127  * search_right_edge() - Find right edge of DQ/DQS working phase
2128  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2129  * @rank_bgn:           Rank number
2130  * @write_group:        Write Group
2131  * @read_group:         Read Group
2132  * @start_dqs:          DQS start phase
2133  * @start_dqs_en:       DQS enable start phase
2134  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2135  * @left_edge:          Left edge of the DQ/DQS phase
2136  * @right_edge:         Right edge of the DQ/DQS phase
2137  * @use_read_test:      Perform read test
2138  *
2139  * Find right edge of DQ/DQS working phase.
2140  */
2141 static int search_right_edge(const int write, const int rank_bgn,
2142         const u32 write_group, const u32 read_group,
2143         const int start_dqs, const int start_dqs_en,
2144         u32 *sticky_bit_chk,
2145         int *left_edge, int *right_edge, const u32 use_read_test)
2146 {
2147         const u32 delay_max = write ? iocfg->io_out1_delay_max :
2148                                       iocfg->io_in_delay_max;
2149         const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2150                                     iocfg->dqs_in_delay_max;
2151         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2152                                     rwcfg->mem_dq_per_read_dqs;
2153         u32 stop, bit_chk;
2154         int i, d;
2155
2156         for (d = 0; d <= dqs_max - start_dqs; d++) {
2157                 if (write) {    /* WRITE-ONLY */
2158                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2159                                                                 d + start_dqs);
2160                 } else {        /* READ-ONLY */
2161                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2162                         if (iocfg->shift_dqs_en_when_shift_dqs) {
2163                                 u32 delay = d + start_dqs_en;
2164                                 if (delay > iocfg->dqs_en_delay_max)
2165                                         delay = iocfg->dqs_en_delay_max;
2166                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2167                         }
2168                         scc_mgr_load_dqs(read_group);
2169                 }
2170
2171                 writel(0, &sdr_scc_mgr->update);
2172
2173                 stop = search_stop_check(write, d, rank_bgn, write_group,
2174                                          read_group, &bit_chk, sticky_bit_chk,
2175                                          use_read_test);
2176                 if (stop == 1) {
2177                         if (write && (d == 0)) {        /* WRITE-ONLY */
2178                                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2179                                      i++) {
2180                                         /*
2181                                          * d = 0 failed, but it passed when
2182                                          * testing the left edge, so it must be
2183                                          * marginal, set it to -1
2184                                          */
2185                                         if (right_edge[i] == delay_max + 1 &&
2186                                             left_edge[i] != delay_max + 1)
2187                                                 right_edge[i] = -1;
2188                                 }
2189                         }
2190                         break;
2191                 }
2192
2193                 /* stop != 1 */
2194                 for (i = 0; i < per_dqs; i++) {
2195                         if (bit_chk & 1) {
2196                                 /*
2197                                  * Remember a passing test as
2198                                  * the right_edge.
2199                                  */
2200                                 right_edge[i] = d;
2201                         } else {
2202                                 if (d != 0) {
2203                                         /*
2204                                          * If a right edge has not
2205                                          * been seen yet, then a future
2206                                          * passing test will mark this
2207                                          * edge as the left edge.
2208                                          */
2209                                         if (right_edge[i] == delay_max + 1)
2210                                                 left_edge[i] = -(d + 1);
2211                                 } else {
2212                                         /*
2213                                          * d = 0 failed, but it passed
2214                                          * when testing the left edge,
2215                                          * so it must be marginal, set
2216                                          * it to -1
2217                                          */
2218                                         if (right_edge[i] == delay_max + 1 &&
2219                                             left_edge[i] != delay_max + 1)
2220                                                 right_edge[i] = -1;
2221                                         /*
2222                                          * If a right edge has not been
2223                                          * seen yet, then a future
2224                                          * passing test will mark this
2225                                          * edge as the left edge.
2226                                          */
2227                                         else if (right_edge[i] == delay_max + 1)
2228                                                 left_edge[i] = -(d + 1);
2229                                 }
2230                         }
2231
2232                         debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2233                                    __func__, __LINE__, d);
2234                         debug_cond(DLEVEL >= 2,
2235                                    "bit_chk_test=%i left_edge[%u]: %d ",
2236                                    bit_chk & 1, i, left_edge[i]);
2237                         debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2238                                    right_edge[i]);
2239                         bit_chk >>= 1;
2240                 }
2241         }
2242
2243         /* Check that all bits have a window */
2244         for (i = 0; i < per_dqs; i++) {
2245                 debug_cond(DLEVEL >= 2,
2246                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2247                            __func__, __LINE__, i, left_edge[i],
2248                            i, right_edge[i]);
2249                 if ((left_edge[i] == dqs_max + 1) ||
2250                     (right_edge[i] == dqs_max + 1))
2251                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2252         }
2253
2254         return 0;
2255 }
2256
2257 /**
2258  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2259  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2260  * @left_edge:          Left edge of the DQ/DQS phase
2261  * @right_edge:         Right edge of the DQ/DQS phase
2262  * @mid_min:            Best DQ/DQS phase middle setting
2263  *
2264  * Find index and value of the middle of the DQ/DQS working phase.
2265  */
2266 static int get_window_mid_index(const int write, int *left_edge,
2267                                 int *right_edge, int *mid_min)
2268 {
2269         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2270                                     rwcfg->mem_dq_per_read_dqs;
2271         int i, mid, min_index;
2272
2273         /* Find middle of window for each DQ bit */
2274         *mid_min = left_edge[0] - right_edge[0];
2275         min_index = 0;
2276         for (i = 1; i < per_dqs; i++) {
2277                 mid = left_edge[i] - right_edge[i];
2278                 if (mid < *mid_min) {
2279                         *mid_min = mid;
2280                         min_index = i;
2281                 }
2282         }
2283
2284         /*
2285          * -mid_min/2 represents the amount that we need to move DQS.
2286          * If mid_min is odd and positive we'll need to add one to make
2287          * sure the rounding in further calculations is correct (always
2288          * bias to the right), so just add 1 for all positive values.
2289          */
2290         if (*mid_min > 0)
2291                 (*mid_min)++;
2292         *mid_min = *mid_min / 2;
2293
2294         debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2295                    __func__, __LINE__, *mid_min, min_index);
2296         return min_index;
2297 }
2298
2299 /**
2300  * center_dq_windows() - Center the DQ/DQS windows
2301  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2302  * @left_edge:          Left edge of the DQ/DQS phase
2303  * @right_edge:         Right edge of the DQ/DQS phase
2304  * @mid_min:            Adjusted DQ/DQS phase middle setting
2305  * @orig_mid_min:       Original DQ/DQS phase middle setting
2306  * @min_index:          DQ/DQS phase middle setting index
2307  * @test_bgn:           Rank number to begin the test
2308  * @dq_margin:          Amount of shift for the DQ
2309  * @dqs_margin:         Amount of shift for the DQS
2310  *
2311  * Align the DQ/DQS windows in each group.
2312  */
2313 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2314                               const int mid_min, const int orig_mid_min,
2315                               const int min_index, const int test_bgn,
2316                               int *dq_margin, int *dqs_margin)
2317 {
2318         const s32 delay_max = write ? iocfg->io_out1_delay_max :
2319                                       iocfg->io_in_delay_max;
2320         const s32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2321                                     rwcfg->mem_dq_per_read_dqs;
2322         const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2323                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2324         const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2325
2326         s32 temp_dq_io_delay1;
2327         int shift_dq, i, p;
2328
2329         /* Initialize data for export structures */
2330         *dqs_margin = delay_max + 1;
2331         *dq_margin  = delay_max + 1;
2332
2333         /* add delay to bring centre of all DQ windows to the same "level" */
2334         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2335                 /* Use values before divide by 2 to reduce round off error */
2336                 shift_dq = (left_edge[i] - right_edge[i] -
2337                         (left_edge[min_index] - right_edge[min_index]))/2  +
2338                         (orig_mid_min - mid_min);
2339
2340                 debug_cond(DLEVEL >= 2,
2341                            "vfifo_center: before: shift_dq[%u]=%d\n",
2342                            i, shift_dq);
2343
2344                 temp_dq_io_delay1 = readl(addr + (i << 2));
2345
2346                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2347                         shift_dq = delay_max - temp_dq_io_delay1;
2348                 else if (shift_dq + temp_dq_io_delay1 < 0)
2349                         shift_dq = -temp_dq_io_delay1;
2350
2351                 debug_cond(DLEVEL >= 2,
2352                            "vfifo_center: after: shift_dq[%u]=%d\n",
2353                            i, shift_dq);
2354
2355                 if (write)
2356                         scc_mgr_set_dq_out1_delay(i,
2357                                                   temp_dq_io_delay1 + shift_dq);
2358                 else
2359                         scc_mgr_set_dq_in_delay(p,
2360                                                 temp_dq_io_delay1 + shift_dq);
2361
2362                 scc_mgr_load_dq(p);
2363
2364                 debug_cond(DLEVEL >= 2,
2365                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2366                            left_edge[i] - shift_dq + (-mid_min),
2367                            right_edge[i] + shift_dq - (-mid_min));
2368
2369                 /* To determine values for export structures */
2370                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2371                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2372
2373                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2374                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2375         }
2376 }
2377
2378 /**
2379  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2380  * @rank_bgn:           Rank number
2381  * @rw_group:           Read/Write Group
2382  * @test_bgn:           Rank at which the test begins
2383  * @use_read_test:      Perform a read test
2384  * @update_fom:         Update FOM
2385  *
2386  * Per-bit deskew DQ and centering.
2387  */
2388 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2389                         const u32 rw_group, const u32 test_bgn,
2390                         const int use_read_test, const int update_fom)
2391 {
2392         const u32 addr =
2393                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2394                 (rw_group << 2);
2395         /*
2396          * Store these as signed since there are comparisons with
2397          * signed numbers.
2398          */
2399         u32 sticky_bit_chk;
2400         int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2401         int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2402         int32_t orig_mid_min, mid_min;
2403         int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2404         int32_t dq_margin, dqs_margin;
2405         int i, min_index;
2406         int ret;
2407
2408         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2409
2410         start_dqs = readl(addr);
2411         if (iocfg->shift_dqs_en_when_shift_dqs)
2412                 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2413
2414         /* set the left and right edge of each bit to an illegal value */
2415         /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2416         sticky_bit_chk = 0;
2417         for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2418                 left_edge[i]  = iocfg->io_in_delay_max + 1;
2419                 right_edge[i] = iocfg->io_in_delay_max + 1;
2420         }
2421
2422         /* Search for the left edge of the window for each bit */
2423         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2424                          &sticky_bit_chk,
2425                          left_edge, right_edge, use_read_test);
2426
2427
2428         /* Search for the right edge of the window for each bit */
2429         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2430                                 start_dqs, start_dqs_en,
2431                                 &sticky_bit_chk,
2432                                 left_edge, right_edge, use_read_test);
2433         if (ret) {
2434                 /*
2435                  * Restore delay chain settings before letting the loop
2436                  * in rw_mgr_mem_calibrate_vfifo to retry different
2437                  * dqs/ck relationships.
2438                  */
2439                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2440                 if (iocfg->shift_dqs_en_when_shift_dqs)
2441                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2442
2443                 scc_mgr_load_dqs(rw_group);
2444                 writel(0, &sdr_scc_mgr->update);
2445
2446                 debug_cond(DLEVEL >= 1,
2447                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2448                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2449                 if (use_read_test) {
2450                         set_failing_group_stage(rw_group *
2451                                 rwcfg->mem_dq_per_read_dqs + i,
2452                                 CAL_STAGE_VFIFO,
2453                                 CAL_SUBSTAGE_VFIFO_CENTER);
2454                 } else {
2455                         set_failing_group_stage(rw_group *
2456                                 rwcfg->mem_dq_per_read_dqs + i,
2457                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2458                                 CAL_SUBSTAGE_VFIFO_CENTER);
2459                 }
2460                 return -EIO;
2461         }
2462
2463         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2464
2465         /* Determine the amount we can change DQS (which is -mid_min) */
2466         orig_mid_min = mid_min;
2467         new_dqs = start_dqs - mid_min;
2468         if (new_dqs > iocfg->dqs_in_delay_max)
2469                 new_dqs = iocfg->dqs_in_delay_max;
2470         else if (new_dqs < 0)
2471                 new_dqs = 0;
2472
2473         mid_min = start_dqs - new_dqs;
2474         debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2475                    mid_min, new_dqs);
2476
2477         if (iocfg->shift_dqs_en_when_shift_dqs) {
2478                 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2479                         mid_min += start_dqs_en - mid_min -
2480                                    iocfg->dqs_en_delay_max;
2481                 else if (start_dqs_en - mid_min < 0)
2482                         mid_min += start_dqs_en - mid_min;
2483         }
2484         new_dqs = start_dqs - mid_min;
2485
2486         debug_cond(DLEVEL >= 1,
2487                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2488                    start_dqs,
2489                    iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2490                    new_dqs, mid_min);
2491
2492         /* Add delay to bring centre of all DQ windows to the same "level". */
2493         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2494                           min_index, test_bgn, &dq_margin, &dqs_margin);
2495
2496         /* Move DQS-en */
2497         if (iocfg->shift_dqs_en_when_shift_dqs) {
2498                 final_dqs_en = start_dqs_en - mid_min;
2499                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2500                 scc_mgr_load_dqs(rw_group);
2501         }
2502
2503         /* Move DQS */
2504         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2505         scc_mgr_load_dqs(rw_group);
2506         debug_cond(DLEVEL >= 2,
2507                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2508                    __func__, __LINE__, dq_margin, dqs_margin);
2509
2510         /*
2511          * Do not remove this line as it makes sure all of our decisions
2512          * have been applied. Apply the update bit.
2513          */
2514         writel(0, &sdr_scc_mgr->update);
2515
2516         if ((dq_margin < 0) || (dqs_margin < 0))
2517                 return -EINVAL;
2518
2519         return 0;
2520 }
2521
2522 /**
2523  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2524  * @rw_group:   Read/Write Group
2525  * @phase:      DQ/DQS phase
2526  *
2527  * Because initially no communication ca be reliably performed with the memory
2528  * device, the sequencer uses a guaranteed write mechanism to write data into
2529  * the memory device.
2530  */
2531 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2532                                                  const u32 phase)
2533 {
2534         int ret;
2535
2536         /* Set a particular DQ/DQS phase. */
2537         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2538
2539         debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2540                    __func__, __LINE__, rw_group, phase);
2541
2542         /*
2543          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2544          * Load up the patterns used by read calibration using the
2545          * current DQDQS phase.
2546          */
2547         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2548
2549         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2550                 return 0;
2551
2552         /*
2553          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2554          * Back-to-Back reads of the patterns used for calibration.
2555          */
2556         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2557         if (ret)
2558                 debug_cond(DLEVEL >= 1,
2559                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2560                            __func__, __LINE__, rw_group, phase);
2561         return ret;
2562 }
2563
2564 /**
2565  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2566  * @rw_group:   Read/Write Group
2567  * @test_bgn:   Rank at which the test begins
2568  *
2569  * DQS enable calibration ensures reliable capture of the DQ signal without
2570  * glitches on the DQS line.
2571  */
2572 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2573                                                        const u32 test_bgn)
2574 {
2575         /*
2576          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2577          * DQS and DQS Eanble Signal Relationships.
2578          */
2579
2580         /* We start at zero, so have one less dq to devide among */
2581         const u32 delay_step = iocfg->io_in_delay_max /
2582                                (rwcfg->mem_dq_per_read_dqs - 1);
2583         int ret;
2584         u32 i, p, d, r;
2585
2586         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2587
2588         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2589         for (r = 0; r < rwcfg->mem_number_of_ranks;
2590              r += NUM_RANKS_PER_SHADOW_REG) {
2591                 for (i = 0, p = test_bgn, d = 0;
2592                      i < rwcfg->mem_dq_per_read_dqs;
2593                      i++, p++, d += delay_step) {
2594                         debug_cond(DLEVEL >= 1,
2595                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2596                                    __func__, __LINE__, rw_group, r, i, p, d);
2597
2598                         scc_mgr_set_dq_in_delay(p, d);
2599                         scc_mgr_load_dq(p);
2600                 }
2601
2602                 writel(0, &sdr_scc_mgr->update);
2603         }
2604
2605         /*
2606          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2607          * dq_in_delay values
2608          */
2609         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2610
2611         debug_cond(DLEVEL >= 1,
2612                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2613                    __func__, __LINE__, rw_group, !ret);
2614
2615         for (r = 0; r < rwcfg->mem_number_of_ranks;
2616              r += NUM_RANKS_PER_SHADOW_REG) {
2617                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2618                 writel(0, &sdr_scc_mgr->update);
2619         }
2620
2621         return ret;
2622 }
2623
2624 /**
2625  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2626  * @rw_group:           Read/Write Group
2627  * @test_bgn:           Rank at which the test begins
2628  * @use_read_test:      Perform a read test
2629  * @update_fom:         Update FOM
2630  *
2631  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2632  * within a group.
2633  */
2634 static int
2635 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2636                                       const int use_read_test,
2637                                       const int update_fom)
2638
2639 {
2640         int ret, grp_calibrated;
2641         u32 rank_bgn, sr;
2642
2643         /*
2644          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2645          * Read per-bit deskew can be done on a per shadow register basis.
2646          */
2647         grp_calibrated = 1;
2648         for (rank_bgn = 0, sr = 0;
2649              rank_bgn < rwcfg->mem_number_of_ranks;
2650              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2651                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2652                                                         test_bgn,
2653                                                         use_read_test,
2654                                                         update_fom);
2655                 if (!ret)
2656                         continue;
2657
2658                 grp_calibrated = 0;
2659         }
2660
2661         if (!grp_calibrated)
2662                 return -EIO;
2663
2664         return 0;
2665 }
2666
2667 /**
2668  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2669  * @rw_group:           Read/Write Group
2670  * @test_bgn:           Rank at which the test begins
2671  *
2672  * Stage 1: Calibrate the read valid prediction FIFO.
2673  *
2674  * This function implements UniPHY calibration Stage 1, as explained in
2675  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2676  *
2677  * - read valid prediction will consist of finding:
2678  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2679  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2680  *  - we also do a per-bit deskew on the DQ lines.
2681  */
2682 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2683 {
2684         u32 p, d;
2685         u32 dtaps_per_ptap;
2686         u32 failed_substage;
2687
2688         int ret;
2689
2690         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2691
2692         /* Update info for sims */
2693         reg_file_set_group(rw_group);
2694         reg_file_set_stage(CAL_STAGE_VFIFO);
2695         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2696
2697         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2698
2699         /* USER Determine number of delay taps for each phase tap. */
2700         dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2701                                       iocfg->delay_per_dqs_en_dchain_tap) - 1;
2702
2703         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2704                 /*
2705                  * In RLDRAMX we may be messing the delay of pins in
2706                  * the same write rw_group but outside of the current read
2707                  * the rw_group, but that's ok because we haven't calibrated
2708                  * output side yet.
2709                  */
2710                 if (d > 0) {
2711                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2712                                                                 rw_group, d);
2713                 }
2714
2715                 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2716                         /* 1) Guaranteed Write */
2717                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2718                         if (ret)
2719                                 break;
2720
2721                         /* 2) DQS Enable Calibration */
2722                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2723                                                                           test_bgn);
2724                         if (ret) {
2725                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2726                                 continue;
2727                         }
2728
2729                         /* 3) Centering DQ/DQS */
2730                         /*
2731                          * If doing read after write calibration, do not update
2732                          * FOM now. Do it then.
2733                          */
2734                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2735                                                                 test_bgn, 1, 0);
2736                         if (ret) {
2737                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2738                                 continue;
2739                         }
2740
2741                         /* All done. */
2742                         goto cal_done_ok;
2743                 }
2744         }
2745
2746         /* Calibration Stage 1 failed. */
2747         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2748         return 0;
2749
2750         /* Calibration Stage 1 completed OK. */
2751 cal_done_ok:
2752         /*
2753          * Reset the delay chains back to zero if they have moved > 1
2754          * (check for > 1 because loop will increase d even when pass in
2755          * first case).
2756          */
2757         if (d > 2)
2758                 scc_mgr_zero_group(rw_group, 1);
2759
2760         return 1;
2761 }
2762
2763 /**
2764  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2765  * @rw_group:           Read/Write Group
2766  * @test_bgn:           Rank at which the test begins
2767  *
2768  * Stage 3: DQ/DQS Centering.
2769  *
2770  * This function implements UniPHY calibration Stage 3, as explained in
2771  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2772  */
2773 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2774                                           const u32 test_bgn)
2775 {
2776         int ret;
2777
2778         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2779
2780         /* Update info for sims. */
2781         reg_file_set_group(rw_group);
2782         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2783         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2784
2785         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2786         if (ret)
2787                 set_failing_group_stage(rw_group,
2788                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2789                                         CAL_SUBSTAGE_VFIFO_CENTER);
2790         return ret;
2791 }
2792
2793 /**
2794  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2795  *
2796  * Stage 4: Minimize latency.
2797  *
2798  * This function implements UniPHY calibration Stage 4, as explained in
2799  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2800  * Calibrate LFIFO to find smallest read latency.
2801  */
2802 static u32 rw_mgr_mem_calibrate_lfifo(void)
2803 {
2804         int found_one = 0;
2805
2806         debug("%s:%d\n", __func__, __LINE__);
2807
2808         /* Update info for sims. */
2809         reg_file_set_stage(CAL_STAGE_LFIFO);
2810         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2811
2812         /* Load up the patterns used by read calibration for all ranks */
2813         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2814
2815         do {
2816                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2817                 debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2818                            __func__, __LINE__, gbl->curr_read_lat);
2819
2820                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2821                                                               PASS_ALL_BITS, 1))
2822                         break;
2823
2824                 found_one = 1;
2825                 /*
2826                  * Reduce read latency and see if things are
2827                  * working correctly.
2828                  */
2829                 gbl->curr_read_lat--;
2830         } while (gbl->curr_read_lat > 0);
2831
2832         /* Reset the fifos to get pointers to known state. */
2833         writel(0, &phy_mgr_cmd->fifo_reset);
2834
2835         if (found_one) {
2836                 /* Add a fudge factor to the read latency that was determined */
2837                 gbl->curr_read_lat += 2;
2838                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2839                 debug_cond(DLEVEL >= 2,
2840                            "%s:%d lfifo: success: using read_lat=%u\n",
2841                            __func__, __LINE__, gbl->curr_read_lat);
2842         } else {
2843                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2844                                         CAL_SUBSTAGE_READ_LATENCY);
2845
2846                 debug_cond(DLEVEL >= 2,
2847                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2848                            __func__, __LINE__, gbl->curr_read_lat);
2849         }
2850
2851         return found_one;
2852 }
2853
2854 /**
2855  * search_window() - Search for the/part of the window with DM/DQS shift
2856  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2857  * @rank_bgn:           Rank number
2858  * @write_group:        Write Group
2859  * @bgn_curr:           Current window begin
2860  * @end_curr:           Current window end
2861  * @bgn_best:           Current best window begin
2862  * @end_best:           Current best window end
2863  * @win_best:           Size of the best window
2864  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2865  *
2866  * Search for the/part of the window with DM/DQS shift.
2867  */
2868 static void search_window(const int search_dm,
2869                           const u32 rank_bgn, const u32 write_group,
2870                           int *bgn_curr, int *end_curr, int *bgn_best,
2871                           int *end_best, int *win_best, int new_dqs)
2872 {
2873         u32 bit_chk;
2874         const int max = iocfg->io_out1_delay_max - new_dqs;
2875         int d, di;
2876
2877         /* Search for the/part of the window with DM/DQS shift. */
2878         for (di = max; di >= 0; di -= DELTA_D) {
2879                 if (search_dm) {
2880                         d = di;
2881                         scc_mgr_apply_group_dm_out1_delay(d);
2882                 } else {
2883                         /* For DQS, we go from 0...max */
2884                         d = max - di;
2885                         /*
2886                          * Note: This only shifts DQS, so are we limiting
2887                          *       ourselves to width of DQ unnecessarily.
2888                          */
2889                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2890                                                                 d + new_dqs);
2891                 }
2892
2893                 writel(0, &sdr_scc_mgr->update);
2894
2895                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2896                                                     PASS_ALL_BITS, &bit_chk,
2897                                                     0)) {
2898                         /* Set current end of the window. */
2899                         *end_curr = search_dm ? -d : d;
2900
2901                         /*
2902                          * If a starting edge of our window has not been seen
2903                          * this is our current start of the DM window.
2904                          */
2905                         if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2906                                 *bgn_curr = search_dm ? -d : d;
2907
2908                         /*
2909                          * If current window is bigger than best seen.
2910                          * Set best seen to be current window.
2911                          */
2912                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2913                                 *win_best = *end_curr - *bgn_curr + 1;
2914                                 *bgn_best = *bgn_curr;
2915                                 *end_best = *end_curr;
2916                         }
2917                 } else {
2918                         /* We just saw a failing test. Reset temp edge. */
2919                         *bgn_curr = iocfg->io_out1_delay_max + 1;
2920                         *end_curr = iocfg->io_out1_delay_max + 1;
2921
2922                         /* Early exit is only applicable to DQS. */
2923                         if (search_dm)
2924                                 continue;
2925
2926                         /*
2927                          * Early exit optimization: if the remaining delay
2928                          * chain space is less than already seen largest
2929                          * window we can exit.
2930                          */
2931                         if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2932                                 break;
2933                 }
2934         }
2935 }
2936
2937 /*
2938  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2939  * @rank_bgn:           Rank number
2940  * @write_group:        Write group
2941  * @test_bgn:           Rank at which the test begins
2942  *
2943  * Center all windows. Do per-bit-deskew to possibly increase size of
2944  * certain windows.
2945  */
2946 static int
2947 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2948                                    const u32 test_bgn)
2949 {
2950         int i;
2951         u32 sticky_bit_chk;
2952         u32 min_index;
2953         int left_edge[rwcfg->mem_dq_per_write_dqs];
2954         int right_edge[rwcfg->mem_dq_per_write_dqs];
2955         int mid;
2956         int mid_min, orig_mid_min;
2957         int new_dqs, start_dqs;
2958         int dq_margin, dqs_margin, dm_margin;
2959         int bgn_curr = iocfg->io_out1_delay_max + 1;
2960         int end_curr = iocfg->io_out1_delay_max + 1;
2961         int bgn_best = iocfg->io_out1_delay_max + 1;
2962         int end_best = iocfg->io_out1_delay_max + 1;
2963         int win_best = 0;
2964
2965         int ret;
2966
2967         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2968
2969         dm_margin = 0;
2970
2971         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2972                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2973                           (rwcfg->mem_dq_per_write_dqs << 2));
2974
2975         /* Per-bit deskew. */
2976
2977         /*
2978          * Set the left and right edge of each bit to an illegal value.
2979          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2980          */
2981         sticky_bit_chk = 0;
2982         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2983                 left_edge[i]  = iocfg->io_out1_delay_max + 1;
2984                 right_edge[i] = iocfg->io_out1_delay_max + 1;
2985         }
2986
2987         /* Search for the left edge of the window for each bit. */
2988         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2989                          &sticky_bit_chk,
2990                          left_edge, right_edge, 0);
2991
2992         /* Search for the right edge of the window for each bit. */
2993         ret = search_right_edge(1, rank_bgn, write_group, 0,
2994                                 start_dqs, 0,
2995                                 &sticky_bit_chk,
2996                                 left_edge, right_edge, 0);
2997         if (ret) {
2998                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2999                                         CAL_SUBSTAGE_WRITES_CENTER);
3000                 return -EINVAL;
3001         }
3002
3003         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3004
3005         /* Determine the amount we can change DQS (which is -mid_min). */
3006         orig_mid_min = mid_min;
3007         new_dqs = start_dqs;
3008         mid_min = 0;
3009         debug_cond(DLEVEL >= 1,
3010                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3011                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3012
3013         /* Add delay to bring centre of all DQ windows to the same "level". */
3014         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3015                           min_index, 0, &dq_margin, &dqs_margin);
3016
3017         /* Move DQS */
3018         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3019         writel(0, &sdr_scc_mgr->update);
3020
3021         /* Centre DM */
3022         debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3023
3024         /*
3025          * Set the left and right edge of each bit to an illegal value.
3026          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3027          */
3028         left_edge[0]  = iocfg->io_out1_delay_max + 1;
3029         right_edge[0] = iocfg->io_out1_delay_max + 1;
3030
3031         /* Search for the/part of the window with DM shift. */
3032         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3033                       &bgn_best, &end_best, &win_best, 0);
3034
3035         /* Reset DM delay chains to 0. */
3036         scc_mgr_apply_group_dm_out1_delay(0);
3037
3038         /*
3039          * Check to see if the current window nudges up aganist 0 delay.
3040          * If so we need to continue the search by shifting DQS otherwise DQS
3041          * search begins as a new search.
3042          */
3043         if (end_curr != 0) {
3044                 bgn_curr = iocfg->io_out1_delay_max + 1;
3045                 end_curr = iocfg->io_out1_delay_max + 1;
3046         }
3047
3048         /* Search for the/part of the window with DQS shifts. */
3049         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3050                       &bgn_best, &end_best, &win_best, new_dqs);
3051
3052         /* Assign left and right edge for cal and reporting. */
3053         left_edge[0] = -1 * bgn_best;
3054         right_edge[0] = end_best;
3055
3056         debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3057                    __func__, __LINE__, left_edge[0], right_edge[0]);
3058
3059         /* Move DQS (back to orig). */
3060         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3061
3062         /* Move DM */
3063
3064         /* Find middle of window for the DM bit. */
3065         mid = (left_edge[0] - right_edge[0]) / 2;
3066
3067         /* Only move right, since we are not moving DQS/DQ. */
3068         if (mid < 0)
3069                 mid = 0;
3070
3071         /* dm_marign should fail if we never find a window. */
3072         if (win_best == 0)
3073                 dm_margin = -1;
3074         else
3075                 dm_margin = left_edge[0] - mid;
3076
3077         scc_mgr_apply_group_dm_out1_delay(mid);
3078         writel(0, &sdr_scc_mgr->update);
3079
3080         debug_cond(DLEVEL >= 2,
3081                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3082                    __func__, __LINE__, left_edge[0], right_edge[0],
3083                    mid, dm_margin);
3084         /* Export values. */
3085         gbl->fom_out += dq_margin + dqs_margin;
3086
3087         debug_cond(DLEVEL >= 2,
3088                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3089                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3090
3091         /*
3092          * Do not remove this line as it makes sure all of our
3093          * decisions have been applied.
3094          */
3095         writel(0, &sdr_scc_mgr->update);
3096
3097         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3098                 return -EINVAL;
3099
3100         return 0;
3101 }
3102
3103 /**
3104  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3105  * @rank_bgn:           Rank number
3106  * @group:              Read/Write Group
3107  * @test_bgn:           Rank at which the test begins
3108  *
3109  * Stage 2: Write Calibration Part One.
3110  *
3111  * This function implements UniPHY calibration Stage 2, as explained in
3112  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3113  */
3114 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3115                                        const u32 test_bgn)
3116 {
3117         int ret;
3118
3119         /* Update info for sims */
3120         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3121
3122         reg_file_set_group(group);
3123         reg_file_set_stage(CAL_STAGE_WRITES);
3124         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3125
3126         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3127         if (ret)
3128                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3129                                         CAL_SUBSTAGE_WRITES_CENTER);
3130
3131         return ret;
3132 }
3133
3134 /**
3135  * mem_precharge_and_activate() - Precharge all banks and activate
3136  *
3137  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3138  */
3139 static void mem_precharge_and_activate(void)
3140 {
3141         int r;
3142
3143         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3144                 /* Set rank. */
3145                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3146
3147                 /* Precharge all banks. */
3148                 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3149                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3150
3151                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3152                 writel(rwcfg->activate_0_and_1_wait1,
3153                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3154
3155                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3156                 writel(rwcfg->activate_0_and_1_wait2,
3157                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3158
3159                 /* Activate rows. */
3160                 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3161                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3162         }
3163 }
3164
3165 /**
3166  * mem_init_latency() - Configure memory RLAT and WLAT settings
3167  *
3168  * Configure memory RLAT and WLAT parameters.
3169  */
3170 static void mem_init_latency(void)
3171 {
3172         /*
3173          * For AV/CV, LFIFO is hardened and always runs at full rate
3174          * so max latency in AFI clocks, used here, is correspondingly
3175          * smaller.
3176          */
3177         const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3178         u32 rlat, wlat;
3179
3180         debug("%s:%d\n", __func__, __LINE__);
3181
3182         /*
3183          * Read in write latency.
3184          * WL for Hard PHY does not include additive latency.
3185          */
3186         wlat = readl(&data_mgr->t_wl_add);
3187         wlat += readl(&data_mgr->mem_t_add);
3188
3189         gbl->rw_wl_nop_cycles = wlat - 1;
3190
3191         /* Read in readl latency. */
3192         rlat = readl(&data_mgr->t_rl_add);
3193
3194         /* Set a pretty high read latency initially. */
3195         gbl->curr_read_lat = rlat + 16;
3196         if (gbl->curr_read_lat > max_latency)
3197                 gbl->curr_read_lat = max_latency;
3198
3199         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3200
3201         /* Advertise write latency. */
3202         writel(wlat, &phy_mgr_cfg->afi_wlat);
3203 }
3204
3205 /**
3206  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3207  *
3208  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3209  */
3210 static void mem_skip_calibrate(void)
3211 {
3212         u32 vfifo_offset;
3213         u32 i, j, r;
3214
3215         debug("%s:%d\n", __func__, __LINE__);
3216         /* Need to update every shadow register set used by the interface */
3217         for (r = 0; r < rwcfg->mem_number_of_ranks;
3218              r += NUM_RANKS_PER_SHADOW_REG) {
3219                 /*
3220                  * Set output phase alignment settings appropriate for
3221                  * skip calibration.
3222                  */
3223                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3224                         scc_mgr_set_dqs_en_phase(i, 0);
3225                         if (iocfg->dll_chain_length == 6)
3226                                 scc_mgr_set_dqdqs_output_phase(i, 6);
3227                         else
3228                                 scc_mgr_set_dqdqs_output_phase(i, 7);
3229                         /*
3230                          * Case:33398
3231                          *
3232                          * Write data arrives to the I/O two cycles before write
3233                          * latency is reached (720 deg).
3234                          *   -> due to bit-slip in a/c bus
3235                          *   -> to allow board skew where dqs is longer than ck
3236                          *      -> how often can this happen!?
3237                          *      -> can claim back some ptaps for high freq
3238                          *       support if we can relax this, but i digress...
3239                          *
3240                          * The write_clk leads mem_ck by 90 deg
3241                          * The minimum ptap of the OPA is 180 deg
3242                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3243                          * The write_clk is always delayed by 2 ptaps
3244                          *
3245                          * Hence, to make DQS aligned to CK, we need to delay
3246                          * DQS by:
3247                          *    (720 - 90 - 180 - 2) *
3248                          *      (360 / iocfg->dll_chain_length)
3249                          *
3250                          * Dividing the above by (360 / iocfg->dll_chain_length)
3251                          * gives us the number of ptaps, which simplies to:
3252                          *
3253                          *    (1.25 * iocfg->dll_chain_length - 2)
3254                          */
3255                         scc_mgr_set_dqdqs_output_phase(i,
3256                                        ((125 * iocfg->dll_chain_length) / 100) - 2);
3257                 }
3258                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3259                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3260
3261                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3262                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3263                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3264                 }
3265                 writel(0xff, &sdr_scc_mgr->dq_ena);
3266                 writel(0xff, &sdr_scc_mgr->dm_ena);
3267                 writel(0, &sdr_scc_mgr->update);
3268         }
3269
3270         /* Compensate for simulation model behaviour */
3271         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3272                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3273                 scc_mgr_load_dqs(i);
3274         }
3275         writel(0, &sdr_scc_mgr->update);
3276
3277         /*
3278          * ArriaV has hard FIFOs that can only be initialized by incrementing
3279          * in sequencer.
3280          */
3281         vfifo_offset = misccfg->calib_vfifo_offset;
3282         for (j = 0; j < vfifo_offset; j++)
3283                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3284         writel(0, &phy_mgr_cmd->fifo_reset);
3285
3286         /*
3287          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3288          * setting from generation-time constant.
3289          */
3290         gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3291         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3292 }
3293
3294 /**
3295  * mem_calibrate() - Memory calibration entry point.
3296  *
3297  * Perform memory calibration.
3298  */
3299 static u32 mem_calibrate(void)
3300 {
3301         u32 i;
3302         u32 rank_bgn, sr;
3303         u32 write_group, write_test_bgn;
3304         u32 read_group, read_test_bgn;
3305         u32 run_groups, current_run;
3306         u32 failing_groups = 0;
3307         u32 group_failed = 0;
3308
3309         const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3310                                 rwcfg->mem_if_write_dqs_width;
3311
3312         debug("%s:%d\n", __func__, __LINE__);
3313
3314         /* Initialize the data settings */
3315         gbl->error_substage = CAL_SUBSTAGE_NIL;
3316         gbl->error_stage = CAL_STAGE_NIL;
3317         gbl->error_group = 0xff;
3318         gbl->fom_in = 0;
3319         gbl->fom_out = 0;
3320
3321         /* Initialize WLAT and RLAT. */
3322         mem_init_latency();
3323
3324         /* Initialize bit slips. */
3325         mem_precharge_and_activate();
3326
3327         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3328                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3329                           SCC_MGR_GROUP_COUNTER_OFFSET);
3330                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3331                 if (i == 0)
3332                         scc_mgr_set_hhp_extras();
3333
3334                 scc_set_bypass_mode(i);
3335         }
3336
3337         /* Calibration is skipped. */
3338         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3339                 /*
3340                  * Set VFIFO and LFIFO to instant-on settings in skip
3341                  * calibration mode.
3342                  */
3343                 mem_skip_calibrate();
3344
3345                 /*
3346                  * Do not remove this line as it makes sure all of our
3347                  * decisions have been applied.
3348                  */
3349                 writel(0, &sdr_scc_mgr->update);
3350                 return 1;
3351         }
3352
3353         /* Calibration is not skipped. */
3354         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3355                 /*
3356                  * Zero all delay chain/phase settings for all
3357                  * groups and all shadow register sets.
3358                  */
3359                 scc_mgr_zero_all();
3360
3361                 run_groups = ~0;
3362
3363                 for (write_group = 0, write_test_bgn = 0; write_group
3364                         < rwcfg->mem_if_write_dqs_width; write_group++,
3365                         write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3366                         /* Initialize the group failure */
3367                         group_failed = 0;
3368
3369                         current_run = run_groups & ((1 <<
3370                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3371                         run_groups = run_groups >>
3372                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3373
3374                         if (current_run == 0)
3375                                 continue;
3376
3377                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3378                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3379                         scc_mgr_zero_group(write_group, 0);
3380
3381                         for (read_group = write_group * rwdqs_ratio,
3382                              read_test_bgn = 0;
3383                              read_group < (write_group + 1) * rwdqs_ratio;
3384                              read_group++,
3385                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3386                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3387                                         continue;
3388
3389                                 /* Calibrate the VFIFO */
3390                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3391                                                                read_test_bgn))
3392                                         continue;
3393
3394                                 if (!(gbl->phy_debug_mode_flags &
3395                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3396                                         return 0;
3397
3398                                 /* The group failed, we're done. */
3399                                 goto grp_failed;
3400                         }
3401
3402                         /* Calibrate the output side */
3403                         for (rank_bgn = 0, sr = 0;
3404                              rank_bgn < rwcfg->mem_number_of_ranks;
3405                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3406                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3407                                         continue;
3408
3409                                 /* Not needed in quick mode! */
3410                                 if (STATIC_CALIB_STEPS &
3411                                     CALIB_SKIP_DELAY_SWEEPS)
3412                                         continue;
3413
3414                                 /* Calibrate WRITEs */
3415                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3416                                                                  write_group,
3417                                                                  write_test_bgn))
3418                                         continue;
3419
3420                                 group_failed = 1;
3421                                 if (!(gbl->phy_debug_mode_flags &
3422                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3423                                         return 0;
3424                         }
3425
3426                         /* Some group failed, we're done. */
3427                         if (group_failed)
3428                                 goto grp_failed;
3429
3430                         for (read_group = write_group * rwdqs_ratio,
3431                              read_test_bgn = 0;
3432                              read_group < (write_group + 1) * rwdqs_ratio;
3433                              read_group++,
3434                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3435                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3436                                         continue;
3437
3438                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3439                                                                     read_test_bgn))
3440                                         continue;
3441
3442                                 if (!(gbl->phy_debug_mode_flags &
3443                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3444                                         return 0;
3445
3446                                 /* The group failed, we're done. */
3447                                 goto grp_failed;
3448                         }
3449
3450                         /* No group failed, continue as usual. */
3451                         continue;
3452
3453 grp_failed:             /* A group failed, increment the counter. */
3454                         failing_groups++;
3455                 }
3456
3457                 /*
3458                  * USER If there are any failing groups then report
3459                  * the failure.
3460                  */
3461                 if (failing_groups != 0)
3462                         return 0;
3463
3464                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3465                         continue;
3466
3467                 /* Calibrate the LFIFO */
3468                 if (!rw_mgr_mem_calibrate_lfifo())
3469                         return 0;
3470         }
3471
3472         /*
3473          * Do not remove this line as it makes sure all of our decisions
3474          * have been applied.
3475          */
3476         writel(0, &sdr_scc_mgr->update);
3477         return 1;
3478 }
3479
3480 /**
3481  * run_mem_calibrate() - Perform memory calibration
3482  *
3483  * This function triggers the entire memory calibration procedure.
3484  */
3485 static int run_mem_calibrate(void)
3486 {
3487         int pass;
3488         u32 ctrl_cfg;
3489
3490         debug("%s:%d\n", __func__, __LINE__);
3491
3492         /* Reset pass/fail status shown on afi_cal_success/fail */
3493         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3494
3495         /* Stop tracking manager. */
3496         ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3497         writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3498                &sdr_ctrl->ctrl_cfg);
3499
3500         phy_mgr_initialize();
3501         rw_mgr_mem_initialize();
3502
3503         /* Perform the actual memory calibration. */
3504         pass = mem_calibrate();
3505
3506         mem_precharge_and_activate();
3507         writel(0, &phy_mgr_cmd->fifo_reset);
3508
3509         /* Handoff. */
3510         rw_mgr_mem_handoff();
3511         /*
3512          * In Hard PHY this is a 2-bit control:
3513          * 0: AFI Mux Select
3514          * 1: DDIO Mux Select
3515          */
3516         writel(0x2, &phy_mgr_cfg->mux_sel);
3517
3518         /* Start tracking manager. */
3519         writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3520
3521         return pass;
3522 }
3523
3524 /**
3525  * debug_mem_calibrate() - Report result of memory calibration
3526  * @pass:       Value indicating whether calibration passed or failed
3527  *
3528  * This function reports the results of the memory calibration
3529  * and writes debug information into the register file.
3530  */
3531 static void debug_mem_calibrate(int pass)
3532 {
3533         u32 debug_info;
3534
3535         if (pass) {
3536                 debug("%s: CALIBRATION PASSED\n", __FILE__);
3537
3538                 gbl->fom_in /= 2;
3539                 gbl->fom_out /= 2;
3540
3541                 if (gbl->fom_in > 0xff)
3542                         gbl->fom_in = 0xff;
3543
3544                 if (gbl->fom_out > 0xff)
3545                         gbl->fom_out = 0xff;
3546
3547                 /* Update the FOM in the register file */
3548                 debug_info = gbl->fom_in;
3549                 debug_info |= gbl->fom_out << 8;
3550                 writel(debug_info, &sdr_reg_file->fom);
3551
3552                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3553                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3554         } else {
3555                 debug("%s: CALIBRATION FAILED\n", __FILE__);
3556
3557                 debug_info = gbl->error_stage;
3558                 debug_info |= gbl->error_substage << 8;
3559                 debug_info |= gbl->error_group << 16;
3560
3561                 writel(debug_info, &sdr_reg_file->failing_stage);
3562                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3563                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3564
3565                 /* Update the failing group/stage in the register file */
3566                 debug_info = gbl->error_stage;
3567                 debug_info |= gbl->error_substage << 8;
3568                 debug_info |= gbl->error_group << 16;
3569                 writel(debug_info, &sdr_reg_file->failing_stage);
3570         }
3571
3572         debug("%s: Calibration complete\n", __FILE__);
3573 }
3574
3575 /**
3576  * hc_initialize_rom_data() - Initialize ROM data
3577  *
3578  * Initialize ROM data.
3579  */
3580 static void hc_initialize_rom_data(void)
3581 {
3582         unsigned int nelem = 0;
3583         const u32 *rom_init;
3584         u32 i, addr;
3585
3586         socfpga_get_seq_inst_init(&rom_init, &nelem);
3587         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3588         for (i = 0; i < nelem; i++)
3589                 writel(rom_init[i], addr + (i << 2));
3590
3591         socfpga_get_seq_ac_init(&rom_init, &nelem);
3592         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3593         for (i = 0; i < nelem; i++)
3594                 writel(rom_init[i], addr + (i << 2));
3595 }
3596
3597 /**
3598  * initialize_reg_file() - Initialize SDR register file
3599  *
3600  * Initialize SDR register file.
3601  */
3602 static void initialize_reg_file(void)
3603 {
3604         /* Initialize the register file with the correct data */
3605         writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3606         writel(0, &sdr_reg_file->debug_data_addr);
3607         writel(0, &sdr_reg_file->cur_stage);
3608         writel(0, &sdr_reg_file->fom);
3609         writel(0, &sdr_reg_file->failing_stage);
3610         writel(0, &sdr_reg_file->debug1);
3611         writel(0, &sdr_reg_file->debug2);
3612 }
3613
3614 /**
3615  * initialize_hps_phy() - Initialize HPS PHY
3616  *
3617  * Initialize HPS PHY.
3618  */
3619 static void initialize_hps_phy(void)
3620 {
3621         u32 reg;
3622         /*
3623          * Tracking also gets configured here because it's in the
3624          * same register.
3625          */
3626         u32 trk_sample_count = 7500;
3627         u32 trk_long_idle_sample_count = (10 << 16) | 100;
3628         /*
3629          * Format is number of outer loops in the 16 MSB, sample
3630          * count in 16 LSB.
3631          */
3632
3633         reg = 0;
3634         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3635         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3637         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3638         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3639         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3640         /*
3641          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3642          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3643          */
3644         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3645         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3646                 trk_sample_count);
3647         writel(reg, &sdr_ctrl->phy_ctrl0);
3648
3649         reg = 0;
3650         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3651                 trk_sample_count >>
3652                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3653         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3654                 trk_long_idle_sample_count);
3655         writel(reg, &sdr_ctrl->phy_ctrl1);
3656
3657         reg = 0;
3658         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3659                 trk_long_idle_sample_count >>
3660                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3661         writel(reg, &sdr_ctrl->phy_ctrl2);
3662 }
3663
3664 /**
3665  * initialize_tracking() - Initialize tracking
3666  *
3667  * Initialize the register file with usable initial data.
3668  */
3669 static void initialize_tracking(void)
3670 {
3671         /*
3672          * Initialize the register file with the correct data.
3673          * Compute usable version of value in case we skip full
3674          * computation later.
3675          */
3676         writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3677                             iocfg->delay_per_dchain_tap) - 1,
3678                &sdr_reg_file->dtaps_per_ptap);
3679
3680         /* trk_sample_count */
3681         writel(7500, &sdr_reg_file->trk_sample_count);
3682
3683         /* longidle outer loop [15:0] */
3684         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3685
3686         /*
3687          * longidle sample count [31:24]
3688          * trfc, worst case of 933Mhz 4Gb [23:16]
3689          * trcd, worst case [15:8]
3690          * vfifo wait [7:0]
3691          */
3692         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3693                &sdr_reg_file->delays);
3694
3695         /* mux delay */
3696         writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3697                (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3698                &sdr_reg_file->trk_rw_mgr_addr);
3699
3700         writel(rwcfg->mem_if_read_dqs_width,
3701                &sdr_reg_file->trk_read_dqs_width);
3702
3703         /* trefi [7:0] */
3704         writel((rwcfg->refresh_all << 24) | (1000 << 0),
3705                &sdr_reg_file->trk_rfsh);
3706 }
3707
3708 int sdram_calibration_full(void)
3709 {
3710         struct param_type my_param;
3711         struct gbl_type my_gbl;
3712         u32 pass;
3713
3714         memset(&my_param, 0, sizeof(my_param));
3715         memset(&my_gbl, 0, sizeof(my_gbl));
3716
3717         param = &my_param;
3718         gbl = &my_gbl;
3719
3720         rwcfg = socfpga_get_sdram_rwmgr_config();
3721         iocfg = socfpga_get_sdram_io_config();
3722         misccfg = socfpga_get_sdram_misc_config();
3723
3724         /* Set the calibration enabled by default */
3725         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3726         /*
3727          * Only sweep all groups (regardless of fail state) by default
3728          * Set enabled read test by default.
3729          */
3730 #if DISABLE_GUARANTEED_READ
3731         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3732 #endif
3733         /* Initialize the register file */
3734         initialize_reg_file();
3735
3736         /* Initialize any PHY CSR */
3737         initialize_hps_phy();
3738
3739         scc_mgr_initialize();
3740
3741         initialize_tracking();
3742
3743         debug("%s: Preparing to start memory calibration\n", __FILE__);
3744
3745         debug("%s:%d\n", __func__, __LINE__);
3746         debug_cond(DLEVEL >= 1,
3747                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3748                    rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3749                    rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3750                    rwcfg->mem_virtual_groups_per_read_dqs,
3751                    rwcfg->mem_virtual_groups_per_write_dqs);
3752         debug_cond(DLEVEL >= 1,
3753                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3754                    rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3755                    rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3756                    iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3757         debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3758                    iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3759         debug_cond(DLEVEL >= 1,
3760                    "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3761                    iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3762                    iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3763         debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3764                    iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3765                    iocfg->io_out2_delay_max);
3766         debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3767                    iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3768
3769         hc_initialize_rom_data();
3770
3771         /* update info for sims */
3772         reg_file_set_stage(CAL_STAGE_NIL);
3773         reg_file_set_group(0);
3774
3775         /*
3776          * Load global needed for those actions that require
3777          * some dynamic calibration support.
3778          */
3779         dyn_calib_steps = STATIC_CALIB_STEPS;
3780         /*
3781          * Load global to allow dynamic selection of delay loop settings
3782          * based on calibration mode.
3783          */
3784         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3785                 skip_delay_mask = 0xff;
3786         else
3787                 skip_delay_mask = 0x0;
3788
3789         pass = run_mem_calibrate();
3790         debug_mem_calibrate(pass);
3791         return pass;
3792 }