]> git.sur5r.net Git - u-boot/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up scc manager function args
[u-boot] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
32
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35
36 static struct socfpga_data_mgr *data_mgr =
37         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
38
39 static struct socfpga_sdr_ctrl *sdr_ctrl =
40         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
41
42 #define DELTA_D         1
43
44 /*
45  * In order to reduce ROM size, most of the selectable calibration steps are
46  * decided at compile time based on the user's calibration mode selection,
47  * as captured by the STATIC_CALIB_STEPS selection below.
48  *
49  * However, to support simulation-time selection of fast simulation mode, where
50  * we skip everything except the bare minimum, we need a few of the steps to
51  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
52  * check, which is based on the rtl-supplied value, or we dynamically compute
53  * the value to use based on the dynamically-chosen calibration mode
54  */
55
56 #define DLEVEL 0
57 #define STATIC_IN_RTL_SIM 0
58 #define STATIC_SKIP_DELAY_LOOPS 0
59
60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
61         STATIC_SKIP_DELAY_LOOPS)
62
63 /* calibration steps requested by the rtl */
64 uint16_t dyn_calib_steps;
65
66 /*
67  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
68  * instead of static, we use boolean logic to select between
69  * non-skip and skip values
70  *
71  * The mask is set to include all bits when not-skipping, but is
72  * zero when skipping
73  */
74
75 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
76
77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
78         ((non_skip_value) & skip_delay_mask)
79
80 struct gbl_type *gbl;
81 struct param_type *param;
82 uint32_t curr_shadow_reg;
83
84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
85         uint32_t write_group, uint32_t use_dm,
86         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
87
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89         uint32_t substage)
90 {
91         /*
92          * Only set the global stage if there was not been any other
93          * failing group
94          */
95         if (gbl->error_stage == CAL_STAGE_NIL)  {
96                 gbl->error_substage = substage;
97                 gbl->error_stage = stage;
98                 gbl->error_group = group;
99         }
100 }
101
102 static void reg_file_set_group(u16 set_group)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106
107 static void reg_file_set_stage(u8 set_stage)
108 {
109         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114         set_sub_stage &= 0xff;
115         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117
118 static void initialize(void)
119 {
120         debug("%s:%d\n", __func__, __LINE__);
121         /* USER calibration has control over path to memory */
122         /*
123          * In Hard PHY this is a 2-bit control:
124          * 0: AFI Mux Select
125          * 1: DDIO Mux Select
126          */
127         writel(0x3, &phy_mgr_cfg->mux_sel);
128
129         /* USER memory clock is not stable we begin initialization  */
130         writel(0, &phy_mgr_cfg->reset_mem_stbl);
131
132         /* USER calibration status all set to zero */
133         writel(0, &phy_mgr_cfg->cal_status);
134
135         writel(0, &phy_mgr_cfg->cal_debug_info);
136
137         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
138                 param->read_correct_mask_vg  = ((uint32_t)1 <<
139                         (RW_MGR_MEM_DQ_PER_READ_DQS /
140                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
141                 param->write_correct_mask_vg = ((uint32_t)1 <<
142                         (RW_MGR_MEM_DQ_PER_READ_DQS /
143                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
144                 param->read_correct_mask     = ((uint32_t)1 <<
145                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
146                 param->write_correct_mask    = ((uint32_t)1 <<
147                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
148                 param->dm_correct_mask       = ((uint32_t)1 <<
149                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
150                         - 1;
151         }
152 }
153
154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
155 {
156         uint32_t odt_mask_0 = 0;
157         uint32_t odt_mask_1 = 0;
158         uint32_t cs_and_odt_mask;
159
160         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
161                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
162                         /*
163                          * 1 Rank
164                          * Read: ODT = 0
165                          * Write: ODT = 1
166                          */
167                         odt_mask_0 = 0x0;
168                         odt_mask_1 = 0x1;
169                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
170                         /* 2 Ranks */
171                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
172                                 /* - Dual-Slot , Single-Rank
173                                  * (1 chip-select per DIMM)
174                                  * OR
175                                  * - RDIMM, 4 total CS (2 CS per DIMM)
176                                  * means 2 DIMM
177                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
178                                  * both single rank
179                                  * with 2 CS each (special for RDIMM)
180                                  * Read: Turn on ODT on the opposite rank
181                                  * Write: Turn on ODT on all ranks
182                                  */
183                                 odt_mask_0 = 0x3 & ~(1 << rank);
184                                 odt_mask_1 = 0x3;
185                         } else {
186                                 /*
187                                  * USER - Single-Slot , Dual-rank DIMMs
188                                  * (2 chip-selects per DIMM)
189                                  * USER Read: Turn on ODT off on all ranks
190                                  * USER Write: Turn on ODT on active rank
191                                  */
192                                 odt_mask_0 = 0x0;
193                                 odt_mask_1 = 0x3 & (1 << rank);
194                         }
195                 } else {
196                         /* 4 Ranks
197                          * Read:
198                          * ----------+-----------------------+
199                          *           |                       |
200                          *           |         ODT           |
201                          * Read From +-----------------------+
202                          *   Rank    |  3  |  2  |  1  |  0  |
203                          * ----------+-----+-----+-----+-----+
204                          *     0     |  0  |  1  |  0  |  0  |
205                          *     1     |  1  |  0  |  0  |  0  |
206                          *     2     |  0  |  0  |  0  |  1  |
207                          *     3     |  0  |  0  |  1  |  0  |
208                          * ----------+-----+-----+-----+-----+
209                          *
210                          * Write:
211                          * ----------+-----------------------+
212                          *           |                       |
213                          *           |         ODT           |
214                          * Write To  +-----------------------+
215                          *   Rank    |  3  |  2  |  1  |  0  |
216                          * ----------+-----+-----+-----+-----+
217                          *     0     |  0  |  1  |  0  |  1  |
218                          *     1     |  1  |  0  |  1  |  0  |
219                          *     2     |  0  |  1  |  0  |  1  |
220                          *     3     |  1  |  0  |  1  |  0  |
221                          * ----------+-----+-----+-----+-----+
222                          */
223                         switch (rank) {
224                         case 0:
225                                 odt_mask_0 = 0x4;
226                                 odt_mask_1 = 0x5;
227                                 break;
228                         case 1:
229                                 odt_mask_0 = 0x8;
230                                 odt_mask_1 = 0xA;
231                                 break;
232                         case 2:
233                                 odt_mask_0 = 0x1;
234                                 odt_mask_1 = 0x5;
235                                 break;
236                         case 3:
237                                 odt_mask_0 = 0x2;
238                                 odt_mask_1 = 0xA;
239                                 break;
240                         }
241                 }
242         } else {
243                 odt_mask_0 = 0x0;
244                 odt_mask_1 = 0x0;
245         }
246
247         cs_and_odt_mask =
248                 (0xFF & ~(1 << rank)) |
249                 ((0xFF & odt_mask_0) << 8) |
250                 ((0xFF & odt_mask_1) << 16);
251         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
252                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
253 }
254
255 static void scc_mgr_initialize(void)
256 {
257         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET;
258
259         /*
260          * Clear register file for HPS
261          * 16 (2^4) is the size of the full register file in the scc mgr:
262          *      RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
263          * MEM_IF_READ_DQS_WIDTH - 1) + 1;
264          */
265         uint32_t i;
266         for (i = 0; i < 16; i++) {
267                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
268                            __func__, __LINE__, i);
269                 writel(0, addr + (i << 2));
270         }
271 }
272
273 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
274                                                 uint32_t delay)
275 {
276         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
277
278         /* Load the setting in the SCC manager */
279         writel(delay, addr + (read_group << 2));
280 }
281
282 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
283         uint32_t delay)
284 {
285         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
286
287         writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
288 }
289
290 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
291 {
292         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET;
293
294         /* Load the setting in the SCC manager */
295         writel(phase, addr + (read_group << 2));
296 }
297
298 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
299                                                uint32_t phase)
300 {
301         uint32_t r;
302         uint32_t update_scan_chains;
303
304         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
305              r += NUM_RANKS_PER_SHADOW_REG) {
306                 /*
307                  * USER although the h/w doesn't support different phases per
308                  * shadow register, for simplicity our scc manager modeling
309                  * keeps different phase settings per shadow reg, and it's
310                  * important for us to keep them in sync to match h/w.
311                  * for efficiency, the scan chain update should occur only
312                  * once to sr0.
313                  */
314                 update_scan_chains = (r == 0) ? 1 : 0;
315
316                 scc_mgr_set_dqs_en_phase(read_group, phase);
317
318                 if (update_scan_chains) {
319                         writel(read_group, &sdr_scc_mgr->dqs_ena);
320                         writel(0, &sdr_scc_mgr->update);
321                 }
322         }
323 }
324
325 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
326                                                   uint32_t phase)
327 {
328         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET;
329
330         /* Load the setting in the SCC manager */
331         writel(phase, addr + (write_group << 2));
332 }
333
334 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
335                                                      uint32_t phase)
336 {
337         uint32_t r;
338         uint32_t update_scan_chains;
339
340         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
341              r += NUM_RANKS_PER_SHADOW_REG) {
342                 /*
343                  * USER although the h/w doesn't support different phases per
344                  * shadow register, for simplicity our scc manager modeling
345                  * keeps different phase settings per shadow reg, and it's
346                  * important for us to keep them in sync to match h/w.
347                  * for efficiency, the scan chain update should occur only
348                  * once to sr0.
349                  */
350                 update_scan_chains = (r == 0) ? 1 : 0;
351
352                 scc_mgr_set_dqdqs_output_phase(write_group, phase);
353
354                 if (update_scan_chains) {
355                         writel(write_group, &sdr_scc_mgr->dqs_ena);
356                         writel(0, &sdr_scc_mgr->update);
357                 }
358         }
359 }
360
361 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
362 {
363         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET;
364
365         /* Load the setting in the SCC manager */
366         writel(delay + IO_DQS_EN_DELAY_OFFSET, addr +
367                (read_group << 2));
368 }
369
370 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
371                                                uint32_t delay)
372 {
373         uint32_t r;
374
375         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
376                 r += NUM_RANKS_PER_SHADOW_REG) {
377                 scc_mgr_set_dqs_en_delay(read_group, delay);
378
379                 writel(read_group, &sdr_scc_mgr->dqs_ena);
380                 /*
381                  * In shadow register mode, the T11 settings are stored in
382                  * registers in the core, which are updated by the DQS_ENA
383                  * signals. Not issuing the SCC_MGR_UPD command allows us to
384                  * save lots of rank switching overhead, by calling
385                  * select_shadow_regs_for_update with update_scan_chains
386                  * set to 0.
387                  */
388                 writel(0, &sdr_scc_mgr->update);
389         }
390         /*
391          * In shadow register mode, the T11 settings are stored in
392          * registers in the core, which are updated by the DQS_ENA
393          * signals. Not issuing the SCC_MGR_UPD command allows us to
394          * save lots of rank switching overhead, by calling
395          * select_shadow_regs_for_update with update_scan_chains
396          * set to 0.
397          */
398         writel(0, &sdr_scc_mgr->update);
399 }
400
401 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
402 {
403         uint32_t read_group;
404         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET;
405
406         /*
407          * Load the setting in the SCC manager
408          * Although OCT affects only write data, the OCT delay is controlled
409          * by the DQS logic block which is instantiated once per read group.
410          * For protocols where a write group consists of multiple read groups,
411          * the setting must be set multiple times.
412          */
413         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
414              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
415              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
416              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
417                 writel(delay, addr + (read_group << 2));
418 }
419
420 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
421 {
422         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
423
424         /* Load the setting in the SCC manager */
425         writel(delay, addr + (dq_in_group << 2));
426 }
427
428 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
429 {
430         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
431
432         /* Load the setting in the SCC manager */
433         writel(delay, addr + (dq_in_group << 2));
434 }
435
436 static void scc_mgr_set_hhp_extras(void)
437 {
438         /*
439          * Load the fixed setting in the SCC manager
440          * bits: 0:0 = 1'b1   - dqs bypass
441          * bits: 1:1 = 1'b1   - dq bypass
442          * bits: 4:2 = 3'b001   - rfifo_mode
443          * bits: 6:5 = 2'b01  - rfifo clock_select
444          * bits: 7:7 = 1'b0  - separate gating from ungating setting
445          * bits: 8:8 = 1'b0  - separate OE from Output delay setting
446          */
447         uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
448         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
449
450         writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
451 }
452
453 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
454                                               uint32_t delay)
455 {
456         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
457
458         /* Load the setting in the SCC manager */
459         writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
460 }
461
462 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
463 {
464         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
465
466         /* Load the setting in the SCC manager */
467         writel(delay, addr +
468                 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
469 }
470
471 /*
472  * USER Zero all DQS config
473  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
474  */
475 static void scc_mgr_zero_all(void)
476 {
477         uint32_t i, r;
478
479         /*
480          * USER Zero all DQS config settings, across all groups and all
481          * shadow registers
482          */
483         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
484              NUM_RANKS_PER_SHADOW_REG) {
485                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
486                         /*
487                          * The phases actually don't exist on a per-rank basis,
488                          * but there's no harm updating them several times, so
489                          * let's keep the code simple.
490                          */
491                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
492                         scc_mgr_set_dqs_en_phase(i, 0);
493                         scc_mgr_set_dqs_en_delay(i, 0);
494                 }
495
496                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
497                         scc_mgr_set_dqdqs_output_phase(i, 0);
498                         /* av/cv don't have out2 */
499                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
500                 }
501         }
502
503         /* multicast to all DQS group enables */
504         writel(0xff, &sdr_scc_mgr->dqs_ena);
505         writel(0, &sdr_scc_mgr->update);
506 }
507
508 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
509 {
510         /* mode = 0 : Do NOT bypass - Half Rate Mode */
511         /* mode = 1 : Bypass - Full Rate Mode */
512
513         /* only need to set once for all groups, pins, dq, dqs, dm */
514         if (write_group == 0) {
515                 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
516                            __LINE__);
517                 scc_mgr_set_hhp_extras();
518                 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
519                           __func__, __LINE__);
520         }
521         /* multicast to all DQ enables */
522         writel(0xff, &sdr_scc_mgr->dq_ena);
523         writel(0xff, &sdr_scc_mgr->dm_ena);
524
525         /* update current DQS IO enable */
526         writel(0, &sdr_scc_mgr->dqs_io_ena);
527
528         /* update the DQS logic */
529         writel(write_group, &sdr_scc_mgr->dqs_ena);
530
531         /* hit update */
532         writel(0, &sdr_scc_mgr->update);
533 }
534
535 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
536                                int32_t out_only)
537 {
538         uint32_t i, r;
539
540         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
541                 NUM_RANKS_PER_SHADOW_REG) {
542                 /* Zero all DQ config settings */
543                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
544                         scc_mgr_set_dq_out1_delay(i, 0);
545                         if (!out_only)
546                                 scc_mgr_set_dq_in_delay(i, 0);
547                 }
548
549                 /* multicast to all DQ enables */
550                 writel(0xff, &sdr_scc_mgr->dq_ena);
551
552                 /* Zero all DM config settings */
553                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
554                         scc_mgr_set_dm_out1_delay(i, 0);
555                 }
556
557                 /* multicast to all DM enables */
558                 writel(0xff, &sdr_scc_mgr->dm_ena);
559
560                 /* zero all DQS io settings */
561                 if (!out_only)
562                         scc_mgr_set_dqs_io_in_delay(write_group, 0);
563                 /* av/cv don't have out2 */
564                 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
565                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
566                 scc_mgr_load_dqs_for_write_group(write_group);
567
568                 /* multicast to all DQS IO enables (only 1) */
569                 writel(0, &sdr_scc_mgr->dqs_io_ena);
570
571                 /* hit update to zero everything */
572                 writel(0, &sdr_scc_mgr->update);
573         }
574 }
575
576 /* load up dqs config settings */
577 static void scc_mgr_load_dqs(uint32_t dqs)
578 {
579         writel(dqs, &sdr_scc_mgr->dqs_ena);
580 }
581
582 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
583 {
584         uint32_t read_group;
585         uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
586         /*
587          * Although OCT affects only write data, the OCT delay is controlled
588          * by the DQS logic block which is instantiated once per read group.
589          * For protocols where a write group consists of multiple read groups,
590          * the setting must be scanned multiple times.
591          */
592         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
593              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
594              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
595              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
596                 writel(read_group, addr);
597 }
598
599 /* load up dqs io config settings */
600 static void scc_mgr_load_dqs_io(void)
601 {
602         writel(0, &sdr_scc_mgr->dqs_io_ena);
603 }
604
605 /* load up dq config settings */
606 static void scc_mgr_load_dq(uint32_t dq_in_group)
607 {
608         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
609 }
610
611 /* load up dm config settings */
612 static void scc_mgr_load_dm(uint32_t dm)
613 {
614         writel(dm, &sdr_scc_mgr->dm_ena);
615 }
616
617 /*
618  * apply and load a particular input delay for the DQ pins in a group
619  * group_bgn is the index of the first dq pin (in the write group)
620  */
621 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
622                                             uint32_t group_bgn, uint32_t delay)
623 {
624         uint32_t i, p;
625
626         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627                 scc_mgr_set_dq_in_delay(p, delay);
628                 scc_mgr_load_dq(p);
629         }
630 }
631
632 /* apply and load a particular output delay for the DQ pins in a group */
633 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
634                                               uint32_t group_bgn,
635                                               uint32_t delay1)
636 {
637         uint32_t i, p;
638
639         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
640                 scc_mgr_set_dq_out1_delay(i, delay1);
641                 scc_mgr_load_dq(i);
642         }
643 }
644
645 /* apply and load a particular output delay for the DM pins in a group */
646 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
647                                               uint32_t delay1)
648 {
649         uint32_t i;
650
651         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
652                 scc_mgr_set_dm_out1_delay(i, delay1);
653                 scc_mgr_load_dm(i);
654         }
655 }
656
657
658 /* apply and load delay on both DQS and OCT out1 */
659 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
660                                                     uint32_t delay)
661 {
662         scc_mgr_set_dqs_out1_delay(write_group, delay);
663         scc_mgr_load_dqs_io();
664
665         scc_mgr_set_oct_out1_delay(write_group, delay);
666         scc_mgr_load_dqs_for_write_group(write_group);
667 }
668
669 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
670 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
671                                                   uint32_t group_bgn,
672                                                   uint32_t delay)
673 {
674         uint32_t i, p, new_delay;
675
676         /* dq shift */
677         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
678                 new_delay = READ_SCC_DQ_OUT2_DELAY;
679                 new_delay += delay;
680
681                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
682                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
683                                    %u > %lu => %lu", __func__, __LINE__,
684                                    write_group, group_bgn, delay, i, p, new_delay,
685                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
686                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
687                         new_delay = IO_IO_OUT2_DELAY_MAX;
688                 }
689
690                 scc_mgr_load_dq(i);
691         }
692
693         /* dm shift */
694         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
695                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
696                 new_delay += delay;
697
698                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
699                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
700                                    %u > %lu => %lu\n",  __func__, __LINE__,
701                                    write_group, group_bgn, delay, i, new_delay,
702                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
703                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
704                         new_delay = IO_IO_OUT2_DELAY_MAX;
705                 }
706
707                 scc_mgr_load_dm(i);
708         }
709
710         /* dqs shift */
711         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
712         new_delay += delay;
713
714         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
715                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
716                            " adding %u to OUT1\n", __func__, __LINE__,
717                            write_group, group_bgn, delay, new_delay,
718                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
719                            new_delay - IO_IO_OUT2_DELAY_MAX);
720                 scc_mgr_set_dqs_out1_delay(write_group, new_delay -
721                                            IO_IO_OUT2_DELAY_MAX);
722                 new_delay = IO_IO_OUT2_DELAY_MAX;
723         }
724
725         scc_mgr_load_dqs_io();
726
727         /* oct shift */
728         new_delay = READ_SCC_OCT_OUT2_DELAY;
729         new_delay += delay;
730
731         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
732                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
733                            " adding %u to OUT1\n", __func__, __LINE__,
734                            write_group, group_bgn, delay, new_delay,
735                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
736                            new_delay - IO_IO_OUT2_DELAY_MAX);
737                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
738                                            IO_IO_OUT2_DELAY_MAX);
739                 new_delay = IO_IO_OUT2_DELAY_MAX;
740         }
741
742         scc_mgr_load_dqs_for_write_group(write_group);
743 }
744
745 /*
746  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
747  * and to all ranks
748  */
749 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
750         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
751 {
752         uint32_t r;
753
754         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
755                 r += NUM_RANKS_PER_SHADOW_REG) {
756                 scc_mgr_apply_group_all_out_delay_add(write_group,
757                                                       group_bgn, delay);
758                 writel(0, &sdr_scc_mgr->update);
759         }
760 }
761
762 /* optimization used to recover some slots in ddr3 inst_rom */
763 /* could be applied to other protocols if we wanted to */
764 static void set_jump_as_return(void)
765 {
766         /*
767          * to save space, we replace return with jump to special shared
768          * RETURN instruction so we set the counter to large value so that
769          * we always jump
770          */
771         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
772         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
773 }
774
775 /*
776  * should always use constants as argument to ensure all computations are
777  * performed at compile time
778  */
779 static void delay_for_n_mem_clocks(const uint32_t clocks)
780 {
781         uint32_t afi_clocks;
782         uint8_t inner = 0;
783         uint8_t outer = 0;
784         uint16_t c_loop = 0;
785
786         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
787
788
789         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
790         /* scale (rounding up) to get afi clocks */
791
792         /*
793          * Note, we don't bother accounting for being off a little bit
794          * because of a few extra instructions in outer loops
795          * Note, the loops have a test at the end, and do the test before
796          * the decrement, and so always perform the loop
797          * 1 time more than the counter value
798          */
799         if (afi_clocks == 0) {
800                 ;
801         } else if (afi_clocks <= 0x100) {
802                 inner = afi_clocks-1;
803                 outer = 0;
804                 c_loop = 0;
805         } else if (afi_clocks <= 0x10000) {
806                 inner = 0xff;
807                 outer = (afi_clocks-1) >> 8;
808                 c_loop = 0;
809         } else {
810                 inner = 0xff;
811                 outer = 0xff;
812                 c_loop = (afi_clocks-1) >> 16;
813         }
814
815         /*
816          * rom instructions are structured as follows:
817          *
818          *    IDLE_LOOP2: jnz cntr0, TARGET_A
819          *    IDLE_LOOP1: jnz cntr1, TARGET_B
820          *                return
821          *
822          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
823          * TARGET_B is set to IDLE_LOOP2 as well
824          *
825          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
826          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
827          *
828          * a little confusing, but it helps save precious space in the inst_rom
829          * and sequencer rom and keeps the delays more accurate and reduces
830          * overhead
831          */
832         if (afi_clocks <= 0x100) {
833                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
834                         &sdr_rw_load_mgr_regs->load_cntr1);
835
836                 writel(RW_MGR_IDLE_LOOP1,
837                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
838
839                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
840                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
841         } else {
842                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
843                         &sdr_rw_load_mgr_regs->load_cntr0);
844
845                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
846                         &sdr_rw_load_mgr_regs->load_cntr1);
847
848                 writel(RW_MGR_IDLE_LOOP2,
849                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
850
851                 writel(RW_MGR_IDLE_LOOP2,
852                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
853
854                 /* hack to get around compiler not being smart enough */
855                 if (afi_clocks <= 0x10000) {
856                         /* only need to run once */
857                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
858                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
859                 } else {
860                         do {
861                                 writel(RW_MGR_IDLE_LOOP2,
862                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
863                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
864                         } while (c_loop-- != 0);
865                 }
866         }
867         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
868 }
869
870 static void rw_mgr_mem_initialize(void)
871 {
872         uint32_t r;
873         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
874                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
875
876         debug("%s:%d\n", __func__, __LINE__);
877
878         /* The reset / cke part of initialization is broadcasted to all ranks */
879         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
880                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
881
882         /*
883          * Here's how you load register for a loop
884          * Counters are located @ 0x800
885          * Jump address are located @ 0xC00
886          * For both, registers 0 to 3 are selected using bits 3 and 2, like
887          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
888          * I know this ain't pretty, but Avalon bus throws away the 2 least
889          * significant bits
890          */
891
892         /* start with memory RESET activated */
893
894         /* tINIT = 200us */
895
896         /*
897          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
898          * If a and b are the number of iteration in 2 nested loops
899          * it takes the following number of cycles to complete the operation:
900          * number_of_cycles = ((2 + n) * a + 2) * b
901          * where n is the number of instruction in the inner loop
902          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
903          * b = 6A
904          */
905
906         /* Load counters */
907         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
908                &sdr_rw_load_mgr_regs->load_cntr0);
909         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
910                &sdr_rw_load_mgr_regs->load_cntr1);
911         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
912                &sdr_rw_load_mgr_regs->load_cntr2);
913
914         /* Load jump address */
915         writel(RW_MGR_INIT_RESET_0_CKE_0,
916                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
917         writel(RW_MGR_INIT_RESET_0_CKE_0,
918                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
919         writel(RW_MGR_INIT_RESET_0_CKE_0,
920                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
921
922         /* Execute count instruction */
923         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
924
925         /* indicate that memory is stable */
926         writel(1, &phy_mgr_cfg->reset_mem_stbl);
927
928         /*
929          * transition the RESET to high
930          * Wait for 500us
931          */
932
933         /*
934          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
935          * If a and b are the number of iteration in 2 nested loops
936          * it takes the following number of cycles to complete the operation
937          * number_of_cycles = ((2 + n) * a + 2) * b
938          * where n is the number of instruction in the inner loop
939          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
940          * b = FF
941          */
942
943         /* Load counters */
944         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
945                &sdr_rw_load_mgr_regs->load_cntr0);
946         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
947                &sdr_rw_load_mgr_regs->load_cntr1);
948         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
949                &sdr_rw_load_mgr_regs->load_cntr2);
950
951         /* Load jump address */
952         writel(RW_MGR_INIT_RESET_1_CKE_0,
953                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
954         writel(RW_MGR_INIT_RESET_1_CKE_0,
955                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
956         writel(RW_MGR_INIT_RESET_1_CKE_0,
957                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
958
959         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
960
961         /* bring up clock enable */
962
963         /* tXRP < 250 ck cycles */
964         delay_for_n_mem_clocks(250);
965
966         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
967                 if (param->skip_ranks[r]) {
968                         /* request to skip the rank */
969                         continue;
970                 }
971
972                 /* set rank */
973                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
974
975                 /*
976                  * USER Use Mirror-ed commands for odd ranks if address
977                  * mirrorring is on
978                  */
979                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
980                         set_jump_as_return();
981                         writel(RW_MGR_MRS2_MIRR, grpaddr);
982                         delay_for_n_mem_clocks(4);
983                         set_jump_as_return();
984                         writel(RW_MGR_MRS3_MIRR, grpaddr);
985                         delay_for_n_mem_clocks(4);
986                         set_jump_as_return();
987                         writel(RW_MGR_MRS1_MIRR, grpaddr);
988                         delay_for_n_mem_clocks(4);
989                         set_jump_as_return();
990                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
991                 } else {
992                         set_jump_as_return();
993                         writel(RW_MGR_MRS2, grpaddr);
994                         delay_for_n_mem_clocks(4);
995                         set_jump_as_return();
996                         writel(RW_MGR_MRS3, grpaddr);
997                         delay_for_n_mem_clocks(4);
998                         set_jump_as_return();
999                         writel(RW_MGR_MRS1, grpaddr);
1000                         set_jump_as_return();
1001                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
1002                 }
1003                 set_jump_as_return();
1004                 writel(RW_MGR_ZQCL, grpaddr);
1005
1006                 /* tZQinit = tDLLK = 512 ck cycles */
1007                 delay_for_n_mem_clocks(512);
1008         }
1009 }
1010
1011 /*
1012  * At the end of calibration we have to program the user settings in, and
1013  * USER  hand off the memory to the user.
1014  */
1015 static void rw_mgr_mem_handoff(void)
1016 {
1017         uint32_t r;
1018         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1019                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1020
1021         debug("%s:%d\n", __func__, __LINE__);
1022         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1023                 if (param->skip_ranks[r])
1024                         /* request to skip the rank */
1025                         continue;
1026                 /* set rank */
1027                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1028
1029                 /* precharge all banks ... */
1030                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1031
1032                 /* load up MR settings specified by user */
1033
1034                 /*
1035                  * Use Mirror-ed commands for odd ranks if address
1036                  * mirrorring is on
1037                  */
1038                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1039                         set_jump_as_return();
1040                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1041                         delay_for_n_mem_clocks(4);
1042                         set_jump_as_return();
1043                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1044                         delay_for_n_mem_clocks(4);
1045                         set_jump_as_return();
1046                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1047                         delay_for_n_mem_clocks(4);
1048                         set_jump_as_return();
1049                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1050                 } else {
1051                         set_jump_as_return();
1052                         writel(RW_MGR_MRS2, grpaddr);
1053                         delay_for_n_mem_clocks(4);
1054                         set_jump_as_return();
1055                         writel(RW_MGR_MRS3, grpaddr);
1056                         delay_for_n_mem_clocks(4);
1057                         set_jump_as_return();
1058                         writel(RW_MGR_MRS1, grpaddr);
1059                         delay_for_n_mem_clocks(4);
1060                         set_jump_as_return();
1061                         writel(RW_MGR_MRS0_USER, grpaddr);
1062                 }
1063                 /*
1064                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1065                  * other commands, but we will have plenty of NIOS cycles before
1066                  * actual handoff so its okay.
1067                  */
1068         }
1069 }
1070
1071 /*
1072  * performs a guaranteed read on the patterns we are going to use during a
1073  * read test to ensure memory works
1074  */
1075 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1076         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1077         uint32_t all_ranks)
1078 {
1079         uint32_t r, vg;
1080         uint32_t correct_mask_vg;
1081         uint32_t tmp_bit_chk;
1082         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1083                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1084         uint32_t addr;
1085         uint32_t base_rw_mgr;
1086
1087         *bit_chk = param->read_correct_mask;
1088         correct_mask_vg = param->read_correct_mask_vg;
1089
1090         for (r = rank_bgn; r < rank_end; r++) {
1091                 if (param->skip_ranks[r])
1092                         /* request to skip the rank */
1093                         continue;
1094
1095                 /* set rank */
1096                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1097
1098                 /* Load up a constant bursts of read commands */
1099                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1100                 writel(RW_MGR_GUARANTEED_READ,
1101                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1102
1103                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1104                 writel(RW_MGR_GUARANTEED_READ_CONT,
1105                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1106
1107                 tmp_bit_chk = 0;
1108                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1109                         /* reset the fifos to get pointers to known state */
1110
1111                         writel(0, &phy_mgr_cmd->fifo_reset);
1112                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1113                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1114
1115                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1116                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1117
1118                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1119                         writel(RW_MGR_GUARANTEED_READ, addr +
1120                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1121                                 vg) << 2));
1122
1123                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1124                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1125
1126                         if (vg == 0)
1127                                 break;
1128                 }
1129                 *bit_chk &= tmp_bit_chk;
1130         }
1131
1132         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1133         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1134
1135         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1136         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1137                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1138                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1139         return *bit_chk == param->read_correct_mask;
1140 }
1141
1142 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1143         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1144 {
1145         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1146                 num_tries, bit_chk, 1);
1147 }
1148
1149 /* load up the patterns we are going to use during a read test */
1150 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1151         uint32_t all_ranks)
1152 {
1153         uint32_t r;
1154         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1155                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1156
1157         debug("%s:%d\n", __func__, __LINE__);
1158         for (r = rank_bgn; r < rank_end; r++) {
1159                 if (param->skip_ranks[r])
1160                         /* request to skip the rank */
1161                         continue;
1162
1163                 /* set rank */
1164                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1165
1166                 /* Load up a constant bursts */
1167                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1168
1169                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1170                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1171
1172                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1173
1174                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1175                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1176
1177                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1178
1179                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1180                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1181
1182                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1183
1184                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1185                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1186
1187                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1188                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1189         }
1190
1191         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1192 }
1193
1194 /*
1195  * try a read and see if it returns correct data back. has dummy reads
1196  * inserted into the mix used to align dqs enable. has more thorough checks
1197  * than the regular read test.
1198  */
1199 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1200         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1201         uint32_t all_groups, uint32_t all_ranks)
1202 {
1203         uint32_t r, vg;
1204         uint32_t correct_mask_vg;
1205         uint32_t tmp_bit_chk;
1206         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1207                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1208         uint32_t addr;
1209         uint32_t base_rw_mgr;
1210
1211         *bit_chk = param->read_correct_mask;
1212         correct_mask_vg = param->read_correct_mask_vg;
1213
1214         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1215                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1216
1217         for (r = rank_bgn; r < rank_end; r++) {
1218                 if (param->skip_ranks[r])
1219                         /* request to skip the rank */
1220                         continue;
1221
1222                 /* set rank */
1223                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1224
1225                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1226
1227                 writel(RW_MGR_READ_B2B_WAIT1,
1228                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1229
1230                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1231                 writel(RW_MGR_READ_B2B_WAIT2,
1232                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1233
1234                 if (quick_read_mode)
1235                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1236                         /* need at least two (1+1) reads to capture failures */
1237                 else if (all_groups)
1238                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1239                 else
1240                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1241
1242                 writel(RW_MGR_READ_B2B,
1243                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1244                 if (all_groups)
1245                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1246                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1247                                &sdr_rw_load_mgr_regs->load_cntr3);
1248                 else
1249                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1250
1251                 writel(RW_MGR_READ_B2B,
1252                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1253
1254                 tmp_bit_chk = 0;
1255                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1256                         /* reset the fifos to get pointers to known state */
1257                         writel(0, &phy_mgr_cmd->fifo_reset);
1258                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1259                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1260
1261                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1262                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1263
1264                         if (all_groups)
1265                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1266                         else
1267                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1268
1269                         writel(RW_MGR_READ_B2B, addr +
1270                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1271                                vg) << 2));
1272
1273                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1274                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1275
1276                         if (vg == 0)
1277                                 break;
1278                 }
1279                 *bit_chk &= tmp_bit_chk;
1280         }
1281
1282         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1283         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1284
1285         if (all_correct) {
1286                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1287                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1288                            (%u == %u) => %lu", __func__, __LINE__, group,
1289                            all_groups, *bit_chk, param->read_correct_mask,
1290                            (long unsigned int)(*bit_chk ==
1291                            param->read_correct_mask));
1292                 return *bit_chk == param->read_correct_mask;
1293         } else  {
1294                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1295                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1296                            (%u != %lu) => %lu\n", __func__, __LINE__,
1297                            group, all_groups, *bit_chk, (long unsigned int)0,
1298                            (long unsigned int)(*bit_chk != 0x00));
1299                 return *bit_chk != 0x00;
1300         }
1301 }
1302
1303 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1304         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1305         uint32_t all_groups)
1306 {
1307         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1308                                               bit_chk, all_groups, 1);
1309 }
1310
1311 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1312 {
1313         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1314         (*v)++;
1315 }
1316
1317 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1318 {
1319         uint32_t i;
1320
1321         for (i = 0; i < VFIFO_SIZE-1; i++)
1322                 rw_mgr_incr_vfifo(grp, v);
1323 }
1324
1325 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1326 {
1327         uint32_t  v;
1328         uint32_t fail_cnt = 0;
1329         uint32_t test_status;
1330
1331         for (v = 0; v < VFIFO_SIZE; ) {
1332                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1333                            __func__, __LINE__, v);
1334                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1335                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1336                 if (!test_status) {
1337                         fail_cnt++;
1338
1339                         if (fail_cnt == 2)
1340                                 break;
1341                 }
1342
1343                 /* fiddle with FIFO */
1344                 rw_mgr_incr_vfifo(grp, &v);
1345         }
1346
1347         if (v >= VFIFO_SIZE) {
1348                 /* no failing read found!! Something must have gone wrong */
1349                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1350                            __func__, __LINE__);
1351                 return 0;
1352         } else {
1353                 return v;
1354         }
1355 }
1356
1357 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1358                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1359                               uint32_t *v, uint32_t *d, uint32_t *p,
1360                               uint32_t *i, uint32_t *max_working_cnt)
1361 {
1362         uint32_t found_begin = 0;
1363         uint32_t tmp_delay = 0;
1364         uint32_t test_status;
1365
1366         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1367                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1368                 *work_bgn = tmp_delay;
1369                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1370
1371                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1372                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1373                                 IO_DELAY_PER_OPA_TAP) {
1374                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1375
1376                                 test_status =
1377                                 rw_mgr_mem_calibrate_read_test_all_ranks
1378                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1379
1380                                 if (test_status) {
1381                                         *max_working_cnt = 1;
1382                                         found_begin = 1;
1383                                         break;
1384                                 }
1385                         }
1386
1387                         if (found_begin)
1388                                 break;
1389
1390                         if (*p > IO_DQS_EN_PHASE_MAX)
1391                                 /* fiddle with FIFO */
1392                                 rw_mgr_incr_vfifo(*grp, v);
1393                 }
1394
1395                 if (found_begin)
1396                         break;
1397         }
1398
1399         if (*i >= VFIFO_SIZE) {
1400                 /* cannot find working solution */
1401                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1402                            ptap/dtap\n", __func__, __LINE__);
1403                 return 0;
1404         } else {
1405                 return 1;
1406         }
1407 }
1408
1409 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1410                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1411                              uint32_t *p, uint32_t *max_working_cnt)
1412 {
1413         uint32_t found_begin = 0;
1414         uint32_t tmp_delay;
1415
1416         /* Special case code for backing up a phase */
1417         if (*p == 0) {
1418                 *p = IO_DQS_EN_PHASE_MAX;
1419                 rw_mgr_decr_vfifo(*grp, v);
1420         } else {
1421                 (*p)--;
1422         }
1423         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1424         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1425
1426         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1427                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1428                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1429
1430                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1431                                                              PASS_ONE_BIT,
1432                                                              bit_chk, 0)) {
1433                         found_begin = 1;
1434                         *work_bgn = tmp_delay;
1435                         break;
1436                 }
1437         }
1438
1439         /* We have found a working dtap before the ptap found above */
1440         if (found_begin == 1)
1441                 (*max_working_cnt)++;
1442
1443         /*
1444          * Restore VFIFO to old state before we decremented it
1445          * (if needed).
1446          */
1447         (*p)++;
1448         if (*p > IO_DQS_EN_PHASE_MAX) {
1449                 *p = 0;
1450                 rw_mgr_incr_vfifo(*grp, v);
1451         }
1452
1453         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1454 }
1455
1456 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1457                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1458                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1459                              uint32_t *work_end)
1460 {
1461         uint32_t found_end = 0;
1462
1463         (*p)++;
1464         *work_end += IO_DELAY_PER_OPA_TAP;
1465         if (*p > IO_DQS_EN_PHASE_MAX) {
1466                 /* fiddle with FIFO */
1467                 *p = 0;
1468                 rw_mgr_incr_vfifo(*grp, v);
1469         }
1470
1471         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1472                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1473                         += IO_DELAY_PER_OPA_TAP) {
1474                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1475
1476                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1477                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1478                                 found_end = 1;
1479                                 break;
1480                         } else {
1481                                 (*max_working_cnt)++;
1482                         }
1483                 }
1484
1485                 if (found_end)
1486                         break;
1487
1488                 if (*p > IO_DQS_EN_PHASE_MAX) {
1489                         /* fiddle with FIFO */
1490                         rw_mgr_incr_vfifo(*grp, v);
1491                         *p = 0;
1492                 }
1493         }
1494
1495         if (*i >= VFIFO_SIZE + 1) {
1496                 /* cannot see edge of failing read */
1497                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1498                            failed\n", __func__, __LINE__);
1499                 return 0;
1500         } else {
1501                 return 1;
1502         }
1503 }
1504
1505 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1506                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1507                                   uint32_t *p, uint32_t *work_mid,
1508                                   uint32_t *work_end)
1509 {
1510         int i;
1511         int tmp_delay = 0;
1512
1513         *work_mid = (*work_bgn + *work_end) / 2;
1514
1515         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1516                    *work_bgn, *work_end, *work_mid);
1517         /* Get the middle delay to be less than a VFIFO delay */
1518         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1519                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1520                 ;
1521         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1522         while (*work_mid > tmp_delay)
1523                 *work_mid -= tmp_delay;
1524         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1525
1526         tmp_delay = 0;
1527         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1528                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1529                 ;
1530         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1531         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1532         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1533                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1534                 ;
1535         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1536
1537         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1538         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1539
1540         /*
1541          * push vfifo until we can successfully calibrate. We can do this
1542          * because the largest possible margin in 1 VFIFO cycle.
1543          */
1544         for (i = 0; i < VFIFO_SIZE; i++) {
1545                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1546                            *v);
1547                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1548                                                              PASS_ONE_BIT,
1549                                                              bit_chk, 0)) {
1550                         break;
1551                 }
1552
1553                 /* fiddle with FIFO */
1554                 rw_mgr_incr_vfifo(*grp, v);
1555         }
1556
1557         if (i >= VFIFO_SIZE) {
1558                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1559                            failed\n", __func__, __LINE__);
1560                 return 0;
1561         } else {
1562                 return 1;
1563         }
1564 }
1565
1566 /* find a good dqs enable to use */
1567 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1568 {
1569         uint32_t v, d, p, i;
1570         uint32_t max_working_cnt;
1571         uint32_t bit_chk;
1572         uint32_t dtaps_per_ptap;
1573         uint32_t work_bgn, work_mid, work_end;
1574         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1575
1576         debug("%s:%d %u\n", __func__, __LINE__, grp);
1577
1578         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1579
1580         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1581         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1582
1583         /* ************************************************************** */
1584         /* * Step 0 : Determine number of delay taps for each phase tap * */
1585         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1586
1587         /* ********************************************************* */
1588         /* * Step 1 : First push vfifo until we get a failing read * */
1589         v = find_vfifo_read(grp, &bit_chk);
1590
1591         max_working_cnt = 0;
1592
1593         /* ******************************************************** */
1594         /* * step 2: find first working phase, increment in ptaps * */
1595         work_bgn = 0;
1596         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1597                                 &p, &i, &max_working_cnt) == 0)
1598                 return 0;
1599
1600         work_end = work_bgn;
1601
1602         /*
1603          * If d is 0 then the working window covers a phase tap and
1604          * we can follow the old procedure otherwise, we've found the beginning,
1605          * and we need to increment the dtaps until we find the end.
1606          */
1607         if (d == 0) {
1608                 /* ********************************************************* */
1609                 /* * step 3a: if we have room, back off by one and
1610                 increment in dtaps * */
1611
1612                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1613                                  &max_working_cnt);
1614
1615                 /* ********************************************************* */
1616                 /* * step 4a: go forward from working phase to non working
1617                 phase, increment in ptaps * */
1618                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1619                                          &i, &max_working_cnt, &work_end) == 0)
1620                         return 0;
1621
1622                 /* ********************************************************* */
1623                 /* * step 5a:  back off one from last, increment in dtaps  * */
1624
1625                 /* Special case code for backing up a phase */
1626                 if (p == 0) {
1627                         p = IO_DQS_EN_PHASE_MAX;
1628                         rw_mgr_decr_vfifo(grp, &v);
1629                 } else {
1630                         p = p - 1;
1631                 }
1632
1633                 work_end -= IO_DELAY_PER_OPA_TAP;
1634                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1635
1636                 /* * The actual increment of dtaps is done outside of
1637                 the if/else loop to share code */
1638                 d = 0;
1639
1640                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1641                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1642                            v, p);
1643         } else {
1644                 /* ******************************************************* */
1645                 /* * step 3-5b:  Find the right edge of the window using
1646                 delay taps   * */
1647                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1648                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1649                            v, p, d, work_bgn);
1650
1651                 work_end = work_bgn;
1652
1653                 /* * The actual increment of dtaps is done outside of the
1654                 if/else loop to share code */
1655
1656                 /* Only here to counterbalance a subtract later on which is
1657                 not needed if this branch of the algorithm is taken */
1658                 max_working_cnt++;
1659         }
1660
1661         /* The dtap increment to find the failing edge is done here */
1662         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1663                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1664                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1665                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1666                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1667
1668                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1669                                                                       PASS_ONE_BIT,
1670                                                                       &bit_chk, 0)) {
1671                                 break;
1672                         }
1673         }
1674
1675         /* Go back to working dtap */
1676         if (d != 0)
1677                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1678
1679         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1680                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1681                    v, p, d-1, work_end);
1682
1683         if (work_end < work_bgn) {
1684                 /* nil range */
1685                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1686                            failed\n", __func__, __LINE__);
1687                 return 0;
1688         }
1689
1690         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1691                    __func__, __LINE__, work_bgn, work_end);
1692
1693         /* *************************************************************** */
1694         /*
1695          * * We need to calculate the number of dtaps that equal a ptap
1696          * * To do that we'll back up a ptap and re-find the edge of the
1697          * * window using dtaps
1698          */
1699
1700         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1701                    for tracking\n", __func__, __LINE__);
1702
1703         /* Special case code for backing up a phase */
1704         if (p == 0) {
1705                 p = IO_DQS_EN_PHASE_MAX;
1706                 rw_mgr_decr_vfifo(grp, &v);
1707                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1708                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1709                            v, p);
1710         } else {
1711                 p = p - 1;
1712                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1713                            phase only: v=%u p=%u", __func__, __LINE__,
1714                            v, p);
1715         }
1716
1717         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1718
1719         /*
1720          * Increase dtap until we first see a passing read (in case the
1721          * window is smaller than a ptap),
1722          * and then a failing read to mark the edge of the window again
1723          */
1724
1725         /* Find a passing read */
1726         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1727                    __func__, __LINE__);
1728         found_passing_read = 0;
1729         found_failing_read = 0;
1730         initial_failing_dtap = d;
1731         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1732                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1733                            read d=%u\n", __func__, __LINE__, d);
1734                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1735
1736                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1737                                                              PASS_ONE_BIT,
1738                                                              &bit_chk, 0)) {
1739                         found_passing_read = 1;
1740                         break;
1741                 }
1742         }
1743
1744         if (found_passing_read) {
1745                 /* Find a failing read */
1746                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1747                            read\n", __func__, __LINE__);
1748                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1749                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1750                                    testing read d=%u\n", __func__, __LINE__, d);
1751                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1752
1753                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1754                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1755                                 found_failing_read = 1;
1756                                 break;
1757                         }
1758                 }
1759         } else {
1760                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1761                            calculate dtaps", __func__, __LINE__);
1762                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1763         }
1764
1765         /*
1766          * The dynamically calculated dtaps_per_ptap is only valid if we
1767          * found a passing/failing read. If we didn't, it means d hit the max
1768          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1769          * statically calculated value.
1770          */
1771         if (found_passing_read && found_failing_read)
1772                 dtaps_per_ptap = d - initial_failing_dtap;
1773
1774         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1775         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1776                    - %u = %u",  __func__, __LINE__, d,
1777                    initial_failing_dtap, dtaps_per_ptap);
1778
1779         /* ******************************************** */
1780         /* * step 6:  Find the centre of the window   * */
1781         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1782                                    &work_mid, &work_end) == 0)
1783                 return 0;
1784
1785         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1786                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1787                    v, p-1, d);
1788         return 1;
1789 }
1790
1791 /*
1792  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1793  * dq_in_delay values
1794  */
1795 static uint32_t
1796 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1797 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1798 {
1799         uint32_t found;
1800         uint32_t i;
1801         uint32_t p;
1802         uint32_t d;
1803         uint32_t r;
1804
1805         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1806                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1807                 /* we start at zero, so have one less dq to devide among */
1808
1809         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1810               test_bgn);
1811
1812         /* try different dq_in_delays since the dq path is shorter than dqs */
1813
1814         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1815              r += NUM_RANKS_PER_SHADOW_REG) {
1816                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1817                         i++, p++, d += delay_step) {
1818                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1819                                    vfifo_find_dqs_", __func__, __LINE__);
1820                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1821                                write_group, read_group);
1822                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1823                         scc_mgr_set_dq_in_delay(p, d);
1824                         scc_mgr_load_dq(p);
1825                 }
1826                 writel(0, &sdr_scc_mgr->update);
1827         }
1828
1829         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1830
1831         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1832                    en_phase_sweep_dq", __func__, __LINE__);
1833         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1834                    chain to zero\n", write_group, read_group, found);
1835
1836         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1837              r += NUM_RANKS_PER_SHADOW_REG) {
1838                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1839                         i++, p++) {
1840                         scc_mgr_set_dq_in_delay(p, 0);
1841                         scc_mgr_load_dq(p);
1842                 }
1843                 writel(0, &sdr_scc_mgr->update);
1844         }
1845
1846         return found;
1847 }
1848
1849 /* per-bit deskew DQ and center */
1850 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1851         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1852         uint32_t use_read_test, uint32_t update_fom)
1853 {
1854         uint32_t i, p, d, min_index;
1855         /*
1856          * Store these as signed since there are comparisons with
1857          * signed numbers.
1858          */
1859         uint32_t bit_chk;
1860         uint32_t sticky_bit_chk;
1861         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1862         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1863         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1864         int32_t mid;
1865         int32_t orig_mid_min, mid_min;
1866         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1867                 final_dqs_en;
1868         int32_t dq_margin, dqs_margin;
1869         uint32_t stop;
1870         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1871         uint32_t addr;
1872
1873         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1874
1875         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1876         start_dqs = readl(addr + (read_group << 2));
1877         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1878                 start_dqs_en = readl(addr + ((read_group << 2)
1879                                      - IO_DQS_EN_DELAY_OFFSET));
1880
1881         /* set the left and right edge of each bit to an illegal value */
1882         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1883         sticky_bit_chk = 0;
1884         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1885                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1886                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1887         }
1888
1889         /* Search for the left edge of the window for each bit */
1890         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1891                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1892
1893                 writel(0, &sdr_scc_mgr->update);
1894
1895                 /*
1896                  * Stop searching when the read test doesn't pass AND when
1897                  * we've seen a passing read on every bit.
1898                  */
1899                 if (use_read_test) {
1900                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1901                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1902                                 &bit_chk, 0, 0);
1903                 } else {
1904                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1905                                                         0, PASS_ONE_BIT,
1906                                                         &bit_chk, 0);
1907                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1908                                 (read_group - (write_group *
1909                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1910                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1911                         stop = (bit_chk == 0);
1912                 }
1913                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1914                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1915                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1916                            && %u", __func__, __LINE__, d,
1917                            sticky_bit_chk,
1918                         param->read_correct_mask, stop);
1919
1920                 if (stop == 1) {
1921                         break;
1922                 } else {
1923                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1924                                 if (bit_chk & 1) {
1925                                         /* Remember a passing test as the
1926                                         left_edge */
1927                                         left_edge[i] = d;
1928                                 } else {
1929                                         /* If a left edge has not been seen yet,
1930                                         then a future passing test will mark
1931                                         this edge as the right edge */
1932                                         if (left_edge[i] ==
1933                                                 IO_IO_IN_DELAY_MAX + 1) {
1934                                                 right_edge[i] = -(d + 1);
1935                                         }
1936                                 }
1937                                 bit_chk = bit_chk >> 1;
1938                         }
1939                 }
1940         }
1941
1942         /* Reset DQ delay chains to 0 */
1943         scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
1944         sticky_bit_chk = 0;
1945         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1946                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1947                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1948                            i, left_edge[i], i, right_edge[i]);
1949
1950                 /*
1951                  * Check for cases where we haven't found the left edge,
1952                  * which makes our assignment of the the right edge invalid.
1953                  * Reset it to the illegal value.
1954                  */
1955                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1956                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1957                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1958                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1959                                    right_edge[%u]: %d\n", __func__, __LINE__,
1960                                    i, right_edge[i]);
1961                 }
1962
1963                 /*
1964                  * Reset sticky bit (except for bits where we have seen
1965                  * both the left and right edge).
1966                  */
1967                 sticky_bit_chk = sticky_bit_chk << 1;
1968                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1969                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1970                         sticky_bit_chk = sticky_bit_chk | 1;
1971                 }
1972
1973                 if (i == 0)
1974                         break;
1975         }
1976
1977         /* Search for the right edge of the window for each bit */
1978         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1979                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1980                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1981                         uint32_t delay = d + start_dqs_en;
1982                         if (delay > IO_DQS_EN_DELAY_MAX)
1983                                 delay = IO_DQS_EN_DELAY_MAX;
1984                         scc_mgr_set_dqs_en_delay(read_group, delay);
1985                 }
1986                 scc_mgr_load_dqs(read_group);
1987
1988                 writel(0, &sdr_scc_mgr->update);
1989
1990                 /*
1991                  * Stop searching when the read test doesn't pass AND when
1992                  * we've seen a passing read on every bit.
1993                  */
1994                 if (use_read_test) {
1995                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1996                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1997                                 &bit_chk, 0, 0);
1998                 } else {
1999                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2000                                                         0, PASS_ONE_BIT,
2001                                                         &bit_chk, 0);
2002                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2003                                 (read_group - (write_group *
2004                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
2005                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2006                         stop = (bit_chk == 0);
2007                 }
2008                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2009                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2010
2011                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2012                            %u && %u", __func__, __LINE__, d,
2013                            sticky_bit_chk, param->read_correct_mask, stop);
2014
2015                 if (stop == 1) {
2016                         break;
2017                 } else {
2018                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2019                                 if (bit_chk & 1) {
2020                                         /* Remember a passing test as
2021                                         the right_edge */
2022                                         right_edge[i] = d;
2023                                 } else {
2024                                         if (d != 0) {
2025                                                 /* If a right edge has not been
2026                                                 seen yet, then a future passing
2027                                                 test will mark this edge as the
2028                                                 left edge */
2029                                                 if (right_edge[i] ==
2030                                                 IO_IO_IN_DELAY_MAX + 1) {
2031                                                         left_edge[i] = -(d + 1);
2032                                                 }
2033                                         } else {
2034                                                 /* d = 0 failed, but it passed
2035                                                 when testing the left edge,
2036                                                 so it must be marginal,
2037                                                 set it to -1 */
2038                                                 if (right_edge[i] ==
2039                                                         IO_IO_IN_DELAY_MAX + 1 &&
2040                                                         left_edge[i] !=
2041                                                         IO_IO_IN_DELAY_MAX
2042                                                         + 1) {
2043                                                         right_edge[i] = -1;
2044                                                 }
2045                                                 /* If a right edge has not been
2046                                                 seen yet, then a future passing
2047                                                 test will mark this edge as the
2048                                                 left edge */
2049                                                 else if (right_edge[i] ==
2050                                                         IO_IO_IN_DELAY_MAX +
2051                                                         1) {
2052                                                         left_edge[i] = -(d + 1);
2053                                                 }
2054                                         }
2055                                 }
2056
2057                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2058                                            d=%u]: ", __func__, __LINE__, d);
2059                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2060                                            (int)(bit_chk & 1), i, left_edge[i]);
2061                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2062                                            right_edge[i]);
2063                                 bit_chk = bit_chk >> 1;
2064                         }
2065                 }
2066         }
2067
2068         /* Check that all bits have a window */
2069         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2070                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2071                            %d right_edge[%u]: %d", __func__, __LINE__,
2072                            i, left_edge[i], i, right_edge[i]);
2073                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2074                         == IO_IO_IN_DELAY_MAX + 1)) {
2075                         /*
2076                          * Restore delay chain settings before letting the loop
2077                          * in rw_mgr_mem_calibrate_vfifo to retry different
2078                          * dqs/ck relationships.
2079                          */
2080                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2081                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2082                                 scc_mgr_set_dqs_en_delay(read_group,
2083                                                          start_dqs_en);
2084                         }
2085                         scc_mgr_load_dqs(read_group);
2086                         writel(0, &sdr_scc_mgr->update);
2087
2088                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2089                                    find edge [%u]: %d %d", __func__, __LINE__,
2090                                    i, left_edge[i], right_edge[i]);
2091                         if (use_read_test) {
2092                                 set_failing_group_stage(read_group *
2093                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2094                                         CAL_STAGE_VFIFO,
2095                                         CAL_SUBSTAGE_VFIFO_CENTER);
2096                         } else {
2097                                 set_failing_group_stage(read_group *
2098                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2099                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2100                                         CAL_SUBSTAGE_VFIFO_CENTER);
2101                         }
2102                         return 0;
2103                 }
2104         }
2105
2106         /* Find middle of window for each DQ bit */
2107         mid_min = left_edge[0] - right_edge[0];
2108         min_index = 0;
2109         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2110                 mid = left_edge[i] - right_edge[i];
2111                 if (mid < mid_min) {
2112                         mid_min = mid;
2113                         min_index = i;
2114                 }
2115         }
2116
2117         /*
2118          * -mid_min/2 represents the amount that we need to move DQS.
2119          * If mid_min is odd and positive we'll need to add one to
2120          * make sure the rounding in further calculations is correct
2121          * (always bias to the right), so just add 1 for all positive values.
2122          */
2123         if (mid_min > 0)
2124                 mid_min++;
2125
2126         mid_min = mid_min / 2;
2127
2128         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2129                    __func__, __LINE__, mid_min, min_index);
2130
2131         /* Determine the amount we can change DQS (which is -mid_min) */
2132         orig_mid_min = mid_min;
2133         new_dqs = start_dqs - mid_min;
2134         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2135                 new_dqs = IO_DQS_IN_DELAY_MAX;
2136         else if (new_dqs < 0)
2137                 new_dqs = 0;
2138
2139         mid_min = start_dqs - new_dqs;
2140         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2141                    mid_min, new_dqs);
2142
2143         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2144                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2145                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2146                 else if (start_dqs_en - mid_min < 0)
2147                         mid_min += start_dqs_en - mid_min;
2148         }
2149         new_dqs = start_dqs - mid_min;
2150
2151         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2152                    new_dqs=%d mid_min=%d\n", start_dqs,
2153                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2154                    new_dqs, mid_min);
2155
2156         /* Initialize data for export structures */
2157         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2158         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2159
2160         /* add delay to bring centre of all DQ windows to the same "level" */
2161         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2162                 /* Use values before divide by 2 to reduce round off error */
2163                 shift_dq = (left_edge[i] - right_edge[i] -
2164                         (left_edge[min_index] - right_edge[min_index]))/2  +
2165                         (orig_mid_min - mid_min);
2166
2167                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2168                            shift_dq[%u]=%d\n", i, shift_dq);
2169
2170                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2171                 temp_dq_in_delay1 = readl(addr + (p << 2));
2172                 temp_dq_in_delay2 = readl(addr + (i << 2));
2173
2174                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2175                         (int32_t)IO_IO_IN_DELAY_MAX) {
2176                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2177                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2178                         shift_dq = -(int32_t)temp_dq_in_delay1;
2179                 }
2180                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2181                            shift_dq[%u]=%d\n", i, shift_dq);
2182                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2183                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2184                 scc_mgr_load_dq(p);
2185
2186                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2187                            left_edge[i] - shift_dq + (-mid_min),
2188                            right_edge[i] + shift_dq - (-mid_min));
2189                 /* To determine values for export structures */
2190                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2191                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2192
2193                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2194                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2195         }
2196
2197         final_dqs = new_dqs;
2198         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2199                 final_dqs_en = start_dqs_en - mid_min;
2200
2201         /* Move DQS-en */
2202         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2203                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2204                 scc_mgr_load_dqs(read_group);
2205         }
2206
2207         /* Move DQS */
2208         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2209         scc_mgr_load_dqs(read_group);
2210         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2211                    dqs_margin=%d", __func__, __LINE__,
2212                    dq_margin, dqs_margin);
2213
2214         /*
2215          * Do not remove this line as it makes sure all of our decisions
2216          * have been applied. Apply the update bit.
2217          */
2218         writel(0, &sdr_scc_mgr->update);
2219
2220         return (dq_margin >= 0) && (dqs_margin >= 0);
2221 }
2222
2223 /*
2224  * calibrate the read valid prediction FIFO.
2225  *
2226  *  - read valid prediction will consist of finding a good DQS enable phase,
2227  * DQS enable delay, DQS input phase, and DQS input delay.
2228  *  - we also do a per-bit deskew on the DQ lines.
2229  */
2230 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2231                                            uint32_t test_bgn)
2232 {
2233         uint32_t p, d, rank_bgn, sr;
2234         uint32_t dtaps_per_ptap;
2235         uint32_t tmp_delay;
2236         uint32_t bit_chk;
2237         uint32_t grp_calibrated;
2238         uint32_t write_group, write_test_bgn;
2239         uint32_t failed_substage;
2240
2241         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2242
2243         /* update info for sims */
2244         reg_file_set_stage(CAL_STAGE_VFIFO);
2245
2246         write_group = read_group;
2247         write_test_bgn = test_bgn;
2248
2249         /* USER Determine number of delay taps for each phase tap */
2250         dtaps_per_ptap = 0;
2251         tmp_delay = 0;
2252         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2253                 dtaps_per_ptap++;
2254                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2255         }
2256         dtaps_per_ptap--;
2257         tmp_delay = 0;
2258
2259         /* update info for sims */
2260         reg_file_set_group(read_group);
2261
2262         grp_calibrated = 0;
2263
2264         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2265         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2266
2267         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2268                 /*
2269                  * In RLDRAMX we may be messing the delay of pins in
2270                  * the same write group but outside of the current read
2271                  * the group, but that's ok because we haven't
2272                  * calibrated output side yet.
2273                  */
2274                 if (d > 0) {
2275                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2276                         (write_group, write_test_bgn, d);
2277                 }
2278
2279                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2280                         p++) {
2281                         /* set a particular dqdqs phase */
2282                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2283
2284                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2285                                    p=%u d=%u\n", __func__, __LINE__,
2286                                    read_group, p, d);
2287
2288                         /*
2289                          * Load up the patterns used by read calibration
2290                          * using current DQDQS phase.
2291                          */
2292                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2293                         if (!(gbl->phy_debug_mode_flags &
2294                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2295                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2296                                     (read_group, 1, &bit_chk)) {
2297                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2298                                                    __func__, __LINE__);
2299                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2300                                                    read_group, p, d);
2301                                         break;
2302                                 }
2303                         }
2304
2305 /* case:56390 */
2306                         grp_calibrated = 1;
2307                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2308                     (write_group, read_group, test_bgn)) {
2309                                 /*
2310                                  * USER Read per-bit deskew can be done on a
2311                                  * per shadow register basis.
2312                                  */
2313                                 for (rank_bgn = 0, sr = 0;
2314                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2315                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2316                                         ++sr) {
2317                                         /*
2318                                          * Determine if this set of ranks
2319                                          * should be skipped entirely.
2320                                          */
2321                                         if (!param->skip_shadow_regs[sr]) {
2322                                                 /*
2323                                                  * If doing read after write
2324                                                  * calibration, do not update
2325                                                  * FOM, now - do it then.
2326                                                  */
2327                                         if (!rw_mgr_mem_calibrate_vfifo_center
2328                                                 (rank_bgn, write_group,
2329                                                 read_group, test_bgn, 1, 0)) {
2330                                                         grp_calibrated = 0;
2331                                                         failed_substage =
2332                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2333                                                 }
2334                                         }
2335                                 }
2336                         } else {
2337                                 grp_calibrated = 0;
2338                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2339                         }
2340                 }
2341         }
2342
2343         if (grp_calibrated == 0) {
2344                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2345                                         failed_substage);
2346                 return 0;
2347         }
2348
2349         /*
2350          * Reset the delay chains back to zero if they have moved > 1
2351          * (check for > 1 because loop will increase d even when pass in
2352          * first case).
2353          */
2354         if (d > 2)
2355                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2356
2357         return 1;
2358 }
2359
2360 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2361 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2362                                                uint32_t test_bgn)
2363 {
2364         uint32_t rank_bgn, sr;
2365         uint32_t grp_calibrated;
2366         uint32_t write_group;
2367
2368         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2369
2370         /* update info for sims */
2371
2372         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2373         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2374
2375         write_group = read_group;
2376
2377         /* update info for sims */
2378         reg_file_set_group(read_group);
2379
2380         grp_calibrated = 1;
2381         /* Read per-bit deskew can be done on a per shadow register basis */
2382         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2383                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2384                 /* Determine if this set of ranks should be skipped entirely */
2385                 if (!param->skip_shadow_regs[sr]) {
2386                 /* This is the last calibration round, update FOM here */
2387                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2388                                                                 write_group,
2389                                                                 read_group,
2390                                                                 test_bgn, 0,
2391                                                                 1)) {
2392                                 grp_calibrated = 0;
2393                         }
2394                 }
2395         }
2396
2397
2398         if (grp_calibrated == 0) {
2399                 set_failing_group_stage(write_group,
2400                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2401                                         CAL_SUBSTAGE_VFIFO_CENTER);
2402                 return 0;
2403         }
2404
2405         return 1;
2406 }
2407
2408 /* Calibrate LFIFO to find smallest read latency */
2409 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2410 {
2411         uint32_t found_one;
2412         uint32_t bit_chk;
2413
2414         debug("%s:%d\n", __func__, __LINE__);
2415
2416         /* update info for sims */
2417         reg_file_set_stage(CAL_STAGE_LFIFO);
2418         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2419
2420         /* Load up the patterns used by read calibration for all ranks */
2421         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2422         found_one = 0;
2423
2424         do {
2425                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2426                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2427                            __func__, __LINE__, gbl->curr_read_lat);
2428
2429                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2430                                                               NUM_READ_TESTS,
2431                                                               PASS_ALL_BITS,
2432                                                               &bit_chk, 1)) {
2433                         break;
2434                 }
2435
2436                 found_one = 1;
2437                 /* reduce read latency and see if things are working */
2438                 /* correctly */
2439                 gbl->curr_read_lat--;
2440         } while (gbl->curr_read_lat > 0);
2441
2442         /* reset the fifos to get pointers to known state */
2443
2444         writel(0, &phy_mgr_cmd->fifo_reset);
2445
2446         if (found_one) {
2447                 /* add a fudge factor to the read latency that was determined */
2448                 gbl->curr_read_lat += 2;
2449                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2450                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2451                            read_lat=%u\n", __func__, __LINE__,
2452                            gbl->curr_read_lat);
2453                 return 1;
2454         } else {
2455                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2456                                         CAL_SUBSTAGE_READ_LATENCY);
2457
2458                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2459                            read_lat=%u\n", __func__, __LINE__,
2460                            gbl->curr_read_lat);
2461                 return 0;
2462         }
2463 }
2464
2465 /*
2466  * issue write test command.
2467  * two variants are provided. one that just tests a write pattern and
2468  * another that tests datamask functionality.
2469  */
2470 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2471                                                   uint32_t test_dm)
2472 {
2473         uint32_t mcc_instruction;
2474         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2475                 ENABLE_SUPER_QUICK_CALIBRATION);
2476         uint32_t rw_wl_nop_cycles;
2477         uint32_t addr;
2478
2479         /*
2480          * Set counter and jump addresses for the right
2481          * number of NOP cycles.
2482          * The number of supported NOP cycles can range from -1 to infinity
2483          * Three different cases are handled:
2484          *
2485          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2486          *    mechanism will be used to insert the right number of NOPs
2487          *
2488          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2489          *    issuing the write command will jump straight to the
2490          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2491          *    data (for RLD), skipping
2492          *    the NOP micro-instruction all together
2493          *
2494          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2495          *    turned on in the same micro-instruction that issues the write
2496          *    command. Then we need
2497          *    to directly jump to the micro-instruction that sends out the data
2498          *
2499          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2500          *       (2 and 3). One jump-counter (0) is used to perform multiple
2501          *       write-read operations.
2502          *       one counter left to issue this command in "multiple-group" mode
2503          */
2504
2505         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2506
2507         if (rw_wl_nop_cycles == -1) {
2508                 /*
2509                  * CNTR 2 - We want to execute the special write operation that
2510                  * turns on DQS right away and then skip directly to the
2511                  * instruction that sends out the data. We set the counter to a
2512                  * large number so that the jump is always taken.
2513                  */
2514                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2515
2516                 /* CNTR 3 - Not used */
2517                 if (test_dm) {
2518                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2519                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2520                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2521                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2522                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2523                 } else {
2524                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2525                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2526                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2527                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2528                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2529                 }
2530         } else if (rw_wl_nop_cycles == 0) {
2531                 /*
2532                  * CNTR 2 - We want to skip the NOP operation and go straight
2533                  * to the DQS enable instruction. We set the counter to a large
2534                  * number so that the jump is always taken.
2535                  */
2536                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2537
2538                 /* CNTR 3 - Not used */
2539                 if (test_dm) {
2540                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2541                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2542                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2543                 } else {
2544                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2545                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2546                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2547                 }
2548         } else {
2549                 /*
2550                  * CNTR 2 - In this case we want to execute the next instruction
2551                  * and NOT take the jump. So we set the counter to 0. The jump
2552                  * address doesn't count.
2553                  */
2554                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2555                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2556
2557                 /*
2558                  * CNTR 3 - Set the nop counter to the number of cycles we
2559                  * need to loop for, minus 1.
2560                  */
2561                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2562                 if (test_dm) {
2563                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2564                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2565                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2566                 } else {
2567                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2568                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2569                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2570                 }
2571         }
2572
2573         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2574                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2575
2576         if (quick_write_mode)
2577                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2578         else
2579                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2580
2581         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2582
2583         /*
2584          * CNTR 1 - This is used to ensure enough time elapses
2585          * for read data to come back.
2586          */
2587         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2588
2589         if (test_dm) {
2590                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2591                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2592         } else {
2593                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2594                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2595         }
2596
2597         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2598         writel(mcc_instruction, addr + (group << 2));
2599 }
2600
2601 /* Test writes, can check for a single bit pass or multiple bit pass */
2602 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2603         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2604         uint32_t *bit_chk, uint32_t all_ranks)
2605 {
2606         uint32_t r;
2607         uint32_t correct_mask_vg;
2608         uint32_t tmp_bit_chk;
2609         uint32_t vg;
2610         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2611                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2612         uint32_t addr_rw_mgr;
2613         uint32_t base_rw_mgr;
2614
2615         *bit_chk = param->write_correct_mask;
2616         correct_mask_vg = param->write_correct_mask_vg;
2617
2618         for (r = rank_bgn; r < rank_end; r++) {
2619                 if (param->skip_ranks[r]) {
2620                         /* request to skip the rank */
2621                         continue;
2622                 }
2623
2624                 /* set rank */
2625                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2626
2627                 tmp_bit_chk = 0;
2628                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2629                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2630                         /* reset the fifos to get pointers to known state */
2631                         writel(0, &phy_mgr_cmd->fifo_reset);
2632
2633                         tmp_bit_chk = tmp_bit_chk <<
2634                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2635                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2636                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2637                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2638                                 use_dm);
2639
2640                         base_rw_mgr = readl(addr_rw_mgr);
2641                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2642                         if (vg == 0)
2643                                 break;
2644                 }
2645                 *bit_chk &= tmp_bit_chk;
2646         }
2647
2648         if (all_correct) {
2649                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2650                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2651                            %u => %lu", write_group, use_dm,
2652                            *bit_chk, param->write_correct_mask,
2653                            (long unsigned int)(*bit_chk ==
2654                            param->write_correct_mask));
2655                 return *bit_chk == param->write_correct_mask;
2656         } else {
2657                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2658                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2659                        write_group, use_dm, *bit_chk);
2660                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2661                         (long unsigned int)(*bit_chk != 0));
2662                 return *bit_chk != 0x00;
2663         }
2664 }
2665
2666 /*
2667  * center all windows. do per-bit-deskew to possibly increase size of
2668  * certain windows.
2669  */
2670 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2671         uint32_t write_group, uint32_t test_bgn)
2672 {
2673         uint32_t i, p, min_index;
2674         int32_t d;
2675         /*
2676          * Store these as signed since there are comparisons with
2677          * signed numbers.
2678          */
2679         uint32_t bit_chk;
2680         uint32_t sticky_bit_chk;
2681         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2682         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2683         int32_t mid;
2684         int32_t mid_min, orig_mid_min;
2685         int32_t new_dqs, start_dqs, shift_dq;
2686         int32_t dq_margin, dqs_margin, dm_margin;
2687         uint32_t stop;
2688         uint32_t temp_dq_out1_delay;
2689         uint32_t addr;
2690
2691         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2692
2693         dm_margin = 0;
2694
2695         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2696         start_dqs = readl(addr +
2697                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2698
2699         /* per-bit deskew */
2700
2701         /*
2702          * set the left and right edge of each bit to an illegal value
2703          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2704          */
2705         sticky_bit_chk = 0;
2706         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2707                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2708                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2709         }
2710
2711         /* Search for the left edge of the window for each bit */
2712         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2713                 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2714
2715                 writel(0, &sdr_scc_mgr->update);
2716
2717                 /*
2718                  * Stop searching when the read test doesn't pass AND when
2719                  * we've seen a passing read on every bit.
2720                  */
2721                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2722                         0, PASS_ONE_BIT, &bit_chk, 0);
2723                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2724                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2725                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2726                            == %u && %u [bit_chk= %u ]\n",
2727                         d, sticky_bit_chk, param->write_correct_mask,
2728                         stop, bit_chk);
2729
2730                 if (stop == 1) {
2731                         break;
2732                 } else {
2733                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2734                                 if (bit_chk & 1) {
2735                                         /*
2736                                          * Remember a passing test as the
2737                                          * left_edge.
2738                                          */
2739                                         left_edge[i] = d;
2740                                 } else {
2741                                         /*
2742                                          * If a left edge has not been seen
2743                                          * yet, then a future passing test will
2744                                          * mark this edge as the right edge.
2745                                          */
2746                                         if (left_edge[i] ==
2747                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2748                                                 right_edge[i] = -(d + 1);
2749                                         }
2750                                 }
2751                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2752                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2753                                            (int)(bit_chk & 1), i, left_edge[i]);
2754                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2755                                        right_edge[i]);
2756                                 bit_chk = bit_chk >> 1;
2757                         }
2758                 }
2759         }
2760
2761         /* Reset DQ delay chains to 0 */
2762         scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2763         sticky_bit_chk = 0;
2764         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2765                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2766                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2767                            i, left_edge[i], i, right_edge[i]);
2768
2769                 /*
2770                  * Check for cases where we haven't found the left edge,
2771                  * which makes our assignment of the the right edge invalid.
2772                  * Reset it to the illegal value.
2773                  */
2774                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2775                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2776                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2777                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2778                                    right_edge[%u]: %d\n", __func__, __LINE__,
2779                                    i, right_edge[i]);
2780                 }
2781
2782                 /*
2783                  * Reset sticky bit (except for bits where we have
2784                  * seen the left edge).
2785                  */
2786                 sticky_bit_chk = sticky_bit_chk << 1;
2787                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2788                         sticky_bit_chk = sticky_bit_chk | 1;
2789
2790                 if (i == 0)
2791                         break;
2792         }
2793
2794         /* Search for the right edge of the window for each bit */
2795         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2796                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2797                                                         d + start_dqs);
2798
2799                 writel(0, &sdr_scc_mgr->update);
2800
2801                 /*
2802                  * Stop searching when the read test doesn't pass AND when
2803                  * we've seen a passing read on every bit.
2804                  */
2805                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2806                         0, PASS_ONE_BIT, &bit_chk, 0);
2807
2808                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2809                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2810
2811                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2812                            %u && %u\n", d, sticky_bit_chk,
2813                            param->write_correct_mask, stop);
2814
2815                 if (stop == 1) {
2816                         if (d == 0) {
2817                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2818                                         i++) {
2819                                         /* d = 0 failed, but it passed when
2820                                         testing the left edge, so it must be
2821                                         marginal, set it to -1 */
2822                                         if (right_edge[i] ==
2823                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2824                                                 left_edge[i] !=
2825                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2826                                                 right_edge[i] = -1;
2827                                         }
2828                                 }
2829                         }
2830                         break;
2831                 } else {
2832                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2833                                 if (bit_chk & 1) {
2834                                         /*
2835                                          * Remember a passing test as
2836                                          * the right_edge.
2837                                          */
2838                                         right_edge[i] = d;
2839                                 } else {
2840                                         if (d != 0) {
2841                                                 /*
2842                                                  * If a right edge has not
2843                                                  * been seen yet, then a future
2844                                                  * passing test will mark this
2845                                                  * edge as the left edge.
2846                                                  */
2847                                                 if (right_edge[i] ==
2848                                                     IO_IO_OUT1_DELAY_MAX + 1)
2849                                                         left_edge[i] = -(d + 1);
2850                                         } else {
2851                                                 /*
2852                                                  * d = 0 failed, but it passed
2853                                                  * when testing the left edge,
2854                                                  * so it must be marginal, set
2855                                                  * it to -1.
2856                                                  */
2857                                                 if (right_edge[i] ==
2858                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2859                                                     left_edge[i] !=
2860                                                     IO_IO_OUT1_DELAY_MAX + 1)
2861                                                         right_edge[i] = -1;
2862                                                 /*
2863                                                  * If a right edge has not been
2864                                                  * seen yet, then a future
2865                                                  * passing test will mark this
2866                                                  * edge as the left edge.
2867                                                  */
2868                                                 else if (right_edge[i] ==
2869                                                         IO_IO_OUT1_DELAY_MAX +
2870                                                         1)
2871                                                         left_edge[i] = -(d + 1);
2872                                         }
2873                                 }
2874                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2875                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2876                                            (int)(bit_chk & 1), i, left_edge[i]);
2877                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2878                                            right_edge[i]);
2879                                 bit_chk = bit_chk >> 1;
2880                         }
2881                 }
2882         }
2883
2884         /* Check that all bits have a window */
2885         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2886                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2887                            %d right_edge[%u]: %d", __func__, __LINE__,
2888                            i, left_edge[i], i, right_edge[i]);
2889                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2890                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2891                         set_failing_group_stage(test_bgn + i,
2892                                                 CAL_STAGE_WRITES,
2893                                                 CAL_SUBSTAGE_WRITES_CENTER);
2894                         return 0;
2895                 }
2896         }
2897
2898         /* Find middle of window for each DQ bit */
2899         mid_min = left_edge[0] - right_edge[0];
2900         min_index = 0;
2901         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2902                 mid = left_edge[i] - right_edge[i];
2903                 if (mid < mid_min) {
2904                         mid_min = mid;
2905                         min_index = i;
2906                 }
2907         }
2908
2909         /*
2910          * -mid_min/2 represents the amount that we need to move DQS.
2911          * If mid_min is odd and positive we'll need to add one to
2912          * make sure the rounding in further calculations is correct
2913          * (always bias to the right), so just add 1 for all positive values.
2914          */
2915         if (mid_min > 0)
2916                 mid_min++;
2917         mid_min = mid_min / 2;
2918         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2919                    __LINE__, mid_min);
2920
2921         /* Determine the amount we can change DQS (which is -mid_min) */
2922         orig_mid_min = mid_min;
2923         new_dqs = start_dqs;
2924         mid_min = 0;
2925         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2926                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2927         /* Initialize data for export structures */
2928         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2929         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2930
2931         /* add delay to bring centre of all DQ windows to the same "level" */
2932         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2933                 /* Use values before divide by 2 to reduce round off error */
2934                 shift_dq = (left_edge[i] - right_edge[i] -
2935                         (left_edge[min_index] - right_edge[min_index]))/2  +
2936                 (orig_mid_min - mid_min);
2937
2938                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2939                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2940
2941                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2942                 temp_dq_out1_delay = readl(addr + (i << 2));
2943                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2944                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2945                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2946                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2947                         shift_dq = -(int32_t)temp_dq_out1_delay;
2948                 }
2949                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2950                            i, shift_dq);
2951                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2952                 scc_mgr_load_dq(i);
2953
2954                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2955                            left_edge[i] - shift_dq + (-mid_min),
2956                            right_edge[i] + shift_dq - (-mid_min));
2957                 /* To determine values for export structures */
2958                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2959                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2960
2961                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2962                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2963         }
2964
2965         /* Move DQS */
2966         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2967         writel(0, &sdr_scc_mgr->update);
2968
2969         /* Centre DM */
2970         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2971
2972         /*
2973          * set the left and right edge of each bit to an illegal value,
2974          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2975          */
2976         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2977         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2978         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2979         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2980         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2981         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2982         int32_t win_best = 0;
2983
2984         /* Search for the/part of the window with DM shift */
2985         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2986                 scc_mgr_apply_group_dm_out1_delay(write_group, d);
2987                 writel(0, &sdr_scc_mgr->update);
2988
2989                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2990                                                     PASS_ALL_BITS, &bit_chk,
2991                                                     0)) {
2992                         /* USE Set current end of the window */
2993                         end_curr = -d;
2994                         /*
2995                          * If a starting edge of our window has not been seen
2996                          * this is our current start of the DM window.
2997                          */
2998                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2999                                 bgn_curr = -d;
3000
3001                         /*
3002                          * If current window is bigger than best seen.
3003                          * Set best seen to be current window.
3004                          */
3005                         if ((end_curr-bgn_curr+1) > win_best) {
3006                                 win_best = end_curr-bgn_curr+1;
3007                                 bgn_best = bgn_curr;
3008                                 end_best = end_curr;
3009                         }
3010                 } else {
3011                         /* We just saw a failing test. Reset temp edge */
3012                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3013                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3014                         }
3015                 }
3016
3017
3018         /* Reset DM delay chains to 0 */
3019         scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3020
3021         /*
3022          * Check to see if the current window nudges up aganist 0 delay.
3023          * If so we need to continue the search by shifting DQS otherwise DQS
3024          * search begins as a new search. */
3025         if (end_curr != 0) {
3026                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3027                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3028         }
3029
3030         /* Search for the/part of the window with DQS shifts */
3031         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3032                 /*
3033                  * Note: This only shifts DQS, so are we limiting ourselve to
3034                  * width of DQ unnecessarily.
3035                  */
3036                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3037                                                         d + new_dqs);
3038
3039                 writel(0, &sdr_scc_mgr->update);
3040                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3041                                                     PASS_ALL_BITS, &bit_chk,
3042                                                     0)) {
3043                         /* USE Set current end of the window */
3044                         end_curr = d;
3045                         /*
3046                          * If a beginning edge of our window has not been seen
3047                          * this is our current begin of the DM window.
3048                          */
3049                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3050                                 bgn_curr = d;
3051
3052                         /*
3053                          * If current window is bigger than best seen. Set best
3054                          * seen to be current window.
3055                          */
3056                         if ((end_curr-bgn_curr+1) > win_best) {
3057                                 win_best = end_curr-bgn_curr+1;
3058                                 bgn_best = bgn_curr;
3059                                 end_best = end_curr;
3060                         }
3061                 } else {
3062                         /* We just saw a failing test. Reset temp edge */
3063                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3064                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3065
3066                         /* Early exit optimization: if ther remaining delay
3067                         chain space is less than already seen largest window
3068                         we can exit */
3069                         if ((win_best-1) >
3070                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3071                                         break;
3072                                 }
3073                         }
3074                 }
3075
3076         /* assign left and right edge for cal and reporting; */
3077         left_edge[0] = -1*bgn_best;
3078         right_edge[0] = end_best;
3079
3080         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3081                    __LINE__, left_edge[0], right_edge[0]);
3082
3083         /* Move DQS (back to orig) */
3084         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3085
3086         /* Move DM */
3087
3088         /* Find middle of window for the DM bit */
3089         mid = (left_edge[0] - right_edge[0]) / 2;
3090
3091         /* only move right, since we are not moving DQS/DQ */
3092         if (mid < 0)
3093                 mid = 0;
3094
3095         /* dm_marign should fail if we never find a window */
3096         if (win_best == 0)
3097                 dm_margin = -1;
3098         else
3099                 dm_margin = left_edge[0] - mid;
3100
3101         scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3102         writel(0, &sdr_scc_mgr->update);
3103
3104         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3105                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3106                    right_edge[0], mid, dm_margin);
3107         /* Export values */
3108         gbl->fom_out += dq_margin + dqs_margin;
3109
3110         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3111                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3112                    dq_margin, dqs_margin, dm_margin);
3113
3114         /*
3115          * Do not remove this line as it makes sure all of our
3116          * decisions have been applied.
3117          */
3118         writel(0, &sdr_scc_mgr->update);
3119         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3120 }
3121
3122 /* calibrate the write operations */
3123 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3124         uint32_t test_bgn)
3125 {
3126         /* update info for sims */
3127         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3128
3129         reg_file_set_stage(CAL_STAGE_WRITES);
3130         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3131
3132         reg_file_set_group(g);
3133
3134         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3135                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3136                                         CAL_SUBSTAGE_WRITES_CENTER);
3137                 return 0;
3138         }
3139
3140         return 1;
3141 }
3142
3143 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3144 static void mem_precharge_and_activate(void)
3145 {
3146         uint32_t r;
3147
3148         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3149                 if (param->skip_ranks[r]) {
3150                         /* request to skip the rank */
3151                         continue;
3152                 }
3153
3154                 /* set rank */
3155                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3156
3157                 /* precharge all banks ... */
3158                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3159                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3160
3161                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3162                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3163                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3164
3165                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3166                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3167                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3168
3169                 /* activate rows */
3170                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3171                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3172         }
3173 }
3174
3175 /* Configure various memory related parameters. */
3176 static void mem_config(void)
3177 {
3178         uint32_t rlat, wlat;
3179         uint32_t rw_wl_nop_cycles;
3180         uint32_t max_latency;
3181
3182         debug("%s:%d\n", __func__, __LINE__);
3183         /* read in write and read latency */
3184         wlat = readl(&data_mgr->t_wl_add);
3185         wlat += readl(&data_mgr->mem_t_add);
3186
3187         /* WL for hard phy does not include additive latency */
3188
3189         /*
3190          * add addtional write latency to offset the address/command extra
3191          * clock cycle. We change the AC mux setting causing AC to be delayed
3192          * by one mem clock cycle. Only do this for DDR3
3193          */
3194         wlat = wlat + 1;
3195
3196         rlat = readl(&data_mgr->t_rl_add);
3197
3198         rw_wl_nop_cycles = wlat - 2;
3199         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3200
3201         /*
3202          * For AV/CV, lfifo is hardened and always runs at full rate so
3203          * max latency in AFI clocks, used here, is correspondingly smaller.
3204          */
3205         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3206         /* configure for a burst length of 8 */
3207
3208         /* write latency */
3209         /* Adjust Write Latency for Hard PHY */
3210         wlat = wlat + 1;
3211
3212         /* set a pretty high read latency initially */
3213         gbl->curr_read_lat = rlat + 16;
3214
3215         if (gbl->curr_read_lat > max_latency)
3216                 gbl->curr_read_lat = max_latency;
3217
3218         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3219
3220         /* advertise write latency */
3221         gbl->curr_write_lat = wlat;
3222         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3223
3224         /* initialize bit slips */
3225         mem_precharge_and_activate();
3226 }
3227
3228 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3229 static void mem_skip_calibrate(void)
3230 {
3231         uint32_t vfifo_offset;
3232         uint32_t i, j, r;
3233
3234         debug("%s:%d\n", __func__, __LINE__);
3235         /* Need to update every shadow register set used by the interface */
3236         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3237                 r += NUM_RANKS_PER_SHADOW_REG) {
3238                 /*
3239                  * Set output phase alignment settings appropriate for
3240                  * skip calibration.
3241                  */
3242                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3243                         scc_mgr_set_dqs_en_phase(i, 0);
3244 #if IO_DLL_CHAIN_LENGTH == 6
3245                         scc_mgr_set_dqdqs_output_phase(i, 6);
3246 #else
3247                         scc_mgr_set_dqdqs_output_phase(i, 7);
3248 #endif
3249                         /*
3250                          * Case:33398
3251                          *
3252                          * Write data arrives to the I/O two cycles before write
3253                          * latency is reached (720 deg).
3254                          *   -> due to bit-slip in a/c bus
3255                          *   -> to allow board skew where dqs is longer than ck
3256                          *      -> how often can this happen!?
3257                          *      -> can claim back some ptaps for high freq
3258                          *       support if we can relax this, but i digress...
3259                          *
3260                          * The write_clk leads mem_ck by 90 deg
3261                          * The minimum ptap of the OPA is 180 deg
3262                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3263                          * The write_clk is always delayed by 2 ptaps
3264                          *
3265                          * Hence, to make DQS aligned to CK, we need to delay
3266                          * DQS by:
3267                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3268                          *
3269                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3270                          * gives us the number of ptaps, which simplies to:
3271                          *
3272                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3273                          */
3274                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3275                                 IO_DLL_CHAIN_LENGTH - 2));
3276                 }
3277                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3278                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3279
3280                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3281                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3282                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3283                 }
3284                 writel(0xff, &sdr_scc_mgr->dq_ena);
3285                 writel(0xff, &sdr_scc_mgr->dm_ena);
3286                 writel(0, &sdr_scc_mgr->update);
3287         }
3288
3289         /* Compensate for simulation model behaviour */
3290         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3291                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3292                 scc_mgr_load_dqs(i);
3293         }
3294         writel(0, &sdr_scc_mgr->update);
3295
3296         /*
3297          * ArriaV has hard FIFOs that can only be initialized by incrementing
3298          * in sequencer.
3299          */
3300         vfifo_offset = CALIB_VFIFO_OFFSET;
3301         for (j = 0; j < vfifo_offset; j++) {
3302                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3303         }
3304         writel(0, &phy_mgr_cmd->fifo_reset);
3305
3306         /*
3307          * For ACV with hard lfifo, we get the skip-cal setting from
3308          * generation-time constant.
3309          */
3310         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3311         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3312 }
3313
3314 /* Memory calibration entry point */
3315 static uint32_t mem_calibrate(void)
3316 {
3317         uint32_t i;
3318         uint32_t rank_bgn, sr;
3319         uint32_t write_group, write_test_bgn;
3320         uint32_t read_group, read_test_bgn;
3321         uint32_t run_groups, current_run;
3322         uint32_t failing_groups = 0;
3323         uint32_t group_failed = 0;
3324         uint32_t sr_failed = 0;
3325
3326         debug("%s:%d\n", __func__, __LINE__);
3327         /* Initialize the data settings */
3328
3329         gbl->error_substage = CAL_SUBSTAGE_NIL;
3330         gbl->error_stage = CAL_STAGE_NIL;
3331         gbl->error_group = 0xff;
3332         gbl->fom_in = 0;
3333         gbl->fom_out = 0;
3334
3335         mem_config();
3336
3337         uint32_t bypass_mode = 0x1;
3338         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3339                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3340                           SCC_MGR_GROUP_COUNTER_OFFSET);
3341                 scc_set_bypass_mode(i, bypass_mode);
3342         }
3343
3344         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3345                 /*
3346                  * Set VFIFO and LFIFO to instant-on settings in skip
3347                  * calibration mode.
3348                  */
3349                 mem_skip_calibrate();
3350         } else {
3351                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3352                         /*
3353                          * Zero all delay chain/phase settings for all
3354                          * groups and all shadow register sets.
3355                          */
3356                         scc_mgr_zero_all();
3357
3358                         run_groups = ~param->skip_groups;
3359
3360                         for (write_group = 0, write_test_bgn = 0; write_group
3361                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3362                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3363                                 /* Initialized the group failure */
3364                                 group_failed = 0;
3365
3366                                 current_run = run_groups & ((1 <<
3367                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3368                                 run_groups = run_groups >>
3369                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3370
3371                                 if (current_run == 0)
3372                                         continue;
3373
3374                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3375                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3376                                 scc_mgr_zero_group(write_group, write_test_bgn,
3377                                                    0);
3378
3379                                 for (read_group = write_group *
3380                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3381                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3382                                         read_test_bgn = 0;
3383                                         read_group < (write_group + 1) *
3384                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3385                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3386                                         group_failed == 0;
3387                                         read_group++, read_test_bgn +=
3388                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3389                                         /* Calibrate the VFIFO */
3390                                         if (!((STATIC_CALIB_STEPS) &
3391                                                 CALIB_SKIP_VFIFO)) {
3392                                                 if (!rw_mgr_mem_calibrate_vfifo
3393                                                         (read_group,
3394                                                         read_test_bgn)) {
3395                                                         group_failed = 1;
3396
3397                                                         if (!(gbl->
3398                                                         phy_debug_mode_flags &
3399                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3400                                                                 return 0;
3401                                                         }
3402                                                 }
3403                                         }
3404                                 }
3405
3406                                 /* Calibrate the output side */
3407                                 if (group_failed == 0)  {
3408                                         for (rank_bgn = 0, sr = 0; rank_bgn
3409                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3410                                                 rank_bgn +=
3411                                                 NUM_RANKS_PER_SHADOW_REG,
3412                                                 ++sr) {
3413                                                 sr_failed = 0;
3414                                                 if (!((STATIC_CALIB_STEPS) &
3415                                                 CALIB_SKIP_WRITES)) {
3416                                                         if ((STATIC_CALIB_STEPS)
3417                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3418                                                 /* not needed in quick mode! */
3419                                                         } else {
3420                                                 /*
3421                                                  * Determine if this set of
3422                                                  * ranks should be skipped
3423                                                  * entirely.
3424                                                  */
3425                                         if (!param->skip_shadow_regs[sr]) {
3426                                                 if (!rw_mgr_mem_calibrate_writes
3427                                                 (rank_bgn, write_group,
3428                                                 write_test_bgn)) {
3429                                                         sr_failed = 1;
3430                                                         if (!(gbl->
3431                                                         phy_debug_mode_flags &
3432                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3433                                                                 return 0;
3434                                                                         }
3435                                                                         }
3436                                                                 }
3437                                                         }
3438                                                 }
3439                                                 if (sr_failed != 0)
3440                                                         group_failed = 1;
3441                                         }
3442                                 }
3443
3444                                 if (group_failed == 0) {
3445                                         for (read_group = write_group *
3446                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3447                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3448                                         read_test_bgn = 0;
3449                                                 read_group < (write_group + 1)
3450                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3451                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3452                                                 group_failed == 0;
3453                                                 read_group++, read_test_bgn +=
3454                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3455                                                 if (!((STATIC_CALIB_STEPS) &
3456                                                         CALIB_SKIP_WRITES)) {
3457                                         if (!rw_mgr_mem_calibrate_vfifo_end
3458                                                 (read_group, read_test_bgn)) {
3459                                                         group_failed = 1;
3460
3461                                                 if (!(gbl->phy_debug_mode_flags
3462                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3463                                                                 return 0;
3464                                                                 }
3465                                                         }
3466                                                 }
3467                                         }
3468                                 }
3469
3470                                 if (group_failed != 0)
3471                                         failing_groups++;
3472                         }
3473
3474                         /*
3475                          * USER If there are any failing groups then report
3476                          * the failure.
3477                          */
3478                         if (failing_groups != 0)
3479                                 return 0;
3480
3481                         /* Calibrate the LFIFO */
3482                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3483                                 /*
3484                                  * If we're skipping groups as part of debug,
3485                                  * don't calibrate LFIFO.
3486                                  */
3487                                 if (param->skip_groups == 0) {
3488                                         if (!rw_mgr_mem_calibrate_lfifo())
3489                                                 return 0;
3490                                 }
3491                         }
3492                 }
3493         }
3494
3495         /*
3496          * Do not remove this line as it makes sure all of our decisions
3497          * have been applied.
3498          */
3499         writel(0, &sdr_scc_mgr->update);
3500         return 1;
3501 }
3502
3503 static uint32_t run_mem_calibrate(void)
3504 {
3505         uint32_t pass;
3506         uint32_t debug_info;
3507
3508         debug("%s:%d\n", __func__, __LINE__);
3509
3510         /* Reset pass/fail status shown on afi_cal_success/fail */
3511         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3512
3513         /* stop tracking manger */
3514         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3515
3516         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3517
3518         initialize();
3519         rw_mgr_mem_initialize();
3520
3521         pass = mem_calibrate();
3522
3523         mem_precharge_and_activate();
3524         writel(0, &phy_mgr_cmd->fifo_reset);
3525
3526         /*
3527          * Handoff:
3528          * Don't return control of the PHY back to AFI when in debug mode.
3529          */
3530         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3531                 rw_mgr_mem_handoff();
3532                 /*
3533                  * In Hard PHY this is a 2-bit control:
3534                  * 0: AFI Mux Select
3535                  * 1: DDIO Mux Select
3536                  */
3537                 writel(0x2, &phy_mgr_cfg->mux_sel);
3538         }
3539
3540         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3541
3542         if (pass) {
3543                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3544
3545                 gbl->fom_in /= 2;
3546                 gbl->fom_out /= 2;
3547
3548                 if (gbl->fom_in > 0xff)
3549                         gbl->fom_in = 0xff;
3550
3551                 if (gbl->fom_out > 0xff)
3552                         gbl->fom_out = 0xff;
3553
3554                 /* Update the FOM in the register file */
3555                 debug_info = gbl->fom_in;
3556                 debug_info |= gbl->fom_out << 8;
3557                 writel(debug_info, &sdr_reg_file->fom);
3558
3559                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3560                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3561         } else {
3562                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3563
3564                 debug_info = gbl->error_stage;
3565                 debug_info |= gbl->error_substage << 8;
3566                 debug_info |= gbl->error_group << 16;
3567
3568                 writel(debug_info, &sdr_reg_file->failing_stage);
3569                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3570                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3571
3572                 /* Update the failing group/stage in the register file */
3573                 debug_info = gbl->error_stage;
3574                 debug_info |= gbl->error_substage << 8;
3575                 debug_info |= gbl->error_group << 16;
3576                 writel(debug_info, &sdr_reg_file->failing_stage);
3577         }
3578
3579         return pass;
3580 }
3581
3582 /**
3583  * hc_initialize_rom_data() - Initialize ROM data
3584  *
3585  * Initialize ROM data.
3586  */
3587 static void hc_initialize_rom_data(void)
3588 {
3589         u32 i, addr;
3590
3591         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3592         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3593                 writel(inst_rom_init[i], addr + (i << 2));
3594
3595         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3596         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3597                 writel(ac_rom_init[i], addr + (i << 2));
3598 }
3599
3600 /**
3601  * initialize_reg_file() - Initialize SDR register file
3602  *
3603  * Initialize SDR register file.
3604  */
3605 static void initialize_reg_file(void)
3606 {
3607         /* Initialize the register file with the correct data */
3608         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3609         writel(0, &sdr_reg_file->debug_data_addr);
3610         writel(0, &sdr_reg_file->cur_stage);
3611         writel(0, &sdr_reg_file->fom);
3612         writel(0, &sdr_reg_file->failing_stage);
3613         writel(0, &sdr_reg_file->debug1);
3614         writel(0, &sdr_reg_file->debug2);
3615 }
3616
3617 /**
3618  * initialize_hps_phy() - Initialize HPS PHY
3619  *
3620  * Initialize HPS PHY.
3621  */
3622 static void initialize_hps_phy(void)
3623 {
3624         uint32_t reg;
3625         /*
3626          * Tracking also gets configured here because it's in the
3627          * same register.
3628          */
3629         uint32_t trk_sample_count = 7500;
3630         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3631         /*
3632          * Format is number of outer loops in the 16 MSB, sample
3633          * count in 16 LSB.
3634          */
3635
3636         reg = 0;
3637         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3638         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3639         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3640         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3641         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3642         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3643         /*
3644          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3645          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3646          */
3647         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3648         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3649                 trk_sample_count);
3650         writel(reg, &sdr_ctrl->phy_ctrl0);
3651
3652         reg = 0;
3653         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3654                 trk_sample_count >>
3655                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3656         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3657                 trk_long_idle_sample_count);
3658         writel(reg, &sdr_ctrl->phy_ctrl1);
3659
3660         reg = 0;
3661         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3662                 trk_long_idle_sample_count >>
3663                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3664         writel(reg, &sdr_ctrl->phy_ctrl2);
3665 }
3666
3667 static void initialize_tracking(void)
3668 {
3669         uint32_t concatenated_longidle = 0x0;
3670         uint32_t concatenated_delays = 0x0;
3671         uint32_t concatenated_rw_addr = 0x0;
3672         uint32_t concatenated_refresh = 0x0;
3673         uint32_t trk_sample_count = 7500;
3674         uint32_t dtaps_per_ptap;
3675         uint32_t tmp_delay;
3676
3677         /*
3678          * compute usable version of value in case we skip full
3679          * computation later
3680          */
3681         dtaps_per_ptap = 0;
3682         tmp_delay = 0;
3683         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3684                 dtaps_per_ptap++;
3685                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3686         }
3687         dtaps_per_ptap--;
3688
3689         concatenated_longidle = concatenated_longidle ^ 10;
3690                 /*longidle outer loop */
3691         concatenated_longidle = concatenated_longidle << 16;
3692         concatenated_longidle = concatenated_longidle ^ 100;
3693                 /*longidle sample count */
3694         concatenated_delays = concatenated_delays ^ 243;
3695                 /* trfc, worst case of 933Mhz 4Gb */
3696         concatenated_delays = concatenated_delays << 8;
3697         concatenated_delays = concatenated_delays ^ 14;
3698                 /* trcd, worst case */
3699         concatenated_delays = concatenated_delays << 8;
3700         concatenated_delays = concatenated_delays ^ 10;
3701                 /* vfifo wait */
3702         concatenated_delays = concatenated_delays << 8;
3703         concatenated_delays = concatenated_delays ^ 4;
3704                 /* mux delay */
3705
3706         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3707         concatenated_rw_addr = concatenated_rw_addr << 8;
3708         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3709         concatenated_rw_addr = concatenated_rw_addr << 8;
3710         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3711         concatenated_rw_addr = concatenated_rw_addr << 8;
3712         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3713
3714         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3715         concatenated_refresh = concatenated_refresh << 24;
3716         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3717
3718         /* Initialize the register file with the correct data */
3719         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3720         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3721         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3722         writel(concatenated_delays, &sdr_reg_file->delays);
3723         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3724         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3725         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3726 }
3727
3728 int sdram_calibration_full(void)
3729 {
3730         struct param_type my_param;
3731         struct gbl_type my_gbl;
3732         uint32_t pass;
3733         uint32_t i;
3734
3735         param = &my_param;
3736         gbl = &my_gbl;
3737
3738         /* Initialize the debug mode flags */
3739         gbl->phy_debug_mode_flags = 0;
3740         /* Set the calibration enabled by default */
3741         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3742         /*
3743          * Only sweep all groups (regardless of fail state) by default
3744          * Set enabled read test by default.
3745          */
3746 #if DISABLE_GUARANTEED_READ
3747         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3748 #endif
3749         /* Initialize the register file */
3750         initialize_reg_file();
3751
3752         /* Initialize any PHY CSR */
3753         initialize_hps_phy();
3754
3755         scc_mgr_initialize();
3756
3757         initialize_tracking();
3758
3759         /* USER Enable all ranks, groups */
3760         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3761                 param->skip_ranks[i] = 0;
3762         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3763                 param->skip_shadow_regs[i] = 0;
3764         param->skip_groups = 0;
3765
3766         printf("%s: Preparing to start memory calibration\n", __FILE__);
3767
3768         debug("%s:%d\n", __func__, __LINE__);
3769         debug_cond(DLEVEL == 1,
3770                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3771                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3772                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3773                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3774                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3775         debug_cond(DLEVEL == 1,
3776                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3777                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3778                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3779                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3780         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3781                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3782         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3783                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3784                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3785         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3786                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3787                    IO_IO_OUT2_DELAY_MAX);
3788         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3789                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3790
3791         hc_initialize_rom_data();
3792
3793         /* update info for sims */
3794         reg_file_set_stage(CAL_STAGE_NIL);
3795         reg_file_set_group(0);
3796
3797         /*
3798          * Load global needed for those actions that require
3799          * some dynamic calibration support.
3800          */
3801         dyn_calib_steps = STATIC_CALIB_STEPS;
3802         /*
3803          * Load global to allow dynamic selection of delay loop settings
3804          * based on calibration mode.
3805          */
3806         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3807                 skip_delay_mask = 0xff;
3808         else
3809                 skip_delay_mask = 0x0;
3810
3811         pass = run_mem_calibrate();
3812
3813         printf("%s: Calibration complete\n", __FILE__);
3814         return pass;
3815 }