]> git.sur5r.net Git - u-boot/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() part 1
[u-boot] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84         uint32_t write_group, uint32_t use_dm,
85         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88         uint32_t substage)
89 {
90         /*
91          * Only set the global stage if there was not been any other
92          * failing group
93          */
94         if (gbl->error_stage == CAL_STAGE_NIL)  {
95                 gbl->error_substage = substage;
96                 gbl->error_stage = stage;
97                 gbl->error_group = group;
98         }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113         set_sub_stage &= 0xff;
114         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124         u32 ratio;
125
126         debug("%s:%d\n", __func__, __LINE__);
127         /* Calibration has control over path to memory */
128         /*
129          * In Hard PHY this is a 2-bit control:
130          * 0: AFI Mux Select
131          * 1: DDIO Mux Select
132          */
133         writel(0x3, &phy_mgr_cfg->mux_sel);
134
135         /* USER memory clock is not stable we begin initialization  */
136         writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138         /* USER calibration status all set to zero */
139         writel(0, &phy_mgr_cfg->cal_status);
140
141         writel(0, &phy_mgr_cfg->cal_debug_info);
142
143         /* Init params only if we do NOT skip calibration. */
144         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145                 return;
146
147         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149         param->read_correct_mask_vg = (1 << ratio) - 1;
150         param->write_correct_mask_vg = (1 << ratio) - 1;
151         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153         ratio = RW_MGR_MEM_DATA_WIDTH /
154                 RW_MGR_MEM_DATA_MASK_WIDTH;
155         param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:       Rank mask
161  * @odt_mode:   ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167         u32 odt_mask_0 = 0;
168         u32 odt_mask_1 = 0;
169         u32 cs_and_odt_mask;
170
171         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172                 odt_mask_0 = 0x0;
173                 odt_mask_1 = 0x0;
174         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
175                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176                 case 1: /* 1 Rank */
177                         /* Read: ODT = 0 ; Write: ODT = 1 */
178                         odt_mask_0 = 0x0;
179                         odt_mask_1 = 0x1;
180                         break;
181                 case 2: /* 2 Ranks */
182                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183                                 /*
184                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
185                                  *   OR
186                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187                                  *
188                                  * Since MEM_NUMBER_OF_RANKS is 2, they
189                                  * are both single rank with 2 CS each
190                                  * (special for RDIMM).
191                                  *
192                                  * Read: Turn on ODT on the opposite rank
193                                  * Write: Turn on ODT on all ranks
194                                  */
195                                 odt_mask_0 = 0x3 & ~(1 << rank);
196                                 odt_mask_1 = 0x3;
197                         } else {
198                                 /*
199                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
200                                  *
201                                  * Read: Turn on ODT off on all ranks
202                                  * Write: Turn on ODT on active rank
203                                  */
204                                 odt_mask_0 = 0x0;
205                                 odt_mask_1 = 0x3 & (1 << rank);
206                         }
207                         break;
208                 case 4: /* 4 Ranks */
209                         /* Read:
210                          * ----------+-----------------------+
211                          *           |         ODT           |
212                          * Read From +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  0  |
216                          *     1     |  1  |  0  |  0  |  0  |
217                          *     2     |  0  |  0  |  0  |  1  |
218                          *     3     |  0  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          *
221                          * Write:
222                          * ----------+-----------------------+
223                          *           |         ODT           |
224                          * Write To  +-----------------------+
225                          *   Rank    |  3  |  2  |  1  |  0  |
226                          * ----------+-----+-----+-----+-----+
227                          *     0     |  0  |  1  |  0  |  1  |
228                          *     1     |  1  |  0  |  1  |  0  |
229                          *     2     |  0  |  1  |  0  |  1  |
230                          *     3     |  1  |  0  |  1  |  0  |
231                          * ----------+-----+-----+-----+-----+
232                          */
233                         switch (rank) {
234                         case 0:
235                                 odt_mask_0 = 0x4;
236                                 odt_mask_1 = 0x5;
237                                 break;
238                         case 1:
239                                 odt_mask_0 = 0x8;
240                                 odt_mask_1 = 0xA;
241                                 break;
242                         case 2:
243                                 odt_mask_0 = 0x1;
244                                 odt_mask_1 = 0x5;
245                                 break;
246                         case 3:
247                                 odt_mask_0 = 0x2;
248                                 odt_mask_1 = 0xA;
249                                 break;
250                         }
251                         break;
252                 }
253         }
254
255         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256                           ((0xFF & odt_mask_0) << 8) |
257                           ((0xFF & odt_mask_1) << 16);
258         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:        Base offset in SCC Manager space
265  * @grp:        Read/Write group
266  * @val:        Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282         /*
283          * Clear register file for HPS. 16 (2^4) is the size of the
284          * full register file in the scc mgr:
285          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286          *                             MEM_IF_READ_DQS_WIDTH - 1);
287          */
288         int i;
289
290         for (i = 0; i < 16; i++) {
291                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292                            __func__, __LINE__, i);
293                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294         }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320                     delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336                     delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343                     delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349         writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355         writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367         writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:        Base offset in SCC Manager space
373  * @grp:        Read/Write group
374  * @val:        Value to be set
375  * @update:     If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381                                   const int update)
382 {
383         u32 r;
384
385         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386              r += NUM_RANKS_PER_SHADOW_REG) {
387                 scc_mgr_set(off, grp, val);
388
389                 if (update || (r == 0)) {
390                         writel(grp, &sdr_scc_mgr->dqs_ena);
391                         writel(0, &sdr_scc_mgr->update);
392                 }
393         }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398         /*
399          * USER although the h/w doesn't support different phases per
400          * shadow register, for simplicity our scc manager modeling
401          * keeps different phase settings per shadow reg, and it's
402          * important for us to keep them in sync to match h/w.
403          * for efficiency, the scan chain update should occur only
404          * once to sr0.
405          */
406         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407                               read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411                                                      uint32_t phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422                               write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426                                                uint32_t delay)
427 {
428         /*
429          * In shadow register mode, the T11 settings are stored in
430          * registers in the core, which are updated by the DQS_ENA
431          * signals. Not issuing the SCC_MGR_UPD command allows us to
432          * save lots of rank switching overhead, by calling
433          * select_shadow_regs_for_update with update_scan_chains
434          * set to 0.
435          */
436         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437                               read_group, delay, 1);
438         writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:        Write group
444  * @delay:              Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452         const int base = write_group * ratio;
453         int i;
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (i = 0; i < ratio; i++)
462                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472         /*
473          * Load the fixed setting in the SCC manager
474          * bits: 0:0 = 1'b1     - DQS bypass
475          * bits: 1:1 = 1'b1     - DQ bypass
476          * bits: 4:2 = 3'b001   - rfifo_mode
477          * bits: 6:5 = 2'b01    - rfifo clock_select
478          * bits: 7:7 = 1'b0     - separate gating from ungating setting
479          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
480          */
481         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482                           (1 << 2) | (1 << 1) | (1 << 0);
483         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484                          SCC_MGR_HHP_GLOBALS_OFFSET |
485                          SCC_MGR_HHP_EXTRAS_OFFSET;
486
487         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488                    __func__, __LINE__);
489         writel(value, addr);
490         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491                    __func__, __LINE__);
492 }
493
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501         int i, r;
502
503         /*
504          * USER Zero all DQS config settings, across all groups and all
505          * shadow registers
506          */
507         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508              r += NUM_RANKS_PER_SHADOW_REG) {
509                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510                         /*
511                          * The phases actually don't exist on a per-rank basis,
512                          * but there's no harm updating them several times, so
513                          * let's keep the code simple.
514                          */
515                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516                         scc_mgr_set_dqs_en_phase(i, 0);
517                         scc_mgr_set_dqs_en_delay(i, 0);
518                 }
519
520                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521                         scc_mgr_set_dqdqs_output_phase(i, 0);
522                         /* Arria V/Cyclone V don't have out2. */
523                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524                 }
525         }
526
527         /* Multicast to all DQS group enables. */
528         writel(0xff, &sdr_scc_mgr->dqs_ena);
529         writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:        Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540         /* Multicast to all DQ enables. */
541         writel(0xff, &sdr_scc_mgr->dq_ena);
542         writel(0xff, &sdr_scc_mgr->dm_ena);
543
544         /* Update current DQS IO enable. */
545         writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547         /* Update the DQS logic. */
548         writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550         /* Hit update. */
551         writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:        Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564         const int base = write_group * ratio;
565         int i;
566         /*
567          * Load the setting in the SCC manager
568          * Although OCT affects only write data, the OCT delay is controlled
569          * by the DQS logic block which is instantiated once per read group.
570          * For protocols where a write group consists of multiple read groups,
571          * the setting must be set multiple times.
572          */
573         for (i = 0; i < ratio; i++)
574                 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584         int i, r;
585
586         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587              r += NUM_RANKS_PER_SHADOW_REG) {
588                 /* Zero all DQ config settings. */
589                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590                         scc_mgr_set_dq_out1_delay(i, 0);
591                         if (!out_only)
592                                 scc_mgr_set_dq_in_delay(i, 0);
593                 }
594
595                 /* Multicast to all DQ enables. */
596                 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598                 /* Zero all DM config settings. */
599                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600                         scc_mgr_set_dm_out1_delay(i, 0);
601
602                 /* Multicast to all DM enables. */
603                 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605                 /* Zero all DQS IO settings. */
606                 if (!out_only)
607                         scc_mgr_set_dqs_io_in_delay(0);
608
609                 /* Arria V/Cyclone V don't have out2. */
610                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612                 scc_mgr_load_dqs_for_write_group(write_group);
613
614                 /* Multicast to all DQS IO enables (only 1 in total). */
615                 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617                 /* Hit update to zero everything. */
618                 writel(0, &sdr_scc_mgr->update);
619         }
620 }
621
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628         uint32_t i, p;
629
630         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631                 scc_mgr_set_dq_in_delay(p, delay);
632                 scc_mgr_load_dq(p);
633         }
634 }
635
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:              Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644         int i;
645
646         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647                 scc_mgr_set_dq_out1_delay(i, delay);
648                 scc_mgr_load_dq(i);
649         }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655         uint32_t i;
656
657         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658                 scc_mgr_set_dm_out1_delay(i, delay1);
659                 scc_mgr_load_dm(i);
660         }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666                                                     uint32_t delay)
667 {
668         scc_mgr_set_dqs_out1_delay(delay);
669         scc_mgr_load_dqs_io();
670
671         scc_mgr_set_oct_out1_delay(write_group, delay);
672         scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:        Write group
678  * @delay:              Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683                                                   const u32 delay)
684 {
685         u32 i, new_delay;
686
687         /* DQ shift */
688         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689                 scc_mgr_load_dq(i);
690
691         /* DM shift */
692         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693                 scc_mgr_load_dm(i);
694
695         /* DQS shift */
696         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698                 debug_cond(DLEVEL == 1,
699                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700                            __func__, __LINE__, write_group, delay, new_delay,
701                            IO_IO_OUT2_DELAY_MAX,
702                            new_delay - IO_IO_OUT2_DELAY_MAX);
703                 new_delay -= IO_IO_OUT2_DELAY_MAX;
704                 scc_mgr_set_dqs_out1_delay(new_delay);
705         }
706
707         scc_mgr_load_dqs_io();
708
709         /* OCT shift */
710         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1,
713                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714                            __func__, __LINE__, write_group, delay,
715                            new_delay, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 new_delay -= IO_IO_OUT2_DELAY_MAX;
718                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719         }
720
721         scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:        Write group
727  * @delay:              Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733                                                 const u32 delay)
734 {
735         int r;
736
737         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738              r += NUM_RANKS_PER_SHADOW_REG) {
739                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740                 writel(0, &sdr_scc_mgr->update);
741         }
742 }
743
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752         /*
753          * To save space, we replace return with jump to special shared
754          * RETURN instruction so we set the counter to large value so that
755          * we always jump.
756          */
757         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767         uint32_t afi_clocks;
768         uint8_t inner = 0;
769         uint8_t outer = 0;
770         uint16_t c_loop = 0;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776         /* scale (rounding up) to get afi clocks */
777
778         /*
779          * Note, we don't bother accounting for being off a little bit
780          * because of a few extra instructions in outer loops
781          * Note, the loops have a test at the end, and do the test before
782          * the decrement, and so always perform the loop
783          * 1 time more than the counter value
784          */
785         if (afi_clocks == 0) {
786                 ;
787         } else if (afi_clocks <= 0x100) {
788                 inner = afi_clocks-1;
789                 outer = 0;
790                 c_loop = 0;
791         } else if (afi_clocks <= 0x10000) {
792                 inner = 0xff;
793                 outer = (afi_clocks-1) >> 8;
794                 c_loop = 0;
795         } else {
796                 inner = 0xff;
797                 outer = 0xff;
798                 c_loop = (afi_clocks-1) >> 16;
799         }
800
801         /*
802          * rom instructions are structured as follows:
803          *
804          *    IDLE_LOOP2: jnz cntr0, TARGET_A
805          *    IDLE_LOOP1: jnz cntr1, TARGET_B
806          *                return
807          *
808          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809          * TARGET_B is set to IDLE_LOOP2 as well
810          *
811          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813          *
814          * a little confusing, but it helps save precious space in the inst_rom
815          * and sequencer rom and keeps the delays more accurate and reduces
816          * overhead
817          */
818         if (afi_clocks <= 0x100) {
819                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820                         &sdr_rw_load_mgr_regs->load_cntr1);
821
822                 writel(RW_MGR_IDLE_LOOP1,
823                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827         } else {
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829                         &sdr_rw_load_mgr_regs->load_cntr0);
830
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832                         &sdr_rw_load_mgr_regs->load_cntr1);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840                 /* hack to get around compiler not being smart enough */
841                 if (afi_clocks <= 0x10000) {
842                         /* only need to run once */
843                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845                 } else {
846                         do {
847                                 writel(RW_MGR_IDLE_LOOP2,
848                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
849                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850                         } while (c_loop-- != 0);
851                 }
852         }
853         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:      Counter 0 value
859  * @cntr1:      Counter 1 value
860  * @cntr2:      Counter 2 value
861  * @jump:       Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870         /* Load counters */
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872                &sdr_rw_load_mgr_regs->load_cntr0);
873         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874                &sdr_rw_load_mgr_regs->load_cntr1);
875         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876                &sdr_rw_load_mgr_regs->load_cntr2);
877
878         /* Load jump address */
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883         /* Execute count instruction */
884         writel(jump, grpaddr);
885 }
886
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:       Final instruction 1
890  * @fin2:       Final instruction 2
891  * @precharge:  If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896                                  const int precharge)
897 {
898         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900         u32 r;
901
902         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903                 if (param->skip_ranks[r]) {
904                         /* request to skip the rank */
905                         continue;
906                 }
907
908                 /* set rank */
909                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911                 /* precharge all banks ... */
912                 if (precharge)
913                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915                 /*
916                  * USER Use Mirror-ed commands for odd ranks if address
917                  * mirrorring is on
918                  */
919                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS2_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS3_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(RW_MGR_MRS1_MIRR, grpaddr);
928                         delay_for_n_mem_clocks(4);
929                         set_jump_as_return();
930                         writel(fin1, grpaddr);
931                 } else {
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS2, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS3, grpaddr);
937                         delay_for_n_mem_clocks(4);
938                         set_jump_as_return();
939                         writel(RW_MGR_MRS1, grpaddr);
940                         set_jump_as_return();
941                         writel(fin2, grpaddr);
942                 }
943
944                 if (precharge)
945                         continue;
946
947                 set_jump_as_return();
948                 writel(RW_MGR_ZQCL, grpaddr);
949
950                 /* tZQinit = tDLLK = 512 ck cycles */
951                 delay_for_n_mem_clocks(512);
952         }
953 }
954
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962         debug("%s:%d\n", __func__, __LINE__);
963
964         /* The reset / cke part of initialization is broadcasted to all ranks */
965         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968         /*
969          * Here's how you load register for a loop
970          * Counters are located @ 0x800
971          * Jump address are located @ 0xC00
972          * For both, registers 0 to 3 are selected using bits 3 and 2, like
973          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974          * I know this ain't pretty, but Avalon bus throws away the 2 least
975          * significant bits
976          */
977
978         /* Start with memory RESET activated */
979
980         /* tINIT = 200us */
981
982         /*
983          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984          * If a and b are the number of iteration in 2 nested loops
985          * it takes the following number of cycles to complete the operation:
986          * number_of_cycles = ((2 + n) * a + 2) * b
987          * where n is the number of instruction in the inner loop
988          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989          * b = 6A
990          */
991         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992                                   SEQ_TINIT_CNTR2_VAL,
993                                   RW_MGR_INIT_RESET_0_CKE_0);
994
995         /* Indicate that memory is stable. */
996         writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998         /*
999          * transition the RESET to high
1000          * Wait for 500us
1001          */
1002
1003         /*
1004          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005          * If a and b are the number of iteration in 2 nested loops
1006          * it takes the following number of cycles to complete the operation
1007          * number_of_cycles = ((2 + n) * a + 2) * b
1008          * where n is the number of instruction in the inner loop
1009          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010          * b = FF
1011          */
1012         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013                                   SEQ_TRESET_CNTR2_VAL,
1014                                   RW_MGR_INIT_RESET_1_CKE_0);
1015
1016         /* Bring up clock enable. */
1017
1018         /* tXRP < 250 ck cycles */
1019         delay_for_n_mem_clocks(250);
1020
1021         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022                              0);
1023 }
1024
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032         /*
1033          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034          * other commands, but we will have plenty of NIOS cycles before
1035          * actual handoff so its okay.
1036          */
1037 }
1038
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:   Rank number
1042  * @group:      Read/Write Group
1043  * @all_ranks:  Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050                                         const u32 all_ranks)
1051 {
1052         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054         const u32 addr_offset =
1055                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056         const u32 rank_end = all_ranks ?
1057                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1058                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061         const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064         int vg, r;
1065         int ret = 0;
1066
1067         bit_chk = param->read_correct_mask;
1068
1069         for (r = rank_bgn; r < rank_end; r++) {
1070                 /* Request to skip the rank */
1071                 if (param->skip_ranks[r])
1072                         continue;
1073
1074                 /* Set rank */
1075                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077                 /* Load up a constant bursts of read commands */
1078                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079                 writel(RW_MGR_GUARANTEED_READ,
1080                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083                 writel(RW_MGR_GUARANTEED_READ_CONT,
1084                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086                 tmp_bit_chk = 0;
1087                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088                      vg >= 0; vg--) {
1089                         /* Reset the FIFOs to get pointers to known state. */
1090                         writel(0, &phy_mgr_cmd->fifo_reset);
1091                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093                         writel(RW_MGR_GUARANTEED_READ,
1094                                addr + addr_offset + (vg << 2));
1095
1096                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097                         tmp_bit_chk <<= shift_ratio;
1098                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099                 }
1100
1101                 bit_chk &= tmp_bit_chk;
1102         }
1103
1104         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108         if (bit_chk != param->read_correct_mask)
1109                 ret = -EIO;
1110
1111         debug_cond(DLEVEL == 1,
1112                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113                    __func__, __LINE__, group, bit_chk,
1114                    param->read_correct_mask, ret);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:   Rank number
1122  * @all_ranks:  Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127                                                     const int all_ranks)
1128 {
1129         const u32 rank_end = all_ranks ?
1130                         RW_MGR_MEM_NUMBER_OF_RANKS :
1131                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132         u32 r;
1133
1134         debug("%s:%d\n", __func__, __LINE__);
1135
1136         for (r = rank_bgn; r < rank_end; r++) {
1137                 if (param->skip_ranks[r])
1138                         /* request to skip the rank */
1139                         continue;
1140
1141                 /* set rank */
1142                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144                 /* Load up a constant bursts */
1145                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167         }
1168
1169         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179         uint32_t all_groups, uint32_t all_ranks)
1180 {
1181         uint32_t r, vg;
1182         uint32_t correct_mask_vg;
1183         uint32_t tmp_bit_chk;
1184         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186         uint32_t addr;
1187         uint32_t base_rw_mgr;
1188
1189         *bit_chk = param->read_correct_mask;
1190         correct_mask_vg = param->read_correct_mask_vg;
1191
1192         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195         for (r = rank_bgn; r < rank_end; r++) {
1196                 if (param->skip_ranks[r])
1197                         /* request to skip the rank */
1198                         continue;
1199
1200                 /* set rank */
1201                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205                 writel(RW_MGR_READ_B2B_WAIT1,
1206                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209                 writel(RW_MGR_READ_B2B_WAIT2,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212                 if (quick_read_mode)
1213                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214                         /* need at least two (1+1) reads to capture failures */
1215                 else if (all_groups)
1216                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217                 else
1218                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220                 writel(RW_MGR_READ_B2B,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222                 if (all_groups)
1223                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225                                &sdr_rw_load_mgr_regs->load_cntr3);
1226                 else
1227                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229                 writel(RW_MGR_READ_B2B,
1230                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232                 tmp_bit_chk = 0;
1233                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234                         /* reset the fifos to get pointers to known state */
1235                         writel(0, &phy_mgr_cmd->fifo_reset);
1236                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242                         if (all_groups)
1243                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244                         else
1245                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247                         writel(RW_MGR_READ_B2B, addr +
1248                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249                                vg) << 2));
1250
1251                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254                         if (vg == 0)
1255                                 break;
1256                 }
1257                 *bit_chk &= tmp_bit_chk;
1258         }
1259
1260         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263         if (all_correct) {
1264                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266                            (%u == %u) => %lu", __func__, __LINE__, group,
1267                            all_groups, *bit_chk, param->read_correct_mask,
1268                            (long unsigned int)(*bit_chk ==
1269                            param->read_correct_mask));
1270                 return *bit_chk == param->read_correct_mask;
1271         } else  {
1272                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274                            (%u != %lu) => %lu\n", __func__, __LINE__,
1275                            group, all_groups, *bit_chk, (long unsigned int)0,
1276                            (long unsigned int)(*bit_chk != 0x00));
1277                 return *bit_chk != 0x00;
1278         }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283         uint32_t all_groups)
1284 {
1285         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286                                               bit_chk, all_groups, 1);
1287 }
1288
1289 /**
1290  * rw_mgr_incr_vfifo() - Increase VFIFO value
1291  * @grp:        Read/Write group
1292  *
1293  * Increase VFIFO value.
1294  */
1295 static void rw_mgr_incr_vfifo(const u32 grp)
1296 {
1297         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1298 }
1299
1300 /**
1301  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1302  * @grp:        Read/Write group
1303  *
1304  * Decrease VFIFO value.
1305  */
1306 static void rw_mgr_decr_vfifo(const u32 grp)
1307 {
1308         u32 i;
1309
1310         for (i = 0; i < VFIFO_SIZE - 1; i++)
1311                 rw_mgr_incr_vfifo(grp);
1312 }
1313
1314 /**
1315  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1316  * @grp:        Read/Write group
1317  *
1318  * Push VFIFO until a failing read happens.
1319  */
1320 static int find_vfifo_failing_read(const u32 grp)
1321 {
1322         u32 v, ret, bit_chk, fail_cnt = 0;
1323
1324         for (v = 0; v < VFIFO_SIZE; v++) {
1325                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1326                            __func__, __LINE__, v);
1327                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1328                                                 PASS_ONE_BIT, &bit_chk, 0);
1329                 if (!ret) {
1330                         fail_cnt++;
1331
1332                         if (fail_cnt == 2)
1333                                 return v;
1334                 }
1335
1336                 /* Fiddle with FIFO. */
1337                 rw_mgr_incr_vfifo(grp);
1338         }
1339
1340         /* No failing read found! Something must have gone wrong. */
1341         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1342         return 0;
1343 }
1344
1345 /**
1346  * sdr_find_phase() - Find DQS enable phase
1347  * @working:    If 1, look for working phase, if 0, look for non-working phase
1348  * @grp:        Read/Write group
1349  * @work:       Working window position
1350  * @i:          Iterator
1351  * @p:          DQS Phase Iterator
1352  *
1353  * Find working or non-working DQS enable phase setting.
1354  */
1355 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1356                           u32 *i, u32 *p)
1357 {
1358         u32 ret, bit_chk;
1359         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1360
1361         for (; *i < end; (*i)++) {
1362                 if (working)
1363                         *p = 0;
1364
1365                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1366                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1367
1368                         ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1369                                                 PASS_ONE_BIT, &bit_chk, 0);
1370                         if (!working)
1371                                 ret = !ret;
1372
1373                         if (ret)
1374                                 return 0;
1375
1376                         *work += IO_DELAY_PER_OPA_TAP;
1377                 }
1378
1379                 if (*p > IO_DQS_EN_PHASE_MAX) {
1380                         /* Fiddle with FIFO. */
1381                         rw_mgr_incr_vfifo(grp);
1382                         if (!working)
1383                                 *p = 0;
1384                 }
1385         }
1386
1387         return -EINVAL;
1388 }
1389
1390 /**
1391  * sdr_working_phase() - Find working DQS enable phase
1392  * @grp:        Read/Write group
1393  * @work_bgn:   Working window start position
1394  * @d:          dtaps output value
1395  * @p:          DQS Phase Iterator
1396  * @i:          Iterator
1397  *
1398  * Find working DQS enable phase setting.
1399  */
1400 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1401                              u32 *p, u32 *i)
1402 {
1403         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1404                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1405         int ret;
1406
1407         *work_bgn = 0;
1408
1409         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1410                 *i = 0;
1411                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1412                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1413                 if (!ret)
1414                         return 0;
1415                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1416         }
1417
1418         /* Cannot find working solution */
1419         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1420                    __func__, __LINE__);
1421         return -EINVAL;
1422 }
1423
1424 /**
1425  * sdr_backup_phase() - Find DQS enable backup phase
1426  * @grp:        Read/Write group
1427  * @work_bgn:   Working window start position
1428  * @p:          DQS Phase Iterator
1429  *
1430  * Find DQS enable backup phase setting.
1431  */
1432 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1433 {
1434         u32 tmp_delay, bit_chk, d;
1435         int ret;
1436
1437         /* Special case code for backing up a phase */
1438         if (*p == 0) {
1439                 *p = IO_DQS_EN_PHASE_MAX;
1440                 rw_mgr_decr_vfifo(grp);
1441         } else {
1442                 (*p)--;
1443         }
1444         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1445         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1446
1447         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1448                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1449
1450                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1451                                         PASS_ONE_BIT, &bit_chk, 0);
1452                 if (ret) {
1453                         *work_bgn = tmp_delay;
1454                         break;
1455                 }
1456
1457                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1458         }
1459
1460         /* Restore VFIFO to old state before we decremented it (if needed). */
1461         (*p)++;
1462         if (*p > IO_DQS_EN_PHASE_MAX) {
1463                 *p = 0;
1464                 rw_mgr_incr_vfifo(grp);
1465         }
1466
1467         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1468 }
1469
1470 /**
1471  * sdr_nonworking_phase() - Find non-working DQS enable phase
1472  * @grp:        Read/Write group
1473  * @work_end:   Working window end position
1474  * @p:          DQS Phase Iterator
1475  * @i:          Iterator
1476  *
1477  * Find non-working DQS enable phase setting.
1478  */
1479 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1480 {
1481         int ret;
1482
1483         (*p)++;
1484         *work_end += IO_DELAY_PER_OPA_TAP;
1485         if (*p > IO_DQS_EN_PHASE_MAX) {
1486                 /* Fiddle with FIFO. */
1487                 *p = 0;
1488                 rw_mgr_incr_vfifo(grp);
1489         }
1490
1491         ret = sdr_find_phase(0, grp, work_end, i, p);
1492         if (ret) {
1493                 /* Cannot see edge of failing read. */
1494                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1495                            __func__, __LINE__);
1496         }
1497
1498         return ret;
1499 }
1500
1501 /**
1502  * sdr_find_window_center() - Find center of the working DQS window.
1503  * @grp:        Read/Write group
1504  * @work_bgn:   First working settings
1505  * @work_end:   Last working settings
1506  *
1507  * Find center of the working DQS enable window.
1508  */
1509 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1510                                   const u32 work_end)
1511 {
1512         u32 bit_chk, work_mid;
1513         int tmp_delay = 0;
1514         int i, p, d;
1515
1516         work_mid = (work_bgn + work_end) / 2;
1517
1518         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1519                    work_bgn, work_end, work_mid);
1520         /* Get the middle delay to be less than a VFIFO delay */
1521         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1522
1523         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1524         work_mid %= tmp_delay;
1525         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1526
1527         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1528         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1529                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1530         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1531
1532         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1533
1534         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1535         if (d > IO_DQS_EN_DELAY_MAX)
1536                 d = IO_DQS_EN_DELAY_MAX;
1537         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1538
1539         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1540
1541         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1542         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1543
1544         /*
1545          * push vfifo until we can successfully calibrate. We can do this
1546          * because the largest possible margin in 1 VFIFO cycle.
1547          */
1548         for (i = 0; i < VFIFO_SIZE; i++) {
1549                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1550                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1551                                                              PASS_ONE_BIT,
1552                                                              &bit_chk, 0)) {
1553                         debug_cond(DLEVEL == 2,
1554                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1555                                    __func__, __LINE__, p, d);
1556                         return 0;
1557                 }
1558
1559                 /* Fiddle with FIFO. */
1560                 rw_mgr_incr_vfifo(grp);
1561         }
1562
1563         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1564                    __func__, __LINE__);
1565         return -EINVAL;
1566 }
1567
1568 /* find a good dqs enable to use */
1569 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(u32 grp)
1570 {
1571         uint32_t d, p, i;
1572         uint32_t bit_chk;
1573         uint32_t dtaps_per_ptap;
1574         uint32_t work_bgn, work_end;
1575         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1576
1577         debug("%s:%d %u\n", __func__, __LINE__, grp);
1578
1579         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1580
1581         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1582         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1583
1584         /* Step 0: Determine number of delay taps for each phase tap. */
1585         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1586
1587         /* Step 1: First push vfifo until we get a failing read. */
1588         find_vfifo_failing_read(grp);
1589
1590         /* Step 2: Find first working phase, increment in ptaps. */
1591         work_bgn = 0;
1592         if (sdr_working_phase(grp, &work_bgn, &d, &p, &i))
1593                 return 0;
1594
1595         work_end = work_bgn;
1596
1597         /*
1598          * If d is 0 then the working window covers a phase tap and we can
1599          * follow the old procedure. Otherwise, we've found the beginning
1600          * and we need to increment the dtaps until we find the end.
1601          */
1602         if (d == 0) {
1603                 /*
1604                  * Step 3a: If we have room, back off by one and
1605                  *          increment in dtaps.
1606                  */
1607                 sdr_backup_phase(grp, &work_bgn, &p);
1608
1609                 /*
1610                  * Step 4a: go forward from working phase to non working
1611                  * phase, increment in ptaps.
1612                  */
1613                 if (sdr_nonworking_phase(grp, &work_end, &p, &i))
1614                         return 0;
1615
1616                 /* Step 5a: Back off one from last, increment in dtaps. */
1617
1618                 /* Special case code for backing up a phase */
1619                 if (p == 0) {
1620                         p = IO_DQS_EN_PHASE_MAX;
1621                         rw_mgr_decr_vfifo(grp);
1622                 } else {
1623                         p = p - 1;
1624                 }
1625
1626                 work_end -= IO_DELAY_PER_OPA_TAP;
1627                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1628
1629                 d = 0;
1630
1631                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1632                            __func__, __LINE__, p);
1633         } else {
1634                 /*
1635                  * Step 3-5b: Find the right edge of the window
1636                  *            using delay taps.
1637                  */
1638                 debug_cond(DLEVEL == 2,
1639                            "%s:%d ptap=%u dtap=%u bgn=%u\n",
1640                            __func__, __LINE__, p, d, work_bgn);
1641
1642                 work_end = work_bgn;
1643         }
1644
1645         /* The dtap increment to find the failing edge is done here. */
1646         for (; d <= IO_DQS_EN_DELAY_MAX;
1647              d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1648                 debug_cond(DLEVEL == 2, "%s:%d end-2: dtap=%u\n",
1649                            __func__, __LINE__, d);
1650
1651                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1652
1653                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1654                                                               PASS_ONE_BIT,
1655                                                               &bit_chk, 0)) {
1656                         break;
1657                 }
1658         }
1659
1660         /* Go back to working dtap */
1661         if (d != 0)
1662                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1663
1664         debug_cond(DLEVEL == 2,
1665                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1666                    __func__, __LINE__, p, d - 1, work_end);
1667
1668         if (work_end < work_bgn) {
1669                 /* nil range */
1670                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1671                            __func__, __LINE__);
1672                 return 0;
1673         }
1674
1675         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1676                    __func__, __LINE__, work_bgn, work_end);
1677
1678         /*
1679          * We need to calculate the number of dtaps that equal a ptap.
1680          * To do that we'll back up a ptap and re-find the edge of the
1681          * window using dtaps
1682          */
1683         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1684                    __func__, __LINE__);
1685
1686         /* Special case code for backing up a phase */
1687         if (p == 0) {
1688                 p = IO_DQS_EN_PHASE_MAX;
1689                 rw_mgr_decr_vfifo(grp);
1690                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1691                            __func__, __LINE__, p);
1692         } else {
1693                 p = p - 1;
1694                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1695                            __func__, __LINE__, p);
1696         }
1697
1698         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1699
1700         /*
1701          * Increase dtap until we first see a passing read (in case the
1702          * window is smaller than a ptap), and then a failing read to
1703          * mark the edge of the window again.
1704          */
1705
1706         /* Find a passing read. */
1707         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1708                    __func__, __LINE__);
1709         found_passing_read = 0;
1710         found_failing_read = 0;
1711         initial_failing_dtap = d;
1712         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1713                 debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n",
1714                            __func__, __LINE__, d);
1715                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1716
1717                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1718                                                              PASS_ONE_BIT,
1719                                                              &bit_chk, 0)) {
1720                         found_passing_read = 1;
1721                         break;
1722                 }
1723         }
1724
1725         if (found_passing_read) {
1726                 /* Find a failing read. */
1727                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1728                            __func__, __LINE__);
1729                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1730                         debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n",
1731                                    __func__, __LINE__, d);
1732                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1733
1734                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1735                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1736                                 found_failing_read = 1;
1737                                 break;
1738                         }
1739                 }
1740         } else {
1741                 debug_cond(DLEVEL == 1,
1742                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1743                            __func__, __LINE__);
1744         }
1745
1746         /*
1747          * The dynamically calculated dtaps_per_ptap is only valid if we
1748          * found a passing/failing read. If we didn't, it means d hit the max
1749          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1750          * statically calculated value.
1751          */
1752         if (found_passing_read && found_failing_read)
1753                 dtaps_per_ptap = d - initial_failing_dtap;
1754
1755         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1756         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1757                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1758
1759         /* Step 6: Find the centre of the window. */
1760         if (sdr_find_window_centre(grp, work_bgn, work_end))
1761                 return 0;
1762
1763         return 1;
1764 }
1765
1766 /* per-bit deskew DQ and center */
1767 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1768         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1769         uint32_t use_read_test, uint32_t update_fom)
1770 {
1771         uint32_t i, p, d, min_index;
1772         /*
1773          * Store these as signed since there are comparisons with
1774          * signed numbers.
1775          */
1776         uint32_t bit_chk;
1777         uint32_t sticky_bit_chk;
1778         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1779         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1780         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1781         int32_t mid;
1782         int32_t orig_mid_min, mid_min;
1783         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1784                 final_dqs_en;
1785         int32_t dq_margin, dqs_margin;
1786         uint32_t stop;
1787         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1788         uint32_t addr;
1789
1790         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1791
1792         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1793         start_dqs = readl(addr + (read_group << 2));
1794         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1795                 start_dqs_en = readl(addr + ((read_group << 2)
1796                                      - IO_DQS_EN_DELAY_OFFSET));
1797
1798         /* set the left and right edge of each bit to an illegal value */
1799         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1800         sticky_bit_chk = 0;
1801         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1802                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1803                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1804         }
1805
1806         /* Search for the left edge of the window for each bit */
1807         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1808                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1809
1810                 writel(0, &sdr_scc_mgr->update);
1811
1812                 /*
1813                  * Stop searching when the read test doesn't pass AND when
1814                  * we've seen a passing read on every bit.
1815                  */
1816                 if (use_read_test) {
1817                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1818                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1819                                 &bit_chk, 0, 0);
1820                 } else {
1821                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1822                                                         0, PASS_ONE_BIT,
1823                                                         &bit_chk, 0);
1824                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1825                                 (read_group - (write_group *
1826                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1827                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1828                         stop = (bit_chk == 0);
1829                 }
1830                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1831                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1832                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1833                            && %u", __func__, __LINE__, d,
1834                            sticky_bit_chk,
1835                         param->read_correct_mask, stop);
1836
1837                 if (stop == 1) {
1838                         break;
1839                 } else {
1840                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1841                                 if (bit_chk & 1) {
1842                                         /* Remember a passing test as the
1843                                         left_edge */
1844                                         left_edge[i] = d;
1845                                 } else {
1846                                         /* If a left edge has not been seen yet,
1847                                         then a future passing test will mark
1848                                         this edge as the right edge */
1849                                         if (left_edge[i] ==
1850                                                 IO_IO_IN_DELAY_MAX + 1) {
1851                                                 right_edge[i] = -(d + 1);
1852                                         }
1853                                 }
1854                                 bit_chk = bit_chk >> 1;
1855                         }
1856                 }
1857         }
1858
1859         /* Reset DQ delay chains to 0 */
1860         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1861         sticky_bit_chk = 0;
1862         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1863                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1864                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1865                            i, left_edge[i], i, right_edge[i]);
1866
1867                 /*
1868                  * Check for cases where we haven't found the left edge,
1869                  * which makes our assignment of the the right edge invalid.
1870                  * Reset it to the illegal value.
1871                  */
1872                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1873                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1874                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1875                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1876                                    right_edge[%u]: %d\n", __func__, __LINE__,
1877                                    i, right_edge[i]);
1878                 }
1879
1880                 /*
1881                  * Reset sticky bit (except for bits where we have seen
1882                  * both the left and right edge).
1883                  */
1884                 sticky_bit_chk = sticky_bit_chk << 1;
1885                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1886                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1887                         sticky_bit_chk = sticky_bit_chk | 1;
1888                 }
1889
1890                 if (i == 0)
1891                         break;
1892         }
1893
1894         /* Search for the right edge of the window for each bit */
1895         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1896                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1897                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1898                         uint32_t delay = d + start_dqs_en;
1899                         if (delay > IO_DQS_EN_DELAY_MAX)
1900                                 delay = IO_DQS_EN_DELAY_MAX;
1901                         scc_mgr_set_dqs_en_delay(read_group, delay);
1902                 }
1903                 scc_mgr_load_dqs(read_group);
1904
1905                 writel(0, &sdr_scc_mgr->update);
1906
1907                 /*
1908                  * Stop searching when the read test doesn't pass AND when
1909                  * we've seen a passing read on every bit.
1910                  */
1911                 if (use_read_test) {
1912                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1913                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1914                                 &bit_chk, 0, 0);
1915                 } else {
1916                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1917                                                         0, PASS_ONE_BIT,
1918                                                         &bit_chk, 0);
1919                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1920                                 (read_group - (write_group *
1921                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1922                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1923                         stop = (bit_chk == 0);
1924                 }
1925                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1926                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1927
1928                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1929                            %u && %u", __func__, __LINE__, d,
1930                            sticky_bit_chk, param->read_correct_mask, stop);
1931
1932                 if (stop == 1) {
1933                         break;
1934                 } else {
1935                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1936                                 if (bit_chk & 1) {
1937                                         /* Remember a passing test as
1938                                         the right_edge */
1939                                         right_edge[i] = d;
1940                                 } else {
1941                                         if (d != 0) {
1942                                                 /* If a right edge has not been
1943                                                 seen yet, then a future passing
1944                                                 test will mark this edge as the
1945                                                 left edge */
1946                                                 if (right_edge[i] ==
1947                                                 IO_IO_IN_DELAY_MAX + 1) {
1948                                                         left_edge[i] = -(d + 1);
1949                                                 }
1950                                         } else {
1951                                                 /* d = 0 failed, but it passed
1952                                                 when testing the left edge,
1953                                                 so it must be marginal,
1954                                                 set it to -1 */
1955                                                 if (right_edge[i] ==
1956                                                         IO_IO_IN_DELAY_MAX + 1 &&
1957                                                         left_edge[i] !=
1958                                                         IO_IO_IN_DELAY_MAX
1959                                                         + 1) {
1960                                                         right_edge[i] = -1;
1961                                                 }
1962                                                 /* If a right edge has not been
1963                                                 seen yet, then a future passing
1964                                                 test will mark this edge as the
1965                                                 left edge */
1966                                                 else if (right_edge[i] ==
1967                                                         IO_IO_IN_DELAY_MAX +
1968                                                         1) {
1969                                                         left_edge[i] = -(d + 1);
1970                                                 }
1971                                         }
1972                                 }
1973
1974                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1975                                            d=%u]: ", __func__, __LINE__, d);
1976                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1977                                            (int)(bit_chk & 1), i, left_edge[i]);
1978                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1979                                            right_edge[i]);
1980                                 bit_chk = bit_chk >> 1;
1981                         }
1982                 }
1983         }
1984
1985         /* Check that all bits have a window */
1986         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1987                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1988                            %d right_edge[%u]: %d", __func__, __LINE__,
1989                            i, left_edge[i], i, right_edge[i]);
1990                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1991                         == IO_IO_IN_DELAY_MAX + 1)) {
1992                         /*
1993                          * Restore delay chain settings before letting the loop
1994                          * in rw_mgr_mem_calibrate_vfifo to retry different
1995                          * dqs/ck relationships.
1996                          */
1997                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1998                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1999                                 scc_mgr_set_dqs_en_delay(read_group,
2000                                                          start_dqs_en);
2001                         }
2002                         scc_mgr_load_dqs(read_group);
2003                         writel(0, &sdr_scc_mgr->update);
2004
2005                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2006                                    find edge [%u]: %d %d", __func__, __LINE__,
2007                                    i, left_edge[i], right_edge[i]);
2008                         if (use_read_test) {
2009                                 set_failing_group_stage(read_group *
2010                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2011                                         CAL_STAGE_VFIFO,
2012                                         CAL_SUBSTAGE_VFIFO_CENTER);
2013                         } else {
2014                                 set_failing_group_stage(read_group *
2015                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2016                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2017                                         CAL_SUBSTAGE_VFIFO_CENTER);
2018                         }
2019                         return 0;
2020                 }
2021         }
2022
2023         /* Find middle of window for each DQ bit */
2024         mid_min = left_edge[0] - right_edge[0];
2025         min_index = 0;
2026         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2027                 mid = left_edge[i] - right_edge[i];
2028                 if (mid < mid_min) {
2029                         mid_min = mid;
2030                         min_index = i;
2031                 }
2032         }
2033
2034         /*
2035          * -mid_min/2 represents the amount that we need to move DQS.
2036          * If mid_min is odd and positive we'll need to add one to
2037          * make sure the rounding in further calculations is correct
2038          * (always bias to the right), so just add 1 for all positive values.
2039          */
2040         if (mid_min > 0)
2041                 mid_min++;
2042
2043         mid_min = mid_min / 2;
2044
2045         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2046                    __func__, __LINE__, mid_min, min_index);
2047
2048         /* Determine the amount we can change DQS (which is -mid_min) */
2049         orig_mid_min = mid_min;
2050         new_dqs = start_dqs - mid_min;
2051         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2052                 new_dqs = IO_DQS_IN_DELAY_MAX;
2053         else if (new_dqs < 0)
2054                 new_dqs = 0;
2055
2056         mid_min = start_dqs - new_dqs;
2057         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2058                    mid_min, new_dqs);
2059
2060         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2061                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2062                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2063                 else if (start_dqs_en - mid_min < 0)
2064                         mid_min += start_dqs_en - mid_min;
2065         }
2066         new_dqs = start_dqs - mid_min;
2067
2068         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2069                    new_dqs=%d mid_min=%d\n", start_dqs,
2070                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2071                    new_dqs, mid_min);
2072
2073         /* Initialize data for export structures */
2074         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2075         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2076
2077         /* add delay to bring centre of all DQ windows to the same "level" */
2078         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2079                 /* Use values before divide by 2 to reduce round off error */
2080                 shift_dq = (left_edge[i] - right_edge[i] -
2081                         (left_edge[min_index] - right_edge[min_index]))/2  +
2082                         (orig_mid_min - mid_min);
2083
2084                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2085                            shift_dq[%u]=%d\n", i, shift_dq);
2086
2087                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2088                 temp_dq_in_delay1 = readl(addr + (p << 2));
2089                 temp_dq_in_delay2 = readl(addr + (i << 2));
2090
2091                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2092                         (int32_t)IO_IO_IN_DELAY_MAX) {
2093                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2094                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2095                         shift_dq = -(int32_t)temp_dq_in_delay1;
2096                 }
2097                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2098                            shift_dq[%u]=%d\n", i, shift_dq);
2099                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2100                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2101                 scc_mgr_load_dq(p);
2102
2103                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2104                            left_edge[i] - shift_dq + (-mid_min),
2105                            right_edge[i] + shift_dq - (-mid_min));
2106                 /* To determine values for export structures */
2107                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2108                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2109
2110                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2111                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2112         }
2113
2114         final_dqs = new_dqs;
2115         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2116                 final_dqs_en = start_dqs_en - mid_min;
2117
2118         /* Move DQS-en */
2119         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2120                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2121                 scc_mgr_load_dqs(read_group);
2122         }
2123
2124         /* Move DQS */
2125         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2126         scc_mgr_load_dqs(read_group);
2127         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2128                    dqs_margin=%d", __func__, __LINE__,
2129                    dq_margin, dqs_margin);
2130
2131         /*
2132          * Do not remove this line as it makes sure all of our decisions
2133          * have been applied. Apply the update bit.
2134          */
2135         writel(0, &sdr_scc_mgr->update);
2136
2137         return (dq_margin >= 0) && (dqs_margin >= 0);
2138 }
2139
2140 /**
2141  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2142  * @rw_group:   Read/Write Group
2143  * @phase:      DQ/DQS phase
2144  *
2145  * Because initially no communication ca be reliably performed with the memory
2146  * device, the sequencer uses a guaranteed write mechanism to write data into
2147  * the memory device.
2148  */
2149 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2150                                                  const u32 phase)
2151 {
2152         int ret;
2153
2154         /* Set a particular DQ/DQS phase. */
2155         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2156
2157         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2158                    __func__, __LINE__, rw_group, phase);
2159
2160         /*
2161          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2162          * Load up the patterns used by read calibration using the
2163          * current DQDQS phase.
2164          */
2165         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2166
2167         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2168                 return 0;
2169
2170         /*
2171          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2172          * Back-to-Back reads of the patterns used for calibration.
2173          */
2174         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2175         if (ret)
2176                 debug_cond(DLEVEL == 1,
2177                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2178                            __func__, __LINE__, rw_group, phase);
2179         return ret;
2180 }
2181
2182 /**
2183  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2184  * @rw_group:   Read/Write Group
2185  * @test_bgn:   Rank at which the test begins
2186  *
2187  * DQS enable calibration ensures reliable capture of the DQ signal without
2188  * glitches on the DQS line.
2189  */
2190 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2191                                                        const u32 test_bgn)
2192 {
2193         /*
2194          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2195          * DQS and DQS Eanble Signal Relationships.
2196          */
2197
2198         /* We start at zero, so have one less dq to devide among */
2199         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2200                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2201         int found;
2202         u32 i, p, d, r;
2203
2204         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2205
2206         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2207         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2208              r += NUM_RANKS_PER_SHADOW_REG) {
2209                 for (i = 0, p = test_bgn, d = 0;
2210                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2211                      i++, p++, d += delay_step) {
2212                         debug_cond(DLEVEL == 1,
2213                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2214                                    __func__, __LINE__, rw_group, r, i, p, d);
2215
2216                         scc_mgr_set_dq_in_delay(p, d);
2217                         scc_mgr_load_dq(p);
2218                 }
2219
2220                 writel(0, &sdr_scc_mgr->update);
2221         }
2222
2223         /*
2224          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2225          * dq_in_delay values
2226          */
2227         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2228
2229         debug_cond(DLEVEL == 1,
2230                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2231                    __func__, __LINE__, rw_group, found);
2232
2233         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2234              r += NUM_RANKS_PER_SHADOW_REG) {
2235                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2236                 writel(0, &sdr_scc_mgr->update);
2237         }
2238
2239         if (!found)
2240                 return -EINVAL;
2241
2242         return 0;
2243
2244 }
2245
2246 /**
2247  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2248  * @rw_group:           Read/Write Group
2249  * @test_bgn:           Rank at which the test begins
2250  * @use_read_test:      Perform a read test
2251  * @update_fom:         Update FOM
2252  *
2253  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2254  * within a group.
2255  */
2256 static int
2257 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2258                                       const int use_read_test,
2259                                       const int update_fom)
2260
2261 {
2262         int ret, grp_calibrated;
2263         u32 rank_bgn, sr;
2264
2265         /*
2266          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2267          * Read per-bit deskew can be done on a per shadow register basis.
2268          */
2269         grp_calibrated = 1;
2270         for (rank_bgn = 0, sr = 0;
2271              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2272              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2273                 /* Check if this set of ranks should be skipped entirely. */
2274                 if (param->skip_shadow_regs[sr])
2275                         continue;
2276
2277                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2278                                                         rw_group, test_bgn,
2279                                                         use_read_test,
2280                                                         update_fom);
2281                 if (ret)
2282                         continue;
2283
2284                 grp_calibrated = 0;
2285         }
2286
2287         if (!grp_calibrated)
2288                 return -EIO;
2289
2290         return 0;
2291 }
2292
2293 /**
2294  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2295  * @rw_group:           Read/Write Group
2296  * @test_bgn:           Rank at which the test begins
2297  *
2298  * Stage 1: Calibrate the read valid prediction FIFO.
2299  *
2300  * This function implements UniPHY calibration Stage 1, as explained in
2301  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2302  *
2303  * - read valid prediction will consist of finding:
2304  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2305  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2306  *  - we also do a per-bit deskew on the DQ lines.
2307  */
2308 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2309 {
2310         uint32_t p, d;
2311         uint32_t dtaps_per_ptap;
2312         uint32_t failed_substage;
2313
2314         int ret;
2315
2316         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2317
2318         /* Update info for sims */
2319         reg_file_set_group(rw_group);
2320         reg_file_set_stage(CAL_STAGE_VFIFO);
2321         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2322
2323         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2324
2325         /* USER Determine number of delay taps for each phase tap. */
2326         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2327                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2328
2329         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2330                 /*
2331                  * In RLDRAMX we may be messing the delay of pins in
2332                  * the same write rw_group but outside of the current read
2333                  * the rw_group, but that's ok because we haven't calibrated
2334                  * output side yet.
2335                  */
2336                 if (d > 0) {
2337                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2338                                                                 rw_group, d);
2339                 }
2340
2341                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2342                         /* 1) Guaranteed Write */
2343                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2344                         if (ret)
2345                                 break;
2346
2347                         /* 2) DQS Enable Calibration */
2348                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2349                                                                           test_bgn);
2350                         if (ret) {
2351                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2352                                 continue;
2353                         }
2354
2355                         /* 3) Centering DQ/DQS */
2356                         /*
2357                          * If doing read after write calibration, do not update
2358                          * FOM now. Do it then.
2359                          */
2360                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2361                                                                 test_bgn, 1, 0);
2362                         if (ret) {
2363                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2364                                 continue;
2365                         }
2366
2367                         /* All done. */
2368                         goto cal_done_ok;
2369                 }
2370         }
2371
2372         /* Calibration Stage 1 failed. */
2373         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2374         return 0;
2375
2376         /* Calibration Stage 1 completed OK. */
2377 cal_done_ok:
2378         /*
2379          * Reset the delay chains back to zero if they have moved > 1
2380          * (check for > 1 because loop will increase d even when pass in
2381          * first case).
2382          */
2383         if (d > 2)
2384                 scc_mgr_zero_group(rw_group, 1);
2385
2386         return 1;
2387 }
2388
2389 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2390 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2391                                                uint32_t test_bgn)
2392 {
2393         uint32_t rank_bgn, sr;
2394         uint32_t grp_calibrated;
2395         uint32_t write_group;
2396
2397         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2398
2399         /* update info for sims */
2400
2401         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2402         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2403
2404         write_group = read_group;
2405
2406         /* update info for sims */
2407         reg_file_set_group(read_group);
2408
2409         grp_calibrated = 1;
2410         /* Read per-bit deskew can be done on a per shadow register basis */
2411         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2412                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2413                 /* Determine if this set of ranks should be skipped entirely */
2414                 if (!param->skip_shadow_regs[sr]) {
2415                 /* This is the last calibration round, update FOM here */
2416                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2417                                                                 write_group,
2418                                                                 read_group,
2419                                                                 test_bgn, 0,
2420                                                                 1)) {
2421                                 grp_calibrated = 0;
2422                         }
2423                 }
2424         }
2425
2426
2427         if (grp_calibrated == 0) {
2428                 set_failing_group_stage(write_group,
2429                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2430                                         CAL_SUBSTAGE_VFIFO_CENTER);
2431                 return 0;
2432         }
2433
2434         return 1;
2435 }
2436
2437 /* Calibrate LFIFO to find smallest read latency */
2438 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2439 {
2440         uint32_t found_one;
2441         uint32_t bit_chk;
2442
2443         debug("%s:%d\n", __func__, __LINE__);
2444
2445         /* update info for sims */
2446         reg_file_set_stage(CAL_STAGE_LFIFO);
2447         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2448
2449         /* Load up the patterns used by read calibration for all ranks */
2450         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2451         found_one = 0;
2452
2453         do {
2454                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2455                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2456                            __func__, __LINE__, gbl->curr_read_lat);
2457
2458                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2459                                                               NUM_READ_TESTS,
2460                                                               PASS_ALL_BITS,
2461                                                               &bit_chk, 1)) {
2462                         break;
2463                 }
2464
2465                 found_one = 1;
2466                 /* reduce read latency and see if things are working */
2467                 /* correctly */
2468                 gbl->curr_read_lat--;
2469         } while (gbl->curr_read_lat > 0);
2470
2471         /* reset the fifos to get pointers to known state */
2472
2473         writel(0, &phy_mgr_cmd->fifo_reset);
2474
2475         if (found_one) {
2476                 /* add a fudge factor to the read latency that was determined */
2477                 gbl->curr_read_lat += 2;
2478                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2479                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2480                            read_lat=%u\n", __func__, __LINE__,
2481                            gbl->curr_read_lat);
2482                 return 1;
2483         } else {
2484                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2485                                         CAL_SUBSTAGE_READ_LATENCY);
2486
2487                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2488                            read_lat=%u\n", __func__, __LINE__,
2489                            gbl->curr_read_lat);
2490                 return 0;
2491         }
2492 }
2493
2494 /*
2495  * issue write test command.
2496  * two variants are provided. one that just tests a write pattern and
2497  * another that tests datamask functionality.
2498  */
2499 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2500                                                   uint32_t test_dm)
2501 {
2502         uint32_t mcc_instruction;
2503         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2504                 ENABLE_SUPER_QUICK_CALIBRATION);
2505         uint32_t rw_wl_nop_cycles;
2506         uint32_t addr;
2507
2508         /*
2509          * Set counter and jump addresses for the right
2510          * number of NOP cycles.
2511          * The number of supported NOP cycles can range from -1 to infinity
2512          * Three different cases are handled:
2513          *
2514          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2515          *    mechanism will be used to insert the right number of NOPs
2516          *
2517          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2518          *    issuing the write command will jump straight to the
2519          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2520          *    data (for RLD), skipping
2521          *    the NOP micro-instruction all together
2522          *
2523          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2524          *    turned on in the same micro-instruction that issues the write
2525          *    command. Then we need
2526          *    to directly jump to the micro-instruction that sends out the data
2527          *
2528          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2529          *       (2 and 3). One jump-counter (0) is used to perform multiple
2530          *       write-read operations.
2531          *       one counter left to issue this command in "multiple-group" mode
2532          */
2533
2534         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2535
2536         if (rw_wl_nop_cycles == -1) {
2537                 /*
2538                  * CNTR 2 - We want to execute the special write operation that
2539                  * turns on DQS right away and then skip directly to the
2540                  * instruction that sends out the data. We set the counter to a
2541                  * large number so that the jump is always taken.
2542                  */
2543                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2544
2545                 /* CNTR 3 - Not used */
2546                 if (test_dm) {
2547                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2548                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2549                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2550                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2551                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2552                 } else {
2553                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2554                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2555                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2556                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2557                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2558                 }
2559         } else if (rw_wl_nop_cycles == 0) {
2560                 /*
2561                  * CNTR 2 - We want to skip the NOP operation and go straight
2562                  * to the DQS enable instruction. We set the counter to a large
2563                  * number so that the jump is always taken.
2564                  */
2565                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2566
2567                 /* CNTR 3 - Not used */
2568                 if (test_dm) {
2569                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2570                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2571                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2572                 } else {
2573                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2574                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2575                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2576                 }
2577         } else {
2578                 /*
2579                  * CNTR 2 - In this case we want to execute the next instruction
2580                  * and NOT take the jump. So we set the counter to 0. The jump
2581                  * address doesn't count.
2582                  */
2583                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2584                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2585
2586                 /*
2587                  * CNTR 3 - Set the nop counter to the number of cycles we
2588                  * need to loop for, minus 1.
2589                  */
2590                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2591                 if (test_dm) {
2592                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2593                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2594                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2595                 } else {
2596                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2597                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2598                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2599                 }
2600         }
2601
2602         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2603                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2604
2605         if (quick_write_mode)
2606                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2607         else
2608                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2609
2610         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2611
2612         /*
2613          * CNTR 1 - This is used to ensure enough time elapses
2614          * for read data to come back.
2615          */
2616         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2617
2618         if (test_dm) {
2619                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2620                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2621         } else {
2622                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2623                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2624         }
2625
2626         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2627         writel(mcc_instruction, addr + (group << 2));
2628 }
2629
2630 /* Test writes, can check for a single bit pass or multiple bit pass */
2631 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2632         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2633         uint32_t *bit_chk, uint32_t all_ranks)
2634 {
2635         uint32_t r;
2636         uint32_t correct_mask_vg;
2637         uint32_t tmp_bit_chk;
2638         uint32_t vg;
2639         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2640                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2641         uint32_t addr_rw_mgr;
2642         uint32_t base_rw_mgr;
2643
2644         *bit_chk = param->write_correct_mask;
2645         correct_mask_vg = param->write_correct_mask_vg;
2646
2647         for (r = rank_bgn; r < rank_end; r++) {
2648                 if (param->skip_ranks[r]) {
2649                         /* request to skip the rank */
2650                         continue;
2651                 }
2652
2653                 /* set rank */
2654                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2655
2656                 tmp_bit_chk = 0;
2657                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2658                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2659                         /* reset the fifos to get pointers to known state */
2660                         writel(0, &phy_mgr_cmd->fifo_reset);
2661
2662                         tmp_bit_chk = tmp_bit_chk <<
2663                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2664                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2665                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2666                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2667                                 use_dm);
2668
2669                         base_rw_mgr = readl(addr_rw_mgr);
2670                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2671                         if (vg == 0)
2672                                 break;
2673                 }
2674                 *bit_chk &= tmp_bit_chk;
2675         }
2676
2677         if (all_correct) {
2678                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2679                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2680                            %u => %lu", write_group, use_dm,
2681                            *bit_chk, param->write_correct_mask,
2682                            (long unsigned int)(*bit_chk ==
2683                            param->write_correct_mask));
2684                 return *bit_chk == param->write_correct_mask;
2685         } else {
2686                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2687                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2688                        write_group, use_dm, *bit_chk);
2689                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2690                         (long unsigned int)(*bit_chk != 0));
2691                 return *bit_chk != 0x00;
2692         }
2693 }
2694
2695 /*
2696  * center all windows. do per-bit-deskew to possibly increase size of
2697  * certain windows.
2698  */
2699 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2700         uint32_t write_group, uint32_t test_bgn)
2701 {
2702         uint32_t i, p, min_index;
2703         int32_t d;
2704         /*
2705          * Store these as signed since there are comparisons with
2706          * signed numbers.
2707          */
2708         uint32_t bit_chk;
2709         uint32_t sticky_bit_chk;
2710         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2711         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2712         int32_t mid;
2713         int32_t mid_min, orig_mid_min;
2714         int32_t new_dqs, start_dqs, shift_dq;
2715         int32_t dq_margin, dqs_margin, dm_margin;
2716         uint32_t stop;
2717         uint32_t temp_dq_out1_delay;
2718         uint32_t addr;
2719
2720         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2721
2722         dm_margin = 0;
2723
2724         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2725         start_dqs = readl(addr +
2726                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2727
2728         /* per-bit deskew */
2729
2730         /*
2731          * set the left and right edge of each bit to an illegal value
2732          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2733          */
2734         sticky_bit_chk = 0;
2735         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2736                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2737                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2738         }
2739
2740         /* Search for the left edge of the window for each bit */
2741         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2742                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2743
2744                 writel(0, &sdr_scc_mgr->update);
2745
2746                 /*
2747                  * Stop searching when the read test doesn't pass AND when
2748                  * we've seen a passing read on every bit.
2749                  */
2750                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2751                         0, PASS_ONE_BIT, &bit_chk, 0);
2752                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2753                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2754                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2755                            == %u && %u [bit_chk= %u ]\n",
2756                         d, sticky_bit_chk, param->write_correct_mask,
2757                         stop, bit_chk);
2758
2759                 if (stop == 1) {
2760                         break;
2761                 } else {
2762                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2763                                 if (bit_chk & 1) {
2764                                         /*
2765                                          * Remember a passing test as the
2766                                          * left_edge.
2767                                          */
2768                                         left_edge[i] = d;
2769                                 } else {
2770                                         /*
2771                                          * If a left edge has not been seen
2772                                          * yet, then a future passing test will
2773                                          * mark this edge as the right edge.
2774                                          */
2775                                         if (left_edge[i] ==
2776                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2777                                                 right_edge[i] = -(d + 1);
2778                                         }
2779                                 }
2780                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2781                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2782                                            (int)(bit_chk & 1), i, left_edge[i]);
2783                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2784                                        right_edge[i]);
2785                                 bit_chk = bit_chk >> 1;
2786                         }
2787                 }
2788         }
2789
2790         /* Reset DQ delay chains to 0 */
2791         scc_mgr_apply_group_dq_out1_delay(0);
2792         sticky_bit_chk = 0;
2793         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2794                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2795                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2796                            i, left_edge[i], i, right_edge[i]);
2797
2798                 /*
2799                  * Check for cases where we haven't found the left edge,
2800                  * which makes our assignment of the the right edge invalid.
2801                  * Reset it to the illegal value.
2802                  */
2803                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2804                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2805                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2806                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2807                                    right_edge[%u]: %d\n", __func__, __LINE__,
2808                                    i, right_edge[i]);
2809                 }
2810
2811                 /*
2812                  * Reset sticky bit (except for bits where we have
2813                  * seen the left edge).
2814                  */
2815                 sticky_bit_chk = sticky_bit_chk << 1;
2816                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2817                         sticky_bit_chk = sticky_bit_chk | 1;
2818
2819                 if (i == 0)
2820                         break;
2821         }
2822
2823         /* Search for the right edge of the window for each bit */
2824         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2825                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2826                                                         d + start_dqs);
2827
2828                 writel(0, &sdr_scc_mgr->update);
2829
2830                 /*
2831                  * Stop searching when the read test doesn't pass AND when
2832                  * we've seen a passing read on every bit.
2833                  */
2834                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2835                         0, PASS_ONE_BIT, &bit_chk, 0);
2836
2837                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2838                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2839
2840                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2841                            %u && %u\n", d, sticky_bit_chk,
2842                            param->write_correct_mask, stop);
2843
2844                 if (stop == 1) {
2845                         if (d == 0) {
2846                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2847                                         i++) {
2848                                         /* d = 0 failed, but it passed when
2849                                         testing the left edge, so it must be
2850                                         marginal, set it to -1 */
2851                                         if (right_edge[i] ==
2852                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2853                                                 left_edge[i] !=
2854                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2855                                                 right_edge[i] = -1;
2856                                         }
2857                                 }
2858                         }
2859                         break;
2860                 } else {
2861                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2862                                 if (bit_chk & 1) {
2863                                         /*
2864                                          * Remember a passing test as
2865                                          * the right_edge.
2866                                          */
2867                                         right_edge[i] = d;
2868                                 } else {
2869                                         if (d != 0) {
2870                                                 /*
2871                                                  * If a right edge has not
2872                                                  * been seen yet, then a future
2873                                                  * passing test will mark this
2874                                                  * edge as the left edge.
2875                                                  */
2876                                                 if (right_edge[i] ==
2877                                                     IO_IO_OUT1_DELAY_MAX + 1)
2878                                                         left_edge[i] = -(d + 1);
2879                                         } else {
2880                                                 /*
2881                                                  * d = 0 failed, but it passed
2882                                                  * when testing the left edge,
2883                                                  * so it must be marginal, set
2884                                                  * it to -1.
2885                                                  */
2886                                                 if (right_edge[i] ==
2887                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2888                                                     left_edge[i] !=
2889                                                     IO_IO_OUT1_DELAY_MAX + 1)
2890                                                         right_edge[i] = -1;
2891                                                 /*
2892                                                  * If a right edge has not been
2893                                                  * seen yet, then a future
2894                                                  * passing test will mark this
2895                                                  * edge as the left edge.
2896                                                  */
2897                                                 else if (right_edge[i] ==
2898                                                         IO_IO_OUT1_DELAY_MAX +
2899                                                         1)
2900                                                         left_edge[i] = -(d + 1);
2901                                         }
2902                                 }
2903                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2904                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2905                                            (int)(bit_chk & 1), i, left_edge[i]);
2906                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2907                                            right_edge[i]);
2908                                 bit_chk = bit_chk >> 1;
2909                         }
2910                 }
2911         }
2912
2913         /* Check that all bits have a window */
2914         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2915                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2916                            %d right_edge[%u]: %d", __func__, __LINE__,
2917                            i, left_edge[i], i, right_edge[i]);
2918                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2919                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2920                         set_failing_group_stage(test_bgn + i,
2921                                                 CAL_STAGE_WRITES,
2922                                                 CAL_SUBSTAGE_WRITES_CENTER);
2923                         return 0;
2924                 }
2925         }
2926
2927         /* Find middle of window for each DQ bit */
2928         mid_min = left_edge[0] - right_edge[0];
2929         min_index = 0;
2930         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2931                 mid = left_edge[i] - right_edge[i];
2932                 if (mid < mid_min) {
2933                         mid_min = mid;
2934                         min_index = i;
2935                 }
2936         }
2937
2938         /*
2939          * -mid_min/2 represents the amount that we need to move DQS.
2940          * If mid_min is odd and positive we'll need to add one to
2941          * make sure the rounding in further calculations is correct
2942          * (always bias to the right), so just add 1 for all positive values.
2943          */
2944         if (mid_min > 0)
2945                 mid_min++;
2946         mid_min = mid_min / 2;
2947         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2948                    __LINE__, mid_min);
2949
2950         /* Determine the amount we can change DQS (which is -mid_min) */
2951         orig_mid_min = mid_min;
2952         new_dqs = start_dqs;
2953         mid_min = 0;
2954         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2955                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2956         /* Initialize data for export structures */
2957         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2958         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2959
2960         /* add delay to bring centre of all DQ windows to the same "level" */
2961         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2962                 /* Use values before divide by 2 to reduce round off error */
2963                 shift_dq = (left_edge[i] - right_edge[i] -
2964                         (left_edge[min_index] - right_edge[min_index]))/2  +
2965                 (orig_mid_min - mid_min);
2966
2967                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2968                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2969
2970                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2971                 temp_dq_out1_delay = readl(addr + (i << 2));
2972                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2973                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2974                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2975                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2976                         shift_dq = -(int32_t)temp_dq_out1_delay;
2977                 }
2978                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2979                            i, shift_dq);
2980                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2981                 scc_mgr_load_dq(i);
2982
2983                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2984                            left_edge[i] - shift_dq + (-mid_min),
2985                            right_edge[i] + shift_dq - (-mid_min));
2986                 /* To determine values for export structures */
2987                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2988                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2989
2990                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2991                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2992         }
2993
2994         /* Move DQS */
2995         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2996         writel(0, &sdr_scc_mgr->update);
2997
2998         /* Centre DM */
2999         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3000
3001         /*
3002          * set the left and right edge of each bit to an illegal value,
3003          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3004          */
3005         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3006         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3007         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3008         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3009         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3010         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3011         int32_t win_best = 0;
3012
3013         /* Search for the/part of the window with DM shift */
3014         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3015                 scc_mgr_apply_group_dm_out1_delay(d);
3016                 writel(0, &sdr_scc_mgr->update);
3017
3018                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3019                                                     PASS_ALL_BITS, &bit_chk,
3020                                                     0)) {
3021                         /* USE Set current end of the window */
3022                         end_curr = -d;
3023                         /*
3024                          * If a starting edge of our window has not been seen
3025                          * this is our current start of the DM window.
3026                          */
3027                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3028                                 bgn_curr = -d;
3029
3030                         /*
3031                          * If current window is bigger than best seen.
3032                          * Set best seen to be current window.
3033                          */
3034                         if ((end_curr-bgn_curr+1) > win_best) {
3035                                 win_best = end_curr-bgn_curr+1;
3036                                 bgn_best = bgn_curr;
3037                                 end_best = end_curr;
3038                         }
3039                 } else {
3040                         /* We just saw a failing test. Reset temp edge */
3041                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3042                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3043                         }
3044                 }
3045
3046
3047         /* Reset DM delay chains to 0 */
3048         scc_mgr_apply_group_dm_out1_delay(0);
3049
3050         /*
3051          * Check to see if the current window nudges up aganist 0 delay.
3052          * If so we need to continue the search by shifting DQS otherwise DQS
3053          * search begins as a new search. */
3054         if (end_curr != 0) {
3055                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3056                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3057         }
3058
3059         /* Search for the/part of the window with DQS shifts */
3060         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3061                 /*
3062                  * Note: This only shifts DQS, so are we limiting ourselve to
3063                  * width of DQ unnecessarily.
3064                  */
3065                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3066                                                         d + new_dqs);
3067
3068                 writel(0, &sdr_scc_mgr->update);
3069                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3070                                                     PASS_ALL_BITS, &bit_chk,
3071                                                     0)) {
3072                         /* USE Set current end of the window */
3073                         end_curr = d;
3074                         /*
3075                          * If a beginning edge of our window has not been seen
3076                          * this is our current begin of the DM window.
3077                          */
3078                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3079                                 bgn_curr = d;
3080
3081                         /*
3082                          * If current window is bigger than best seen. Set best
3083                          * seen to be current window.
3084                          */
3085                         if ((end_curr-bgn_curr+1) > win_best) {
3086                                 win_best = end_curr-bgn_curr+1;
3087                                 bgn_best = bgn_curr;
3088                                 end_best = end_curr;
3089                         }
3090                 } else {
3091                         /* We just saw a failing test. Reset temp edge */
3092                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3093                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3094
3095                         /* Early exit optimization: if ther remaining delay
3096                         chain space is less than already seen largest window
3097                         we can exit */
3098                         if ((win_best-1) >
3099                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3100                                         break;
3101                                 }
3102                         }
3103                 }
3104
3105         /* assign left and right edge for cal and reporting; */
3106         left_edge[0] = -1*bgn_best;
3107         right_edge[0] = end_best;
3108
3109         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3110                    __LINE__, left_edge[0], right_edge[0]);
3111
3112         /* Move DQS (back to orig) */
3113         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3114
3115         /* Move DM */
3116
3117         /* Find middle of window for the DM bit */
3118         mid = (left_edge[0] - right_edge[0]) / 2;
3119
3120         /* only move right, since we are not moving DQS/DQ */
3121         if (mid < 0)
3122                 mid = 0;
3123
3124         /* dm_marign should fail if we never find a window */
3125         if (win_best == 0)
3126                 dm_margin = -1;
3127         else
3128                 dm_margin = left_edge[0] - mid;
3129
3130         scc_mgr_apply_group_dm_out1_delay(mid);
3131         writel(0, &sdr_scc_mgr->update);
3132
3133         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3134                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3135                    right_edge[0], mid, dm_margin);
3136         /* Export values */
3137         gbl->fom_out += dq_margin + dqs_margin;
3138
3139         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3140                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3141                    dq_margin, dqs_margin, dm_margin);
3142
3143         /*
3144          * Do not remove this line as it makes sure all of our
3145          * decisions have been applied.
3146          */
3147         writel(0, &sdr_scc_mgr->update);
3148         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3149 }
3150
3151 /* calibrate the write operations */
3152 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3153         uint32_t test_bgn)
3154 {
3155         /* update info for sims */
3156         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3157
3158         reg_file_set_stage(CAL_STAGE_WRITES);
3159         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3160
3161         reg_file_set_group(g);
3162
3163         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3164                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3165                                         CAL_SUBSTAGE_WRITES_CENTER);
3166                 return 0;
3167         }
3168
3169         return 1;
3170 }
3171
3172 /**
3173  * mem_precharge_and_activate() - Precharge all banks and activate
3174  *
3175  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3176  */
3177 static void mem_precharge_and_activate(void)
3178 {
3179         int r;
3180
3181         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3182                 /* Test if the rank should be skipped. */
3183                 if (param->skip_ranks[r])
3184                         continue;
3185
3186                 /* Set rank. */
3187                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3188
3189                 /* Precharge all banks. */
3190                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3191                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3192
3193                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3194                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3195                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3196
3197                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3198                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3199                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3200
3201                 /* Activate rows. */
3202                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3203                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3204         }
3205 }
3206
3207 /**
3208  * mem_init_latency() - Configure memory RLAT and WLAT settings
3209  *
3210  * Configure memory RLAT and WLAT parameters.
3211  */
3212 static void mem_init_latency(void)
3213 {
3214         /*
3215          * For AV/CV, LFIFO is hardened and always runs at full rate
3216          * so max latency in AFI clocks, used here, is correspondingly
3217          * smaller.
3218          */
3219         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3220         u32 rlat, wlat;
3221
3222         debug("%s:%d\n", __func__, __LINE__);
3223
3224         /*
3225          * Read in write latency.
3226          * WL for Hard PHY does not include additive latency.
3227          */
3228         wlat = readl(&data_mgr->t_wl_add);
3229         wlat += readl(&data_mgr->mem_t_add);
3230
3231         gbl->rw_wl_nop_cycles = wlat - 1;
3232
3233         /* Read in readl latency. */
3234         rlat = readl(&data_mgr->t_rl_add);
3235
3236         /* Set a pretty high read latency initially. */
3237         gbl->curr_read_lat = rlat + 16;
3238         if (gbl->curr_read_lat > max_latency)
3239                 gbl->curr_read_lat = max_latency;
3240
3241         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3242
3243         /* Advertise write latency. */
3244         writel(wlat, &phy_mgr_cfg->afi_wlat);
3245 }
3246
3247 /**
3248  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3249  *
3250  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3251  */
3252 static void mem_skip_calibrate(void)
3253 {
3254         uint32_t vfifo_offset;
3255         uint32_t i, j, r;
3256
3257         debug("%s:%d\n", __func__, __LINE__);
3258         /* Need to update every shadow register set used by the interface */
3259         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3260              r += NUM_RANKS_PER_SHADOW_REG) {
3261                 /*
3262                  * Set output phase alignment settings appropriate for
3263                  * skip calibration.
3264                  */
3265                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3266                         scc_mgr_set_dqs_en_phase(i, 0);
3267 #if IO_DLL_CHAIN_LENGTH == 6
3268                         scc_mgr_set_dqdqs_output_phase(i, 6);
3269 #else
3270                         scc_mgr_set_dqdqs_output_phase(i, 7);
3271 #endif
3272                         /*
3273                          * Case:33398
3274                          *
3275                          * Write data arrives to the I/O two cycles before write
3276                          * latency is reached (720 deg).
3277                          *   -> due to bit-slip in a/c bus
3278                          *   -> to allow board skew where dqs is longer than ck
3279                          *      -> how often can this happen!?
3280                          *      -> can claim back some ptaps for high freq
3281                          *       support if we can relax this, but i digress...
3282                          *
3283                          * The write_clk leads mem_ck by 90 deg
3284                          * The minimum ptap of the OPA is 180 deg
3285                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3286                          * The write_clk is always delayed by 2 ptaps
3287                          *
3288                          * Hence, to make DQS aligned to CK, we need to delay
3289                          * DQS by:
3290                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3291                          *
3292                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3293                          * gives us the number of ptaps, which simplies to:
3294                          *
3295                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3296                          */
3297                         scc_mgr_set_dqdqs_output_phase(i,
3298                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3299                 }
3300                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3301                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3302
3303                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3304                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3305                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3306                 }
3307                 writel(0xff, &sdr_scc_mgr->dq_ena);
3308                 writel(0xff, &sdr_scc_mgr->dm_ena);
3309                 writel(0, &sdr_scc_mgr->update);
3310         }
3311
3312         /* Compensate for simulation model behaviour */
3313         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3314                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3315                 scc_mgr_load_dqs(i);
3316         }
3317         writel(0, &sdr_scc_mgr->update);
3318
3319         /*
3320          * ArriaV has hard FIFOs that can only be initialized by incrementing
3321          * in sequencer.
3322          */
3323         vfifo_offset = CALIB_VFIFO_OFFSET;
3324         for (j = 0; j < vfifo_offset; j++)
3325                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3326         writel(0, &phy_mgr_cmd->fifo_reset);
3327
3328         /*
3329          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3330          * setting from generation-time constant.
3331          */
3332         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3333         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3334 }
3335
3336 /**
3337  * mem_calibrate() - Memory calibration entry point.
3338  *
3339  * Perform memory calibration.
3340  */
3341 static uint32_t mem_calibrate(void)
3342 {
3343         uint32_t i;
3344         uint32_t rank_bgn, sr;
3345         uint32_t write_group, write_test_bgn;
3346         uint32_t read_group, read_test_bgn;
3347         uint32_t run_groups, current_run;
3348         uint32_t failing_groups = 0;
3349         uint32_t group_failed = 0;
3350
3351         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3352                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3353
3354         debug("%s:%d\n", __func__, __LINE__);
3355
3356         /* Initialize the data settings */
3357         gbl->error_substage = CAL_SUBSTAGE_NIL;
3358         gbl->error_stage = CAL_STAGE_NIL;
3359         gbl->error_group = 0xff;
3360         gbl->fom_in = 0;
3361         gbl->fom_out = 0;
3362
3363         /* Initialize WLAT and RLAT. */
3364         mem_init_latency();
3365
3366         /* Initialize bit slips. */
3367         mem_precharge_and_activate();
3368
3369         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3370                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3371                           SCC_MGR_GROUP_COUNTER_OFFSET);
3372                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3373                 if (i == 0)
3374                         scc_mgr_set_hhp_extras();
3375
3376                 scc_set_bypass_mode(i);
3377         }
3378
3379         /* Calibration is skipped. */
3380         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3381                 /*
3382                  * Set VFIFO and LFIFO to instant-on settings in skip
3383                  * calibration mode.
3384                  */
3385                 mem_skip_calibrate();
3386
3387                 /*
3388                  * Do not remove this line as it makes sure all of our
3389                  * decisions have been applied.
3390                  */
3391                 writel(0, &sdr_scc_mgr->update);
3392                 return 1;
3393         }
3394
3395         /* Calibration is not skipped. */
3396         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3397                 /*
3398                  * Zero all delay chain/phase settings for all
3399                  * groups and all shadow register sets.
3400                  */
3401                 scc_mgr_zero_all();
3402
3403                 run_groups = ~param->skip_groups;
3404
3405                 for (write_group = 0, write_test_bgn = 0; write_group
3406                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3407                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3408
3409                         /* Initialize the group failure */
3410                         group_failed = 0;
3411
3412                         current_run = run_groups & ((1 <<
3413                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3414                         run_groups = run_groups >>
3415                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3416
3417                         if (current_run == 0)
3418                                 continue;
3419
3420                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3421                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3422                         scc_mgr_zero_group(write_group, 0);
3423
3424                         for (read_group = write_group * rwdqs_ratio,
3425                              read_test_bgn = 0;
3426                              read_group < (write_group + 1) * rwdqs_ratio;
3427                              read_group++,
3428                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3429                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3430                                         continue;
3431
3432                                 /* Calibrate the VFIFO */
3433                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3434                                                                read_test_bgn))
3435                                         continue;
3436
3437                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3438                                         return 0;
3439
3440                                 /* The group failed, we're done. */
3441                                 goto grp_failed;
3442                         }
3443
3444                         /* Calibrate the output side */
3445                         for (rank_bgn = 0, sr = 0;
3446                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3447                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3448                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3449                                         continue;
3450
3451                                 /* Not needed in quick mode! */
3452                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3453                                         continue;
3454
3455                                 /*
3456                                  * Determine if this set of ranks
3457                                  * should be skipped entirely.
3458                                  */
3459                                 if (param->skip_shadow_regs[sr])
3460                                         continue;
3461
3462                                 /* Calibrate WRITEs */
3463                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3464                                                 write_group, write_test_bgn))
3465                                         continue;
3466
3467                                 group_failed = 1;
3468                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3469                                         return 0;
3470                         }
3471
3472                         /* Some group failed, we're done. */
3473                         if (group_failed)
3474                                 goto grp_failed;
3475
3476                         for (read_group = write_group * rwdqs_ratio,
3477                              read_test_bgn = 0;
3478                              read_group < (write_group + 1) * rwdqs_ratio;
3479                              read_group++,
3480                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3481                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3482                                         continue;
3483
3484                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3485                                                                 read_test_bgn))
3486                                         continue;
3487
3488                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3489                                         return 0;
3490
3491                                 /* The group failed, we're done. */
3492                                 goto grp_failed;
3493                         }
3494
3495                         /* No group failed, continue as usual. */
3496                         continue;
3497
3498 grp_failed:             /* A group failed, increment the counter. */
3499                         failing_groups++;
3500                 }
3501
3502                 /*
3503                  * USER If there are any failing groups then report
3504                  * the failure.
3505                  */
3506                 if (failing_groups != 0)
3507                         return 0;
3508
3509                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3510                         continue;
3511
3512                 /*
3513                  * If we're skipping groups as part of debug,
3514                  * don't calibrate LFIFO.
3515                  */
3516                 if (param->skip_groups != 0)
3517                         continue;
3518
3519                 /* Calibrate the LFIFO */
3520                 if (!rw_mgr_mem_calibrate_lfifo())
3521                         return 0;
3522         }
3523
3524         /*
3525          * Do not remove this line as it makes sure all of our decisions
3526          * have been applied.
3527          */
3528         writel(0, &sdr_scc_mgr->update);
3529         return 1;
3530 }
3531
3532 /**
3533  * run_mem_calibrate() - Perform memory calibration
3534  *
3535  * This function triggers the entire memory calibration procedure.
3536  */
3537 static int run_mem_calibrate(void)
3538 {
3539         int pass;
3540
3541         debug("%s:%d\n", __func__, __LINE__);
3542
3543         /* Reset pass/fail status shown on afi_cal_success/fail */
3544         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3545
3546         /* Stop tracking manager. */
3547         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3548
3549         phy_mgr_initialize();
3550         rw_mgr_mem_initialize();
3551
3552         /* Perform the actual memory calibration. */
3553         pass = mem_calibrate();
3554
3555         mem_precharge_and_activate();
3556         writel(0, &phy_mgr_cmd->fifo_reset);
3557
3558         /* Handoff. */
3559         rw_mgr_mem_handoff();
3560         /*
3561          * In Hard PHY this is a 2-bit control:
3562          * 0: AFI Mux Select
3563          * 1: DDIO Mux Select
3564          */
3565         writel(0x2, &phy_mgr_cfg->mux_sel);
3566
3567         /* Start tracking manager. */
3568         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3569
3570         return pass;
3571 }
3572
3573 /**
3574  * debug_mem_calibrate() - Report result of memory calibration
3575  * @pass:       Value indicating whether calibration passed or failed
3576  *
3577  * This function reports the results of the memory calibration
3578  * and writes debug information into the register file.
3579  */
3580 static void debug_mem_calibrate(int pass)
3581 {
3582         uint32_t debug_info;
3583
3584         if (pass) {
3585                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3586
3587                 gbl->fom_in /= 2;
3588                 gbl->fom_out /= 2;
3589
3590                 if (gbl->fom_in > 0xff)
3591                         gbl->fom_in = 0xff;
3592
3593                 if (gbl->fom_out > 0xff)
3594                         gbl->fom_out = 0xff;
3595
3596                 /* Update the FOM in the register file */
3597                 debug_info = gbl->fom_in;
3598                 debug_info |= gbl->fom_out << 8;
3599                 writel(debug_info, &sdr_reg_file->fom);
3600
3601                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3602                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3603         } else {
3604                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3605
3606                 debug_info = gbl->error_stage;
3607                 debug_info |= gbl->error_substage << 8;
3608                 debug_info |= gbl->error_group << 16;
3609
3610                 writel(debug_info, &sdr_reg_file->failing_stage);
3611                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3612                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3613
3614                 /* Update the failing group/stage in the register file */
3615                 debug_info = gbl->error_stage;
3616                 debug_info |= gbl->error_substage << 8;
3617                 debug_info |= gbl->error_group << 16;
3618                 writel(debug_info, &sdr_reg_file->failing_stage);
3619         }
3620
3621         printf("%s: Calibration complete\n", __FILE__);
3622 }
3623
3624 /**
3625  * hc_initialize_rom_data() - Initialize ROM data
3626  *
3627  * Initialize ROM data.
3628  */
3629 static void hc_initialize_rom_data(void)
3630 {
3631         u32 i, addr;
3632
3633         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3634         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3635                 writel(inst_rom_init[i], addr + (i << 2));
3636
3637         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3638         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3639                 writel(ac_rom_init[i], addr + (i << 2));
3640 }
3641
3642 /**
3643  * initialize_reg_file() - Initialize SDR register file
3644  *
3645  * Initialize SDR register file.
3646  */
3647 static void initialize_reg_file(void)
3648 {
3649         /* Initialize the register file with the correct data */
3650         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3651         writel(0, &sdr_reg_file->debug_data_addr);
3652         writel(0, &sdr_reg_file->cur_stage);
3653         writel(0, &sdr_reg_file->fom);
3654         writel(0, &sdr_reg_file->failing_stage);
3655         writel(0, &sdr_reg_file->debug1);
3656         writel(0, &sdr_reg_file->debug2);
3657 }
3658
3659 /**
3660  * initialize_hps_phy() - Initialize HPS PHY
3661  *
3662  * Initialize HPS PHY.
3663  */
3664 static void initialize_hps_phy(void)
3665 {
3666         uint32_t reg;
3667         /*
3668          * Tracking also gets configured here because it's in the
3669          * same register.
3670          */
3671         uint32_t trk_sample_count = 7500;
3672         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3673         /*
3674          * Format is number of outer loops in the 16 MSB, sample
3675          * count in 16 LSB.
3676          */
3677
3678         reg = 0;
3679         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3680         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3681         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3682         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3683         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3684         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3685         /*
3686          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3687          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3688          */
3689         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3690         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3691                 trk_sample_count);
3692         writel(reg, &sdr_ctrl->phy_ctrl0);
3693
3694         reg = 0;
3695         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3696                 trk_sample_count >>
3697                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3698         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3699                 trk_long_idle_sample_count);
3700         writel(reg, &sdr_ctrl->phy_ctrl1);
3701
3702         reg = 0;
3703         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3704                 trk_long_idle_sample_count >>
3705                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3706         writel(reg, &sdr_ctrl->phy_ctrl2);
3707 }
3708
3709 /**
3710  * initialize_tracking() - Initialize tracking
3711  *
3712  * Initialize the register file with usable initial data.
3713  */
3714 static void initialize_tracking(void)
3715 {
3716         /*
3717          * Initialize the register file with the correct data.
3718          * Compute usable version of value in case we skip full
3719          * computation later.
3720          */
3721         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3722                &sdr_reg_file->dtaps_per_ptap);
3723
3724         /* trk_sample_count */
3725         writel(7500, &sdr_reg_file->trk_sample_count);
3726
3727         /* longidle outer loop [15:0] */
3728         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3729
3730         /*
3731          * longidle sample count [31:24]
3732          * trfc, worst case of 933Mhz 4Gb [23:16]
3733          * trcd, worst case [15:8]
3734          * vfifo wait [7:0]
3735          */
3736         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3737                &sdr_reg_file->delays);
3738
3739         /* mux delay */
3740         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3741                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3742                &sdr_reg_file->trk_rw_mgr_addr);
3743
3744         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3745                &sdr_reg_file->trk_read_dqs_width);
3746
3747         /* trefi [7:0] */
3748         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3749                &sdr_reg_file->trk_rfsh);
3750 }
3751
3752 int sdram_calibration_full(void)
3753 {
3754         struct param_type my_param;
3755         struct gbl_type my_gbl;
3756         uint32_t pass;
3757
3758         memset(&my_param, 0, sizeof(my_param));
3759         memset(&my_gbl, 0, sizeof(my_gbl));
3760
3761         param = &my_param;
3762         gbl = &my_gbl;
3763
3764         /* Set the calibration enabled by default */
3765         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3766         /*
3767          * Only sweep all groups (regardless of fail state) by default
3768          * Set enabled read test by default.
3769          */
3770 #if DISABLE_GUARANTEED_READ
3771         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3772 #endif
3773         /* Initialize the register file */
3774         initialize_reg_file();
3775
3776         /* Initialize any PHY CSR */
3777         initialize_hps_phy();
3778
3779         scc_mgr_initialize();
3780
3781         initialize_tracking();
3782
3783         printf("%s: Preparing to start memory calibration\n", __FILE__);
3784
3785         debug("%s:%d\n", __func__, __LINE__);
3786         debug_cond(DLEVEL == 1,
3787                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3788                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3789                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3790                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3791                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3792         debug_cond(DLEVEL == 1,
3793                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3794                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3795                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3796                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3797         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3798                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3799         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3800                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3801                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3802         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3803                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3804                    IO_IO_OUT2_DELAY_MAX);
3805         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3806                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3807
3808         hc_initialize_rom_data();
3809
3810         /* update info for sims */
3811         reg_file_set_stage(CAL_STAGE_NIL);
3812         reg_file_set_group(0);
3813
3814         /*
3815          * Load global needed for those actions that require
3816          * some dynamic calibration support.
3817          */
3818         dyn_calib_steps = STATIC_CALIB_STEPS;
3819         /*
3820          * Load global to allow dynamic selection of delay loop settings
3821          * based on calibration mode.
3822          */
3823         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3824                 skip_delay_mask = 0xff;
3825         else
3826                 skip_delay_mask = 0x0;
3827
3828         pass = run_mem_calibrate();
3829         debug_mem_calibrate(pass);
3830         return pass;
3831 }