]> git.sur5r.net Git - u-boot/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up scc_mgr_initialize()
[u-boot] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
32
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35
36 static struct socfpga_data_mgr *data_mgr =
37         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
38
39 static struct socfpga_sdr_ctrl *sdr_ctrl =
40         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
41
42 #define DELTA_D         1
43
44 /*
45  * In order to reduce ROM size, most of the selectable calibration steps are
46  * decided at compile time based on the user's calibration mode selection,
47  * as captured by the STATIC_CALIB_STEPS selection below.
48  *
49  * However, to support simulation-time selection of fast simulation mode, where
50  * we skip everything except the bare minimum, we need a few of the steps to
51  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
52  * check, which is based on the rtl-supplied value, or we dynamically compute
53  * the value to use based on the dynamically-chosen calibration mode
54  */
55
56 #define DLEVEL 0
57 #define STATIC_IN_RTL_SIM 0
58 #define STATIC_SKIP_DELAY_LOOPS 0
59
60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
61         STATIC_SKIP_DELAY_LOOPS)
62
63 /* calibration steps requested by the rtl */
64 uint16_t dyn_calib_steps;
65
66 /*
67  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
68  * instead of static, we use boolean logic to select between
69  * non-skip and skip values
70  *
71  * The mask is set to include all bits when not-skipping, but is
72  * zero when skipping
73  */
74
75 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
76
77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
78         ((non_skip_value) & skip_delay_mask)
79
80 struct gbl_type *gbl;
81 struct param_type *param;
82 uint32_t curr_shadow_reg;
83
84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
85         uint32_t write_group, uint32_t use_dm,
86         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
87
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89         uint32_t substage)
90 {
91         /*
92          * Only set the global stage if there was not been any other
93          * failing group
94          */
95         if (gbl->error_stage == CAL_STAGE_NIL)  {
96                 gbl->error_substage = substage;
97                 gbl->error_stage = stage;
98                 gbl->error_group = group;
99         }
100 }
101
102 static void reg_file_set_group(u16 set_group)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106
107 static void reg_file_set_stage(u8 set_stage)
108 {
109         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114         set_sub_stage &= 0xff;
115         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117
118 static void initialize(void)
119 {
120         debug("%s:%d\n", __func__, __LINE__);
121         /* USER calibration has control over path to memory */
122         /*
123          * In Hard PHY this is a 2-bit control:
124          * 0: AFI Mux Select
125          * 1: DDIO Mux Select
126          */
127         writel(0x3, &phy_mgr_cfg->mux_sel);
128
129         /* USER memory clock is not stable we begin initialization  */
130         writel(0, &phy_mgr_cfg->reset_mem_stbl);
131
132         /* USER calibration status all set to zero */
133         writel(0, &phy_mgr_cfg->cal_status);
134
135         writel(0, &phy_mgr_cfg->cal_debug_info);
136
137         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
138                 param->read_correct_mask_vg  = ((uint32_t)1 <<
139                         (RW_MGR_MEM_DQ_PER_READ_DQS /
140                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
141                 param->write_correct_mask_vg = ((uint32_t)1 <<
142                         (RW_MGR_MEM_DQ_PER_READ_DQS /
143                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
144                 param->read_correct_mask     = ((uint32_t)1 <<
145                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
146                 param->write_correct_mask    = ((uint32_t)1 <<
147                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
148                 param->dm_correct_mask       = ((uint32_t)1 <<
149                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
150                         - 1;
151         }
152 }
153
154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
155 {
156         uint32_t odt_mask_0 = 0;
157         uint32_t odt_mask_1 = 0;
158         uint32_t cs_and_odt_mask;
159
160         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
161                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
162                         /*
163                          * 1 Rank
164                          * Read: ODT = 0
165                          * Write: ODT = 1
166                          */
167                         odt_mask_0 = 0x0;
168                         odt_mask_1 = 0x1;
169                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
170                         /* 2 Ranks */
171                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
172                                 /* - Dual-Slot , Single-Rank
173                                  * (1 chip-select per DIMM)
174                                  * OR
175                                  * - RDIMM, 4 total CS (2 CS per DIMM)
176                                  * means 2 DIMM
177                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
178                                  * both single rank
179                                  * with 2 CS each (special for RDIMM)
180                                  * Read: Turn on ODT on the opposite rank
181                                  * Write: Turn on ODT on all ranks
182                                  */
183                                 odt_mask_0 = 0x3 & ~(1 << rank);
184                                 odt_mask_1 = 0x3;
185                         } else {
186                                 /*
187                                  * USER - Single-Slot , Dual-rank DIMMs
188                                  * (2 chip-selects per DIMM)
189                                  * USER Read: Turn on ODT off on all ranks
190                                  * USER Write: Turn on ODT on active rank
191                                  */
192                                 odt_mask_0 = 0x0;
193                                 odt_mask_1 = 0x3 & (1 << rank);
194                         }
195                 } else {
196                         /* 4 Ranks
197                          * Read:
198                          * ----------+-----------------------+
199                          *           |                       |
200                          *           |         ODT           |
201                          * Read From +-----------------------+
202                          *   Rank    |  3  |  2  |  1  |  0  |
203                          * ----------+-----+-----+-----+-----+
204                          *     0     |  0  |  1  |  0  |  0  |
205                          *     1     |  1  |  0  |  0  |  0  |
206                          *     2     |  0  |  0  |  0  |  1  |
207                          *     3     |  0  |  0  |  1  |  0  |
208                          * ----------+-----+-----+-----+-----+
209                          *
210                          * Write:
211                          * ----------+-----------------------+
212                          *           |                       |
213                          *           |         ODT           |
214                          * Write To  +-----------------------+
215                          *   Rank    |  3  |  2  |  1  |  0  |
216                          * ----------+-----+-----+-----+-----+
217                          *     0     |  0  |  1  |  0  |  1  |
218                          *     1     |  1  |  0  |  1  |  0  |
219                          *     2     |  0  |  1  |  0  |  1  |
220                          *     3     |  1  |  0  |  1  |  0  |
221                          * ----------+-----+-----+-----+-----+
222                          */
223                         switch (rank) {
224                         case 0:
225                                 odt_mask_0 = 0x4;
226                                 odt_mask_1 = 0x5;
227                                 break;
228                         case 1:
229                                 odt_mask_0 = 0x8;
230                                 odt_mask_1 = 0xA;
231                                 break;
232                         case 2:
233                                 odt_mask_0 = 0x1;
234                                 odt_mask_1 = 0x5;
235                                 break;
236                         case 3:
237                                 odt_mask_0 = 0x2;
238                                 odt_mask_1 = 0xA;
239                                 break;
240                         }
241                 }
242         } else {
243                 odt_mask_0 = 0x0;
244                 odt_mask_1 = 0x0;
245         }
246
247         cs_and_odt_mask =
248                 (0xFF & ~(1 << rank)) |
249                 ((0xFF & odt_mask_0) << 8) |
250                 ((0xFF & odt_mask_1) << 16);
251         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
252                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
253 }
254
255 /**
256  * scc_mgr_set() - Set SCC Manager register
257  * @off:        Base offset in SCC Manager space
258  * @grp:        Read/Write group
259  * @val:        Value to be set
260  *
261  * This function sets the SCC Manager (Scan Chain Control Manager) register.
262  */
263 static void scc_mgr_set(u32 off, u32 grp, u32 val)
264 {
265         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
266 }
267
268 /**
269  * scc_mgr_initialize() - Initialize SCC Manager registers
270  *
271  * Initialize SCC Manager registers.
272  */
273 static void scc_mgr_initialize(void)
274 {
275         /*
276          * Clear register file for HPS. 16 (2^4) is the size of the
277          * full register file in the scc mgr:
278          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
279          *                             MEM_IF_READ_DQS_WIDTH - 1);
280          */
281         int i;
282
283         for (i = 0; i < 16; i++) {
284                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
285                            __func__, __LINE__, i);
286                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
287         }
288 }
289
290 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
291 {
292         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
293 }
294
295 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
296 {
297         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
298 }
299
300 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
301 {
302         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
303 }
304
305 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
306 {
307         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
308 }
309
310 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay)
311 {
312         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
313                     delay);
314 }
315
316 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
317 {
318         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
319 }
320
321 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
322 {
323         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
324 }
325
326 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
327                                               uint32_t delay)
328 {
329         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
330                     delay);
331 }
332
333 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
334 {
335         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
336                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
337                     delay);
338 }
339
340 /* load up dqs config settings */
341 static void scc_mgr_load_dqs(uint32_t dqs)
342 {
343         writel(dqs, &sdr_scc_mgr->dqs_ena);
344 }
345
346 /* load up dqs io config settings */
347 static void scc_mgr_load_dqs_io(void)
348 {
349         writel(0, &sdr_scc_mgr->dqs_io_ena);
350 }
351
352 /* load up dq config settings */
353 static void scc_mgr_load_dq(uint32_t dq_in_group)
354 {
355         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
356 }
357
358 /* load up dm config settings */
359 static void scc_mgr_load_dm(uint32_t dm)
360 {
361         writel(dm, &sdr_scc_mgr->dm_ena);
362 }
363
364 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
365                                                uint32_t phase)
366 {
367         uint32_t r;
368         uint32_t update_scan_chains;
369
370         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
371              r += NUM_RANKS_PER_SHADOW_REG) {
372                 /*
373                  * USER although the h/w doesn't support different phases per
374                  * shadow register, for simplicity our scc manager modeling
375                  * keeps different phase settings per shadow reg, and it's
376                  * important for us to keep them in sync to match h/w.
377                  * for efficiency, the scan chain update should occur only
378                  * once to sr0.
379                  */
380                 update_scan_chains = (r == 0) ? 1 : 0;
381
382                 scc_mgr_set_dqs_en_phase(read_group, phase);
383
384                 if (update_scan_chains) {
385                         writel(read_group, &sdr_scc_mgr->dqs_ena);
386                         writel(0, &sdr_scc_mgr->update);
387                 }
388         }
389 }
390
391 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
392                                                      uint32_t phase)
393 {
394         uint32_t r;
395         uint32_t update_scan_chains;
396
397         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
398              r += NUM_RANKS_PER_SHADOW_REG) {
399                 /*
400                  * USER although the h/w doesn't support different phases per
401                  * shadow register, for simplicity our scc manager modeling
402                  * keeps different phase settings per shadow reg, and it's
403                  * important for us to keep them in sync to match h/w.
404                  * for efficiency, the scan chain update should occur only
405                  * once to sr0.
406                  */
407                 update_scan_chains = (r == 0) ? 1 : 0;
408
409                 scc_mgr_set_dqdqs_output_phase(write_group, phase);
410
411                 if (update_scan_chains) {
412                         writel(write_group, &sdr_scc_mgr->dqs_ena);
413                         writel(0, &sdr_scc_mgr->update);
414                 }
415         }
416 }
417
418 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
419                                                uint32_t delay)
420 {
421         uint32_t r;
422
423         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
424                 r += NUM_RANKS_PER_SHADOW_REG) {
425                 scc_mgr_set_dqs_en_delay(read_group, delay);
426
427                 writel(read_group, &sdr_scc_mgr->dqs_ena);
428                 /*
429                  * In shadow register mode, the T11 settings are stored in
430                  * registers in the core, which are updated by the DQS_ENA
431                  * signals. Not issuing the SCC_MGR_UPD command allows us to
432                  * save lots of rank switching overhead, by calling
433                  * select_shadow_regs_for_update with update_scan_chains
434                  * set to 0.
435                  */
436                 writel(0, &sdr_scc_mgr->update);
437         }
438         /*
439          * In shadow register mode, the T11 settings are stored in
440          * registers in the core, which are updated by the DQS_ENA
441          * signals. Not issuing the SCC_MGR_UPD command allows us to
442          * save lots of rank switching overhead, by calling
443          * select_shadow_regs_for_update with update_scan_chains
444          * set to 0.
445          */
446         writel(0, &sdr_scc_mgr->update);
447 }
448
449 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
450 {
451         uint32_t read_group;
452         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET;
453
454         /*
455          * Load the setting in the SCC manager
456          * Although OCT affects only write data, the OCT delay is controlled
457          * by the DQS logic block which is instantiated once per read group.
458          * For protocols where a write group consists of multiple read groups,
459          * the setting must be set multiple times.
460          */
461         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
462              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
463              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
464              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
465                 writel(delay, addr + (read_group << 2));
466 }
467
468 static void scc_mgr_set_hhp_extras(void)
469 {
470         /*
471          * Load the fixed setting in the SCC manager
472          * bits: 0:0 = 1'b1   - dqs bypass
473          * bits: 1:1 = 1'b1   - dq bypass
474          * bits: 4:2 = 3'b001   - rfifo_mode
475          * bits: 6:5 = 2'b01  - rfifo clock_select
476          * bits: 7:7 = 1'b0  - separate gating from ungating setting
477          * bits: 8:8 = 1'b0  - separate OE from Output delay setting
478          */
479         uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
480         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
481
482         writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
483 }
484
485 /*
486  * USER Zero all DQS config
487  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
488  */
489 static void scc_mgr_zero_all(void)
490 {
491         uint32_t i, r;
492
493         /*
494          * USER Zero all DQS config settings, across all groups and all
495          * shadow registers
496          */
497         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
498              NUM_RANKS_PER_SHADOW_REG) {
499                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
500                         /*
501                          * The phases actually don't exist on a per-rank basis,
502                          * but there's no harm updating them several times, so
503                          * let's keep the code simple.
504                          */
505                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
506                         scc_mgr_set_dqs_en_phase(i, 0);
507                         scc_mgr_set_dqs_en_delay(i, 0);
508                 }
509
510                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
511                         scc_mgr_set_dqdqs_output_phase(i, 0);
512                         /* av/cv don't have out2 */
513                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
514                 }
515         }
516
517         /* multicast to all DQS group enables */
518         writel(0xff, &sdr_scc_mgr->dqs_ena);
519         writel(0, &sdr_scc_mgr->update);
520 }
521
522 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
523 {
524         /* mode = 0 : Do NOT bypass - Half Rate Mode */
525         /* mode = 1 : Bypass - Full Rate Mode */
526
527         /* only need to set once for all groups, pins, dq, dqs, dm */
528         if (write_group == 0) {
529                 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
530                            __LINE__);
531                 scc_mgr_set_hhp_extras();
532                 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
533                           __func__, __LINE__);
534         }
535         /* multicast to all DQ enables */
536         writel(0xff, &sdr_scc_mgr->dq_ena);
537         writel(0xff, &sdr_scc_mgr->dm_ena);
538
539         /* update current DQS IO enable */
540         writel(0, &sdr_scc_mgr->dqs_io_ena);
541
542         /* update the DQS logic */
543         writel(write_group, &sdr_scc_mgr->dqs_ena);
544
545         /* hit update */
546         writel(0, &sdr_scc_mgr->update);
547 }
548
549 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
550 {
551         uint32_t read_group;
552         uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
553         /*
554          * Although OCT affects only write data, the OCT delay is controlled
555          * by the DQS logic block which is instantiated once per read group.
556          * For protocols where a write group consists of multiple read groups,
557          * the setting must be scanned multiple times.
558          */
559         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
560              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
561              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
562              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
563                 writel(read_group, addr);
564 }
565
566 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
567                                int32_t out_only)
568 {
569         uint32_t i, r;
570
571         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
572                 NUM_RANKS_PER_SHADOW_REG) {
573                 /* Zero all DQ config settings */
574                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
575                         scc_mgr_set_dq_out1_delay(i, 0);
576                         if (!out_only)
577                                 scc_mgr_set_dq_in_delay(i, 0);
578                 }
579
580                 /* multicast to all DQ enables */
581                 writel(0xff, &sdr_scc_mgr->dq_ena);
582
583                 /* Zero all DM config settings */
584                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
585                         scc_mgr_set_dm_out1_delay(i, 0);
586                 }
587
588                 /* multicast to all DM enables */
589                 writel(0xff, &sdr_scc_mgr->dm_ena);
590
591                 /* zero all DQS io settings */
592                 if (!out_only)
593                         scc_mgr_set_dqs_io_in_delay(write_group, 0);
594                 /* av/cv don't have out2 */
595                 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
596                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
597                 scc_mgr_load_dqs_for_write_group(write_group);
598
599                 /* multicast to all DQS IO enables (only 1) */
600                 writel(0, &sdr_scc_mgr->dqs_io_ena);
601
602                 /* hit update to zero everything */
603                 writel(0, &sdr_scc_mgr->update);
604         }
605 }
606
607 /*
608  * apply and load a particular input delay for the DQ pins in a group
609  * group_bgn is the index of the first dq pin (in the write group)
610  */
611 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
612                                             uint32_t group_bgn, uint32_t delay)
613 {
614         uint32_t i, p;
615
616         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
617                 scc_mgr_set_dq_in_delay(p, delay);
618                 scc_mgr_load_dq(p);
619         }
620 }
621
622 /* apply and load a particular output delay for the DQ pins in a group */
623 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
624                                               uint32_t group_bgn,
625                                               uint32_t delay1)
626 {
627         uint32_t i, p;
628
629         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
630                 scc_mgr_set_dq_out1_delay(i, delay1);
631                 scc_mgr_load_dq(i);
632         }
633 }
634
635 /* apply and load a particular output delay for the DM pins in a group */
636 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
637                                               uint32_t delay1)
638 {
639         uint32_t i;
640
641         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
642                 scc_mgr_set_dm_out1_delay(i, delay1);
643                 scc_mgr_load_dm(i);
644         }
645 }
646
647
648 /* apply and load delay on both DQS and OCT out1 */
649 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
650                                                     uint32_t delay)
651 {
652         scc_mgr_set_dqs_out1_delay(write_group, delay);
653         scc_mgr_load_dqs_io();
654
655         scc_mgr_set_oct_out1_delay(write_group, delay);
656         scc_mgr_load_dqs_for_write_group(write_group);
657 }
658
659 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
660 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
661                                                   uint32_t group_bgn,
662                                                   uint32_t delay)
663 {
664         uint32_t i, p, new_delay;
665
666         /* dq shift */
667         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
668                 new_delay = READ_SCC_DQ_OUT2_DELAY;
669                 new_delay += delay;
670
671                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
672                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
673                                    %u > %lu => %lu", __func__, __LINE__,
674                                    write_group, group_bgn, delay, i, p, new_delay,
675                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
676                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
677                         new_delay = IO_IO_OUT2_DELAY_MAX;
678                 }
679
680                 scc_mgr_load_dq(i);
681         }
682
683         /* dm shift */
684         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
685                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
686                 new_delay += delay;
687
688                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
689                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
690                                    %u > %lu => %lu\n",  __func__, __LINE__,
691                                    write_group, group_bgn, delay, i, new_delay,
692                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
693                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
694                         new_delay = IO_IO_OUT2_DELAY_MAX;
695                 }
696
697                 scc_mgr_load_dm(i);
698         }
699
700         /* dqs shift */
701         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
702         new_delay += delay;
703
704         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
705                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
706                            " adding %u to OUT1\n", __func__, __LINE__,
707                            write_group, group_bgn, delay, new_delay,
708                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
709                            new_delay - IO_IO_OUT2_DELAY_MAX);
710                 scc_mgr_set_dqs_out1_delay(write_group, new_delay -
711                                            IO_IO_OUT2_DELAY_MAX);
712                 new_delay = IO_IO_OUT2_DELAY_MAX;
713         }
714
715         scc_mgr_load_dqs_io();
716
717         /* oct shift */
718         new_delay = READ_SCC_OCT_OUT2_DELAY;
719         new_delay += delay;
720
721         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
722                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
723                            " adding %u to OUT1\n", __func__, __LINE__,
724                            write_group, group_bgn, delay, new_delay,
725                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
726                            new_delay - IO_IO_OUT2_DELAY_MAX);
727                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
728                                            IO_IO_OUT2_DELAY_MAX);
729                 new_delay = IO_IO_OUT2_DELAY_MAX;
730         }
731
732         scc_mgr_load_dqs_for_write_group(write_group);
733 }
734
735 /*
736  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
737  * and to all ranks
738  */
739 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
740         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
741 {
742         uint32_t r;
743
744         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
745                 r += NUM_RANKS_PER_SHADOW_REG) {
746                 scc_mgr_apply_group_all_out_delay_add(write_group,
747                                                       group_bgn, delay);
748                 writel(0, &sdr_scc_mgr->update);
749         }
750 }
751
752 /* optimization used to recover some slots in ddr3 inst_rom */
753 /* could be applied to other protocols if we wanted to */
754 static void set_jump_as_return(void)
755 {
756         /*
757          * to save space, we replace return with jump to special shared
758          * RETURN instruction so we set the counter to large value so that
759          * we always jump
760          */
761         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
762         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
763 }
764
765 /*
766  * should always use constants as argument to ensure all computations are
767  * performed at compile time
768  */
769 static void delay_for_n_mem_clocks(const uint32_t clocks)
770 {
771         uint32_t afi_clocks;
772         uint8_t inner = 0;
773         uint8_t outer = 0;
774         uint16_t c_loop = 0;
775
776         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
777
778
779         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
780         /* scale (rounding up) to get afi clocks */
781
782         /*
783          * Note, we don't bother accounting for being off a little bit
784          * because of a few extra instructions in outer loops
785          * Note, the loops have a test at the end, and do the test before
786          * the decrement, and so always perform the loop
787          * 1 time more than the counter value
788          */
789         if (afi_clocks == 0) {
790                 ;
791         } else if (afi_clocks <= 0x100) {
792                 inner = afi_clocks-1;
793                 outer = 0;
794                 c_loop = 0;
795         } else if (afi_clocks <= 0x10000) {
796                 inner = 0xff;
797                 outer = (afi_clocks-1) >> 8;
798                 c_loop = 0;
799         } else {
800                 inner = 0xff;
801                 outer = 0xff;
802                 c_loop = (afi_clocks-1) >> 16;
803         }
804
805         /*
806          * rom instructions are structured as follows:
807          *
808          *    IDLE_LOOP2: jnz cntr0, TARGET_A
809          *    IDLE_LOOP1: jnz cntr1, TARGET_B
810          *                return
811          *
812          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
813          * TARGET_B is set to IDLE_LOOP2 as well
814          *
815          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
816          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
817          *
818          * a little confusing, but it helps save precious space in the inst_rom
819          * and sequencer rom and keeps the delays more accurate and reduces
820          * overhead
821          */
822         if (afi_clocks <= 0x100) {
823                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
824                         &sdr_rw_load_mgr_regs->load_cntr1);
825
826                 writel(RW_MGR_IDLE_LOOP1,
827                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
828
829                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
830                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
831         } else {
832                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
833                         &sdr_rw_load_mgr_regs->load_cntr0);
834
835                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
836                         &sdr_rw_load_mgr_regs->load_cntr1);
837
838                 writel(RW_MGR_IDLE_LOOP2,
839                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
840
841                 writel(RW_MGR_IDLE_LOOP2,
842                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
843
844                 /* hack to get around compiler not being smart enough */
845                 if (afi_clocks <= 0x10000) {
846                         /* only need to run once */
847                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
848                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
849                 } else {
850                         do {
851                                 writel(RW_MGR_IDLE_LOOP2,
852                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
853                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
854                         } while (c_loop-- != 0);
855                 }
856         }
857         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
858 }
859
860 static void rw_mgr_mem_initialize(void)
861 {
862         uint32_t r;
863         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
864                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
865
866         debug("%s:%d\n", __func__, __LINE__);
867
868         /* The reset / cke part of initialization is broadcasted to all ranks */
869         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
870                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
871
872         /*
873          * Here's how you load register for a loop
874          * Counters are located @ 0x800
875          * Jump address are located @ 0xC00
876          * For both, registers 0 to 3 are selected using bits 3 and 2, like
877          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
878          * I know this ain't pretty, but Avalon bus throws away the 2 least
879          * significant bits
880          */
881
882         /* start with memory RESET activated */
883
884         /* tINIT = 200us */
885
886         /*
887          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
888          * If a and b are the number of iteration in 2 nested loops
889          * it takes the following number of cycles to complete the operation:
890          * number_of_cycles = ((2 + n) * a + 2) * b
891          * where n is the number of instruction in the inner loop
892          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
893          * b = 6A
894          */
895
896         /* Load counters */
897         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
898                &sdr_rw_load_mgr_regs->load_cntr0);
899         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
900                &sdr_rw_load_mgr_regs->load_cntr1);
901         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
902                &sdr_rw_load_mgr_regs->load_cntr2);
903
904         /* Load jump address */
905         writel(RW_MGR_INIT_RESET_0_CKE_0,
906                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
907         writel(RW_MGR_INIT_RESET_0_CKE_0,
908                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
909         writel(RW_MGR_INIT_RESET_0_CKE_0,
910                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
911
912         /* Execute count instruction */
913         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
914
915         /* indicate that memory is stable */
916         writel(1, &phy_mgr_cfg->reset_mem_stbl);
917
918         /*
919          * transition the RESET to high
920          * Wait for 500us
921          */
922
923         /*
924          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
925          * If a and b are the number of iteration in 2 nested loops
926          * it takes the following number of cycles to complete the operation
927          * number_of_cycles = ((2 + n) * a + 2) * b
928          * where n is the number of instruction in the inner loop
929          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
930          * b = FF
931          */
932
933         /* Load counters */
934         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
935                &sdr_rw_load_mgr_regs->load_cntr0);
936         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
937                &sdr_rw_load_mgr_regs->load_cntr1);
938         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
939                &sdr_rw_load_mgr_regs->load_cntr2);
940
941         /* Load jump address */
942         writel(RW_MGR_INIT_RESET_1_CKE_0,
943                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
944         writel(RW_MGR_INIT_RESET_1_CKE_0,
945                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
946         writel(RW_MGR_INIT_RESET_1_CKE_0,
947                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
948
949         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
950
951         /* bring up clock enable */
952
953         /* tXRP < 250 ck cycles */
954         delay_for_n_mem_clocks(250);
955
956         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
957                 if (param->skip_ranks[r]) {
958                         /* request to skip the rank */
959                         continue;
960                 }
961
962                 /* set rank */
963                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
964
965                 /*
966                  * USER Use Mirror-ed commands for odd ranks if address
967                  * mirrorring is on
968                  */
969                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
970                         set_jump_as_return();
971                         writel(RW_MGR_MRS2_MIRR, grpaddr);
972                         delay_for_n_mem_clocks(4);
973                         set_jump_as_return();
974                         writel(RW_MGR_MRS3_MIRR, grpaddr);
975                         delay_for_n_mem_clocks(4);
976                         set_jump_as_return();
977                         writel(RW_MGR_MRS1_MIRR, grpaddr);
978                         delay_for_n_mem_clocks(4);
979                         set_jump_as_return();
980                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
981                 } else {
982                         set_jump_as_return();
983                         writel(RW_MGR_MRS2, grpaddr);
984                         delay_for_n_mem_clocks(4);
985                         set_jump_as_return();
986                         writel(RW_MGR_MRS3, grpaddr);
987                         delay_for_n_mem_clocks(4);
988                         set_jump_as_return();
989                         writel(RW_MGR_MRS1, grpaddr);
990                         set_jump_as_return();
991                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
992                 }
993                 set_jump_as_return();
994                 writel(RW_MGR_ZQCL, grpaddr);
995
996                 /* tZQinit = tDLLK = 512 ck cycles */
997                 delay_for_n_mem_clocks(512);
998         }
999 }
1000
1001 /*
1002  * At the end of calibration we have to program the user settings in, and
1003  * USER  hand off the memory to the user.
1004  */
1005 static void rw_mgr_mem_handoff(void)
1006 {
1007         uint32_t r;
1008         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1009                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1010
1011         debug("%s:%d\n", __func__, __LINE__);
1012         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1013                 if (param->skip_ranks[r])
1014                         /* request to skip the rank */
1015                         continue;
1016                 /* set rank */
1017                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1018
1019                 /* precharge all banks ... */
1020                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1021
1022                 /* load up MR settings specified by user */
1023
1024                 /*
1025                  * Use Mirror-ed commands for odd ranks if address
1026                  * mirrorring is on
1027                  */
1028                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1029                         set_jump_as_return();
1030                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1031                         delay_for_n_mem_clocks(4);
1032                         set_jump_as_return();
1033                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1034                         delay_for_n_mem_clocks(4);
1035                         set_jump_as_return();
1036                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1037                         delay_for_n_mem_clocks(4);
1038                         set_jump_as_return();
1039                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1040                 } else {
1041                         set_jump_as_return();
1042                         writel(RW_MGR_MRS2, grpaddr);
1043                         delay_for_n_mem_clocks(4);
1044                         set_jump_as_return();
1045                         writel(RW_MGR_MRS3, grpaddr);
1046                         delay_for_n_mem_clocks(4);
1047                         set_jump_as_return();
1048                         writel(RW_MGR_MRS1, grpaddr);
1049                         delay_for_n_mem_clocks(4);
1050                         set_jump_as_return();
1051                         writel(RW_MGR_MRS0_USER, grpaddr);
1052                 }
1053                 /*
1054                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1055                  * other commands, but we will have plenty of NIOS cycles before
1056                  * actual handoff so its okay.
1057                  */
1058         }
1059 }
1060
1061 /*
1062  * performs a guaranteed read on the patterns we are going to use during a
1063  * read test to ensure memory works
1064  */
1065 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1066         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1067         uint32_t all_ranks)
1068 {
1069         uint32_t r, vg;
1070         uint32_t correct_mask_vg;
1071         uint32_t tmp_bit_chk;
1072         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1073                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1074         uint32_t addr;
1075         uint32_t base_rw_mgr;
1076
1077         *bit_chk = param->read_correct_mask;
1078         correct_mask_vg = param->read_correct_mask_vg;
1079
1080         for (r = rank_bgn; r < rank_end; r++) {
1081                 if (param->skip_ranks[r])
1082                         /* request to skip the rank */
1083                         continue;
1084
1085                 /* set rank */
1086                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1087
1088                 /* Load up a constant bursts of read commands */
1089                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1090                 writel(RW_MGR_GUARANTEED_READ,
1091                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1092
1093                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1094                 writel(RW_MGR_GUARANTEED_READ_CONT,
1095                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1096
1097                 tmp_bit_chk = 0;
1098                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1099                         /* reset the fifos to get pointers to known state */
1100
1101                         writel(0, &phy_mgr_cmd->fifo_reset);
1102                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1103                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1104
1105                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1106                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1107
1108                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1109                         writel(RW_MGR_GUARANTEED_READ, addr +
1110                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1111                                 vg) << 2));
1112
1113                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1114                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1115
1116                         if (vg == 0)
1117                                 break;
1118                 }
1119                 *bit_chk &= tmp_bit_chk;
1120         }
1121
1122         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1123         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1124
1125         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1126         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1127                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1128                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1129         return *bit_chk == param->read_correct_mask;
1130 }
1131
1132 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1133         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1134 {
1135         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1136                 num_tries, bit_chk, 1);
1137 }
1138
1139 /* load up the patterns we are going to use during a read test */
1140 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1141         uint32_t all_ranks)
1142 {
1143         uint32_t r;
1144         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1145                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1146
1147         debug("%s:%d\n", __func__, __LINE__);
1148         for (r = rank_bgn; r < rank_end; r++) {
1149                 if (param->skip_ranks[r])
1150                         /* request to skip the rank */
1151                         continue;
1152
1153                 /* set rank */
1154                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1155
1156                 /* Load up a constant bursts */
1157                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1158
1159                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1160                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1161
1162                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1163
1164                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1165                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1166
1167                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1168
1169                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1170                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1171
1172                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1173
1174                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1175                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1176
1177                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1178                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1179         }
1180
1181         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1182 }
1183
1184 /*
1185  * try a read and see if it returns correct data back. has dummy reads
1186  * inserted into the mix used to align dqs enable. has more thorough checks
1187  * than the regular read test.
1188  */
1189 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1190         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1191         uint32_t all_groups, uint32_t all_ranks)
1192 {
1193         uint32_t r, vg;
1194         uint32_t correct_mask_vg;
1195         uint32_t tmp_bit_chk;
1196         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1197                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1198         uint32_t addr;
1199         uint32_t base_rw_mgr;
1200
1201         *bit_chk = param->read_correct_mask;
1202         correct_mask_vg = param->read_correct_mask_vg;
1203
1204         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1205                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1206
1207         for (r = rank_bgn; r < rank_end; r++) {
1208                 if (param->skip_ranks[r])
1209                         /* request to skip the rank */
1210                         continue;
1211
1212                 /* set rank */
1213                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1214
1215                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1216
1217                 writel(RW_MGR_READ_B2B_WAIT1,
1218                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1219
1220                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1221                 writel(RW_MGR_READ_B2B_WAIT2,
1222                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1223
1224                 if (quick_read_mode)
1225                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1226                         /* need at least two (1+1) reads to capture failures */
1227                 else if (all_groups)
1228                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1229                 else
1230                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1231
1232                 writel(RW_MGR_READ_B2B,
1233                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1234                 if (all_groups)
1235                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1236                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1237                                &sdr_rw_load_mgr_regs->load_cntr3);
1238                 else
1239                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1240
1241                 writel(RW_MGR_READ_B2B,
1242                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1243
1244                 tmp_bit_chk = 0;
1245                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1246                         /* reset the fifos to get pointers to known state */
1247                         writel(0, &phy_mgr_cmd->fifo_reset);
1248                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1249                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1250
1251                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1252                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1253
1254                         if (all_groups)
1255                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1256                         else
1257                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1258
1259                         writel(RW_MGR_READ_B2B, addr +
1260                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1261                                vg) << 2));
1262
1263                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1264                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1265
1266                         if (vg == 0)
1267                                 break;
1268                 }
1269                 *bit_chk &= tmp_bit_chk;
1270         }
1271
1272         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1273         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1274
1275         if (all_correct) {
1276                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1277                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1278                            (%u == %u) => %lu", __func__, __LINE__, group,
1279                            all_groups, *bit_chk, param->read_correct_mask,
1280                            (long unsigned int)(*bit_chk ==
1281                            param->read_correct_mask));
1282                 return *bit_chk == param->read_correct_mask;
1283         } else  {
1284                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1285                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1286                            (%u != %lu) => %lu\n", __func__, __LINE__,
1287                            group, all_groups, *bit_chk, (long unsigned int)0,
1288                            (long unsigned int)(*bit_chk != 0x00));
1289                 return *bit_chk != 0x00;
1290         }
1291 }
1292
1293 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1294         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1295         uint32_t all_groups)
1296 {
1297         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1298                                               bit_chk, all_groups, 1);
1299 }
1300
1301 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1302 {
1303         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1304         (*v)++;
1305 }
1306
1307 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1308 {
1309         uint32_t i;
1310
1311         for (i = 0; i < VFIFO_SIZE-1; i++)
1312                 rw_mgr_incr_vfifo(grp, v);
1313 }
1314
1315 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1316 {
1317         uint32_t  v;
1318         uint32_t fail_cnt = 0;
1319         uint32_t test_status;
1320
1321         for (v = 0; v < VFIFO_SIZE; ) {
1322                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1323                            __func__, __LINE__, v);
1324                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1325                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1326                 if (!test_status) {
1327                         fail_cnt++;
1328
1329                         if (fail_cnt == 2)
1330                                 break;
1331                 }
1332
1333                 /* fiddle with FIFO */
1334                 rw_mgr_incr_vfifo(grp, &v);
1335         }
1336
1337         if (v >= VFIFO_SIZE) {
1338                 /* no failing read found!! Something must have gone wrong */
1339                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1340                            __func__, __LINE__);
1341                 return 0;
1342         } else {
1343                 return v;
1344         }
1345 }
1346
1347 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1348                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1349                               uint32_t *v, uint32_t *d, uint32_t *p,
1350                               uint32_t *i, uint32_t *max_working_cnt)
1351 {
1352         uint32_t found_begin = 0;
1353         uint32_t tmp_delay = 0;
1354         uint32_t test_status;
1355
1356         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1357                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1358                 *work_bgn = tmp_delay;
1359                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1360
1361                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1362                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1363                                 IO_DELAY_PER_OPA_TAP) {
1364                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1365
1366                                 test_status =
1367                                 rw_mgr_mem_calibrate_read_test_all_ranks
1368                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1369
1370                                 if (test_status) {
1371                                         *max_working_cnt = 1;
1372                                         found_begin = 1;
1373                                         break;
1374                                 }
1375                         }
1376
1377                         if (found_begin)
1378                                 break;
1379
1380                         if (*p > IO_DQS_EN_PHASE_MAX)
1381                                 /* fiddle with FIFO */
1382                                 rw_mgr_incr_vfifo(*grp, v);
1383                 }
1384
1385                 if (found_begin)
1386                         break;
1387         }
1388
1389         if (*i >= VFIFO_SIZE) {
1390                 /* cannot find working solution */
1391                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1392                            ptap/dtap\n", __func__, __LINE__);
1393                 return 0;
1394         } else {
1395                 return 1;
1396         }
1397 }
1398
1399 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1400                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1401                              uint32_t *p, uint32_t *max_working_cnt)
1402 {
1403         uint32_t found_begin = 0;
1404         uint32_t tmp_delay;
1405
1406         /* Special case code for backing up a phase */
1407         if (*p == 0) {
1408                 *p = IO_DQS_EN_PHASE_MAX;
1409                 rw_mgr_decr_vfifo(*grp, v);
1410         } else {
1411                 (*p)--;
1412         }
1413         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1414         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1415
1416         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1417                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1418                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1419
1420                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1421                                                              PASS_ONE_BIT,
1422                                                              bit_chk, 0)) {
1423                         found_begin = 1;
1424                         *work_bgn = tmp_delay;
1425                         break;
1426                 }
1427         }
1428
1429         /* We have found a working dtap before the ptap found above */
1430         if (found_begin == 1)
1431                 (*max_working_cnt)++;
1432
1433         /*
1434          * Restore VFIFO to old state before we decremented it
1435          * (if needed).
1436          */
1437         (*p)++;
1438         if (*p > IO_DQS_EN_PHASE_MAX) {
1439                 *p = 0;
1440                 rw_mgr_incr_vfifo(*grp, v);
1441         }
1442
1443         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1444 }
1445
1446 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1447                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1448                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1449                              uint32_t *work_end)
1450 {
1451         uint32_t found_end = 0;
1452
1453         (*p)++;
1454         *work_end += IO_DELAY_PER_OPA_TAP;
1455         if (*p > IO_DQS_EN_PHASE_MAX) {
1456                 /* fiddle with FIFO */
1457                 *p = 0;
1458                 rw_mgr_incr_vfifo(*grp, v);
1459         }
1460
1461         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1462                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1463                         += IO_DELAY_PER_OPA_TAP) {
1464                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1465
1466                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1467                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1468                                 found_end = 1;
1469                                 break;
1470                         } else {
1471                                 (*max_working_cnt)++;
1472                         }
1473                 }
1474
1475                 if (found_end)
1476                         break;
1477
1478                 if (*p > IO_DQS_EN_PHASE_MAX) {
1479                         /* fiddle with FIFO */
1480                         rw_mgr_incr_vfifo(*grp, v);
1481                         *p = 0;
1482                 }
1483         }
1484
1485         if (*i >= VFIFO_SIZE + 1) {
1486                 /* cannot see edge of failing read */
1487                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1488                            failed\n", __func__, __LINE__);
1489                 return 0;
1490         } else {
1491                 return 1;
1492         }
1493 }
1494
1495 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1496                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1497                                   uint32_t *p, uint32_t *work_mid,
1498                                   uint32_t *work_end)
1499 {
1500         int i;
1501         int tmp_delay = 0;
1502
1503         *work_mid = (*work_bgn + *work_end) / 2;
1504
1505         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1506                    *work_bgn, *work_end, *work_mid);
1507         /* Get the middle delay to be less than a VFIFO delay */
1508         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1509                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1510                 ;
1511         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1512         while (*work_mid > tmp_delay)
1513                 *work_mid -= tmp_delay;
1514         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1515
1516         tmp_delay = 0;
1517         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1518                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1519                 ;
1520         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1521         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1522         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1523                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1524                 ;
1525         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1526
1527         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1528         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1529
1530         /*
1531          * push vfifo until we can successfully calibrate. We can do this
1532          * because the largest possible margin in 1 VFIFO cycle.
1533          */
1534         for (i = 0; i < VFIFO_SIZE; i++) {
1535                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1536                            *v);
1537                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1538                                                              PASS_ONE_BIT,
1539                                                              bit_chk, 0)) {
1540                         break;
1541                 }
1542
1543                 /* fiddle with FIFO */
1544                 rw_mgr_incr_vfifo(*grp, v);
1545         }
1546
1547         if (i >= VFIFO_SIZE) {
1548                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1549                            failed\n", __func__, __LINE__);
1550                 return 0;
1551         } else {
1552                 return 1;
1553         }
1554 }
1555
1556 /* find a good dqs enable to use */
1557 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1558 {
1559         uint32_t v, d, p, i;
1560         uint32_t max_working_cnt;
1561         uint32_t bit_chk;
1562         uint32_t dtaps_per_ptap;
1563         uint32_t work_bgn, work_mid, work_end;
1564         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1565
1566         debug("%s:%d %u\n", __func__, __LINE__, grp);
1567
1568         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1569
1570         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1571         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1572
1573         /* ************************************************************** */
1574         /* * Step 0 : Determine number of delay taps for each phase tap * */
1575         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1576
1577         /* ********************************************************* */
1578         /* * Step 1 : First push vfifo until we get a failing read * */
1579         v = find_vfifo_read(grp, &bit_chk);
1580
1581         max_working_cnt = 0;
1582
1583         /* ******************************************************** */
1584         /* * step 2: find first working phase, increment in ptaps * */
1585         work_bgn = 0;
1586         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1587                                 &p, &i, &max_working_cnt) == 0)
1588                 return 0;
1589
1590         work_end = work_bgn;
1591
1592         /*
1593          * If d is 0 then the working window covers a phase tap and
1594          * we can follow the old procedure otherwise, we've found the beginning,
1595          * and we need to increment the dtaps until we find the end.
1596          */
1597         if (d == 0) {
1598                 /* ********************************************************* */
1599                 /* * step 3a: if we have room, back off by one and
1600                 increment in dtaps * */
1601
1602                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1603                                  &max_working_cnt);
1604
1605                 /* ********************************************************* */
1606                 /* * step 4a: go forward from working phase to non working
1607                 phase, increment in ptaps * */
1608                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1609                                          &i, &max_working_cnt, &work_end) == 0)
1610                         return 0;
1611
1612                 /* ********************************************************* */
1613                 /* * step 5a:  back off one from last, increment in dtaps  * */
1614
1615                 /* Special case code for backing up a phase */
1616                 if (p == 0) {
1617                         p = IO_DQS_EN_PHASE_MAX;
1618                         rw_mgr_decr_vfifo(grp, &v);
1619                 } else {
1620                         p = p - 1;
1621                 }
1622
1623                 work_end -= IO_DELAY_PER_OPA_TAP;
1624                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1625
1626                 /* * The actual increment of dtaps is done outside of
1627                 the if/else loop to share code */
1628                 d = 0;
1629
1630                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1631                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1632                            v, p);
1633         } else {
1634                 /* ******************************************************* */
1635                 /* * step 3-5b:  Find the right edge of the window using
1636                 delay taps   * */
1637                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1638                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1639                            v, p, d, work_bgn);
1640
1641                 work_end = work_bgn;
1642
1643                 /* * The actual increment of dtaps is done outside of the
1644                 if/else loop to share code */
1645
1646                 /* Only here to counterbalance a subtract later on which is
1647                 not needed if this branch of the algorithm is taken */
1648                 max_working_cnt++;
1649         }
1650
1651         /* The dtap increment to find the failing edge is done here */
1652         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1653                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1654                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1655                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1656                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1657
1658                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1659                                                                       PASS_ONE_BIT,
1660                                                                       &bit_chk, 0)) {
1661                                 break;
1662                         }
1663         }
1664
1665         /* Go back to working dtap */
1666         if (d != 0)
1667                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1668
1669         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1670                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1671                    v, p, d-1, work_end);
1672
1673         if (work_end < work_bgn) {
1674                 /* nil range */
1675                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1676                            failed\n", __func__, __LINE__);
1677                 return 0;
1678         }
1679
1680         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1681                    __func__, __LINE__, work_bgn, work_end);
1682
1683         /* *************************************************************** */
1684         /*
1685          * * We need to calculate the number of dtaps that equal a ptap
1686          * * To do that we'll back up a ptap and re-find the edge of the
1687          * * window using dtaps
1688          */
1689
1690         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1691                    for tracking\n", __func__, __LINE__);
1692
1693         /* Special case code for backing up a phase */
1694         if (p == 0) {
1695                 p = IO_DQS_EN_PHASE_MAX;
1696                 rw_mgr_decr_vfifo(grp, &v);
1697                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1698                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1699                            v, p);
1700         } else {
1701                 p = p - 1;
1702                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1703                            phase only: v=%u p=%u", __func__, __LINE__,
1704                            v, p);
1705         }
1706
1707         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1708
1709         /*
1710          * Increase dtap until we first see a passing read (in case the
1711          * window is smaller than a ptap),
1712          * and then a failing read to mark the edge of the window again
1713          */
1714
1715         /* Find a passing read */
1716         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1717                    __func__, __LINE__);
1718         found_passing_read = 0;
1719         found_failing_read = 0;
1720         initial_failing_dtap = d;
1721         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1722                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1723                            read d=%u\n", __func__, __LINE__, d);
1724                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1725
1726                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1727                                                              PASS_ONE_BIT,
1728                                                              &bit_chk, 0)) {
1729                         found_passing_read = 1;
1730                         break;
1731                 }
1732         }
1733
1734         if (found_passing_read) {
1735                 /* Find a failing read */
1736                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1737                            read\n", __func__, __LINE__);
1738                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1739                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1740                                    testing read d=%u\n", __func__, __LINE__, d);
1741                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1742
1743                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1744                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1745                                 found_failing_read = 1;
1746                                 break;
1747                         }
1748                 }
1749         } else {
1750                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1751                            calculate dtaps", __func__, __LINE__);
1752                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1753         }
1754
1755         /*
1756          * The dynamically calculated dtaps_per_ptap is only valid if we
1757          * found a passing/failing read. If we didn't, it means d hit the max
1758          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1759          * statically calculated value.
1760          */
1761         if (found_passing_read && found_failing_read)
1762                 dtaps_per_ptap = d - initial_failing_dtap;
1763
1764         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1765         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1766                    - %u = %u",  __func__, __LINE__, d,
1767                    initial_failing_dtap, dtaps_per_ptap);
1768
1769         /* ******************************************** */
1770         /* * step 6:  Find the centre of the window   * */
1771         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1772                                    &work_mid, &work_end) == 0)
1773                 return 0;
1774
1775         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1776                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1777                    v, p-1, d);
1778         return 1;
1779 }
1780
1781 /*
1782  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1783  * dq_in_delay values
1784  */
1785 static uint32_t
1786 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1787 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1788 {
1789         uint32_t found;
1790         uint32_t i;
1791         uint32_t p;
1792         uint32_t d;
1793         uint32_t r;
1794
1795         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1796                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1797                 /* we start at zero, so have one less dq to devide among */
1798
1799         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1800               test_bgn);
1801
1802         /* try different dq_in_delays since the dq path is shorter than dqs */
1803
1804         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1805              r += NUM_RANKS_PER_SHADOW_REG) {
1806                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1807                         i++, p++, d += delay_step) {
1808                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1809                                    vfifo_find_dqs_", __func__, __LINE__);
1810                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1811                                write_group, read_group);
1812                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1813                         scc_mgr_set_dq_in_delay(p, d);
1814                         scc_mgr_load_dq(p);
1815                 }
1816                 writel(0, &sdr_scc_mgr->update);
1817         }
1818
1819         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1820
1821         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1822                    en_phase_sweep_dq", __func__, __LINE__);
1823         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1824                    chain to zero\n", write_group, read_group, found);
1825
1826         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1827              r += NUM_RANKS_PER_SHADOW_REG) {
1828                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1829                         i++, p++) {
1830                         scc_mgr_set_dq_in_delay(p, 0);
1831                         scc_mgr_load_dq(p);
1832                 }
1833                 writel(0, &sdr_scc_mgr->update);
1834         }
1835
1836         return found;
1837 }
1838
1839 /* per-bit deskew DQ and center */
1840 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1841         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1842         uint32_t use_read_test, uint32_t update_fom)
1843 {
1844         uint32_t i, p, d, min_index;
1845         /*
1846          * Store these as signed since there are comparisons with
1847          * signed numbers.
1848          */
1849         uint32_t bit_chk;
1850         uint32_t sticky_bit_chk;
1851         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1852         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1853         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1854         int32_t mid;
1855         int32_t orig_mid_min, mid_min;
1856         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1857                 final_dqs_en;
1858         int32_t dq_margin, dqs_margin;
1859         uint32_t stop;
1860         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1861         uint32_t addr;
1862
1863         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1864
1865         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1866         start_dqs = readl(addr + (read_group << 2));
1867         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1868                 start_dqs_en = readl(addr + ((read_group << 2)
1869                                      - IO_DQS_EN_DELAY_OFFSET));
1870
1871         /* set the left and right edge of each bit to an illegal value */
1872         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1873         sticky_bit_chk = 0;
1874         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1875                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1876                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1877         }
1878
1879         /* Search for the left edge of the window for each bit */
1880         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1881                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1882
1883                 writel(0, &sdr_scc_mgr->update);
1884
1885                 /*
1886                  * Stop searching when the read test doesn't pass AND when
1887                  * we've seen a passing read on every bit.
1888                  */
1889                 if (use_read_test) {
1890                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1891                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1892                                 &bit_chk, 0, 0);
1893                 } else {
1894                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1895                                                         0, PASS_ONE_BIT,
1896                                                         &bit_chk, 0);
1897                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1898                                 (read_group - (write_group *
1899                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1900                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1901                         stop = (bit_chk == 0);
1902                 }
1903                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1904                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1905                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1906                            && %u", __func__, __LINE__, d,
1907                            sticky_bit_chk,
1908                         param->read_correct_mask, stop);
1909
1910                 if (stop == 1) {
1911                         break;
1912                 } else {
1913                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1914                                 if (bit_chk & 1) {
1915                                         /* Remember a passing test as the
1916                                         left_edge */
1917                                         left_edge[i] = d;
1918                                 } else {
1919                                         /* If a left edge has not been seen yet,
1920                                         then a future passing test will mark
1921                                         this edge as the right edge */
1922                                         if (left_edge[i] ==
1923                                                 IO_IO_IN_DELAY_MAX + 1) {
1924                                                 right_edge[i] = -(d + 1);
1925                                         }
1926                                 }
1927                                 bit_chk = bit_chk >> 1;
1928                         }
1929                 }
1930         }
1931
1932         /* Reset DQ delay chains to 0 */
1933         scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
1934         sticky_bit_chk = 0;
1935         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1936                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1937                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1938                            i, left_edge[i], i, right_edge[i]);
1939
1940                 /*
1941                  * Check for cases where we haven't found the left edge,
1942                  * which makes our assignment of the the right edge invalid.
1943                  * Reset it to the illegal value.
1944                  */
1945                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1946                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1947                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1948                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1949                                    right_edge[%u]: %d\n", __func__, __LINE__,
1950                                    i, right_edge[i]);
1951                 }
1952
1953                 /*
1954                  * Reset sticky bit (except for bits where we have seen
1955                  * both the left and right edge).
1956                  */
1957                 sticky_bit_chk = sticky_bit_chk << 1;
1958                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1959                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1960                         sticky_bit_chk = sticky_bit_chk | 1;
1961                 }
1962
1963                 if (i == 0)
1964                         break;
1965         }
1966
1967         /* Search for the right edge of the window for each bit */
1968         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1969                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1970                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1971                         uint32_t delay = d + start_dqs_en;
1972                         if (delay > IO_DQS_EN_DELAY_MAX)
1973                                 delay = IO_DQS_EN_DELAY_MAX;
1974                         scc_mgr_set_dqs_en_delay(read_group, delay);
1975                 }
1976                 scc_mgr_load_dqs(read_group);
1977
1978                 writel(0, &sdr_scc_mgr->update);
1979
1980                 /*
1981                  * Stop searching when the read test doesn't pass AND when
1982                  * we've seen a passing read on every bit.
1983                  */
1984                 if (use_read_test) {
1985                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1986                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1987                                 &bit_chk, 0, 0);
1988                 } else {
1989                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1990                                                         0, PASS_ONE_BIT,
1991                                                         &bit_chk, 0);
1992                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1993                                 (read_group - (write_group *
1994                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1995                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1996                         stop = (bit_chk == 0);
1997                 }
1998                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1999                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2000
2001                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2002                            %u && %u", __func__, __LINE__, d,
2003                            sticky_bit_chk, param->read_correct_mask, stop);
2004
2005                 if (stop == 1) {
2006                         break;
2007                 } else {
2008                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2009                                 if (bit_chk & 1) {
2010                                         /* Remember a passing test as
2011                                         the right_edge */
2012                                         right_edge[i] = d;
2013                                 } else {
2014                                         if (d != 0) {
2015                                                 /* If a right edge has not been
2016                                                 seen yet, then a future passing
2017                                                 test will mark this edge as the
2018                                                 left edge */
2019                                                 if (right_edge[i] ==
2020                                                 IO_IO_IN_DELAY_MAX + 1) {
2021                                                         left_edge[i] = -(d + 1);
2022                                                 }
2023                                         } else {
2024                                                 /* d = 0 failed, but it passed
2025                                                 when testing the left edge,
2026                                                 so it must be marginal,
2027                                                 set it to -1 */
2028                                                 if (right_edge[i] ==
2029                                                         IO_IO_IN_DELAY_MAX + 1 &&
2030                                                         left_edge[i] !=
2031                                                         IO_IO_IN_DELAY_MAX
2032                                                         + 1) {
2033                                                         right_edge[i] = -1;
2034                                                 }
2035                                                 /* If a right edge has not been
2036                                                 seen yet, then a future passing
2037                                                 test will mark this edge as the
2038                                                 left edge */
2039                                                 else if (right_edge[i] ==
2040                                                         IO_IO_IN_DELAY_MAX +
2041                                                         1) {
2042                                                         left_edge[i] = -(d + 1);
2043                                                 }
2044                                         }
2045                                 }
2046
2047                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2048                                            d=%u]: ", __func__, __LINE__, d);
2049                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2050                                            (int)(bit_chk & 1), i, left_edge[i]);
2051                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2052                                            right_edge[i]);
2053                                 bit_chk = bit_chk >> 1;
2054                         }
2055                 }
2056         }
2057
2058         /* Check that all bits have a window */
2059         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2060                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2061                            %d right_edge[%u]: %d", __func__, __LINE__,
2062                            i, left_edge[i], i, right_edge[i]);
2063                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2064                         == IO_IO_IN_DELAY_MAX + 1)) {
2065                         /*
2066                          * Restore delay chain settings before letting the loop
2067                          * in rw_mgr_mem_calibrate_vfifo to retry different
2068                          * dqs/ck relationships.
2069                          */
2070                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2071                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2072                                 scc_mgr_set_dqs_en_delay(read_group,
2073                                                          start_dqs_en);
2074                         }
2075                         scc_mgr_load_dqs(read_group);
2076                         writel(0, &sdr_scc_mgr->update);
2077
2078                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2079                                    find edge [%u]: %d %d", __func__, __LINE__,
2080                                    i, left_edge[i], right_edge[i]);
2081                         if (use_read_test) {
2082                                 set_failing_group_stage(read_group *
2083                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2084                                         CAL_STAGE_VFIFO,
2085                                         CAL_SUBSTAGE_VFIFO_CENTER);
2086                         } else {
2087                                 set_failing_group_stage(read_group *
2088                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2089                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2090                                         CAL_SUBSTAGE_VFIFO_CENTER);
2091                         }
2092                         return 0;
2093                 }
2094         }
2095
2096         /* Find middle of window for each DQ bit */
2097         mid_min = left_edge[0] - right_edge[0];
2098         min_index = 0;
2099         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2100                 mid = left_edge[i] - right_edge[i];
2101                 if (mid < mid_min) {
2102                         mid_min = mid;
2103                         min_index = i;
2104                 }
2105         }
2106
2107         /*
2108          * -mid_min/2 represents the amount that we need to move DQS.
2109          * If mid_min is odd and positive we'll need to add one to
2110          * make sure the rounding in further calculations is correct
2111          * (always bias to the right), so just add 1 for all positive values.
2112          */
2113         if (mid_min > 0)
2114                 mid_min++;
2115
2116         mid_min = mid_min / 2;
2117
2118         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2119                    __func__, __LINE__, mid_min, min_index);
2120
2121         /* Determine the amount we can change DQS (which is -mid_min) */
2122         orig_mid_min = mid_min;
2123         new_dqs = start_dqs - mid_min;
2124         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2125                 new_dqs = IO_DQS_IN_DELAY_MAX;
2126         else if (new_dqs < 0)
2127                 new_dqs = 0;
2128
2129         mid_min = start_dqs - new_dqs;
2130         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2131                    mid_min, new_dqs);
2132
2133         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2134                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2135                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2136                 else if (start_dqs_en - mid_min < 0)
2137                         mid_min += start_dqs_en - mid_min;
2138         }
2139         new_dqs = start_dqs - mid_min;
2140
2141         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2142                    new_dqs=%d mid_min=%d\n", start_dqs,
2143                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2144                    new_dqs, mid_min);
2145
2146         /* Initialize data for export structures */
2147         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2148         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2149
2150         /* add delay to bring centre of all DQ windows to the same "level" */
2151         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2152                 /* Use values before divide by 2 to reduce round off error */
2153                 shift_dq = (left_edge[i] - right_edge[i] -
2154                         (left_edge[min_index] - right_edge[min_index]))/2  +
2155                         (orig_mid_min - mid_min);
2156
2157                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2158                            shift_dq[%u]=%d\n", i, shift_dq);
2159
2160                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2161                 temp_dq_in_delay1 = readl(addr + (p << 2));
2162                 temp_dq_in_delay2 = readl(addr + (i << 2));
2163
2164                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2165                         (int32_t)IO_IO_IN_DELAY_MAX) {
2166                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2167                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2168                         shift_dq = -(int32_t)temp_dq_in_delay1;
2169                 }
2170                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2171                            shift_dq[%u]=%d\n", i, shift_dq);
2172                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2173                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2174                 scc_mgr_load_dq(p);
2175
2176                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2177                            left_edge[i] - shift_dq + (-mid_min),
2178                            right_edge[i] + shift_dq - (-mid_min));
2179                 /* To determine values for export structures */
2180                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2181                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2182
2183                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2184                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2185         }
2186
2187         final_dqs = new_dqs;
2188         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2189                 final_dqs_en = start_dqs_en - mid_min;
2190
2191         /* Move DQS-en */
2192         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2193                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2194                 scc_mgr_load_dqs(read_group);
2195         }
2196
2197         /* Move DQS */
2198         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2199         scc_mgr_load_dqs(read_group);
2200         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2201                    dqs_margin=%d", __func__, __LINE__,
2202                    dq_margin, dqs_margin);
2203
2204         /*
2205          * Do not remove this line as it makes sure all of our decisions
2206          * have been applied. Apply the update bit.
2207          */
2208         writel(0, &sdr_scc_mgr->update);
2209
2210         return (dq_margin >= 0) && (dqs_margin >= 0);
2211 }
2212
2213 /*
2214  * calibrate the read valid prediction FIFO.
2215  *
2216  *  - read valid prediction will consist of finding a good DQS enable phase,
2217  * DQS enable delay, DQS input phase, and DQS input delay.
2218  *  - we also do a per-bit deskew on the DQ lines.
2219  */
2220 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2221                                            uint32_t test_bgn)
2222 {
2223         uint32_t p, d, rank_bgn, sr;
2224         uint32_t dtaps_per_ptap;
2225         uint32_t tmp_delay;
2226         uint32_t bit_chk;
2227         uint32_t grp_calibrated;
2228         uint32_t write_group, write_test_bgn;
2229         uint32_t failed_substage;
2230
2231         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2232
2233         /* update info for sims */
2234         reg_file_set_stage(CAL_STAGE_VFIFO);
2235
2236         write_group = read_group;
2237         write_test_bgn = test_bgn;
2238
2239         /* USER Determine number of delay taps for each phase tap */
2240         dtaps_per_ptap = 0;
2241         tmp_delay = 0;
2242         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2243                 dtaps_per_ptap++;
2244                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2245         }
2246         dtaps_per_ptap--;
2247         tmp_delay = 0;
2248
2249         /* update info for sims */
2250         reg_file_set_group(read_group);
2251
2252         grp_calibrated = 0;
2253
2254         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2255         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2256
2257         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2258                 /*
2259                  * In RLDRAMX we may be messing the delay of pins in
2260                  * the same write group but outside of the current read
2261                  * the group, but that's ok because we haven't
2262                  * calibrated output side yet.
2263                  */
2264                 if (d > 0) {
2265                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2266                         (write_group, write_test_bgn, d);
2267                 }
2268
2269                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2270                         p++) {
2271                         /* set a particular dqdqs phase */
2272                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2273
2274                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2275                                    p=%u d=%u\n", __func__, __LINE__,
2276                                    read_group, p, d);
2277
2278                         /*
2279                          * Load up the patterns used by read calibration
2280                          * using current DQDQS phase.
2281                          */
2282                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2283                         if (!(gbl->phy_debug_mode_flags &
2284                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2285                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2286                                     (read_group, 1, &bit_chk)) {
2287                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2288                                                    __func__, __LINE__);
2289                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2290                                                    read_group, p, d);
2291                                         break;
2292                                 }
2293                         }
2294
2295 /* case:56390 */
2296                         grp_calibrated = 1;
2297                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2298                     (write_group, read_group, test_bgn)) {
2299                                 /*
2300                                  * USER Read per-bit deskew can be done on a
2301                                  * per shadow register basis.
2302                                  */
2303                                 for (rank_bgn = 0, sr = 0;
2304                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2305                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2306                                         ++sr) {
2307                                         /*
2308                                          * Determine if this set of ranks
2309                                          * should be skipped entirely.
2310                                          */
2311                                         if (!param->skip_shadow_regs[sr]) {
2312                                                 /*
2313                                                  * If doing read after write
2314                                                  * calibration, do not update
2315                                                  * FOM, now - do it then.
2316                                                  */
2317                                         if (!rw_mgr_mem_calibrate_vfifo_center
2318                                                 (rank_bgn, write_group,
2319                                                 read_group, test_bgn, 1, 0)) {
2320                                                         grp_calibrated = 0;
2321                                                         failed_substage =
2322                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2323                                                 }
2324                                         }
2325                                 }
2326                         } else {
2327                                 grp_calibrated = 0;
2328                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2329                         }
2330                 }
2331         }
2332
2333         if (grp_calibrated == 0) {
2334                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2335                                         failed_substage);
2336                 return 0;
2337         }
2338
2339         /*
2340          * Reset the delay chains back to zero if they have moved > 1
2341          * (check for > 1 because loop will increase d even when pass in
2342          * first case).
2343          */
2344         if (d > 2)
2345                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2346
2347         return 1;
2348 }
2349
2350 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2351 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2352                                                uint32_t test_bgn)
2353 {
2354         uint32_t rank_bgn, sr;
2355         uint32_t grp_calibrated;
2356         uint32_t write_group;
2357
2358         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2359
2360         /* update info for sims */
2361
2362         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2363         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2364
2365         write_group = read_group;
2366
2367         /* update info for sims */
2368         reg_file_set_group(read_group);
2369
2370         grp_calibrated = 1;
2371         /* Read per-bit deskew can be done on a per shadow register basis */
2372         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2373                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2374                 /* Determine if this set of ranks should be skipped entirely */
2375                 if (!param->skip_shadow_regs[sr]) {
2376                 /* This is the last calibration round, update FOM here */
2377                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2378                                                                 write_group,
2379                                                                 read_group,
2380                                                                 test_bgn, 0,
2381                                                                 1)) {
2382                                 grp_calibrated = 0;
2383                         }
2384                 }
2385         }
2386
2387
2388         if (grp_calibrated == 0) {
2389                 set_failing_group_stage(write_group,
2390                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2391                                         CAL_SUBSTAGE_VFIFO_CENTER);
2392                 return 0;
2393         }
2394
2395         return 1;
2396 }
2397
2398 /* Calibrate LFIFO to find smallest read latency */
2399 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2400 {
2401         uint32_t found_one;
2402         uint32_t bit_chk;
2403
2404         debug("%s:%d\n", __func__, __LINE__);
2405
2406         /* update info for sims */
2407         reg_file_set_stage(CAL_STAGE_LFIFO);
2408         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2409
2410         /* Load up the patterns used by read calibration for all ranks */
2411         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2412         found_one = 0;
2413
2414         do {
2415                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2416                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2417                            __func__, __LINE__, gbl->curr_read_lat);
2418
2419                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2420                                                               NUM_READ_TESTS,
2421                                                               PASS_ALL_BITS,
2422                                                               &bit_chk, 1)) {
2423                         break;
2424                 }
2425
2426                 found_one = 1;
2427                 /* reduce read latency and see if things are working */
2428                 /* correctly */
2429                 gbl->curr_read_lat--;
2430         } while (gbl->curr_read_lat > 0);
2431
2432         /* reset the fifos to get pointers to known state */
2433
2434         writel(0, &phy_mgr_cmd->fifo_reset);
2435
2436         if (found_one) {
2437                 /* add a fudge factor to the read latency that was determined */
2438                 gbl->curr_read_lat += 2;
2439                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2440                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2441                            read_lat=%u\n", __func__, __LINE__,
2442                            gbl->curr_read_lat);
2443                 return 1;
2444         } else {
2445                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2446                                         CAL_SUBSTAGE_READ_LATENCY);
2447
2448                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2449                            read_lat=%u\n", __func__, __LINE__,
2450                            gbl->curr_read_lat);
2451                 return 0;
2452         }
2453 }
2454
2455 /*
2456  * issue write test command.
2457  * two variants are provided. one that just tests a write pattern and
2458  * another that tests datamask functionality.
2459  */
2460 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2461                                                   uint32_t test_dm)
2462 {
2463         uint32_t mcc_instruction;
2464         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2465                 ENABLE_SUPER_QUICK_CALIBRATION);
2466         uint32_t rw_wl_nop_cycles;
2467         uint32_t addr;
2468
2469         /*
2470          * Set counter and jump addresses for the right
2471          * number of NOP cycles.
2472          * The number of supported NOP cycles can range from -1 to infinity
2473          * Three different cases are handled:
2474          *
2475          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2476          *    mechanism will be used to insert the right number of NOPs
2477          *
2478          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2479          *    issuing the write command will jump straight to the
2480          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2481          *    data (for RLD), skipping
2482          *    the NOP micro-instruction all together
2483          *
2484          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2485          *    turned on in the same micro-instruction that issues the write
2486          *    command. Then we need
2487          *    to directly jump to the micro-instruction that sends out the data
2488          *
2489          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2490          *       (2 and 3). One jump-counter (0) is used to perform multiple
2491          *       write-read operations.
2492          *       one counter left to issue this command in "multiple-group" mode
2493          */
2494
2495         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2496
2497         if (rw_wl_nop_cycles == -1) {
2498                 /*
2499                  * CNTR 2 - We want to execute the special write operation that
2500                  * turns on DQS right away and then skip directly to the
2501                  * instruction that sends out the data. We set the counter to a
2502                  * large number so that the jump is always taken.
2503                  */
2504                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2505
2506                 /* CNTR 3 - Not used */
2507                 if (test_dm) {
2508                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2509                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2510                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2511                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2512                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2513                 } else {
2514                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2515                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2516                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2517                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2518                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2519                 }
2520         } else if (rw_wl_nop_cycles == 0) {
2521                 /*
2522                  * CNTR 2 - We want to skip the NOP operation and go straight
2523                  * to the DQS enable instruction. We set the counter to a large
2524                  * number so that the jump is always taken.
2525                  */
2526                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2527
2528                 /* CNTR 3 - Not used */
2529                 if (test_dm) {
2530                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2531                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2532                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2533                 } else {
2534                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2535                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2536                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2537                 }
2538         } else {
2539                 /*
2540                  * CNTR 2 - In this case we want to execute the next instruction
2541                  * and NOT take the jump. So we set the counter to 0. The jump
2542                  * address doesn't count.
2543                  */
2544                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2545                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2546
2547                 /*
2548                  * CNTR 3 - Set the nop counter to the number of cycles we
2549                  * need to loop for, minus 1.
2550                  */
2551                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2552                 if (test_dm) {
2553                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2554                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2555                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2556                 } else {
2557                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2558                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2559                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2560                 }
2561         }
2562
2563         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2564                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2565
2566         if (quick_write_mode)
2567                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2568         else
2569                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2570
2571         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2572
2573         /*
2574          * CNTR 1 - This is used to ensure enough time elapses
2575          * for read data to come back.
2576          */
2577         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2578
2579         if (test_dm) {
2580                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2581                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2582         } else {
2583                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2584                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2585         }
2586
2587         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2588         writel(mcc_instruction, addr + (group << 2));
2589 }
2590
2591 /* Test writes, can check for a single bit pass or multiple bit pass */
2592 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2593         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2594         uint32_t *bit_chk, uint32_t all_ranks)
2595 {
2596         uint32_t r;
2597         uint32_t correct_mask_vg;
2598         uint32_t tmp_bit_chk;
2599         uint32_t vg;
2600         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2601                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2602         uint32_t addr_rw_mgr;
2603         uint32_t base_rw_mgr;
2604
2605         *bit_chk = param->write_correct_mask;
2606         correct_mask_vg = param->write_correct_mask_vg;
2607
2608         for (r = rank_bgn; r < rank_end; r++) {
2609                 if (param->skip_ranks[r]) {
2610                         /* request to skip the rank */
2611                         continue;
2612                 }
2613
2614                 /* set rank */
2615                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2616
2617                 tmp_bit_chk = 0;
2618                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2619                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2620                         /* reset the fifos to get pointers to known state */
2621                         writel(0, &phy_mgr_cmd->fifo_reset);
2622
2623                         tmp_bit_chk = tmp_bit_chk <<
2624                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2625                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2626                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2627                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2628                                 use_dm);
2629
2630                         base_rw_mgr = readl(addr_rw_mgr);
2631                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2632                         if (vg == 0)
2633                                 break;
2634                 }
2635                 *bit_chk &= tmp_bit_chk;
2636         }
2637
2638         if (all_correct) {
2639                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2640                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2641                            %u => %lu", write_group, use_dm,
2642                            *bit_chk, param->write_correct_mask,
2643                            (long unsigned int)(*bit_chk ==
2644                            param->write_correct_mask));
2645                 return *bit_chk == param->write_correct_mask;
2646         } else {
2647                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2648                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2649                        write_group, use_dm, *bit_chk);
2650                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2651                         (long unsigned int)(*bit_chk != 0));
2652                 return *bit_chk != 0x00;
2653         }
2654 }
2655
2656 /*
2657  * center all windows. do per-bit-deskew to possibly increase size of
2658  * certain windows.
2659  */
2660 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2661         uint32_t write_group, uint32_t test_bgn)
2662 {
2663         uint32_t i, p, min_index;
2664         int32_t d;
2665         /*
2666          * Store these as signed since there are comparisons with
2667          * signed numbers.
2668          */
2669         uint32_t bit_chk;
2670         uint32_t sticky_bit_chk;
2671         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2672         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2673         int32_t mid;
2674         int32_t mid_min, orig_mid_min;
2675         int32_t new_dqs, start_dqs, shift_dq;
2676         int32_t dq_margin, dqs_margin, dm_margin;
2677         uint32_t stop;
2678         uint32_t temp_dq_out1_delay;
2679         uint32_t addr;
2680
2681         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2682
2683         dm_margin = 0;
2684
2685         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2686         start_dqs = readl(addr +
2687                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2688
2689         /* per-bit deskew */
2690
2691         /*
2692          * set the left and right edge of each bit to an illegal value
2693          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2694          */
2695         sticky_bit_chk = 0;
2696         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2697                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2698                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2699         }
2700
2701         /* Search for the left edge of the window for each bit */
2702         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2703                 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2704
2705                 writel(0, &sdr_scc_mgr->update);
2706
2707                 /*
2708                  * Stop searching when the read test doesn't pass AND when
2709                  * we've seen a passing read on every bit.
2710                  */
2711                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2712                         0, PASS_ONE_BIT, &bit_chk, 0);
2713                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2714                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2715                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2716                            == %u && %u [bit_chk= %u ]\n",
2717                         d, sticky_bit_chk, param->write_correct_mask,
2718                         stop, bit_chk);
2719
2720                 if (stop == 1) {
2721                         break;
2722                 } else {
2723                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2724                                 if (bit_chk & 1) {
2725                                         /*
2726                                          * Remember a passing test as the
2727                                          * left_edge.
2728                                          */
2729                                         left_edge[i] = d;
2730                                 } else {
2731                                         /*
2732                                          * If a left edge has not been seen
2733                                          * yet, then a future passing test will
2734                                          * mark this edge as the right edge.
2735                                          */
2736                                         if (left_edge[i] ==
2737                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2738                                                 right_edge[i] = -(d + 1);
2739                                         }
2740                                 }
2741                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2742                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2743                                            (int)(bit_chk & 1), i, left_edge[i]);
2744                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2745                                        right_edge[i]);
2746                                 bit_chk = bit_chk >> 1;
2747                         }
2748                 }
2749         }
2750
2751         /* Reset DQ delay chains to 0 */
2752         scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2753         sticky_bit_chk = 0;
2754         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2755                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2756                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2757                            i, left_edge[i], i, right_edge[i]);
2758
2759                 /*
2760                  * Check for cases where we haven't found the left edge,
2761                  * which makes our assignment of the the right edge invalid.
2762                  * Reset it to the illegal value.
2763                  */
2764                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2765                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2766                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2767                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2768                                    right_edge[%u]: %d\n", __func__, __LINE__,
2769                                    i, right_edge[i]);
2770                 }
2771
2772                 /*
2773                  * Reset sticky bit (except for bits where we have
2774                  * seen the left edge).
2775                  */
2776                 sticky_bit_chk = sticky_bit_chk << 1;
2777                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2778                         sticky_bit_chk = sticky_bit_chk | 1;
2779
2780                 if (i == 0)
2781                         break;
2782         }
2783
2784         /* Search for the right edge of the window for each bit */
2785         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2786                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2787                                                         d + start_dqs);
2788
2789                 writel(0, &sdr_scc_mgr->update);
2790
2791                 /*
2792                  * Stop searching when the read test doesn't pass AND when
2793                  * we've seen a passing read on every bit.
2794                  */
2795                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2796                         0, PASS_ONE_BIT, &bit_chk, 0);
2797
2798                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2799                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2800
2801                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2802                            %u && %u\n", d, sticky_bit_chk,
2803                            param->write_correct_mask, stop);
2804
2805                 if (stop == 1) {
2806                         if (d == 0) {
2807                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2808                                         i++) {
2809                                         /* d = 0 failed, but it passed when
2810                                         testing the left edge, so it must be
2811                                         marginal, set it to -1 */
2812                                         if (right_edge[i] ==
2813                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2814                                                 left_edge[i] !=
2815                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2816                                                 right_edge[i] = -1;
2817                                         }
2818                                 }
2819                         }
2820                         break;
2821                 } else {
2822                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2823                                 if (bit_chk & 1) {
2824                                         /*
2825                                          * Remember a passing test as
2826                                          * the right_edge.
2827                                          */
2828                                         right_edge[i] = d;
2829                                 } else {
2830                                         if (d != 0) {
2831                                                 /*
2832                                                  * If a right edge has not
2833                                                  * been seen yet, then a future
2834                                                  * passing test will mark this
2835                                                  * edge as the left edge.
2836                                                  */
2837                                                 if (right_edge[i] ==
2838                                                     IO_IO_OUT1_DELAY_MAX + 1)
2839                                                         left_edge[i] = -(d + 1);
2840                                         } else {
2841                                                 /*
2842                                                  * d = 0 failed, but it passed
2843                                                  * when testing the left edge,
2844                                                  * so it must be marginal, set
2845                                                  * it to -1.
2846                                                  */
2847                                                 if (right_edge[i] ==
2848                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2849                                                     left_edge[i] !=
2850                                                     IO_IO_OUT1_DELAY_MAX + 1)
2851                                                         right_edge[i] = -1;
2852                                                 /*
2853                                                  * If a right edge has not been
2854                                                  * seen yet, then a future
2855                                                  * passing test will mark this
2856                                                  * edge as the left edge.
2857                                                  */
2858                                                 else if (right_edge[i] ==
2859                                                         IO_IO_OUT1_DELAY_MAX +
2860                                                         1)
2861                                                         left_edge[i] = -(d + 1);
2862                                         }
2863                                 }
2864                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2865                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2866                                            (int)(bit_chk & 1), i, left_edge[i]);
2867                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2868                                            right_edge[i]);
2869                                 bit_chk = bit_chk >> 1;
2870                         }
2871                 }
2872         }
2873
2874         /* Check that all bits have a window */
2875         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2876                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2877                            %d right_edge[%u]: %d", __func__, __LINE__,
2878                            i, left_edge[i], i, right_edge[i]);
2879                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2880                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2881                         set_failing_group_stage(test_bgn + i,
2882                                                 CAL_STAGE_WRITES,
2883                                                 CAL_SUBSTAGE_WRITES_CENTER);
2884                         return 0;
2885                 }
2886         }
2887
2888         /* Find middle of window for each DQ bit */
2889         mid_min = left_edge[0] - right_edge[0];
2890         min_index = 0;
2891         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2892                 mid = left_edge[i] - right_edge[i];
2893                 if (mid < mid_min) {
2894                         mid_min = mid;
2895                         min_index = i;
2896                 }
2897         }
2898
2899         /*
2900          * -mid_min/2 represents the amount that we need to move DQS.
2901          * If mid_min is odd and positive we'll need to add one to
2902          * make sure the rounding in further calculations is correct
2903          * (always bias to the right), so just add 1 for all positive values.
2904          */
2905         if (mid_min > 0)
2906                 mid_min++;
2907         mid_min = mid_min / 2;
2908         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2909                    __LINE__, mid_min);
2910
2911         /* Determine the amount we can change DQS (which is -mid_min) */
2912         orig_mid_min = mid_min;
2913         new_dqs = start_dqs;
2914         mid_min = 0;
2915         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2916                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2917         /* Initialize data for export structures */
2918         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2919         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2920
2921         /* add delay to bring centre of all DQ windows to the same "level" */
2922         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2923                 /* Use values before divide by 2 to reduce round off error */
2924                 shift_dq = (left_edge[i] - right_edge[i] -
2925                         (left_edge[min_index] - right_edge[min_index]))/2  +
2926                 (orig_mid_min - mid_min);
2927
2928                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2929                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2930
2931                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2932                 temp_dq_out1_delay = readl(addr + (i << 2));
2933                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2934                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2935                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2936                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2937                         shift_dq = -(int32_t)temp_dq_out1_delay;
2938                 }
2939                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2940                            i, shift_dq);
2941                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2942                 scc_mgr_load_dq(i);
2943
2944                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2945                            left_edge[i] - shift_dq + (-mid_min),
2946                            right_edge[i] + shift_dq - (-mid_min));
2947                 /* To determine values for export structures */
2948                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2949                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2950
2951                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2952                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2953         }
2954
2955         /* Move DQS */
2956         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2957         writel(0, &sdr_scc_mgr->update);
2958
2959         /* Centre DM */
2960         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2961
2962         /*
2963          * set the left and right edge of each bit to an illegal value,
2964          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2965          */
2966         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2967         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2968         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2969         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2970         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2971         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2972         int32_t win_best = 0;
2973
2974         /* Search for the/part of the window with DM shift */
2975         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2976                 scc_mgr_apply_group_dm_out1_delay(write_group, d);
2977                 writel(0, &sdr_scc_mgr->update);
2978
2979                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2980                                                     PASS_ALL_BITS, &bit_chk,
2981                                                     0)) {
2982                         /* USE Set current end of the window */
2983                         end_curr = -d;
2984                         /*
2985                          * If a starting edge of our window has not been seen
2986                          * this is our current start of the DM window.
2987                          */
2988                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2989                                 bgn_curr = -d;
2990
2991                         /*
2992                          * If current window is bigger than best seen.
2993                          * Set best seen to be current window.
2994                          */
2995                         if ((end_curr-bgn_curr+1) > win_best) {
2996                                 win_best = end_curr-bgn_curr+1;
2997                                 bgn_best = bgn_curr;
2998                                 end_best = end_curr;
2999                         }
3000                 } else {
3001                         /* We just saw a failing test. Reset temp edge */
3002                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3003                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3004                         }
3005                 }
3006
3007
3008         /* Reset DM delay chains to 0 */
3009         scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3010
3011         /*
3012          * Check to see if the current window nudges up aganist 0 delay.
3013          * If so we need to continue the search by shifting DQS otherwise DQS
3014          * search begins as a new search. */
3015         if (end_curr != 0) {
3016                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3017                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3018         }
3019
3020         /* Search for the/part of the window with DQS shifts */
3021         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3022                 /*
3023                  * Note: This only shifts DQS, so are we limiting ourselve to
3024                  * width of DQ unnecessarily.
3025                  */
3026                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3027                                                         d + new_dqs);
3028
3029                 writel(0, &sdr_scc_mgr->update);
3030                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3031                                                     PASS_ALL_BITS, &bit_chk,
3032                                                     0)) {
3033                         /* USE Set current end of the window */
3034                         end_curr = d;
3035                         /*
3036                          * If a beginning edge of our window has not been seen
3037                          * this is our current begin of the DM window.
3038                          */
3039                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3040                                 bgn_curr = d;
3041
3042                         /*
3043                          * If current window is bigger than best seen. Set best
3044                          * seen to be current window.
3045                          */
3046                         if ((end_curr-bgn_curr+1) > win_best) {
3047                                 win_best = end_curr-bgn_curr+1;
3048                                 bgn_best = bgn_curr;
3049                                 end_best = end_curr;
3050                         }
3051                 } else {
3052                         /* We just saw a failing test. Reset temp edge */
3053                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3054                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3055
3056                         /* Early exit optimization: if ther remaining delay
3057                         chain space is less than already seen largest window
3058                         we can exit */
3059                         if ((win_best-1) >
3060                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3061                                         break;
3062                                 }
3063                         }
3064                 }
3065
3066         /* assign left and right edge for cal and reporting; */
3067         left_edge[0] = -1*bgn_best;
3068         right_edge[0] = end_best;
3069
3070         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3071                    __LINE__, left_edge[0], right_edge[0]);
3072
3073         /* Move DQS (back to orig) */
3074         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3075
3076         /* Move DM */
3077
3078         /* Find middle of window for the DM bit */
3079         mid = (left_edge[0] - right_edge[0]) / 2;
3080
3081         /* only move right, since we are not moving DQS/DQ */
3082         if (mid < 0)
3083                 mid = 0;
3084
3085         /* dm_marign should fail if we never find a window */
3086         if (win_best == 0)
3087                 dm_margin = -1;
3088         else
3089                 dm_margin = left_edge[0] - mid;
3090
3091         scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3092         writel(0, &sdr_scc_mgr->update);
3093
3094         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3095                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3096                    right_edge[0], mid, dm_margin);
3097         /* Export values */
3098         gbl->fom_out += dq_margin + dqs_margin;
3099
3100         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3101                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3102                    dq_margin, dqs_margin, dm_margin);
3103
3104         /*
3105          * Do not remove this line as it makes sure all of our
3106          * decisions have been applied.
3107          */
3108         writel(0, &sdr_scc_mgr->update);
3109         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3110 }
3111
3112 /* calibrate the write operations */
3113 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3114         uint32_t test_bgn)
3115 {
3116         /* update info for sims */
3117         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3118
3119         reg_file_set_stage(CAL_STAGE_WRITES);
3120         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3121
3122         reg_file_set_group(g);
3123
3124         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3125                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3126                                         CAL_SUBSTAGE_WRITES_CENTER);
3127                 return 0;
3128         }
3129
3130         return 1;
3131 }
3132
3133 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3134 static void mem_precharge_and_activate(void)
3135 {
3136         uint32_t r;
3137
3138         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3139                 if (param->skip_ranks[r]) {
3140                         /* request to skip the rank */
3141                         continue;
3142                 }
3143
3144                 /* set rank */
3145                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3146
3147                 /* precharge all banks ... */
3148                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3149                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3150
3151                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3152                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3153                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3154
3155                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3156                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3157                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3158
3159                 /* activate rows */
3160                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3161                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3162         }
3163 }
3164
3165 /* Configure various memory related parameters. */
3166 static void mem_config(void)
3167 {
3168         uint32_t rlat, wlat;
3169         uint32_t rw_wl_nop_cycles;
3170         uint32_t max_latency;
3171
3172         debug("%s:%d\n", __func__, __LINE__);
3173         /* read in write and read latency */
3174         wlat = readl(&data_mgr->t_wl_add);
3175         wlat += readl(&data_mgr->mem_t_add);
3176
3177         /* WL for hard phy does not include additive latency */
3178
3179         /*
3180          * add addtional write latency to offset the address/command extra
3181          * clock cycle. We change the AC mux setting causing AC to be delayed
3182          * by one mem clock cycle. Only do this for DDR3
3183          */
3184         wlat = wlat + 1;
3185
3186         rlat = readl(&data_mgr->t_rl_add);
3187
3188         rw_wl_nop_cycles = wlat - 2;
3189         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3190
3191         /*
3192          * For AV/CV, lfifo is hardened and always runs at full rate so
3193          * max latency in AFI clocks, used here, is correspondingly smaller.
3194          */
3195         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3196         /* configure for a burst length of 8 */
3197
3198         /* write latency */
3199         /* Adjust Write Latency for Hard PHY */
3200         wlat = wlat + 1;
3201
3202         /* set a pretty high read latency initially */
3203         gbl->curr_read_lat = rlat + 16;
3204
3205         if (gbl->curr_read_lat > max_latency)
3206                 gbl->curr_read_lat = max_latency;
3207
3208         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3209
3210         /* advertise write latency */
3211         gbl->curr_write_lat = wlat;
3212         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3213
3214         /* initialize bit slips */
3215         mem_precharge_and_activate();
3216 }
3217
3218 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3219 static void mem_skip_calibrate(void)
3220 {
3221         uint32_t vfifo_offset;
3222         uint32_t i, j, r;
3223
3224         debug("%s:%d\n", __func__, __LINE__);
3225         /* Need to update every shadow register set used by the interface */
3226         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3227                 r += NUM_RANKS_PER_SHADOW_REG) {
3228                 /*
3229                  * Set output phase alignment settings appropriate for
3230                  * skip calibration.
3231                  */
3232                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3233                         scc_mgr_set_dqs_en_phase(i, 0);
3234 #if IO_DLL_CHAIN_LENGTH == 6
3235                         scc_mgr_set_dqdqs_output_phase(i, 6);
3236 #else
3237                         scc_mgr_set_dqdqs_output_phase(i, 7);
3238 #endif
3239                         /*
3240                          * Case:33398
3241                          *
3242                          * Write data arrives to the I/O two cycles before write
3243                          * latency is reached (720 deg).
3244                          *   -> due to bit-slip in a/c bus
3245                          *   -> to allow board skew where dqs is longer than ck
3246                          *      -> how often can this happen!?
3247                          *      -> can claim back some ptaps for high freq
3248                          *       support if we can relax this, but i digress...
3249                          *
3250                          * The write_clk leads mem_ck by 90 deg
3251                          * The minimum ptap of the OPA is 180 deg
3252                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3253                          * The write_clk is always delayed by 2 ptaps
3254                          *
3255                          * Hence, to make DQS aligned to CK, we need to delay
3256                          * DQS by:
3257                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3258                          *
3259                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3260                          * gives us the number of ptaps, which simplies to:
3261                          *
3262                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3263                          */
3264                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3265                                 IO_DLL_CHAIN_LENGTH - 2));
3266                 }
3267                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3268                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3269
3270                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3271                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3272                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3273                 }
3274                 writel(0xff, &sdr_scc_mgr->dq_ena);
3275                 writel(0xff, &sdr_scc_mgr->dm_ena);
3276                 writel(0, &sdr_scc_mgr->update);
3277         }
3278
3279         /* Compensate for simulation model behaviour */
3280         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3281                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3282                 scc_mgr_load_dqs(i);
3283         }
3284         writel(0, &sdr_scc_mgr->update);
3285
3286         /*
3287          * ArriaV has hard FIFOs that can only be initialized by incrementing
3288          * in sequencer.
3289          */
3290         vfifo_offset = CALIB_VFIFO_OFFSET;
3291         for (j = 0; j < vfifo_offset; j++) {
3292                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3293         }
3294         writel(0, &phy_mgr_cmd->fifo_reset);
3295
3296         /*
3297          * For ACV with hard lfifo, we get the skip-cal setting from
3298          * generation-time constant.
3299          */
3300         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3301         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3302 }
3303
3304 /* Memory calibration entry point */
3305 static uint32_t mem_calibrate(void)
3306 {
3307         uint32_t i;
3308         uint32_t rank_bgn, sr;
3309         uint32_t write_group, write_test_bgn;
3310         uint32_t read_group, read_test_bgn;
3311         uint32_t run_groups, current_run;
3312         uint32_t failing_groups = 0;
3313         uint32_t group_failed = 0;
3314         uint32_t sr_failed = 0;
3315
3316         debug("%s:%d\n", __func__, __LINE__);
3317         /* Initialize the data settings */
3318
3319         gbl->error_substage = CAL_SUBSTAGE_NIL;
3320         gbl->error_stage = CAL_STAGE_NIL;
3321         gbl->error_group = 0xff;
3322         gbl->fom_in = 0;
3323         gbl->fom_out = 0;
3324
3325         mem_config();
3326
3327         uint32_t bypass_mode = 0x1;
3328         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3329                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3330                           SCC_MGR_GROUP_COUNTER_OFFSET);
3331                 scc_set_bypass_mode(i, bypass_mode);
3332         }
3333
3334         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3335                 /*
3336                  * Set VFIFO and LFIFO to instant-on settings in skip
3337                  * calibration mode.
3338                  */
3339                 mem_skip_calibrate();
3340         } else {
3341                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3342                         /*
3343                          * Zero all delay chain/phase settings for all
3344                          * groups and all shadow register sets.
3345                          */
3346                         scc_mgr_zero_all();
3347
3348                         run_groups = ~param->skip_groups;
3349
3350                         for (write_group = 0, write_test_bgn = 0; write_group
3351                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3352                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3353                                 /* Initialized the group failure */
3354                                 group_failed = 0;
3355
3356                                 current_run = run_groups & ((1 <<
3357                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3358                                 run_groups = run_groups >>
3359                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3360
3361                                 if (current_run == 0)
3362                                         continue;
3363
3364                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3365                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3366                                 scc_mgr_zero_group(write_group, write_test_bgn,
3367                                                    0);
3368
3369                                 for (read_group = write_group *
3370                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3371                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3372                                         read_test_bgn = 0;
3373                                         read_group < (write_group + 1) *
3374                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3375                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3376                                         group_failed == 0;
3377                                         read_group++, read_test_bgn +=
3378                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3379                                         /* Calibrate the VFIFO */
3380                                         if (!((STATIC_CALIB_STEPS) &
3381                                                 CALIB_SKIP_VFIFO)) {
3382                                                 if (!rw_mgr_mem_calibrate_vfifo
3383                                                         (read_group,
3384                                                         read_test_bgn)) {
3385                                                         group_failed = 1;
3386
3387                                                         if (!(gbl->
3388                                                         phy_debug_mode_flags &
3389                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3390                                                                 return 0;
3391                                                         }
3392                                                 }
3393                                         }
3394                                 }
3395
3396                                 /* Calibrate the output side */
3397                                 if (group_failed == 0)  {
3398                                         for (rank_bgn = 0, sr = 0; rank_bgn
3399                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3400                                                 rank_bgn +=
3401                                                 NUM_RANKS_PER_SHADOW_REG,
3402                                                 ++sr) {
3403                                                 sr_failed = 0;
3404                                                 if (!((STATIC_CALIB_STEPS) &
3405                                                 CALIB_SKIP_WRITES)) {
3406                                                         if ((STATIC_CALIB_STEPS)
3407                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3408                                                 /* not needed in quick mode! */
3409                                                         } else {
3410                                                 /*
3411                                                  * Determine if this set of
3412                                                  * ranks should be skipped
3413                                                  * entirely.
3414                                                  */
3415                                         if (!param->skip_shadow_regs[sr]) {
3416                                                 if (!rw_mgr_mem_calibrate_writes
3417                                                 (rank_bgn, write_group,
3418                                                 write_test_bgn)) {
3419                                                         sr_failed = 1;
3420                                                         if (!(gbl->
3421                                                         phy_debug_mode_flags &
3422                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3423                                                                 return 0;
3424                                                                         }
3425                                                                         }
3426                                                                 }
3427                                                         }
3428                                                 }
3429                                                 if (sr_failed != 0)
3430                                                         group_failed = 1;
3431                                         }
3432                                 }
3433
3434                                 if (group_failed == 0) {
3435                                         for (read_group = write_group *
3436                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3437                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3438                                         read_test_bgn = 0;
3439                                                 read_group < (write_group + 1)
3440                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3441                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3442                                                 group_failed == 0;
3443                                                 read_group++, read_test_bgn +=
3444                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3445                                                 if (!((STATIC_CALIB_STEPS) &
3446                                                         CALIB_SKIP_WRITES)) {
3447                                         if (!rw_mgr_mem_calibrate_vfifo_end
3448                                                 (read_group, read_test_bgn)) {
3449                                                         group_failed = 1;
3450
3451                                                 if (!(gbl->phy_debug_mode_flags
3452                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3453                                                                 return 0;
3454                                                                 }
3455                                                         }
3456                                                 }
3457                                         }
3458                                 }
3459
3460                                 if (group_failed != 0)
3461                                         failing_groups++;
3462                         }
3463
3464                         /*
3465                          * USER If there are any failing groups then report
3466                          * the failure.
3467                          */
3468                         if (failing_groups != 0)
3469                                 return 0;
3470
3471                         /* Calibrate the LFIFO */
3472                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3473                                 /*
3474                                  * If we're skipping groups as part of debug,
3475                                  * don't calibrate LFIFO.
3476                                  */
3477                                 if (param->skip_groups == 0) {
3478                                         if (!rw_mgr_mem_calibrate_lfifo())
3479                                                 return 0;
3480                                 }
3481                         }
3482                 }
3483         }
3484
3485         /*
3486          * Do not remove this line as it makes sure all of our decisions
3487          * have been applied.
3488          */
3489         writel(0, &sdr_scc_mgr->update);
3490         return 1;
3491 }
3492
3493 static uint32_t run_mem_calibrate(void)
3494 {
3495         uint32_t pass;
3496         uint32_t debug_info;
3497
3498         debug("%s:%d\n", __func__, __LINE__);
3499
3500         /* Reset pass/fail status shown on afi_cal_success/fail */
3501         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3502
3503         /* stop tracking manger */
3504         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3505
3506         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3507
3508         initialize();
3509         rw_mgr_mem_initialize();
3510
3511         pass = mem_calibrate();
3512
3513         mem_precharge_and_activate();
3514         writel(0, &phy_mgr_cmd->fifo_reset);
3515
3516         /*
3517          * Handoff:
3518          * Don't return control of the PHY back to AFI when in debug mode.
3519          */
3520         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3521                 rw_mgr_mem_handoff();
3522                 /*
3523                  * In Hard PHY this is a 2-bit control:
3524                  * 0: AFI Mux Select
3525                  * 1: DDIO Mux Select
3526                  */
3527                 writel(0x2, &phy_mgr_cfg->mux_sel);
3528         }
3529
3530         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3531
3532         if (pass) {
3533                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3534
3535                 gbl->fom_in /= 2;
3536                 gbl->fom_out /= 2;
3537
3538                 if (gbl->fom_in > 0xff)
3539                         gbl->fom_in = 0xff;
3540
3541                 if (gbl->fom_out > 0xff)
3542                         gbl->fom_out = 0xff;
3543
3544                 /* Update the FOM in the register file */
3545                 debug_info = gbl->fom_in;
3546                 debug_info |= gbl->fom_out << 8;
3547                 writel(debug_info, &sdr_reg_file->fom);
3548
3549                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3550                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3551         } else {
3552                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3553
3554                 debug_info = gbl->error_stage;
3555                 debug_info |= gbl->error_substage << 8;
3556                 debug_info |= gbl->error_group << 16;
3557
3558                 writel(debug_info, &sdr_reg_file->failing_stage);
3559                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3560                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3561
3562                 /* Update the failing group/stage in the register file */
3563                 debug_info = gbl->error_stage;
3564                 debug_info |= gbl->error_substage << 8;
3565                 debug_info |= gbl->error_group << 16;
3566                 writel(debug_info, &sdr_reg_file->failing_stage);
3567         }
3568
3569         return pass;
3570 }
3571
3572 /**
3573  * hc_initialize_rom_data() - Initialize ROM data
3574  *
3575  * Initialize ROM data.
3576  */
3577 static void hc_initialize_rom_data(void)
3578 {
3579         u32 i, addr;
3580
3581         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3582         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3583                 writel(inst_rom_init[i], addr + (i << 2));
3584
3585         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3586         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3587                 writel(ac_rom_init[i], addr + (i << 2));
3588 }
3589
3590 /**
3591  * initialize_reg_file() - Initialize SDR register file
3592  *
3593  * Initialize SDR register file.
3594  */
3595 static void initialize_reg_file(void)
3596 {
3597         /* Initialize the register file with the correct data */
3598         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3599         writel(0, &sdr_reg_file->debug_data_addr);
3600         writel(0, &sdr_reg_file->cur_stage);
3601         writel(0, &sdr_reg_file->fom);
3602         writel(0, &sdr_reg_file->failing_stage);
3603         writel(0, &sdr_reg_file->debug1);
3604         writel(0, &sdr_reg_file->debug2);
3605 }
3606
3607 /**
3608  * initialize_hps_phy() - Initialize HPS PHY
3609  *
3610  * Initialize HPS PHY.
3611  */
3612 static void initialize_hps_phy(void)
3613 {
3614         uint32_t reg;
3615         /*
3616          * Tracking also gets configured here because it's in the
3617          * same register.
3618          */
3619         uint32_t trk_sample_count = 7500;
3620         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3621         /*
3622          * Format is number of outer loops in the 16 MSB, sample
3623          * count in 16 LSB.
3624          */
3625
3626         reg = 0;
3627         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3628         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3629         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3630         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3631         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3632         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3633         /*
3634          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3635          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3636          */
3637         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3638         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3639                 trk_sample_count);
3640         writel(reg, &sdr_ctrl->phy_ctrl0);
3641
3642         reg = 0;
3643         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3644                 trk_sample_count >>
3645                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3646         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3647                 trk_long_idle_sample_count);
3648         writel(reg, &sdr_ctrl->phy_ctrl1);
3649
3650         reg = 0;
3651         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3652                 trk_long_idle_sample_count >>
3653                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3654         writel(reg, &sdr_ctrl->phy_ctrl2);
3655 }
3656
3657 static void initialize_tracking(void)
3658 {
3659         uint32_t concatenated_longidle = 0x0;
3660         uint32_t concatenated_delays = 0x0;
3661         uint32_t concatenated_rw_addr = 0x0;
3662         uint32_t concatenated_refresh = 0x0;
3663         uint32_t trk_sample_count = 7500;
3664         uint32_t dtaps_per_ptap;
3665         uint32_t tmp_delay;
3666
3667         /*
3668          * compute usable version of value in case we skip full
3669          * computation later
3670          */
3671         dtaps_per_ptap = 0;
3672         tmp_delay = 0;
3673         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3674                 dtaps_per_ptap++;
3675                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3676         }
3677         dtaps_per_ptap--;
3678
3679         concatenated_longidle = concatenated_longidle ^ 10;
3680                 /*longidle outer loop */
3681         concatenated_longidle = concatenated_longidle << 16;
3682         concatenated_longidle = concatenated_longidle ^ 100;
3683                 /*longidle sample count */
3684         concatenated_delays = concatenated_delays ^ 243;
3685                 /* trfc, worst case of 933Mhz 4Gb */
3686         concatenated_delays = concatenated_delays << 8;
3687         concatenated_delays = concatenated_delays ^ 14;
3688                 /* trcd, worst case */
3689         concatenated_delays = concatenated_delays << 8;
3690         concatenated_delays = concatenated_delays ^ 10;
3691                 /* vfifo wait */
3692         concatenated_delays = concatenated_delays << 8;
3693         concatenated_delays = concatenated_delays ^ 4;
3694                 /* mux delay */
3695
3696         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3697         concatenated_rw_addr = concatenated_rw_addr << 8;
3698         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3699         concatenated_rw_addr = concatenated_rw_addr << 8;
3700         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3701         concatenated_rw_addr = concatenated_rw_addr << 8;
3702         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3703
3704         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3705         concatenated_refresh = concatenated_refresh << 24;
3706         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3707
3708         /* Initialize the register file with the correct data */
3709         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3710         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3711         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3712         writel(concatenated_delays, &sdr_reg_file->delays);
3713         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3714         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3715         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3716 }
3717
3718 int sdram_calibration_full(void)
3719 {
3720         struct param_type my_param;
3721         struct gbl_type my_gbl;
3722         uint32_t pass;
3723         uint32_t i;
3724
3725         param = &my_param;
3726         gbl = &my_gbl;
3727
3728         /* Initialize the debug mode flags */
3729         gbl->phy_debug_mode_flags = 0;
3730         /* Set the calibration enabled by default */
3731         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3732         /*
3733          * Only sweep all groups (regardless of fail state) by default
3734          * Set enabled read test by default.
3735          */
3736 #if DISABLE_GUARANTEED_READ
3737         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3738 #endif
3739         /* Initialize the register file */
3740         initialize_reg_file();
3741
3742         /* Initialize any PHY CSR */
3743         initialize_hps_phy();
3744
3745         scc_mgr_initialize();
3746
3747         initialize_tracking();
3748
3749         /* USER Enable all ranks, groups */
3750         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3751                 param->skip_ranks[i] = 0;
3752         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3753                 param->skip_shadow_regs[i] = 0;
3754         param->skip_groups = 0;
3755
3756         printf("%s: Preparing to start memory calibration\n", __FILE__);
3757
3758         debug("%s:%d\n", __func__, __LINE__);
3759         debug_cond(DLEVEL == 1,
3760                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3761                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3762                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3763                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3764                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3765         debug_cond(DLEVEL == 1,
3766                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3767                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3768                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3769                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3770         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3771                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3772         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3773                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3774                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3775         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3776                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3777                    IO_IO_OUT2_DELAY_MAX);
3778         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3779                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3780
3781         hc_initialize_rom_data();
3782
3783         /* update info for sims */
3784         reg_file_set_stage(CAL_STAGE_NIL);
3785         reg_file_set_group(0);
3786
3787         /*
3788          * Load global needed for those actions that require
3789          * some dynamic calibration support.
3790          */
3791         dyn_calib_steps = STATIC_CALIB_STEPS;
3792         /*
3793          * Load global to allow dynamic selection of delay loop settings
3794          * based on calibration mode.
3795          */
3796         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3797                 skip_delay_mask = 0xff;
3798         else
3799                 skip_delay_mask = 0x0;
3800
3801         pass = run_mem_calibrate();
3802
3803         printf("%s: Calibration complete\n", __FILE__);
3804         return pass;
3805 }