]> git.sur5r.net Git - u-boot/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Remove unnecessary ODT mode config
[u-boot] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
14         (struct socfpga_sdr_rw_load_manager *)
15                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
16 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
17         (struct socfpga_sdr_rw_load_jump_manager *)
18                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
19 static struct socfpga_sdr_reg_file *sdr_reg_file =
20         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
21 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
22         (struct socfpga_sdr_scc_mgr *)
23                 (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
24 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
25         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
26 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
27         (struct socfpga_phy_mgr_cfg *)
28                 (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
29 static struct socfpga_data_mgr *data_mgr =
30         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
31 static struct socfpga_sdr_ctrl *sdr_ctrl =
32         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
33
34 const struct socfpga_sdram_rw_mgr_config *rwcfg;
35 const struct socfpga_sdram_io_config *iocfg;
36 const struct socfpga_sdram_misc_config *misccfg;
37
38 #define DELTA_D         1
39
40 /*
41  * In order to reduce ROM size, most of the selectable calibration steps are
42  * decided at compile time based on the user's calibration mode selection,
43  * as captured by the STATIC_CALIB_STEPS selection below.
44  *
45  * However, to support simulation-time selection of fast simulation mode, where
46  * we skip everything except the bare minimum, we need a few of the steps to
47  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
48  * check, which is based on the rtl-supplied value, or we dynamically compute
49  * the value to use based on the dynamically-chosen calibration mode
50  */
51
52 #define DLEVEL 0
53 #define STATIC_IN_RTL_SIM 0
54 #define STATIC_SKIP_DELAY_LOOPS 0
55
56 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
57         STATIC_SKIP_DELAY_LOOPS)
58
59 /* calibration steps requested by the rtl */
60 u16 dyn_calib_steps;
61
62 /*
63  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
64  * instead of static, we use boolean logic to select between
65  * non-skip and skip values
66  *
67  * The mask is set to include all bits when not-skipping, but is
68  * zero when skipping
69  */
70
71 u16 skip_delay_mask;    /* mask off bits when skipping/not-skipping */
72
73 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
74         ((non_skip_value) & skip_delay_mask)
75
76 struct gbl_type *gbl;
77 struct param_type *param;
78
79 static void set_failing_group_stage(u32 group, u32 stage,
80         u32 substage)
81 {
82         /*
83          * Only set the global stage if there was not been any other
84          * failing group
85          */
86         if (gbl->error_stage == CAL_STAGE_NIL)  {
87                 gbl->error_substage = substage;
88                 gbl->error_stage = stage;
89                 gbl->error_group = group;
90         }
91 }
92
93 static void reg_file_set_group(u16 set_group)
94 {
95         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
96 }
97
98 static void reg_file_set_stage(u8 set_stage)
99 {
100         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
101 }
102
103 static void reg_file_set_sub_stage(u8 set_sub_stage)
104 {
105         set_sub_stage &= 0xff;
106         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
107 }
108
109 /**
110  * phy_mgr_initialize() - Initialize PHY Manager
111  *
112  * Initialize PHY Manager.
113  */
114 static void phy_mgr_initialize(void)
115 {
116         u32 ratio;
117
118         debug("%s:%d\n", __func__, __LINE__);
119         /* Calibration has control over path to memory */
120         /*
121          * In Hard PHY this is a 2-bit control:
122          * 0: AFI Mux Select
123          * 1: DDIO Mux Select
124          */
125         writel(0x3, &phy_mgr_cfg->mux_sel);
126
127         /* USER memory clock is not stable we begin initialization  */
128         writel(0, &phy_mgr_cfg->reset_mem_stbl);
129
130         /* USER calibration status all set to zero */
131         writel(0, &phy_mgr_cfg->cal_status);
132
133         writel(0, &phy_mgr_cfg->cal_debug_info);
134
135         /* Init params only if we do NOT skip calibration. */
136         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
137                 return;
138
139         ratio = rwcfg->mem_dq_per_read_dqs /
140                 rwcfg->mem_virtual_groups_per_read_dqs;
141         param->read_correct_mask_vg = (1 << ratio) - 1;
142         param->write_correct_mask_vg = (1 << ratio) - 1;
143         param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
144         param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
145 }
146
147 /**
148  * set_rank_and_odt_mask() - Set Rank and ODT mask
149  * @rank:       Rank mask
150  * @odt_mode:   ODT mode, OFF or READ_WRITE
151  *
152  * Set Rank and ODT mask (On-Die Termination).
153  */
154 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
155 {
156         u32 odt_mask_0 = 0;
157         u32 odt_mask_1 = 0;
158         u32 cs_and_odt_mask;
159
160         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
161                 odt_mask_0 = 0x0;
162                 odt_mask_1 = 0x0;
163         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
164                 switch (rwcfg->mem_number_of_ranks) {
165                 case 1: /* 1 Rank */
166                         /* Read: ODT = 0 ; Write: ODT = 1 */
167                         odt_mask_0 = 0x0;
168                         odt_mask_1 = 0x1;
169                         break;
170                 case 2: /* 2 Ranks */
171                         if (rwcfg->mem_number_of_cs_per_dimm == 1) {
172                                 /*
173                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
174                                  *   OR
175                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
176                                  *
177                                  * Since MEM_NUMBER_OF_RANKS is 2, they
178                                  * are both single rank with 2 CS each
179                                  * (special for RDIMM).
180                                  *
181                                  * Read: Turn on ODT on the opposite rank
182                                  * Write: Turn on ODT on all ranks
183                                  */
184                                 odt_mask_0 = 0x3 & ~(1 << rank);
185                                 odt_mask_1 = 0x3;
186                         } else {
187                                 /*
188                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
189                                  *
190                                  * Read: Turn on ODT off on all ranks
191                                  * Write: Turn on ODT on active rank
192                                  */
193                                 odt_mask_0 = 0x0;
194                                 odt_mask_1 = 0x3 & (1 << rank);
195                         }
196                         break;
197                 case 4: /* 4 Ranks */
198                         /* Read:
199                          * ----------+-----------------------+
200                          *           |         ODT           |
201                          * Read From +-----------------------+
202                          *   Rank    |  3  |  2  |  1  |  0  |
203                          * ----------+-----+-----+-----+-----+
204                          *     0     |  0  |  1  |  0  |  0  |
205                          *     1     |  1  |  0  |  0  |  0  |
206                          *     2     |  0  |  0  |  0  |  1  |
207                          *     3     |  0  |  0  |  1  |  0  |
208                          * ----------+-----+-----+-----+-----+
209                          *
210                          * Write:
211                          * ----------+-----------------------+
212                          *           |         ODT           |
213                          * Write To  +-----------------------+
214                          *   Rank    |  3  |  2  |  1  |  0  |
215                          * ----------+-----+-----+-----+-----+
216                          *     0     |  0  |  1  |  0  |  1  |
217                          *     1     |  1  |  0  |  1  |  0  |
218                          *     2     |  0  |  1  |  0  |  1  |
219                          *     3     |  1  |  0  |  1  |  0  |
220                          * ----------+-----+-----+-----+-----+
221                          */
222                         switch (rank) {
223                         case 0:
224                                 odt_mask_0 = 0x4;
225                                 odt_mask_1 = 0x5;
226                                 break;
227                         case 1:
228                                 odt_mask_0 = 0x8;
229                                 odt_mask_1 = 0xA;
230                                 break;
231                         case 2:
232                                 odt_mask_0 = 0x1;
233                                 odt_mask_1 = 0x5;
234                                 break;
235                         case 3:
236                                 odt_mask_0 = 0x2;
237                                 odt_mask_1 = 0xA;
238                                 break;
239                         }
240                         break;
241                 }
242         }
243
244         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
245                           ((0xFF & odt_mask_0) << 8) |
246                           ((0xFF & odt_mask_1) << 16);
247         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
248                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
249 }
250
251 /**
252  * scc_mgr_set() - Set SCC Manager register
253  * @off:        Base offset in SCC Manager space
254  * @grp:        Read/Write group
255  * @val:        Value to be set
256  *
257  * This function sets the SCC Manager (Scan Chain Control Manager) register.
258  */
259 static void scc_mgr_set(u32 off, u32 grp, u32 val)
260 {
261         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
262 }
263
264 /**
265  * scc_mgr_initialize() - Initialize SCC Manager registers
266  *
267  * Initialize SCC Manager registers.
268  */
269 static void scc_mgr_initialize(void)
270 {
271         /*
272          * Clear register file for HPS. 16 (2^4) is the size of the
273          * full register file in the scc mgr:
274          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
275          *                             MEM_IF_READ_DQS_WIDTH - 1);
276          */
277         int i;
278
279         for (i = 0; i < 16; i++) {
280                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
281                            __func__, __LINE__, i);
282                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
283         }
284 }
285
286 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
287 {
288         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
289 }
290
291 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
292 {
293         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
294 }
295
296 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
297 {
298         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
299 }
300
301 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
302 {
303         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
304 }
305
306 static void scc_mgr_set_dqs_io_in_delay(u32 delay)
307 {
308         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
309                     delay);
310 }
311
312 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
313 {
314         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
315 }
316
317 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
320 }
321
322 static void scc_mgr_set_dqs_out1_delay(u32 delay)
323 {
324         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
325                     delay);
326 }
327
328 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
329 {
330         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
331                     rwcfg->mem_dq_per_write_dqs + 1 + dm,
332                     delay);
333 }
334
335 /* load up dqs config settings */
336 static void scc_mgr_load_dqs(u32 dqs)
337 {
338         writel(dqs, &sdr_scc_mgr->dqs_ena);
339 }
340
341 /* load up dqs io config settings */
342 static void scc_mgr_load_dqs_io(void)
343 {
344         writel(0, &sdr_scc_mgr->dqs_io_ena);
345 }
346
347 /* load up dq config settings */
348 static void scc_mgr_load_dq(u32 dq_in_group)
349 {
350         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
351 }
352
353 /* load up dm config settings */
354 static void scc_mgr_load_dm(u32 dm)
355 {
356         writel(dm, &sdr_scc_mgr->dm_ena);
357 }
358
359 /**
360  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
361  * @off:        Base offset in SCC Manager space
362  * @grp:        Read/Write group
363  * @val:        Value to be set
364  * @update:     If non-zero, trigger SCC Manager update for all ranks
365  *
366  * This function sets the SCC Manager (Scan Chain Control Manager) register
367  * and optionally triggers the SCC update for all ranks.
368  */
369 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
370                                   const int update)
371 {
372         u32 r;
373
374         for (r = 0; r < rwcfg->mem_number_of_ranks;
375              r += NUM_RANKS_PER_SHADOW_REG) {
376                 scc_mgr_set(off, grp, val);
377
378                 if (update || (r == 0)) {
379                         writel(grp, &sdr_scc_mgr->dqs_ena);
380                         writel(0, &sdr_scc_mgr->update);
381                 }
382         }
383 }
384
385 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
386 {
387         /*
388          * USER although the h/w doesn't support different phases per
389          * shadow register, for simplicity our scc manager modeling
390          * keeps different phase settings per shadow reg, and it's
391          * important for us to keep them in sync to match h/w.
392          * for efficiency, the scan chain update should occur only
393          * once to sr0.
394          */
395         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
396                               read_group, phase, 0);
397 }
398
399 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
400                                                      u32 phase)
401 {
402         /*
403          * USER although the h/w doesn't support different phases per
404          * shadow register, for simplicity our scc manager modeling
405          * keeps different phase settings per shadow reg, and it's
406          * important for us to keep them in sync to match h/w.
407          * for efficiency, the scan chain update should occur only
408          * once to sr0.
409          */
410         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
411                               write_group, phase, 0);
412 }
413
414 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
415                                                u32 delay)
416 {
417         /*
418          * In shadow register mode, the T11 settings are stored in
419          * registers in the core, which are updated by the DQS_ENA
420          * signals. Not issuing the SCC_MGR_UPD command allows us to
421          * save lots of rank switching overhead, by calling
422          * select_shadow_regs_for_update with update_scan_chains
423          * set to 0.
424          */
425         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
426                               read_group, delay, 1);
427 }
428
429 /**
430  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
431  * @write_group:        Write group
432  * @delay:              Delay value
433  *
434  * This function sets the OCT output delay in SCC manager.
435  */
436 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
437 {
438         const int ratio = rwcfg->mem_if_read_dqs_width /
439                           rwcfg->mem_if_write_dqs_width;
440         const int base = write_group * ratio;
441         int i;
442         /*
443          * Load the setting in the SCC manager
444          * Although OCT affects only write data, the OCT delay is controlled
445          * by the DQS logic block which is instantiated once per read group.
446          * For protocols where a write group consists of multiple read groups,
447          * the setting must be set multiple times.
448          */
449         for (i = 0; i < ratio; i++)
450                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
451 }
452
453 /**
454  * scc_mgr_set_hhp_extras() - Set HHP extras.
455  *
456  * Load the fixed setting in the SCC manager HHP extras.
457  */
458 static void scc_mgr_set_hhp_extras(void)
459 {
460         /*
461          * Load the fixed setting in the SCC manager
462          * bits: 0:0 = 1'b1     - DQS bypass
463          * bits: 1:1 = 1'b1     - DQ bypass
464          * bits: 4:2 = 3'b001   - rfifo_mode
465          * bits: 6:5 = 2'b01    - rfifo clock_select
466          * bits: 7:7 = 1'b0     - separate gating from ungating setting
467          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
468          */
469         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
470                           (1 << 2) | (1 << 1) | (1 << 0);
471         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
472                          SCC_MGR_HHP_GLOBALS_OFFSET |
473                          SCC_MGR_HHP_EXTRAS_OFFSET;
474
475         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
476                    __func__, __LINE__);
477         writel(value, addr);
478         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
479                    __func__, __LINE__);
480 }
481
482 /**
483  * scc_mgr_zero_all() - Zero all DQS config
484  *
485  * Zero all DQS config.
486  */
487 static void scc_mgr_zero_all(void)
488 {
489         int i, r;
490
491         /*
492          * USER Zero all DQS config settings, across all groups and all
493          * shadow registers
494          */
495         for (r = 0; r < rwcfg->mem_number_of_ranks;
496              r += NUM_RANKS_PER_SHADOW_REG) {
497                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
498                         /*
499                          * The phases actually don't exist on a per-rank basis,
500                          * but there's no harm updating them several times, so
501                          * let's keep the code simple.
502                          */
503                         scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
504                         scc_mgr_set_dqs_en_phase(i, 0);
505                         scc_mgr_set_dqs_en_delay(i, 0);
506                 }
507
508                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
509                         scc_mgr_set_dqdqs_output_phase(i, 0);
510                         /* Arria V/Cyclone V don't have out2. */
511                         scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
512                 }
513         }
514
515         /* Multicast to all DQS group enables. */
516         writel(0xff, &sdr_scc_mgr->dqs_ena);
517         writel(0, &sdr_scc_mgr->update);
518 }
519
520 /**
521  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
522  * @write_group:        Write group
523  *
524  * Set bypass mode and trigger SCC update.
525  */
526 static void scc_set_bypass_mode(const u32 write_group)
527 {
528         /* Multicast to all DQ enables. */
529         writel(0xff, &sdr_scc_mgr->dq_ena);
530         writel(0xff, &sdr_scc_mgr->dm_ena);
531
532         /* Update current DQS IO enable. */
533         writel(0, &sdr_scc_mgr->dqs_io_ena);
534
535         /* Update the DQS logic. */
536         writel(write_group, &sdr_scc_mgr->dqs_ena);
537
538         /* Hit update. */
539         writel(0, &sdr_scc_mgr->update);
540 }
541
542 /**
543  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
544  * @write_group:        Write group
545  *
546  * Load DQS settings for Write Group, do not trigger SCC update.
547  */
548 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
549 {
550         const int ratio = rwcfg->mem_if_read_dqs_width /
551                           rwcfg->mem_if_write_dqs_width;
552         const int base = write_group * ratio;
553         int i;
554         /*
555          * Load the setting in the SCC manager
556          * Although OCT affects only write data, the OCT delay is controlled
557          * by the DQS logic block which is instantiated once per read group.
558          * For protocols where a write group consists of multiple read groups,
559          * the setting must be set multiple times.
560          */
561         for (i = 0; i < ratio; i++)
562                 writel(base + i, &sdr_scc_mgr->dqs_ena);
563 }
564
565 /**
566  * scc_mgr_zero_group() - Zero all configs for a group
567  *
568  * Zero DQ, DM, DQS and OCT configs for a group.
569  */
570 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
571 {
572         int i, r;
573
574         for (r = 0; r < rwcfg->mem_number_of_ranks;
575              r += NUM_RANKS_PER_SHADOW_REG) {
576                 /* Zero all DQ config settings. */
577                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
578                         scc_mgr_set_dq_out1_delay(i, 0);
579                         if (!out_only)
580                                 scc_mgr_set_dq_in_delay(i, 0);
581                 }
582
583                 /* Multicast to all DQ enables. */
584                 writel(0xff, &sdr_scc_mgr->dq_ena);
585
586                 /* Zero all DM config settings. */
587                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
588                         scc_mgr_set_dm_out1_delay(i, 0);
589
590                 /* Multicast to all DM enables. */
591                 writel(0xff, &sdr_scc_mgr->dm_ena);
592
593                 /* Zero all DQS IO settings. */
594                 if (!out_only)
595                         scc_mgr_set_dqs_io_in_delay(0);
596
597                 /* Arria V/Cyclone V don't have out2. */
598                 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
599                 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
600                 scc_mgr_load_dqs_for_write_group(write_group);
601
602                 /* Multicast to all DQS IO enables (only 1 in total). */
603                 writel(0, &sdr_scc_mgr->dqs_io_ena);
604
605                 /* Hit update to zero everything. */
606                 writel(0, &sdr_scc_mgr->update);
607         }
608 }
609
610 /*
611  * apply and load a particular input delay for the DQ pins in a group
612  * group_bgn is the index of the first dq pin (in the write group)
613  */
614 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
615 {
616         u32 i, p;
617
618         for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
619                 scc_mgr_set_dq_in_delay(p, delay);
620                 scc_mgr_load_dq(p);
621         }
622 }
623
624 /**
625  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
626  * @delay:              Delay value
627  *
628  * Apply and load a particular output delay for the DQ pins in a group.
629  */
630 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
631 {
632         int i;
633
634         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
635                 scc_mgr_set_dq_out1_delay(i, delay);
636                 scc_mgr_load_dq(i);
637         }
638 }
639
640 /* apply and load a particular output delay for the DM pins in a group */
641 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
642 {
643         u32 i;
644
645         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
646                 scc_mgr_set_dm_out1_delay(i, delay1);
647                 scc_mgr_load_dm(i);
648         }
649 }
650
651
652 /* apply and load delay on both DQS and OCT out1 */
653 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
654                                                     u32 delay)
655 {
656         scc_mgr_set_dqs_out1_delay(delay);
657         scc_mgr_load_dqs_io();
658
659         scc_mgr_set_oct_out1_delay(write_group, delay);
660         scc_mgr_load_dqs_for_write_group(write_group);
661 }
662
663 /**
664  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
665  * @write_group:        Write group
666  * @delay:              Delay value
667  *
668  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
669  */
670 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
671                                                   const u32 delay)
672 {
673         u32 i, new_delay;
674
675         /* DQ shift */
676         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
677                 scc_mgr_load_dq(i);
678
679         /* DM shift */
680         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
681                 scc_mgr_load_dm(i);
682
683         /* DQS shift */
684         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
685         if (new_delay > iocfg->io_out2_delay_max) {
686                 debug_cond(DLEVEL == 1,
687                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
688                            __func__, __LINE__, write_group, delay, new_delay,
689                            iocfg->io_out2_delay_max,
690                            new_delay - iocfg->io_out2_delay_max);
691                 new_delay -= iocfg->io_out2_delay_max;
692                 scc_mgr_set_dqs_out1_delay(new_delay);
693         }
694
695         scc_mgr_load_dqs_io();
696
697         /* OCT shift */
698         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
699         if (new_delay > iocfg->io_out2_delay_max) {
700                 debug_cond(DLEVEL == 1,
701                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
702                            __func__, __LINE__, write_group, delay,
703                            new_delay, iocfg->io_out2_delay_max,
704                            new_delay - iocfg->io_out2_delay_max);
705                 new_delay -= iocfg->io_out2_delay_max;
706                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
707         }
708
709         scc_mgr_load_dqs_for_write_group(write_group);
710 }
711
712 /**
713  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
714  * @write_group:        Write group
715  * @delay:              Delay value
716  *
717  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
718  */
719 static void
720 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
721                                                 const u32 delay)
722 {
723         int r;
724
725         for (r = 0; r < rwcfg->mem_number_of_ranks;
726              r += NUM_RANKS_PER_SHADOW_REG) {
727                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
728                 writel(0, &sdr_scc_mgr->update);
729         }
730 }
731
732 /**
733  * set_jump_as_return() - Return instruction optimization
734  *
735  * Optimization used to recover some slots in ddr3 inst_rom could be
736  * applied to other protocols if we wanted to
737  */
738 static void set_jump_as_return(void)
739 {
740         /*
741          * To save space, we replace return with jump to special shared
742          * RETURN instruction so we set the counter to large value so that
743          * we always jump.
744          */
745         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
746         writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
747 }
748
749 /**
750  * delay_for_n_mem_clocks() - Delay for N memory clocks
751  * @clocks:     Length of the delay
752  *
753  * Delay for N memory clocks.
754  */
755 static void delay_for_n_mem_clocks(const u32 clocks)
756 {
757         u32 afi_clocks;
758         u16 c_loop;
759         u8 inner;
760         u8 outer;
761
762         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
763
764         /* Scale (rounding up) to get afi clocks. */
765         afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
766         if (afi_clocks) /* Temporary underflow protection */
767                 afi_clocks--;
768
769         /*
770          * Note, we don't bother accounting for being off a little
771          * bit because of a few extra instructions in outer loops.
772          * Note, the loops have a test at the end, and do the test
773          * before the decrement, and so always perform the loop
774          * 1 time more than the counter value
775          */
776         c_loop = afi_clocks >> 16;
777         outer = c_loop ? 0xff : (afi_clocks >> 8);
778         inner = outer ? 0xff : afi_clocks;
779
780         /*
781          * rom instructions are structured as follows:
782          *
783          *    IDLE_LOOP2: jnz cntr0, TARGET_A
784          *    IDLE_LOOP1: jnz cntr1, TARGET_B
785          *                return
786          *
787          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
788          * TARGET_B is set to IDLE_LOOP2 as well
789          *
790          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
791          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
792          *
793          * a little confusing, but it helps save precious space in the inst_rom
794          * and sequencer rom and keeps the delays more accurate and reduces
795          * overhead
796          */
797         if (afi_clocks < 0x100) {
798                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
799                        &sdr_rw_load_mgr_regs->load_cntr1);
800
801                 writel(rwcfg->idle_loop1,
802                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
803
804                 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
805                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
806         } else {
807                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
808                        &sdr_rw_load_mgr_regs->load_cntr0);
809
810                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
811                        &sdr_rw_load_mgr_regs->load_cntr1);
812
813                 writel(rwcfg->idle_loop2,
814                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
815
816                 writel(rwcfg->idle_loop2,
817                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
818
819                 do {
820                         writel(rwcfg->idle_loop2,
821                                SDR_PHYGRP_RWMGRGRP_ADDRESS |
822                                RW_MGR_RUN_SINGLE_GROUP_OFFSET);
823                 } while (c_loop-- != 0);
824         }
825         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
826 }
827
828 /**
829  * rw_mgr_mem_init_load_regs() - Load instruction registers
830  * @cntr0:      Counter 0 value
831  * @cntr1:      Counter 1 value
832  * @cntr2:      Counter 2 value
833  * @jump:       Jump instruction value
834  *
835  * Load instruction registers.
836  */
837 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
838 {
839         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
840                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
841
842         /* Load counters */
843         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
844                &sdr_rw_load_mgr_regs->load_cntr0);
845         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
846                &sdr_rw_load_mgr_regs->load_cntr1);
847         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
848                &sdr_rw_load_mgr_regs->load_cntr2);
849
850         /* Load jump address */
851         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
852         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
853         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
854
855         /* Execute count instruction */
856         writel(jump, grpaddr);
857 }
858
859 /**
860  * rw_mgr_mem_load_user() - Load user calibration values
861  * @fin1:       Final instruction 1
862  * @fin2:       Final instruction 2
863  * @precharge:  If 1, precharge the banks at the end
864  *
865  * Load user calibration values and optionally precharge the banks.
866  */
867 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
868                                  const int precharge)
869 {
870         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
871                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
872         u32 r;
873
874         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
875                 /* set rank */
876                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
877
878                 /* precharge all banks ... */
879                 if (precharge)
880                         writel(rwcfg->precharge_all, grpaddr);
881
882                 /*
883                  * USER Use Mirror-ed commands for odd ranks if address
884                  * mirrorring is on
885                  */
886                 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
887                         set_jump_as_return();
888                         writel(rwcfg->mrs2_mirr, grpaddr);
889                         delay_for_n_mem_clocks(4);
890                         set_jump_as_return();
891                         writel(rwcfg->mrs3_mirr, grpaddr);
892                         delay_for_n_mem_clocks(4);
893                         set_jump_as_return();
894                         writel(rwcfg->mrs1_mirr, grpaddr);
895                         delay_for_n_mem_clocks(4);
896                         set_jump_as_return();
897                         writel(fin1, grpaddr);
898                 } else {
899                         set_jump_as_return();
900                         writel(rwcfg->mrs2, grpaddr);
901                         delay_for_n_mem_clocks(4);
902                         set_jump_as_return();
903                         writel(rwcfg->mrs3, grpaddr);
904                         delay_for_n_mem_clocks(4);
905                         set_jump_as_return();
906                         writel(rwcfg->mrs1, grpaddr);
907                         set_jump_as_return();
908                         writel(fin2, grpaddr);
909                 }
910
911                 if (precharge)
912                         continue;
913
914                 set_jump_as_return();
915                 writel(rwcfg->zqcl, grpaddr);
916
917                 /* tZQinit = tDLLK = 512 ck cycles */
918                 delay_for_n_mem_clocks(512);
919         }
920 }
921
922 /**
923  * rw_mgr_mem_initialize() - Initialize RW Manager
924  *
925  * Initialize RW Manager.
926  */
927 static void rw_mgr_mem_initialize(void)
928 {
929         debug("%s:%d\n", __func__, __LINE__);
930
931         /* The reset / cke part of initialization is broadcasted to all ranks */
932         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
933                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
934
935         /*
936          * Here's how you load register for a loop
937          * Counters are located @ 0x800
938          * Jump address are located @ 0xC00
939          * For both, registers 0 to 3 are selected using bits 3 and 2, like
940          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
941          * I know this ain't pretty, but Avalon bus throws away the 2 least
942          * significant bits
943          */
944
945         /* Start with memory RESET activated */
946
947         /* tINIT = 200us */
948
949         /*
950          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
951          * If a and b are the number of iteration in 2 nested loops
952          * it takes the following number of cycles to complete the operation:
953          * number_of_cycles = ((2 + n) * a + 2) * b
954          * where n is the number of instruction in the inner loop
955          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
956          * b = 6A
957          */
958         rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
959                                   misccfg->tinit_cntr1_val,
960                                   misccfg->tinit_cntr2_val,
961                                   rwcfg->init_reset_0_cke_0);
962
963         /* Indicate that memory is stable. */
964         writel(1, &phy_mgr_cfg->reset_mem_stbl);
965
966         /*
967          * transition the RESET to high
968          * Wait for 500us
969          */
970
971         /*
972          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
973          * If a and b are the number of iteration in 2 nested loops
974          * it takes the following number of cycles to complete the operation
975          * number_of_cycles = ((2 + n) * a + 2) * b
976          * where n is the number of instruction in the inner loop
977          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
978          * b = FF
979          */
980         rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
981                                   misccfg->treset_cntr1_val,
982                                   misccfg->treset_cntr2_val,
983                                   rwcfg->init_reset_1_cke_0);
984
985         /* Bring up clock enable. */
986
987         /* tXRP < 250 ck cycles */
988         delay_for_n_mem_clocks(250);
989
990         rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
991                              0);
992 }
993
994 /**
995  * rw_mgr_mem_handoff() - Hand off the memory to user
996  *
997  * At the end of calibration we have to program the user settings in
998  * and hand off the memory to the user.
999  */
1000 static void rw_mgr_mem_handoff(void)
1001 {
1002         rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1003         /*
1004          * Need to wait tMOD (12CK or 15ns) time before issuing other
1005          * commands, but we will have plenty of NIOS cycles before actual
1006          * handoff so its okay.
1007          */
1008 }
1009
1010 /**
1011  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1012  * @group:      Write Group
1013  * @use_dm:     Use DM
1014  *
1015  * Issue write test command. Two variants are provided, one that just tests
1016  * a write pattern and another that tests datamask functionality.
1017  */
1018 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1019                                                   u32 test_dm)
1020 {
1021         const u32 quick_write_mode =
1022                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1023                 misccfg->enable_super_quick_calibration;
1024         u32 mcc_instruction;
1025         u32 rw_wl_nop_cycles;
1026
1027         /*
1028          * Set counter and jump addresses for the right
1029          * number of NOP cycles.
1030          * The number of supported NOP cycles can range from -1 to infinity
1031          * Three different cases are handled:
1032          *
1033          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1034          *    mechanism will be used to insert the right number of NOPs
1035          *
1036          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1037          *    issuing the write command will jump straight to the
1038          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1039          *    data (for RLD), skipping
1040          *    the NOP micro-instruction all together
1041          *
1042          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1043          *    turned on in the same micro-instruction that issues the write
1044          *    command. Then we need
1045          *    to directly jump to the micro-instruction that sends out the data
1046          *
1047          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1048          *       (2 and 3). One jump-counter (0) is used to perform multiple
1049          *       write-read operations.
1050          *       one counter left to issue this command in "multiple-group" mode
1051          */
1052
1053         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1054
1055         if (rw_wl_nop_cycles == -1) {
1056                 /*
1057                  * CNTR 2 - We want to execute the special write operation that
1058                  * turns on DQS right away and then skip directly to the
1059                  * instruction that sends out the data. We set the counter to a
1060                  * large number so that the jump is always taken.
1061                  */
1062                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1063
1064                 /* CNTR 3 - Not used */
1065                 if (test_dm) {
1066                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1067                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1068                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1069                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1070                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1071                 } else {
1072                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1073                         writel(rwcfg->lfsr_wr_rd_bank_0_data,
1074                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1075                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1076                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1077                 }
1078         } else if (rw_wl_nop_cycles == 0) {
1079                 /*
1080                  * CNTR 2 - We want to skip the NOP operation and go straight
1081                  * to the DQS enable instruction. We set the counter to a large
1082                  * number so that the jump is always taken.
1083                  */
1084                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1085
1086                 /* CNTR 3 - Not used */
1087                 if (test_dm) {
1088                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1089                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1090                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1091                 } else {
1092                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1093                         writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1094                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1095                 }
1096         } else {
1097                 /*
1098                  * CNTR 2 - In this case we want to execute the next instruction
1099                  * and NOT take the jump. So we set the counter to 0. The jump
1100                  * address doesn't count.
1101                  */
1102                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1103                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104
1105                 /*
1106                  * CNTR 3 - Set the nop counter to the number of cycles we
1107                  * need to loop for, minus 1.
1108                  */
1109                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1110                 if (test_dm) {
1111                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1112                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1113                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1114                 } else {
1115                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1116                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1117                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1118                 }
1119         }
1120
1121         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1122                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1123
1124         if (quick_write_mode)
1125                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1126         else
1127                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1128
1129         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1130
1131         /*
1132          * CNTR 1 - This is used to ensure enough time elapses
1133          * for read data to come back.
1134          */
1135         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1136
1137         if (test_dm) {
1138                 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1139                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1140         } else {
1141                 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1142                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1143         }
1144
1145         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1146                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1147                                 (group << 2));
1148 }
1149
1150 /**
1151  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1152  * @rank_bgn:           Rank number
1153  * @write_group:        Write Group
1154  * @use_dm:             Use DM
1155  * @all_correct:        All bits must be correct in the mask
1156  * @bit_chk:            Resulting bit mask after the test
1157  * @all_ranks:          Test all ranks
1158  *
1159  * Test writes, can check for a single bit pass or multiple bit pass.
1160  */
1161 static int
1162 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1163                                 const u32 use_dm, const u32 all_correct,
1164                                 u32 *bit_chk, const u32 all_ranks)
1165 {
1166         const u32 rank_end = all_ranks ?
1167                                 rwcfg->mem_number_of_ranks :
1168                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1169         const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1170                                 rwcfg->mem_virtual_groups_per_write_dqs;
1171         const u32 correct_mask_vg = param->write_correct_mask_vg;
1172
1173         u32 tmp_bit_chk, base_rw_mgr;
1174         int vg, r;
1175
1176         *bit_chk = param->write_correct_mask;
1177
1178         for (r = rank_bgn; r < rank_end; r++) {
1179                 /* Set rank */
1180                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1181
1182                 tmp_bit_chk = 0;
1183                 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1184                      vg >= 0; vg--) {
1185                         /* Reset the FIFOs to get pointers to known state. */
1186                         writel(0, &phy_mgr_cmd->fifo_reset);
1187
1188                         rw_mgr_mem_calibrate_write_test_issue(
1189                                 write_group *
1190                                 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1191                                 use_dm);
1192
1193                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1194                         tmp_bit_chk <<= shift_ratio;
1195                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1196                 }
1197
1198                 *bit_chk &= tmp_bit_chk;
1199         }
1200
1201         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1202         if (all_correct) {
1203                 debug_cond(DLEVEL == 2,
1204                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1205                            write_group, use_dm, *bit_chk,
1206                            param->write_correct_mask,
1207                            *bit_chk == param->write_correct_mask);
1208                 return *bit_chk == param->write_correct_mask;
1209         } else {
1210                 debug_cond(DLEVEL == 2,
1211                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1212                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1213                 return *bit_chk != 0x00;
1214         }
1215 }
1216
1217 /**
1218  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1219  * @rank_bgn:   Rank number
1220  * @group:      Read/Write Group
1221  * @all_ranks:  Test all ranks
1222  *
1223  * Performs a guaranteed read on the patterns we are going to use during a
1224  * read test to ensure memory works.
1225  */
1226 static int
1227 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1228                                         const u32 all_ranks)
1229 {
1230         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1231                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1232         const u32 addr_offset =
1233                          (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1234         const u32 rank_end = all_ranks ?
1235                                 rwcfg->mem_number_of_ranks :
1236                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1237         const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1238                                 rwcfg->mem_virtual_groups_per_read_dqs;
1239         const u32 correct_mask_vg = param->read_correct_mask_vg;
1240
1241         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1242         int vg, r;
1243         int ret = 0;
1244
1245         bit_chk = param->read_correct_mask;
1246
1247         for (r = rank_bgn; r < rank_end; r++) {
1248                 /* Set rank */
1249                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1250
1251                 /* Load up a constant bursts of read commands */
1252                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1253                 writel(rwcfg->guaranteed_read,
1254                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1255
1256                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1257                 writel(rwcfg->guaranteed_read_cont,
1258                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1259
1260                 tmp_bit_chk = 0;
1261                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1262                      vg >= 0; vg--) {
1263                         /* Reset the FIFOs to get pointers to known state. */
1264                         writel(0, &phy_mgr_cmd->fifo_reset);
1265                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1266                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1267                         writel(rwcfg->guaranteed_read,
1268                                addr + addr_offset + (vg << 2));
1269
1270                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1271                         tmp_bit_chk <<= shift_ratio;
1272                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1273                 }
1274
1275                 bit_chk &= tmp_bit_chk;
1276         }
1277
1278         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1279
1280         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1281
1282         if (bit_chk != param->read_correct_mask)
1283                 ret = -EIO;
1284
1285         debug_cond(DLEVEL == 1,
1286                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1287                    __func__, __LINE__, group, bit_chk,
1288                    param->read_correct_mask, ret);
1289
1290         return ret;
1291 }
1292
1293 /**
1294  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1295  * @rank_bgn:   Rank number
1296  * @all_ranks:  Test all ranks
1297  *
1298  * Load up the patterns we are going to use during a read test.
1299  */
1300 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1301                                                     const int all_ranks)
1302 {
1303         const u32 rank_end = all_ranks ?
1304                         rwcfg->mem_number_of_ranks :
1305                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1306         u32 r;
1307
1308         debug("%s:%d\n", __func__, __LINE__);
1309
1310         for (r = rank_bgn; r < rank_end; r++) {
1311                 /* set rank */
1312                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1313
1314                 /* Load up a constant bursts */
1315                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1316
1317                 writel(rwcfg->guaranteed_write_wait0,
1318                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1319
1320                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1321
1322                 writel(rwcfg->guaranteed_write_wait1,
1323                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1324
1325                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1326
1327                 writel(rwcfg->guaranteed_write_wait2,
1328                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1329
1330                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1331
1332                 writel(rwcfg->guaranteed_write_wait3,
1333                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1334
1335                 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1336                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1337         }
1338
1339         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1340 }
1341
1342 /**
1343  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1344  * @rank_bgn:           Rank number
1345  * @group:              Read/Write group
1346  * @num_tries:          Number of retries of the test
1347  * @all_correct:        All bits must be correct in the mask
1348  * @bit_chk:            Resulting bit mask after the test
1349  * @all_groups:         Test all R/W groups
1350  * @all_ranks:          Test all ranks
1351  *
1352  * Try a read and see if it returns correct data back. Test has dummy reads
1353  * inserted into the mix used to align DQS enable. Test has more thorough
1354  * checks than the regular read test.
1355  */
1356 static int
1357 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1358                                const u32 num_tries, const u32 all_correct,
1359                                u32 *bit_chk,
1360                                const u32 all_groups, const u32 all_ranks)
1361 {
1362         const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1363                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1364         const u32 quick_read_mode =
1365                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1366                  misccfg->enable_super_quick_calibration);
1367         u32 correct_mask_vg = param->read_correct_mask_vg;
1368         u32 tmp_bit_chk;
1369         u32 base_rw_mgr;
1370         u32 addr;
1371
1372         int r, vg, ret;
1373
1374         *bit_chk = param->read_correct_mask;
1375
1376         for (r = rank_bgn; r < rank_end; r++) {
1377                 /* set rank */
1378                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1379
1380                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1381
1382                 writel(rwcfg->read_b2b_wait1,
1383                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1384
1385                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1386                 writel(rwcfg->read_b2b_wait2,
1387                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1388
1389                 if (quick_read_mode)
1390                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1391                         /* need at least two (1+1) reads to capture failures */
1392                 else if (all_groups)
1393                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1394                 else
1395                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1396
1397                 writel(rwcfg->read_b2b,
1398                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1399                 if (all_groups)
1400                         writel(rwcfg->mem_if_read_dqs_width *
1401                                rwcfg->mem_virtual_groups_per_read_dqs - 1,
1402                                &sdr_rw_load_mgr_regs->load_cntr3);
1403                 else
1404                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1405
1406                 writel(rwcfg->read_b2b,
1407                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1408
1409                 tmp_bit_chk = 0;
1410                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1411                      vg--) {
1412                         /* Reset the FIFOs to get pointers to known state. */
1413                         writel(0, &phy_mgr_cmd->fifo_reset);
1414                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1415                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1416
1417                         if (all_groups) {
1418                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1419                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1420                         } else {
1421                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1422                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1423                         }
1424
1425                         writel(rwcfg->read_b2b, addr +
1426                                ((group *
1427                                  rwcfg->mem_virtual_groups_per_read_dqs +
1428                                  vg) << 2));
1429
1430                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1431                         tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1432                                         rwcfg->mem_virtual_groups_per_read_dqs;
1433                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1434                 }
1435
1436                 *bit_chk &= tmp_bit_chk;
1437         }
1438
1439         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1440         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1441
1442         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1443
1444         if (all_correct) {
1445                 ret = (*bit_chk == param->read_correct_mask);
1446                 debug_cond(DLEVEL == 2,
1447                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1448                            __func__, __LINE__, group, all_groups, *bit_chk,
1449                            param->read_correct_mask, ret);
1450         } else  {
1451                 ret = (*bit_chk != 0x00);
1452                 debug_cond(DLEVEL == 2,
1453                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1454                            __func__, __LINE__, group, all_groups, *bit_chk,
1455                            0, ret);
1456         }
1457
1458         return ret;
1459 }
1460
1461 /**
1462  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1463  * @grp:                Read/Write group
1464  * @num_tries:          Number of retries of the test
1465  * @all_correct:        All bits must be correct in the mask
1466  * @all_groups:         Test all R/W groups
1467  *
1468  * Perform a READ test across all memory ranks.
1469  */
1470 static int
1471 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1472                                          const u32 all_correct,
1473                                          const u32 all_groups)
1474 {
1475         u32 bit_chk;
1476         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1477                                               &bit_chk, all_groups, 1);
1478 }
1479
1480 /**
1481  * rw_mgr_incr_vfifo() - Increase VFIFO value
1482  * @grp:        Read/Write group
1483  *
1484  * Increase VFIFO value.
1485  */
1486 static void rw_mgr_incr_vfifo(const u32 grp)
1487 {
1488         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1489 }
1490
1491 /**
1492  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1493  * @grp:        Read/Write group
1494  *
1495  * Decrease VFIFO value.
1496  */
1497 static void rw_mgr_decr_vfifo(const u32 grp)
1498 {
1499         u32 i;
1500
1501         for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1502                 rw_mgr_incr_vfifo(grp);
1503 }
1504
1505 /**
1506  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1507  * @grp:        Read/Write group
1508  *
1509  * Push VFIFO until a failing read happens.
1510  */
1511 static int find_vfifo_failing_read(const u32 grp)
1512 {
1513         u32 v, ret, fail_cnt = 0;
1514
1515         for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1516                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1517                            __func__, __LINE__, v);
1518                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1519                                                 PASS_ONE_BIT, 0);
1520                 if (!ret) {
1521                         fail_cnt++;
1522
1523                         if (fail_cnt == 2)
1524                                 return v;
1525                 }
1526
1527                 /* Fiddle with FIFO. */
1528                 rw_mgr_incr_vfifo(grp);
1529         }
1530
1531         /* No failing read found! Something must have gone wrong. */
1532         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1533         return 0;
1534 }
1535
1536 /**
1537  * sdr_find_phase_delay() - Find DQS enable phase or delay
1538  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1539  * @delay:      If 1, look for delay, if 0, look for phase
1540  * @grp:        Read/Write group
1541  * @work:       Working window position
1542  * @work_inc:   Working window increment
1543  * @pd:         DQS Phase/Delay Iterator
1544  *
1545  * Find working or non-working DQS enable phase setting.
1546  */
1547 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1548                                 u32 *work, const u32 work_inc, u32 *pd)
1549 {
1550         const u32 max = delay ? iocfg->dqs_en_delay_max :
1551                                 iocfg->dqs_en_phase_max;
1552         u32 ret;
1553
1554         for (; *pd <= max; (*pd)++) {
1555                 if (delay)
1556                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1557                 else
1558                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1559
1560                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1561                                         PASS_ONE_BIT, 0);
1562                 if (!working)
1563                         ret = !ret;
1564
1565                 if (ret)
1566                         return 0;
1567
1568                 if (work)
1569                         *work += work_inc;
1570         }
1571
1572         return -EINVAL;
1573 }
1574 /**
1575  * sdr_find_phase() - Find DQS enable phase
1576  * @working:    If 1, look for working phase, if 0, look for non-working phase
1577  * @grp:        Read/Write group
1578  * @work:       Working window position
1579  * @i:          Iterator
1580  * @p:          DQS Phase Iterator
1581  *
1582  * Find working or non-working DQS enable phase setting.
1583  */
1584 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1585                           u32 *i, u32 *p)
1586 {
1587         const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1588         int ret;
1589
1590         for (; *i < end; (*i)++) {
1591                 if (working)
1592                         *p = 0;
1593
1594                 ret = sdr_find_phase_delay(working, 0, grp, work,
1595                                            iocfg->delay_per_opa_tap, p);
1596                 if (!ret)
1597                         return 0;
1598
1599                 if (*p > iocfg->dqs_en_phase_max) {
1600                         /* Fiddle with FIFO. */
1601                         rw_mgr_incr_vfifo(grp);
1602                         if (!working)
1603                                 *p = 0;
1604                 }
1605         }
1606
1607         return -EINVAL;
1608 }
1609
1610 /**
1611  * sdr_working_phase() - Find working DQS enable phase
1612  * @grp:        Read/Write group
1613  * @work_bgn:   Working window start position
1614  * @d:          dtaps output value
1615  * @p:          DQS Phase Iterator
1616  * @i:          Iterator
1617  *
1618  * Find working DQS enable phase setting.
1619  */
1620 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1621                              u32 *p, u32 *i)
1622 {
1623         const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1624                                    iocfg->delay_per_dqs_en_dchain_tap;
1625         int ret;
1626
1627         *work_bgn = 0;
1628
1629         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1630                 *i = 0;
1631                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1632                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1633                 if (!ret)
1634                         return 0;
1635                 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1636         }
1637
1638         /* Cannot find working solution */
1639         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1640                    __func__, __LINE__);
1641         return -EINVAL;
1642 }
1643
1644 /**
1645  * sdr_backup_phase() - Find DQS enable backup phase
1646  * @grp:        Read/Write group
1647  * @work_bgn:   Working window start position
1648  * @p:          DQS Phase Iterator
1649  *
1650  * Find DQS enable backup phase setting.
1651  */
1652 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1653 {
1654         u32 tmp_delay, d;
1655         int ret;
1656
1657         /* Special case code for backing up a phase */
1658         if (*p == 0) {
1659                 *p = iocfg->dqs_en_phase_max;
1660                 rw_mgr_decr_vfifo(grp);
1661         } else {
1662                 (*p)--;
1663         }
1664         tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1665         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1666
1667         for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1668              d++) {
1669                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1670
1671                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1672                                         PASS_ONE_BIT, 0);
1673                 if (ret) {
1674                         *work_bgn = tmp_delay;
1675                         break;
1676                 }
1677
1678                 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1679         }
1680
1681         /* Restore VFIFO to old state before we decremented it (if needed). */
1682         (*p)++;
1683         if (*p > iocfg->dqs_en_phase_max) {
1684                 *p = 0;
1685                 rw_mgr_incr_vfifo(grp);
1686         }
1687
1688         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1689 }
1690
1691 /**
1692  * sdr_nonworking_phase() - Find non-working DQS enable phase
1693  * @grp:        Read/Write group
1694  * @work_end:   Working window end position
1695  * @p:          DQS Phase Iterator
1696  * @i:          Iterator
1697  *
1698  * Find non-working DQS enable phase setting.
1699  */
1700 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1701 {
1702         int ret;
1703
1704         (*p)++;
1705         *work_end += iocfg->delay_per_opa_tap;
1706         if (*p > iocfg->dqs_en_phase_max) {
1707                 /* Fiddle with FIFO. */
1708                 *p = 0;
1709                 rw_mgr_incr_vfifo(grp);
1710         }
1711
1712         ret = sdr_find_phase(0, grp, work_end, i, p);
1713         if (ret) {
1714                 /* Cannot see edge of failing read. */
1715                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1716                            __func__, __LINE__);
1717         }
1718
1719         return ret;
1720 }
1721
1722 /**
1723  * sdr_find_window_center() - Find center of the working DQS window.
1724  * @grp:        Read/Write group
1725  * @work_bgn:   First working settings
1726  * @work_end:   Last working settings
1727  *
1728  * Find center of the working DQS enable window.
1729  */
1730 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1731                                   const u32 work_end)
1732 {
1733         u32 work_mid;
1734         int tmp_delay = 0;
1735         int i, p, d;
1736
1737         work_mid = (work_bgn + work_end) / 2;
1738
1739         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1740                    work_bgn, work_end, work_mid);
1741         /* Get the middle delay to be less than a VFIFO delay */
1742         tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1743
1744         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1745         work_mid %= tmp_delay;
1746         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1747
1748         tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1749         if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1750                 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1751         p = tmp_delay / iocfg->delay_per_opa_tap;
1752
1753         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1754
1755         d = DIV_ROUND_UP(work_mid - tmp_delay,
1756                          iocfg->delay_per_dqs_en_dchain_tap);
1757         if (d > iocfg->dqs_en_delay_max)
1758                 d = iocfg->dqs_en_delay_max;
1759         tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1760
1761         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1762
1763         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1764         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1765
1766         /*
1767          * push vfifo until we can successfully calibrate. We can do this
1768          * because the largest possible margin in 1 VFIFO cycle.
1769          */
1770         for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1771                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1772                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1773                                                              PASS_ONE_BIT,
1774                                                              0)) {
1775                         debug_cond(DLEVEL == 2,
1776                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1777                                    __func__, __LINE__, p, d);
1778                         return 0;
1779                 }
1780
1781                 /* Fiddle with FIFO. */
1782                 rw_mgr_incr_vfifo(grp);
1783         }
1784
1785         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1786                    __func__, __LINE__);
1787         return -EINVAL;
1788 }
1789
1790 /**
1791  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1792  * @grp:        Read/Write Group
1793  *
1794  * Find a good DQS enable to use.
1795  */
1796 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1797 {
1798         u32 d, p, i;
1799         u32 dtaps_per_ptap;
1800         u32 work_bgn, work_end;
1801         u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1802         int ret;
1803
1804         debug("%s:%d %u\n", __func__, __LINE__, grp);
1805
1806         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1807
1808         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1809         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1810
1811         /* Step 0: Determine number of delay taps for each phase tap. */
1812         dtaps_per_ptap = iocfg->delay_per_opa_tap /
1813                          iocfg->delay_per_dqs_en_dchain_tap;
1814
1815         /* Step 1: First push vfifo until we get a failing read. */
1816         find_vfifo_failing_read(grp);
1817
1818         /* Step 2: Find first working phase, increment in ptaps. */
1819         work_bgn = 0;
1820         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1821         if (ret)
1822                 return ret;
1823
1824         work_end = work_bgn;
1825
1826         /*
1827          * If d is 0 then the working window covers a phase tap and we can
1828          * follow the old procedure. Otherwise, we've found the beginning
1829          * and we need to increment the dtaps until we find the end.
1830          */
1831         if (d == 0) {
1832                 /*
1833                  * Step 3a: If we have room, back off by one and
1834                  *          increment in dtaps.
1835                  */
1836                 sdr_backup_phase(grp, &work_bgn, &p);
1837
1838                 /*
1839                  * Step 4a: go forward from working phase to non working
1840                  * phase, increment in ptaps.
1841                  */
1842                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1843                 if (ret)
1844                         return ret;
1845
1846                 /* Step 5a: Back off one from last, increment in dtaps. */
1847
1848                 /* Special case code for backing up a phase */
1849                 if (p == 0) {
1850                         p = iocfg->dqs_en_phase_max;
1851                         rw_mgr_decr_vfifo(grp);
1852                 } else {
1853                         p = p - 1;
1854                 }
1855
1856                 work_end -= iocfg->delay_per_opa_tap;
1857                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1858
1859                 d = 0;
1860
1861                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1862                            __func__, __LINE__, p);
1863         }
1864
1865         /* The dtap increment to find the failing edge is done here. */
1866         sdr_find_phase_delay(0, 1, grp, &work_end,
1867                              iocfg->delay_per_dqs_en_dchain_tap, &d);
1868
1869         /* Go back to working dtap */
1870         if (d != 0)
1871                 work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1872
1873         debug_cond(DLEVEL == 2,
1874                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1875                    __func__, __LINE__, p, d - 1, work_end);
1876
1877         if (work_end < work_bgn) {
1878                 /* nil range */
1879                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1880                            __func__, __LINE__);
1881                 return -EINVAL;
1882         }
1883
1884         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1885                    __func__, __LINE__, work_bgn, work_end);
1886
1887         /*
1888          * We need to calculate the number of dtaps that equal a ptap.
1889          * To do that we'll back up a ptap and re-find the edge of the
1890          * window using dtaps
1891          */
1892         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1893                    __func__, __LINE__);
1894
1895         /* Special case code for backing up a phase */
1896         if (p == 0) {
1897                 p = iocfg->dqs_en_phase_max;
1898                 rw_mgr_decr_vfifo(grp);
1899                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1900                            __func__, __LINE__, p);
1901         } else {
1902                 p = p - 1;
1903                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1904                            __func__, __LINE__, p);
1905         }
1906
1907         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1908
1909         /*
1910          * Increase dtap until we first see a passing read (in case the
1911          * window is smaller than a ptap), and then a failing read to
1912          * mark the edge of the window again.
1913          */
1914
1915         /* Find a passing read. */
1916         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1917                    __func__, __LINE__);
1918
1919         initial_failing_dtap = d;
1920
1921         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1922         if (found_passing_read) {
1923                 /* Find a failing read. */
1924                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1925                            __func__, __LINE__);
1926                 d++;
1927                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1928                                                            &d);
1929         } else {
1930                 debug_cond(DLEVEL == 1,
1931                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1932                            __func__, __LINE__);
1933         }
1934
1935         /*
1936          * The dynamically calculated dtaps_per_ptap is only valid if we
1937          * found a passing/failing read. If we didn't, it means d hit the max
1938          * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1939          * statically calculated value.
1940          */
1941         if (found_passing_read && found_failing_read)
1942                 dtaps_per_ptap = d - initial_failing_dtap;
1943
1944         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1945         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1946                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1947
1948         /* Step 6: Find the centre of the window. */
1949         ret = sdr_find_window_center(grp, work_bgn, work_end);
1950
1951         return ret;
1952 }
1953
1954 /**
1955  * search_stop_check() - Check if the detected edge is valid
1956  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1957  * @d:                  DQS delay
1958  * @rank_bgn:           Rank number
1959  * @write_group:        Write Group
1960  * @read_group:         Read Group
1961  * @bit_chk:            Resulting bit mask after the test
1962  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1963  * @use_read_test:      Perform read test
1964  *
1965  * Test if the found edge is valid.
1966  */
1967 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1968                              const u32 write_group, const u32 read_group,
1969                              u32 *bit_chk, u32 *sticky_bit_chk,
1970                              const u32 use_read_test)
1971 {
1972         const u32 ratio = rwcfg->mem_if_read_dqs_width /
1973                           rwcfg->mem_if_write_dqs_width;
1974         const u32 correct_mask = write ? param->write_correct_mask :
1975                                          param->read_correct_mask;
1976         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1977                                     rwcfg->mem_dq_per_read_dqs;
1978         u32 ret;
1979         /*
1980          * Stop searching when the read test doesn't pass AND when
1981          * we've seen a passing read on every bit.
1982          */
1983         if (write) {                    /* WRITE-ONLY */
1984                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1985                                                          0, PASS_ONE_BIT,
1986                                                          bit_chk, 0);
1987         } else if (use_read_test) {     /* READ-ONLY */
1988                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1989                                                         NUM_READ_PB_TESTS,
1990                                                         PASS_ONE_BIT, bit_chk,
1991                                                         0, 0);
1992         } else {                        /* READ-ONLY */
1993                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1994                                                 PASS_ONE_BIT, bit_chk, 0);
1995                 *bit_chk = *bit_chk >> (per_dqs *
1996                         (read_group - (write_group * ratio)));
1997                 ret = (*bit_chk == 0);
1998         }
1999         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2000         ret = ret && (*sticky_bit_chk == correct_mask);
2001         debug_cond(DLEVEL == 2,
2002                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2003                    __func__, __LINE__, d,
2004                    *sticky_bit_chk, correct_mask, ret);
2005         return ret;
2006 }
2007
2008 /**
2009  * search_left_edge() - Find left edge of DQ/DQS working phase
2010  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2011  * @rank_bgn:           Rank number
2012  * @write_group:        Write Group
2013  * @read_group:         Read Group
2014  * @test_bgn:           Rank number to begin the test
2015  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2016  * @left_edge:          Left edge of the DQ/DQS phase
2017  * @right_edge:         Right edge of the DQ/DQS phase
2018  * @use_read_test:      Perform read test
2019  *
2020  * Find left edge of DQ/DQS working phase.
2021  */
2022 static void search_left_edge(const int write, const int rank_bgn,
2023         const u32 write_group, const u32 read_group, const u32 test_bgn,
2024         u32 *sticky_bit_chk,
2025         int *left_edge, int *right_edge, const u32 use_read_test)
2026 {
2027         const u32 delay_max = write ? iocfg->io_out1_delay_max :
2028                                       iocfg->io_in_delay_max;
2029         const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2030                                     iocfg->dqs_in_delay_max;
2031         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2032                                     rwcfg->mem_dq_per_read_dqs;
2033         u32 stop, bit_chk;
2034         int i, d;
2035
2036         for (d = 0; d <= dqs_max; d++) {
2037                 if (write)
2038                         scc_mgr_apply_group_dq_out1_delay(d);
2039                 else
2040                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2041
2042                 writel(0, &sdr_scc_mgr->update);
2043
2044                 stop = search_stop_check(write, d, rank_bgn, write_group,
2045                                          read_group, &bit_chk, sticky_bit_chk,
2046                                          use_read_test);
2047                 if (stop == 1)
2048                         break;
2049
2050                 /* stop != 1 */
2051                 for (i = 0; i < per_dqs; i++) {
2052                         if (bit_chk & 1) {
2053                                 /*
2054                                  * Remember a passing test as
2055                                  * the left_edge.
2056                                  */
2057                                 left_edge[i] = d;
2058                         } else {
2059                                 /*
2060                                  * If a left edge has not been seen
2061                                  * yet, then a future passing test
2062                                  * will mark this edge as the right
2063                                  * edge.
2064                                  */
2065                                 if (left_edge[i] == delay_max + 1)
2066                                         right_edge[i] = -(d + 1);
2067                         }
2068                         bit_chk >>= 1;
2069                 }
2070         }
2071
2072         /* Reset DQ delay chains to 0 */
2073         if (write)
2074                 scc_mgr_apply_group_dq_out1_delay(0);
2075         else
2076                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2077
2078         *sticky_bit_chk = 0;
2079         for (i = per_dqs - 1; i >= 0; i--) {
2080                 debug_cond(DLEVEL == 2,
2081                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2082                            __func__, __LINE__, i, left_edge[i],
2083                            i, right_edge[i]);
2084
2085                 /*
2086                  * Check for cases where we haven't found the left edge,
2087                  * which makes our assignment of the the right edge invalid.
2088                  * Reset it to the illegal value.
2089                  */
2090                 if ((left_edge[i] == delay_max + 1) &&
2091                     (right_edge[i] != delay_max + 1)) {
2092                         right_edge[i] = delay_max + 1;
2093                         debug_cond(DLEVEL == 2,
2094                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2095                                    __func__, __LINE__, i, right_edge[i]);
2096                 }
2097
2098                 /*
2099                  * Reset sticky bit
2100                  * READ: except for bits where we have seen both
2101                  *       the left and right edge.
2102                  * WRITE: except for bits where we have seen the
2103                  *        left edge.
2104                  */
2105                 *sticky_bit_chk <<= 1;
2106                 if (write) {
2107                         if (left_edge[i] != delay_max + 1)
2108                                 *sticky_bit_chk |= 1;
2109                 } else {
2110                         if ((left_edge[i] != delay_max + 1) &&
2111                             (right_edge[i] != delay_max + 1))
2112                                 *sticky_bit_chk |= 1;
2113                 }
2114         }
2115 }
2116
2117 /**
2118  * search_right_edge() - Find right edge of DQ/DQS working phase
2119  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2120  * @rank_bgn:           Rank number
2121  * @write_group:        Write Group
2122  * @read_group:         Read Group
2123  * @start_dqs:          DQS start phase
2124  * @start_dqs_en:       DQS enable start phase
2125  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2126  * @left_edge:          Left edge of the DQ/DQS phase
2127  * @right_edge:         Right edge of the DQ/DQS phase
2128  * @use_read_test:      Perform read test
2129  *
2130  * Find right edge of DQ/DQS working phase.
2131  */
2132 static int search_right_edge(const int write, const int rank_bgn,
2133         const u32 write_group, const u32 read_group,
2134         const int start_dqs, const int start_dqs_en,
2135         u32 *sticky_bit_chk,
2136         int *left_edge, int *right_edge, const u32 use_read_test)
2137 {
2138         const u32 delay_max = write ? iocfg->io_out1_delay_max :
2139                                       iocfg->io_in_delay_max;
2140         const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2141                                     iocfg->dqs_in_delay_max;
2142         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2143                                     rwcfg->mem_dq_per_read_dqs;
2144         u32 stop, bit_chk;
2145         int i, d;
2146
2147         for (d = 0; d <= dqs_max - start_dqs; d++) {
2148                 if (write) {    /* WRITE-ONLY */
2149                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2150                                                                 d + start_dqs);
2151                 } else {        /* READ-ONLY */
2152                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2153                         if (iocfg->shift_dqs_en_when_shift_dqs) {
2154                                 u32 delay = d + start_dqs_en;
2155                                 if (delay > iocfg->dqs_en_delay_max)
2156                                         delay = iocfg->dqs_en_delay_max;
2157                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2158                         }
2159                         scc_mgr_load_dqs(read_group);
2160                 }
2161
2162                 writel(0, &sdr_scc_mgr->update);
2163
2164                 stop = search_stop_check(write, d, rank_bgn, write_group,
2165                                          read_group, &bit_chk, sticky_bit_chk,
2166                                          use_read_test);
2167                 if (stop == 1) {
2168                         if (write && (d == 0)) {        /* WRITE-ONLY */
2169                                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2170                                      i++) {
2171                                         /*
2172                                          * d = 0 failed, but it passed when
2173                                          * testing the left edge, so it must be
2174                                          * marginal, set it to -1
2175                                          */
2176                                         if (right_edge[i] == delay_max + 1 &&
2177                                             left_edge[i] != delay_max + 1)
2178                                                 right_edge[i] = -1;
2179                                 }
2180                         }
2181                         break;
2182                 }
2183
2184                 /* stop != 1 */
2185                 for (i = 0; i < per_dqs; i++) {
2186                         if (bit_chk & 1) {
2187                                 /*
2188                                  * Remember a passing test as
2189                                  * the right_edge.
2190                                  */
2191                                 right_edge[i] = d;
2192                         } else {
2193                                 if (d != 0) {
2194                                         /*
2195                                          * If a right edge has not
2196                                          * been seen yet, then a future
2197                                          * passing test will mark this
2198                                          * edge as the left edge.
2199                                          */
2200                                         if (right_edge[i] == delay_max + 1)
2201                                                 left_edge[i] = -(d + 1);
2202                                 } else {
2203                                         /*
2204                                          * d = 0 failed, but it passed
2205                                          * when testing the left edge,
2206                                          * so it must be marginal, set
2207                                          * it to -1
2208                                          */
2209                                         if (right_edge[i] == delay_max + 1 &&
2210                                             left_edge[i] != delay_max + 1)
2211                                                 right_edge[i] = -1;
2212                                         /*
2213                                          * If a right edge has not been
2214                                          * seen yet, then a future
2215                                          * passing test will mark this
2216                                          * edge as the left edge.
2217                                          */
2218                                         else if (right_edge[i] == delay_max + 1)
2219                                                 left_edge[i] = -(d + 1);
2220                                 }
2221                         }
2222
2223                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2224                                    __func__, __LINE__, d);
2225                         debug_cond(DLEVEL == 2,
2226                                    "bit_chk_test=%i left_edge[%u]: %d ",
2227                                    bit_chk & 1, i, left_edge[i]);
2228                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2229                                    right_edge[i]);
2230                         bit_chk >>= 1;
2231                 }
2232         }
2233
2234         /* Check that all bits have a window */
2235         for (i = 0; i < per_dqs; i++) {
2236                 debug_cond(DLEVEL == 2,
2237                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2238                            __func__, __LINE__, i, left_edge[i],
2239                            i, right_edge[i]);
2240                 if ((left_edge[i] == dqs_max + 1) ||
2241                     (right_edge[i] == dqs_max + 1))
2242                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2243         }
2244
2245         return 0;
2246 }
2247
2248 /**
2249  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2250  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2251  * @left_edge:          Left edge of the DQ/DQS phase
2252  * @right_edge:         Right edge of the DQ/DQS phase
2253  * @mid_min:            Best DQ/DQS phase middle setting
2254  *
2255  * Find index and value of the middle of the DQ/DQS working phase.
2256  */
2257 static int get_window_mid_index(const int write, int *left_edge,
2258                                 int *right_edge, int *mid_min)
2259 {
2260         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2261                                     rwcfg->mem_dq_per_read_dqs;
2262         int i, mid, min_index;
2263
2264         /* Find middle of window for each DQ bit */
2265         *mid_min = left_edge[0] - right_edge[0];
2266         min_index = 0;
2267         for (i = 1; i < per_dqs; i++) {
2268                 mid = left_edge[i] - right_edge[i];
2269                 if (mid < *mid_min) {
2270                         *mid_min = mid;
2271                         min_index = i;
2272                 }
2273         }
2274
2275         /*
2276          * -mid_min/2 represents the amount that we need to move DQS.
2277          * If mid_min is odd and positive we'll need to add one to make
2278          * sure the rounding in further calculations is correct (always
2279          * bias to the right), so just add 1 for all positive values.
2280          */
2281         if (*mid_min > 0)
2282                 (*mid_min)++;
2283         *mid_min = *mid_min / 2;
2284
2285         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2286                    __func__, __LINE__, *mid_min, min_index);
2287         return min_index;
2288 }
2289
2290 /**
2291  * center_dq_windows() - Center the DQ/DQS windows
2292  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2293  * @left_edge:          Left edge of the DQ/DQS phase
2294  * @right_edge:         Right edge of the DQ/DQS phase
2295  * @mid_min:            Adjusted DQ/DQS phase middle setting
2296  * @orig_mid_min:       Original DQ/DQS phase middle setting
2297  * @min_index:          DQ/DQS phase middle setting index
2298  * @test_bgn:           Rank number to begin the test
2299  * @dq_margin:          Amount of shift for the DQ
2300  * @dqs_margin:         Amount of shift for the DQS
2301  *
2302  * Align the DQ/DQS windows in each group.
2303  */
2304 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2305                               const int mid_min, const int orig_mid_min,
2306                               const int min_index, const int test_bgn,
2307                               int *dq_margin, int *dqs_margin)
2308 {
2309         const u32 delay_max = write ? iocfg->io_out1_delay_max :
2310                                       iocfg->io_in_delay_max;
2311         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2312                                     rwcfg->mem_dq_per_read_dqs;
2313         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2314                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2315         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2316
2317         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2318         int shift_dq, i, p;
2319
2320         /* Initialize data for export structures */
2321         *dqs_margin = delay_max + 1;
2322         *dq_margin  = delay_max + 1;
2323
2324         /* add delay to bring centre of all DQ windows to the same "level" */
2325         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2326                 /* Use values before divide by 2 to reduce round off error */
2327                 shift_dq = (left_edge[i] - right_edge[i] -
2328                         (left_edge[min_index] - right_edge[min_index]))/2  +
2329                         (orig_mid_min - mid_min);
2330
2331                 debug_cond(DLEVEL == 2,
2332                            "vfifo_center: before: shift_dq[%u]=%d\n",
2333                            i, shift_dq);
2334
2335                 temp_dq_io_delay1 = readl(addr + (p << 2));
2336                 temp_dq_io_delay2 = readl(addr + (i << 2));
2337
2338                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2339                         shift_dq = delay_max - temp_dq_io_delay2;
2340                 else if (shift_dq + temp_dq_io_delay1 < 0)
2341                         shift_dq = -temp_dq_io_delay1;
2342
2343                 debug_cond(DLEVEL == 2,
2344                            "vfifo_center: after: shift_dq[%u]=%d\n",
2345                            i, shift_dq);
2346
2347                 if (write)
2348                         scc_mgr_set_dq_out1_delay(i,
2349                                                   temp_dq_io_delay1 + shift_dq);
2350                 else
2351                         scc_mgr_set_dq_in_delay(p,
2352                                                 temp_dq_io_delay1 + shift_dq);
2353
2354                 scc_mgr_load_dq(p);
2355
2356                 debug_cond(DLEVEL == 2,
2357                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2358                            left_edge[i] - shift_dq + (-mid_min),
2359                            right_edge[i] + shift_dq - (-mid_min));
2360
2361                 /* To determine values for export structures */
2362                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2363                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2364
2365                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2366                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2367         }
2368 }
2369
2370 /**
2371  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2372  * @rank_bgn:           Rank number
2373  * @rw_group:           Read/Write Group
2374  * @test_bgn:           Rank at which the test begins
2375  * @use_read_test:      Perform a read test
2376  * @update_fom:         Update FOM
2377  *
2378  * Per-bit deskew DQ and centering.
2379  */
2380 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2381                         const u32 rw_group, const u32 test_bgn,
2382                         const int use_read_test, const int update_fom)
2383 {
2384         const u32 addr =
2385                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2386                 (rw_group << 2);
2387         /*
2388          * Store these as signed since there are comparisons with
2389          * signed numbers.
2390          */
2391         u32 sticky_bit_chk;
2392         int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2393         int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2394         int32_t orig_mid_min, mid_min;
2395         int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2396         int32_t dq_margin, dqs_margin;
2397         int i, min_index;
2398         int ret;
2399
2400         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2401
2402         start_dqs = readl(addr);
2403         if (iocfg->shift_dqs_en_when_shift_dqs)
2404                 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2405
2406         /* set the left and right edge of each bit to an illegal value */
2407         /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2408         sticky_bit_chk = 0;
2409         for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2410                 left_edge[i]  = iocfg->io_in_delay_max + 1;
2411                 right_edge[i] = iocfg->io_in_delay_max + 1;
2412         }
2413
2414         /* Search for the left edge of the window for each bit */
2415         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2416                          &sticky_bit_chk,
2417                          left_edge, right_edge, use_read_test);
2418
2419
2420         /* Search for the right edge of the window for each bit */
2421         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2422                                 start_dqs, start_dqs_en,
2423                                 &sticky_bit_chk,
2424                                 left_edge, right_edge, use_read_test);
2425         if (ret) {
2426                 /*
2427                  * Restore delay chain settings before letting the loop
2428                  * in rw_mgr_mem_calibrate_vfifo to retry different
2429                  * dqs/ck relationships.
2430                  */
2431                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2432                 if (iocfg->shift_dqs_en_when_shift_dqs)
2433                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2434
2435                 scc_mgr_load_dqs(rw_group);
2436                 writel(0, &sdr_scc_mgr->update);
2437
2438                 debug_cond(DLEVEL == 1,
2439                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2440                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2441                 if (use_read_test) {
2442                         set_failing_group_stage(rw_group *
2443                                 rwcfg->mem_dq_per_read_dqs + i,
2444                                 CAL_STAGE_VFIFO,
2445                                 CAL_SUBSTAGE_VFIFO_CENTER);
2446                 } else {
2447                         set_failing_group_stage(rw_group *
2448                                 rwcfg->mem_dq_per_read_dqs + i,
2449                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2450                                 CAL_SUBSTAGE_VFIFO_CENTER);
2451                 }
2452                 return -EIO;
2453         }
2454
2455         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2456
2457         /* Determine the amount we can change DQS (which is -mid_min) */
2458         orig_mid_min = mid_min;
2459         new_dqs = start_dqs - mid_min;
2460         if (new_dqs > iocfg->dqs_in_delay_max)
2461                 new_dqs = iocfg->dqs_in_delay_max;
2462         else if (new_dqs < 0)
2463                 new_dqs = 0;
2464
2465         mid_min = start_dqs - new_dqs;
2466         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2467                    mid_min, new_dqs);
2468
2469         if (iocfg->shift_dqs_en_when_shift_dqs) {
2470                 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2471                         mid_min += start_dqs_en - mid_min -
2472                                    iocfg->dqs_en_delay_max;
2473                 else if (start_dqs_en - mid_min < 0)
2474                         mid_min += start_dqs_en - mid_min;
2475         }
2476         new_dqs = start_dqs - mid_min;
2477
2478         debug_cond(DLEVEL == 1,
2479                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2480                    start_dqs,
2481                    iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2482                    new_dqs, mid_min);
2483
2484         /* Add delay to bring centre of all DQ windows to the same "level". */
2485         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2486                           min_index, test_bgn, &dq_margin, &dqs_margin);
2487
2488         /* Move DQS-en */
2489         if (iocfg->shift_dqs_en_when_shift_dqs) {
2490                 final_dqs_en = start_dqs_en - mid_min;
2491                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2492                 scc_mgr_load_dqs(rw_group);
2493         }
2494
2495         /* Move DQS */
2496         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2497         scc_mgr_load_dqs(rw_group);
2498         debug_cond(DLEVEL == 2,
2499                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2500                    __func__, __LINE__, dq_margin, dqs_margin);
2501
2502         /*
2503          * Do not remove this line as it makes sure all of our decisions
2504          * have been applied. Apply the update bit.
2505          */
2506         writel(0, &sdr_scc_mgr->update);
2507
2508         if ((dq_margin < 0) || (dqs_margin < 0))
2509                 return -EINVAL;
2510
2511         return 0;
2512 }
2513
2514 /**
2515  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2516  * @rw_group:   Read/Write Group
2517  * @phase:      DQ/DQS phase
2518  *
2519  * Because initially no communication ca be reliably performed with the memory
2520  * device, the sequencer uses a guaranteed write mechanism to write data into
2521  * the memory device.
2522  */
2523 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2524                                                  const u32 phase)
2525 {
2526         int ret;
2527
2528         /* Set a particular DQ/DQS phase. */
2529         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2530
2531         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2532                    __func__, __LINE__, rw_group, phase);
2533
2534         /*
2535          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2536          * Load up the patterns used by read calibration using the
2537          * current DQDQS phase.
2538          */
2539         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2540
2541         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2542                 return 0;
2543
2544         /*
2545          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2546          * Back-to-Back reads of the patterns used for calibration.
2547          */
2548         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2549         if (ret)
2550                 debug_cond(DLEVEL == 1,
2551                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2552                            __func__, __LINE__, rw_group, phase);
2553         return ret;
2554 }
2555
2556 /**
2557  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2558  * @rw_group:   Read/Write Group
2559  * @test_bgn:   Rank at which the test begins
2560  *
2561  * DQS enable calibration ensures reliable capture of the DQ signal without
2562  * glitches on the DQS line.
2563  */
2564 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2565                                                        const u32 test_bgn)
2566 {
2567         /*
2568          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2569          * DQS and DQS Eanble Signal Relationships.
2570          */
2571
2572         /* We start at zero, so have one less dq to devide among */
2573         const u32 delay_step = iocfg->io_in_delay_max /
2574                                (rwcfg->mem_dq_per_read_dqs - 1);
2575         int ret;
2576         u32 i, p, d, r;
2577
2578         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2579
2580         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2581         for (r = 0; r < rwcfg->mem_number_of_ranks;
2582              r += NUM_RANKS_PER_SHADOW_REG) {
2583                 for (i = 0, p = test_bgn, d = 0;
2584                      i < rwcfg->mem_dq_per_read_dqs;
2585                      i++, p++, d += delay_step) {
2586                         debug_cond(DLEVEL == 1,
2587                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2588                                    __func__, __LINE__, rw_group, r, i, p, d);
2589
2590                         scc_mgr_set_dq_in_delay(p, d);
2591                         scc_mgr_load_dq(p);
2592                 }
2593
2594                 writel(0, &sdr_scc_mgr->update);
2595         }
2596
2597         /*
2598          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2599          * dq_in_delay values
2600          */
2601         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2602
2603         debug_cond(DLEVEL == 1,
2604                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2605                    __func__, __LINE__, rw_group, !ret);
2606
2607         for (r = 0; r < rwcfg->mem_number_of_ranks;
2608              r += NUM_RANKS_PER_SHADOW_REG) {
2609                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2610                 writel(0, &sdr_scc_mgr->update);
2611         }
2612
2613         return ret;
2614 }
2615
2616 /**
2617  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2618  * @rw_group:           Read/Write Group
2619  * @test_bgn:           Rank at which the test begins
2620  * @use_read_test:      Perform a read test
2621  * @update_fom:         Update FOM
2622  *
2623  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2624  * within a group.
2625  */
2626 static int
2627 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2628                                       const int use_read_test,
2629                                       const int update_fom)
2630
2631 {
2632         int ret, grp_calibrated;
2633         u32 rank_bgn, sr;
2634
2635         /*
2636          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2637          * Read per-bit deskew can be done on a per shadow register basis.
2638          */
2639         grp_calibrated = 1;
2640         for (rank_bgn = 0, sr = 0;
2641              rank_bgn < rwcfg->mem_number_of_ranks;
2642              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2643                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2644                                                         test_bgn,
2645                                                         use_read_test,
2646                                                         update_fom);
2647                 if (!ret)
2648                         continue;
2649
2650                 grp_calibrated = 0;
2651         }
2652
2653         if (!grp_calibrated)
2654                 return -EIO;
2655
2656         return 0;
2657 }
2658
2659 /**
2660  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2661  * @rw_group:           Read/Write Group
2662  * @test_bgn:           Rank at which the test begins
2663  *
2664  * Stage 1: Calibrate the read valid prediction FIFO.
2665  *
2666  * This function implements UniPHY calibration Stage 1, as explained in
2667  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2668  *
2669  * - read valid prediction will consist of finding:
2670  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2671  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2672  *  - we also do a per-bit deskew on the DQ lines.
2673  */
2674 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2675 {
2676         u32 p, d;
2677         u32 dtaps_per_ptap;
2678         u32 failed_substage;
2679
2680         int ret;
2681
2682         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2683
2684         /* Update info for sims */
2685         reg_file_set_group(rw_group);
2686         reg_file_set_stage(CAL_STAGE_VFIFO);
2687         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2688
2689         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2690
2691         /* USER Determine number of delay taps for each phase tap. */
2692         dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2693                                       iocfg->delay_per_dqs_en_dchain_tap) - 1;
2694
2695         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2696                 /*
2697                  * In RLDRAMX we may be messing the delay of pins in
2698                  * the same write rw_group but outside of the current read
2699                  * the rw_group, but that's ok because we haven't calibrated
2700                  * output side yet.
2701                  */
2702                 if (d > 0) {
2703                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2704                                                                 rw_group, d);
2705                 }
2706
2707                 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2708                         /* 1) Guaranteed Write */
2709                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2710                         if (ret)
2711                                 break;
2712
2713                         /* 2) DQS Enable Calibration */
2714                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2715                                                                           test_bgn);
2716                         if (ret) {
2717                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2718                                 continue;
2719                         }
2720
2721                         /* 3) Centering DQ/DQS */
2722                         /*
2723                          * If doing read after write calibration, do not update
2724                          * FOM now. Do it then.
2725                          */
2726                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2727                                                                 test_bgn, 1, 0);
2728                         if (ret) {
2729                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2730                                 continue;
2731                         }
2732
2733                         /* All done. */
2734                         goto cal_done_ok;
2735                 }
2736         }
2737
2738         /* Calibration Stage 1 failed. */
2739         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2740         return 0;
2741
2742         /* Calibration Stage 1 completed OK. */
2743 cal_done_ok:
2744         /*
2745          * Reset the delay chains back to zero if they have moved > 1
2746          * (check for > 1 because loop will increase d even when pass in
2747          * first case).
2748          */
2749         if (d > 2)
2750                 scc_mgr_zero_group(rw_group, 1);
2751
2752         return 1;
2753 }
2754
2755 /**
2756  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2757  * @rw_group:           Read/Write Group
2758  * @test_bgn:           Rank at which the test begins
2759  *
2760  * Stage 3: DQ/DQS Centering.
2761  *
2762  * This function implements UniPHY calibration Stage 3, as explained in
2763  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2764  */
2765 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2766                                           const u32 test_bgn)
2767 {
2768         int ret;
2769
2770         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2771
2772         /* Update info for sims. */
2773         reg_file_set_group(rw_group);
2774         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2775         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2776
2777         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2778         if (ret)
2779                 set_failing_group_stage(rw_group,
2780                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2781                                         CAL_SUBSTAGE_VFIFO_CENTER);
2782         return ret;
2783 }
2784
2785 /**
2786  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2787  *
2788  * Stage 4: Minimize latency.
2789  *
2790  * This function implements UniPHY calibration Stage 4, as explained in
2791  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2792  * Calibrate LFIFO to find smallest read latency.
2793  */
2794 static u32 rw_mgr_mem_calibrate_lfifo(void)
2795 {
2796         int found_one = 0;
2797
2798         debug("%s:%d\n", __func__, __LINE__);
2799
2800         /* Update info for sims. */
2801         reg_file_set_stage(CAL_STAGE_LFIFO);
2802         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2803
2804         /* Load up the patterns used by read calibration for all ranks */
2805         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2806
2807         do {
2808                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2809                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2810                            __func__, __LINE__, gbl->curr_read_lat);
2811
2812                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2813                                                               PASS_ALL_BITS, 1))
2814                         break;
2815
2816                 found_one = 1;
2817                 /*
2818                  * Reduce read latency and see if things are
2819                  * working correctly.
2820                  */
2821                 gbl->curr_read_lat--;
2822         } while (gbl->curr_read_lat > 0);
2823
2824         /* Reset the fifos to get pointers to known state. */
2825         writel(0, &phy_mgr_cmd->fifo_reset);
2826
2827         if (found_one) {
2828                 /* Add a fudge factor to the read latency that was determined */
2829                 gbl->curr_read_lat += 2;
2830                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2831                 debug_cond(DLEVEL == 2,
2832                            "%s:%d lfifo: success: using read_lat=%u\n",
2833                            __func__, __LINE__, gbl->curr_read_lat);
2834         } else {
2835                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2836                                         CAL_SUBSTAGE_READ_LATENCY);
2837
2838                 debug_cond(DLEVEL == 2,
2839                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2840                            __func__, __LINE__, gbl->curr_read_lat);
2841         }
2842
2843         return found_one;
2844 }
2845
2846 /**
2847  * search_window() - Search for the/part of the window with DM/DQS shift
2848  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2849  * @rank_bgn:           Rank number
2850  * @write_group:        Write Group
2851  * @bgn_curr:           Current window begin
2852  * @end_curr:           Current window end
2853  * @bgn_best:           Current best window begin
2854  * @end_best:           Current best window end
2855  * @win_best:           Size of the best window
2856  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2857  *
2858  * Search for the/part of the window with DM/DQS shift.
2859  */
2860 static void search_window(const int search_dm,
2861                           const u32 rank_bgn, const u32 write_group,
2862                           int *bgn_curr, int *end_curr, int *bgn_best,
2863                           int *end_best, int *win_best, int new_dqs)
2864 {
2865         u32 bit_chk;
2866         const int max = iocfg->io_out1_delay_max - new_dqs;
2867         int d, di;
2868
2869         /* Search for the/part of the window with DM/DQS shift. */
2870         for (di = max; di >= 0; di -= DELTA_D) {
2871                 if (search_dm) {
2872                         d = di;
2873                         scc_mgr_apply_group_dm_out1_delay(d);
2874                 } else {
2875                         /* For DQS, we go from 0...max */
2876                         d = max - di;
2877                         /*
2878                          * Note: This only shifts DQS, so are we limiting
2879                          *       ourselves to width of DQ unnecessarily.
2880                          */
2881                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2882                                                                 d + new_dqs);
2883                 }
2884
2885                 writel(0, &sdr_scc_mgr->update);
2886
2887                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2888                                                     PASS_ALL_BITS, &bit_chk,
2889                                                     0)) {
2890                         /* Set current end of the window. */
2891                         *end_curr = search_dm ? -d : d;
2892
2893                         /*
2894                          * If a starting edge of our window has not been seen
2895                          * this is our current start of the DM window.
2896                          */
2897                         if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2898                                 *bgn_curr = search_dm ? -d : d;
2899
2900                         /*
2901                          * If current window is bigger than best seen.
2902                          * Set best seen to be current window.
2903                          */
2904                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2905                                 *win_best = *end_curr - *bgn_curr + 1;
2906                                 *bgn_best = *bgn_curr;
2907                                 *end_best = *end_curr;
2908                         }
2909                 } else {
2910                         /* We just saw a failing test. Reset temp edge. */
2911                         *bgn_curr = iocfg->io_out1_delay_max + 1;
2912                         *end_curr = iocfg->io_out1_delay_max + 1;
2913
2914                         /* Early exit is only applicable to DQS. */
2915                         if (search_dm)
2916                                 continue;
2917
2918                         /*
2919                          * Early exit optimization: if the remaining delay
2920                          * chain space is less than already seen largest
2921                          * window we can exit.
2922                          */
2923                         if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2924                                 break;
2925                 }
2926         }
2927 }
2928
2929 /*
2930  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2931  * @rank_bgn:           Rank number
2932  * @write_group:        Write group
2933  * @test_bgn:           Rank at which the test begins
2934  *
2935  * Center all windows. Do per-bit-deskew to possibly increase size of
2936  * certain windows.
2937  */
2938 static int
2939 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2940                                    const u32 test_bgn)
2941 {
2942         int i;
2943         u32 sticky_bit_chk;
2944         u32 min_index;
2945         int left_edge[rwcfg->mem_dq_per_write_dqs];
2946         int right_edge[rwcfg->mem_dq_per_write_dqs];
2947         int mid;
2948         int mid_min, orig_mid_min;
2949         int new_dqs, start_dqs;
2950         int dq_margin, dqs_margin, dm_margin;
2951         int bgn_curr = iocfg->io_out1_delay_max + 1;
2952         int end_curr = iocfg->io_out1_delay_max + 1;
2953         int bgn_best = iocfg->io_out1_delay_max + 1;
2954         int end_best = iocfg->io_out1_delay_max + 1;
2955         int win_best = 0;
2956
2957         int ret;
2958
2959         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2960
2961         dm_margin = 0;
2962
2963         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2964                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2965                           (rwcfg->mem_dq_per_write_dqs << 2));
2966
2967         /* Per-bit deskew. */
2968
2969         /*
2970          * Set the left and right edge of each bit to an illegal value.
2971          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2972          */
2973         sticky_bit_chk = 0;
2974         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2975                 left_edge[i]  = iocfg->io_out1_delay_max + 1;
2976                 right_edge[i] = iocfg->io_out1_delay_max + 1;
2977         }
2978
2979         /* Search for the left edge of the window for each bit. */
2980         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2981                          &sticky_bit_chk,
2982                          left_edge, right_edge, 0);
2983
2984         /* Search for the right edge of the window for each bit. */
2985         ret = search_right_edge(1, rank_bgn, write_group, 0,
2986                                 start_dqs, 0,
2987                                 &sticky_bit_chk,
2988                                 left_edge, right_edge, 0);
2989         if (ret) {
2990                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2991                                         CAL_SUBSTAGE_WRITES_CENTER);
2992                 return -EINVAL;
2993         }
2994
2995         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2996
2997         /* Determine the amount we can change DQS (which is -mid_min). */
2998         orig_mid_min = mid_min;
2999         new_dqs = start_dqs;
3000         mid_min = 0;
3001         debug_cond(DLEVEL == 1,
3002                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3003                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3004
3005         /* Add delay to bring centre of all DQ windows to the same "level". */
3006         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3007                           min_index, 0, &dq_margin, &dqs_margin);
3008
3009         /* Move DQS */
3010         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3011         writel(0, &sdr_scc_mgr->update);
3012
3013         /* Centre DM */
3014         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3015
3016         /*
3017          * Set the left and right edge of each bit to an illegal value.
3018          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3019          */
3020         left_edge[0]  = iocfg->io_out1_delay_max + 1;
3021         right_edge[0] = iocfg->io_out1_delay_max + 1;
3022
3023         /* Search for the/part of the window with DM shift. */
3024         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3025                       &bgn_best, &end_best, &win_best, 0);
3026
3027         /* Reset DM delay chains to 0. */
3028         scc_mgr_apply_group_dm_out1_delay(0);
3029
3030         /*
3031          * Check to see if the current window nudges up aganist 0 delay.
3032          * If so we need to continue the search by shifting DQS otherwise DQS
3033          * search begins as a new search.
3034          */
3035         if (end_curr != 0) {
3036                 bgn_curr = iocfg->io_out1_delay_max + 1;
3037                 end_curr = iocfg->io_out1_delay_max + 1;
3038         }
3039
3040         /* Search for the/part of the window with DQS shifts. */
3041         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3042                       &bgn_best, &end_best, &win_best, new_dqs);
3043
3044         /* Assign left and right edge for cal and reporting. */
3045         left_edge[0] = -1 * bgn_best;
3046         right_edge[0] = end_best;
3047
3048         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3049                    __func__, __LINE__, left_edge[0], right_edge[0]);
3050
3051         /* Move DQS (back to orig). */
3052         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3053
3054         /* Move DM */
3055
3056         /* Find middle of window for the DM bit. */
3057         mid = (left_edge[0] - right_edge[0]) / 2;
3058
3059         /* Only move right, since we are not moving DQS/DQ. */
3060         if (mid < 0)
3061                 mid = 0;
3062
3063         /* dm_marign should fail if we never find a window. */
3064         if (win_best == 0)
3065                 dm_margin = -1;
3066         else
3067                 dm_margin = left_edge[0] - mid;
3068
3069         scc_mgr_apply_group_dm_out1_delay(mid);
3070         writel(0, &sdr_scc_mgr->update);
3071
3072         debug_cond(DLEVEL == 2,
3073                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3074                    __func__, __LINE__, left_edge[0], right_edge[0],
3075                    mid, dm_margin);
3076         /* Export values. */
3077         gbl->fom_out += dq_margin + dqs_margin;
3078
3079         debug_cond(DLEVEL == 2,
3080                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3081                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3082
3083         /*
3084          * Do not remove this line as it makes sure all of our
3085          * decisions have been applied.
3086          */
3087         writel(0, &sdr_scc_mgr->update);
3088
3089         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3090                 return -EINVAL;
3091
3092         return 0;
3093 }
3094
3095 /**
3096  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3097  * @rank_bgn:           Rank number
3098  * @group:              Read/Write Group
3099  * @test_bgn:           Rank at which the test begins
3100  *
3101  * Stage 2: Write Calibration Part One.
3102  *
3103  * This function implements UniPHY calibration Stage 2, as explained in
3104  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3105  */
3106 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3107                                        const u32 test_bgn)
3108 {
3109         int ret;
3110
3111         /* Update info for sims */
3112         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3113
3114         reg_file_set_group(group);
3115         reg_file_set_stage(CAL_STAGE_WRITES);
3116         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3117
3118         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3119         if (ret)
3120                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3121                                         CAL_SUBSTAGE_WRITES_CENTER);
3122
3123         return ret;
3124 }
3125
3126 /**
3127  * mem_precharge_and_activate() - Precharge all banks and activate
3128  *
3129  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3130  */
3131 static void mem_precharge_and_activate(void)
3132 {
3133         int r;
3134
3135         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3136                 /* Set rank. */
3137                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3138
3139                 /* Precharge all banks. */
3140                 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3141                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3142
3143                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3144                 writel(rwcfg->activate_0_and_1_wait1,
3145                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3146
3147                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3148                 writel(rwcfg->activate_0_and_1_wait2,
3149                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3150
3151                 /* Activate rows. */
3152                 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3153                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3154         }
3155 }
3156
3157 /**
3158  * mem_init_latency() - Configure memory RLAT and WLAT settings
3159  *
3160  * Configure memory RLAT and WLAT parameters.
3161  */
3162 static void mem_init_latency(void)
3163 {
3164         /*
3165          * For AV/CV, LFIFO is hardened and always runs at full rate
3166          * so max latency in AFI clocks, used here, is correspondingly
3167          * smaller.
3168          */
3169         const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3170         u32 rlat, wlat;
3171
3172         debug("%s:%d\n", __func__, __LINE__);
3173
3174         /*
3175          * Read in write latency.
3176          * WL for Hard PHY does not include additive latency.
3177          */
3178         wlat = readl(&data_mgr->t_wl_add);
3179         wlat += readl(&data_mgr->mem_t_add);
3180
3181         gbl->rw_wl_nop_cycles = wlat - 1;
3182
3183         /* Read in readl latency. */
3184         rlat = readl(&data_mgr->t_rl_add);
3185
3186         /* Set a pretty high read latency initially. */
3187         gbl->curr_read_lat = rlat + 16;
3188         if (gbl->curr_read_lat > max_latency)
3189                 gbl->curr_read_lat = max_latency;
3190
3191         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3192
3193         /* Advertise write latency. */
3194         writel(wlat, &phy_mgr_cfg->afi_wlat);
3195 }
3196
3197 /**
3198  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3199  *
3200  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3201  */
3202 static void mem_skip_calibrate(void)
3203 {
3204         u32 vfifo_offset;
3205         u32 i, j, r;
3206
3207         debug("%s:%d\n", __func__, __LINE__);
3208         /* Need to update every shadow register set used by the interface */
3209         for (r = 0; r < rwcfg->mem_number_of_ranks;
3210              r += NUM_RANKS_PER_SHADOW_REG) {
3211                 /*
3212                  * Set output phase alignment settings appropriate for
3213                  * skip calibration.
3214                  */
3215                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3216                         scc_mgr_set_dqs_en_phase(i, 0);
3217                         if (iocfg->dll_chain_length == 6)
3218                                 scc_mgr_set_dqdqs_output_phase(i, 6);
3219                         else
3220                                 scc_mgr_set_dqdqs_output_phase(i, 7);
3221                         /*
3222                          * Case:33398
3223                          *
3224                          * Write data arrives to the I/O two cycles before write
3225                          * latency is reached (720 deg).
3226                          *   -> due to bit-slip in a/c bus
3227                          *   -> to allow board skew where dqs is longer than ck
3228                          *      -> how often can this happen!?
3229                          *      -> can claim back some ptaps for high freq
3230                          *       support if we can relax this, but i digress...
3231                          *
3232                          * The write_clk leads mem_ck by 90 deg
3233                          * The minimum ptap of the OPA is 180 deg
3234                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3235                          * The write_clk is always delayed by 2 ptaps
3236                          *
3237                          * Hence, to make DQS aligned to CK, we need to delay
3238                          * DQS by:
3239                          *    (720 - 90 - 180 - 2) *
3240                          *      (360 / iocfg->dll_chain_length)
3241                          *
3242                          * Dividing the above by (360 / iocfg->dll_chain_length)
3243                          * gives us the number of ptaps, which simplies to:
3244                          *
3245                          *    (1.25 * iocfg->dll_chain_length - 2)
3246                          */
3247                         scc_mgr_set_dqdqs_output_phase(i,
3248                                        ((125 * iocfg->dll_chain_length) / 100) - 2);
3249                 }
3250                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3251                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3252
3253                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3254                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3255                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3256                 }
3257                 writel(0xff, &sdr_scc_mgr->dq_ena);
3258                 writel(0xff, &sdr_scc_mgr->dm_ena);
3259                 writel(0, &sdr_scc_mgr->update);
3260         }
3261
3262         /* Compensate for simulation model behaviour */
3263         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3264                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3265                 scc_mgr_load_dqs(i);
3266         }
3267         writel(0, &sdr_scc_mgr->update);
3268
3269         /*
3270          * ArriaV has hard FIFOs that can only be initialized by incrementing
3271          * in sequencer.
3272          */
3273         vfifo_offset = misccfg->calib_vfifo_offset;
3274         for (j = 0; j < vfifo_offset; j++)
3275                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3276         writel(0, &phy_mgr_cmd->fifo_reset);
3277
3278         /*
3279          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3280          * setting from generation-time constant.
3281          */
3282         gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3283         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3284 }
3285
3286 /**
3287  * mem_calibrate() - Memory calibration entry point.
3288  *
3289  * Perform memory calibration.
3290  */
3291 static u32 mem_calibrate(void)
3292 {
3293         u32 i;
3294         u32 rank_bgn, sr;
3295         u32 write_group, write_test_bgn;
3296         u32 read_group, read_test_bgn;
3297         u32 run_groups, current_run;
3298         u32 failing_groups = 0;
3299         u32 group_failed = 0;
3300
3301         const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3302                                 rwcfg->mem_if_write_dqs_width;
3303
3304         debug("%s:%d\n", __func__, __LINE__);
3305
3306         /* Initialize the data settings */
3307         gbl->error_substage = CAL_SUBSTAGE_NIL;
3308         gbl->error_stage = CAL_STAGE_NIL;
3309         gbl->error_group = 0xff;
3310         gbl->fom_in = 0;
3311         gbl->fom_out = 0;
3312
3313         /* Initialize WLAT and RLAT. */
3314         mem_init_latency();
3315
3316         /* Initialize bit slips. */
3317         mem_precharge_and_activate();
3318
3319         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3320                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3321                           SCC_MGR_GROUP_COUNTER_OFFSET);
3322                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3323                 if (i == 0)
3324                         scc_mgr_set_hhp_extras();
3325
3326                 scc_set_bypass_mode(i);
3327         }
3328
3329         /* Calibration is skipped. */
3330         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3331                 /*
3332                  * Set VFIFO and LFIFO to instant-on settings in skip
3333                  * calibration mode.
3334                  */
3335                 mem_skip_calibrate();
3336
3337                 /*
3338                  * Do not remove this line as it makes sure all of our
3339                  * decisions have been applied.
3340                  */
3341                 writel(0, &sdr_scc_mgr->update);
3342                 return 1;
3343         }
3344
3345         /* Calibration is not skipped. */
3346         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3347                 /*
3348                  * Zero all delay chain/phase settings for all
3349                  * groups and all shadow register sets.
3350                  */
3351                 scc_mgr_zero_all();
3352
3353                 run_groups = ~0;
3354
3355                 for (write_group = 0, write_test_bgn = 0; write_group
3356                         < rwcfg->mem_if_write_dqs_width; write_group++,
3357                         write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3358                         /* Initialize the group failure */
3359                         group_failed = 0;
3360
3361                         current_run = run_groups & ((1 <<
3362                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3363                         run_groups = run_groups >>
3364                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3365
3366                         if (current_run == 0)
3367                                 continue;
3368
3369                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3370                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3371                         scc_mgr_zero_group(write_group, 0);
3372
3373                         for (read_group = write_group * rwdqs_ratio,
3374                              read_test_bgn = 0;
3375                              read_group < (write_group + 1) * rwdqs_ratio;
3376                              read_group++,
3377                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3378                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3379                                         continue;
3380
3381                                 /* Calibrate the VFIFO */
3382                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3383                                                                read_test_bgn))
3384                                         continue;
3385
3386                                 if (!(gbl->phy_debug_mode_flags &
3387                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3388                                         return 0;
3389
3390                                 /* The group failed, we're done. */
3391                                 goto grp_failed;
3392                         }
3393
3394                         /* Calibrate the output side */
3395                         for (rank_bgn = 0, sr = 0;
3396                              rank_bgn < rwcfg->mem_number_of_ranks;
3397                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3398                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3399                                         continue;
3400
3401                                 /* Not needed in quick mode! */
3402                                 if (STATIC_CALIB_STEPS &
3403                                     CALIB_SKIP_DELAY_SWEEPS)
3404                                         continue;
3405
3406                                 /* Calibrate WRITEs */
3407                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3408                                                                  write_group,
3409                                                                  write_test_bgn))
3410                                         continue;
3411
3412                                 group_failed = 1;
3413                                 if (!(gbl->phy_debug_mode_flags &
3414                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3415                                         return 0;
3416                         }
3417
3418                         /* Some group failed, we're done. */
3419                         if (group_failed)
3420                                 goto grp_failed;
3421
3422                         for (read_group = write_group * rwdqs_ratio,
3423                              read_test_bgn = 0;
3424                              read_group < (write_group + 1) * rwdqs_ratio;
3425                              read_group++,
3426                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3427                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3428                                         continue;
3429
3430                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3431                                                                     read_test_bgn))
3432                                         continue;
3433
3434                                 if (!(gbl->phy_debug_mode_flags &
3435                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3436                                         return 0;
3437
3438                                 /* The group failed, we're done. */
3439                                 goto grp_failed;
3440                         }
3441
3442                         /* No group failed, continue as usual. */
3443                         continue;
3444
3445 grp_failed:             /* A group failed, increment the counter. */
3446                         failing_groups++;
3447                 }
3448
3449                 /*
3450                  * USER If there are any failing groups then report
3451                  * the failure.
3452                  */
3453                 if (failing_groups != 0)
3454                         return 0;
3455
3456                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3457                         continue;
3458
3459                 /* Calibrate the LFIFO */
3460                 if (!rw_mgr_mem_calibrate_lfifo())
3461                         return 0;
3462         }
3463
3464         /*
3465          * Do not remove this line as it makes sure all of our decisions
3466          * have been applied.
3467          */
3468         writel(0, &sdr_scc_mgr->update);
3469         return 1;
3470 }
3471
3472 /**
3473  * run_mem_calibrate() - Perform memory calibration
3474  *
3475  * This function triggers the entire memory calibration procedure.
3476  */
3477 static int run_mem_calibrate(void)
3478 {
3479         int pass;
3480         u32 ctrl_cfg;
3481
3482         debug("%s:%d\n", __func__, __LINE__);
3483
3484         /* Reset pass/fail status shown on afi_cal_success/fail */
3485         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3486
3487         /* Stop tracking manager. */
3488         ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3489         writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3490                &sdr_ctrl->ctrl_cfg);
3491
3492         phy_mgr_initialize();
3493         rw_mgr_mem_initialize();
3494
3495         /* Perform the actual memory calibration. */
3496         pass = mem_calibrate();
3497
3498         mem_precharge_and_activate();
3499         writel(0, &phy_mgr_cmd->fifo_reset);
3500
3501         /* Handoff. */
3502         rw_mgr_mem_handoff();
3503         /*
3504          * In Hard PHY this is a 2-bit control:
3505          * 0: AFI Mux Select
3506          * 1: DDIO Mux Select
3507          */
3508         writel(0x2, &phy_mgr_cfg->mux_sel);
3509
3510         /* Start tracking manager. */
3511         writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3512
3513         return pass;
3514 }
3515
3516 /**
3517  * debug_mem_calibrate() - Report result of memory calibration
3518  * @pass:       Value indicating whether calibration passed or failed
3519  *
3520  * This function reports the results of the memory calibration
3521  * and writes debug information into the register file.
3522  */
3523 static void debug_mem_calibrate(int pass)
3524 {
3525         u32 debug_info;
3526
3527         if (pass) {
3528                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3529
3530                 gbl->fom_in /= 2;
3531                 gbl->fom_out /= 2;
3532
3533                 if (gbl->fom_in > 0xff)
3534                         gbl->fom_in = 0xff;
3535
3536                 if (gbl->fom_out > 0xff)
3537                         gbl->fom_out = 0xff;
3538
3539                 /* Update the FOM in the register file */
3540                 debug_info = gbl->fom_in;
3541                 debug_info |= gbl->fom_out << 8;
3542                 writel(debug_info, &sdr_reg_file->fom);
3543
3544                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3545                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3546         } else {
3547                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3548
3549                 debug_info = gbl->error_stage;
3550                 debug_info |= gbl->error_substage << 8;
3551                 debug_info |= gbl->error_group << 16;
3552
3553                 writel(debug_info, &sdr_reg_file->failing_stage);
3554                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3555                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3556
3557                 /* Update the failing group/stage in the register file */
3558                 debug_info = gbl->error_stage;
3559                 debug_info |= gbl->error_substage << 8;
3560                 debug_info |= gbl->error_group << 16;
3561                 writel(debug_info, &sdr_reg_file->failing_stage);
3562         }
3563
3564         printf("%s: Calibration complete\n", __FILE__);
3565 }
3566
3567 /**
3568  * hc_initialize_rom_data() - Initialize ROM data
3569  *
3570  * Initialize ROM data.
3571  */
3572 static void hc_initialize_rom_data(void)
3573 {
3574         unsigned int nelem = 0;
3575         const u32 *rom_init;
3576         u32 i, addr;
3577
3578         socfpga_get_seq_inst_init(&rom_init, &nelem);
3579         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3580         for (i = 0; i < nelem; i++)
3581                 writel(rom_init[i], addr + (i << 2));
3582
3583         socfpga_get_seq_ac_init(&rom_init, &nelem);
3584         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3585         for (i = 0; i < nelem; i++)
3586                 writel(rom_init[i], addr + (i << 2));
3587 }
3588
3589 /**
3590  * initialize_reg_file() - Initialize SDR register file
3591  *
3592  * Initialize SDR register file.
3593  */
3594 static void initialize_reg_file(void)
3595 {
3596         /* Initialize the register file with the correct data */
3597         writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3598         writel(0, &sdr_reg_file->debug_data_addr);
3599         writel(0, &sdr_reg_file->cur_stage);
3600         writel(0, &sdr_reg_file->fom);
3601         writel(0, &sdr_reg_file->failing_stage);
3602         writel(0, &sdr_reg_file->debug1);
3603         writel(0, &sdr_reg_file->debug2);
3604 }
3605
3606 /**
3607  * initialize_hps_phy() - Initialize HPS PHY
3608  *
3609  * Initialize HPS PHY.
3610  */
3611 static void initialize_hps_phy(void)
3612 {
3613         u32 reg;
3614         /*
3615          * Tracking also gets configured here because it's in the
3616          * same register.
3617          */
3618         u32 trk_sample_count = 7500;
3619         u32 trk_long_idle_sample_count = (10 << 16) | 100;
3620         /*
3621          * Format is number of outer loops in the 16 MSB, sample
3622          * count in 16 LSB.
3623          */
3624
3625         reg = 0;
3626         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3627         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3628         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3629         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3630         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3631         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3632         /*
3633          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3634          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3635          */
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3637         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3638                 trk_sample_count);
3639         writel(reg, &sdr_ctrl->phy_ctrl0);
3640
3641         reg = 0;
3642         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3643                 trk_sample_count >>
3644                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3645         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3646                 trk_long_idle_sample_count);
3647         writel(reg, &sdr_ctrl->phy_ctrl1);
3648
3649         reg = 0;
3650         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3651                 trk_long_idle_sample_count >>
3652                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3653         writel(reg, &sdr_ctrl->phy_ctrl2);
3654 }
3655
3656 /**
3657  * initialize_tracking() - Initialize tracking
3658  *
3659  * Initialize the register file with usable initial data.
3660  */
3661 static void initialize_tracking(void)
3662 {
3663         /*
3664          * Initialize the register file with the correct data.
3665          * Compute usable version of value in case we skip full
3666          * computation later.
3667          */
3668         writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3669                             iocfg->delay_per_dchain_tap) - 1,
3670                &sdr_reg_file->dtaps_per_ptap);
3671
3672         /* trk_sample_count */
3673         writel(7500, &sdr_reg_file->trk_sample_count);
3674
3675         /* longidle outer loop [15:0] */
3676         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3677
3678         /*
3679          * longidle sample count [31:24]
3680          * trfc, worst case of 933Mhz 4Gb [23:16]
3681          * trcd, worst case [15:8]
3682          * vfifo wait [7:0]
3683          */
3684         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3685                &sdr_reg_file->delays);
3686
3687         /* mux delay */
3688         writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3689                (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3690                &sdr_reg_file->trk_rw_mgr_addr);
3691
3692         writel(rwcfg->mem_if_read_dqs_width,
3693                &sdr_reg_file->trk_read_dqs_width);
3694
3695         /* trefi [7:0] */
3696         writel((rwcfg->refresh_all << 24) | (1000 << 0),
3697                &sdr_reg_file->trk_rfsh);
3698 }
3699
3700 int sdram_calibration_full(void)
3701 {
3702         struct param_type my_param;
3703         struct gbl_type my_gbl;
3704         u32 pass;
3705
3706         memset(&my_param, 0, sizeof(my_param));
3707         memset(&my_gbl, 0, sizeof(my_gbl));
3708
3709         param = &my_param;
3710         gbl = &my_gbl;
3711
3712         rwcfg = socfpga_get_sdram_rwmgr_config();
3713         iocfg = socfpga_get_sdram_io_config();
3714         misccfg = socfpga_get_sdram_misc_config();
3715
3716         /* Set the calibration enabled by default */
3717         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3718         /*
3719          * Only sweep all groups (regardless of fail state) by default
3720          * Set enabled read test by default.
3721          */
3722 #if DISABLE_GUARANTEED_READ
3723         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3724 #endif
3725         /* Initialize the register file */
3726         initialize_reg_file();
3727
3728         /* Initialize any PHY CSR */
3729         initialize_hps_phy();
3730
3731         scc_mgr_initialize();
3732
3733         initialize_tracking();
3734
3735         printf("%s: Preparing to start memory calibration\n", __FILE__);
3736
3737         debug("%s:%d\n", __func__, __LINE__);
3738         debug_cond(DLEVEL == 1,
3739                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3740                    rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3741                    rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3742                    rwcfg->mem_virtual_groups_per_read_dqs,
3743                    rwcfg->mem_virtual_groups_per_write_dqs);
3744         debug_cond(DLEVEL == 1,
3745                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3746                    rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3747                    rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3748                    iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3749         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3750                    iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3751         debug_cond(DLEVEL == 1,
3752                    "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3753                    iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3754                    iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3755         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3756                    iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3757                    iocfg->io_out2_delay_max);
3758         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3759                    iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3760
3761         hc_initialize_rom_data();
3762
3763         /* update info for sims */
3764         reg_file_set_stage(CAL_STAGE_NIL);
3765         reg_file_set_group(0);
3766
3767         /*
3768          * Load global needed for those actions that require
3769          * some dynamic calibration support.
3770          */
3771         dyn_calib_steps = STATIC_CALIB_STEPS;
3772         /*
3773          * Load global to allow dynamic selection of delay loop settings
3774          * based on calibration mode.
3775          */
3776         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3777                 skip_delay_mask = 0xff;
3778         else
3779                 skip_delay_mask = 0x0;
3780
3781         pass = run_mem_calibrate();
3782         debug_mem_calibrate(pass);
3783         return pass;
3784 }