]> git.sur5r.net Git - u-boot/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Extract scc_mgr_set_hhp_extras()
[u-boot] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33
34 static struct socfpga_data_mgr *data_mgr =
35         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39
40 #define DELTA_D         1
41
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59         STATIC_SKIP_DELAY_LOOPS)
60
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72
73 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
74
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76         ((non_skip_value) & skip_delay_mask)
77
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83         uint32_t write_group, uint32_t use_dm,
84         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87         uint32_t substage)
88 {
89         /*
90          * Only set the global stage if there was not been any other
91          * failing group
92          */
93         if (gbl->error_stage == CAL_STAGE_NIL)  {
94                 gbl->error_substage = substage;
95                 gbl->error_stage = stage;
96                 gbl->error_group = group;
97         }
98 }
99
100 static void reg_file_set_group(u16 set_group)
101 {
102         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104
105 static void reg_file_set_stage(u8 set_stage)
106 {
107         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112         set_sub_stage &= 0xff;
113         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115
116 static void initialize(void)
117 {
118         debug("%s:%d\n", __func__, __LINE__);
119         /* USER calibration has control over path to memory */
120         /*
121          * In Hard PHY this is a 2-bit control:
122          * 0: AFI Mux Select
123          * 1: DDIO Mux Select
124          */
125         writel(0x3, &phy_mgr_cfg->mux_sel);
126
127         /* USER memory clock is not stable we begin initialization  */
128         writel(0, &phy_mgr_cfg->reset_mem_stbl);
129
130         /* USER calibration status all set to zero */
131         writel(0, &phy_mgr_cfg->cal_status);
132
133         writel(0, &phy_mgr_cfg->cal_debug_info);
134
135         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136                 param->read_correct_mask_vg  = ((uint32_t)1 <<
137                         (RW_MGR_MEM_DQ_PER_READ_DQS /
138                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139                 param->write_correct_mask_vg = ((uint32_t)1 <<
140                         (RW_MGR_MEM_DQ_PER_READ_DQS /
141                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142                 param->read_correct_mask     = ((uint32_t)1 <<
143                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144                 param->write_correct_mask    = ((uint32_t)1 <<
145                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146                 param->dm_correct_mask       = ((uint32_t)1 <<
147                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148                         - 1;
149         }
150 }
151
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154         uint32_t odt_mask_0 = 0;
155         uint32_t odt_mask_1 = 0;
156         uint32_t cs_and_odt_mask;
157
158         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160                         /*
161                          * 1 Rank
162                          * Read: ODT = 0
163                          * Write: ODT = 1
164                          */
165                         odt_mask_0 = 0x0;
166                         odt_mask_1 = 0x1;
167                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168                         /* 2 Ranks */
169                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170                                 /* - Dual-Slot , Single-Rank
171                                  * (1 chip-select per DIMM)
172                                  * OR
173                                  * - RDIMM, 4 total CS (2 CS per DIMM)
174                                  * means 2 DIMM
175                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
176                                  * both single rank
177                                  * with 2 CS each (special for RDIMM)
178                                  * Read: Turn on ODT on the opposite rank
179                                  * Write: Turn on ODT on all ranks
180                                  */
181                                 odt_mask_0 = 0x3 & ~(1 << rank);
182                                 odt_mask_1 = 0x3;
183                         } else {
184                                 /*
185                                  * USER - Single-Slot , Dual-rank DIMMs
186                                  * (2 chip-selects per DIMM)
187                                  * USER Read: Turn on ODT off on all ranks
188                                  * USER Write: Turn on ODT on active rank
189                                  */
190                                 odt_mask_0 = 0x0;
191                                 odt_mask_1 = 0x3 & (1 << rank);
192                         }
193                 } else {
194                         /* 4 Ranks
195                          * Read:
196                          * ----------+-----------------------+
197                          *           |                       |
198                          *           |         ODT           |
199                          * Read From +-----------------------+
200                          *   Rank    |  3  |  2  |  1  |  0  |
201                          * ----------+-----+-----+-----+-----+
202                          *     0     |  0  |  1  |  0  |  0  |
203                          *     1     |  1  |  0  |  0  |  0  |
204                          *     2     |  0  |  0  |  0  |  1  |
205                          *     3     |  0  |  0  |  1  |  0  |
206                          * ----------+-----+-----+-----+-----+
207                          *
208                          * Write:
209                          * ----------+-----------------------+
210                          *           |                       |
211                          *           |         ODT           |
212                          * Write To  +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  1  |
216                          *     1     |  1  |  0  |  1  |  0  |
217                          *     2     |  0  |  1  |  0  |  1  |
218                          *     3     |  1  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          */
221                         switch (rank) {
222                         case 0:
223                                 odt_mask_0 = 0x4;
224                                 odt_mask_1 = 0x5;
225                                 break;
226                         case 1:
227                                 odt_mask_0 = 0x8;
228                                 odt_mask_1 = 0xA;
229                                 break;
230                         case 2:
231                                 odt_mask_0 = 0x1;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 3:
235                                 odt_mask_0 = 0x2;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         }
239                 }
240         } else {
241                 odt_mask_0 = 0x0;
242                 odt_mask_1 = 0x0;
243         }
244
245         cs_and_odt_mask =
246                 (0xFF & ~(1 << rank)) |
247                 ((0xFF & odt_mask_0) << 8) |
248                 ((0xFF & odt_mask_1) << 16);
249         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:        Base offset in SCC Manager space
256  * @grp:        Read/Write group
257  * @val:        Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273         /*
274          * Clear register file for HPS. 16 (2^4) is the size of the
275          * full register file in the scc mgr:
276          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277          *                             MEM_IF_READ_DQS_WIDTH - 1);
278          */
279         int i;
280
281         for (i = 0; i < 16; i++) {
282                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283                            __func__, __LINE__, i);
284                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285         }
286 }
287
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311                     delay);
312 }
313
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327                     delay);
328 }
329
330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331 {
332         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334                     delay);
335 }
336
337 /* load up dqs config settings */
338 static void scc_mgr_load_dqs(uint32_t dqs)
339 {
340         writel(dqs, &sdr_scc_mgr->dqs_ena);
341 }
342
343 /* load up dqs io config settings */
344 static void scc_mgr_load_dqs_io(void)
345 {
346         writel(0, &sdr_scc_mgr->dqs_io_ena);
347 }
348
349 /* load up dq config settings */
350 static void scc_mgr_load_dq(uint32_t dq_in_group)
351 {
352         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353 }
354
355 /* load up dm config settings */
356 static void scc_mgr_load_dm(uint32_t dm)
357 {
358         writel(dm, &sdr_scc_mgr->dm_ena);
359 }
360
361 /**
362  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363  * @off:        Base offset in SCC Manager space
364  * @grp:        Read/Write group
365  * @val:        Value to be set
366  * @update:     If non-zero, trigger SCC Manager update for all ranks
367  *
368  * This function sets the SCC Manager (Scan Chain Control Manager) register
369  * and optionally triggers the SCC update for all ranks.
370  */
371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372                                   const int update)
373 {
374         u32 r;
375
376         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377              r += NUM_RANKS_PER_SHADOW_REG) {
378                 scc_mgr_set(off, grp, val);
379
380                 if (update || (r == 0)) {
381                         writel(grp, &sdr_scc_mgr->dqs_ena);
382                         writel(0, &sdr_scc_mgr->update);
383                 }
384         }
385 }
386
387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388 {
389         /*
390          * USER although the h/w doesn't support different phases per
391          * shadow register, for simplicity our scc manager modeling
392          * keeps different phase settings per shadow reg, and it's
393          * important for us to keep them in sync to match h/w.
394          * for efficiency, the scan chain update should occur only
395          * once to sr0.
396          */
397         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398                               read_group, phase, 0);
399 }
400
401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402                                                      uint32_t phase)
403 {
404         /*
405          * USER although the h/w doesn't support different phases per
406          * shadow register, for simplicity our scc manager modeling
407          * keeps different phase settings per shadow reg, and it's
408          * important for us to keep them in sync to match h/w.
409          * for efficiency, the scan chain update should occur only
410          * once to sr0.
411          */
412         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413                               write_group, phase, 0);
414 }
415
416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417                                                uint32_t delay)
418 {
419         /*
420          * In shadow register mode, the T11 settings are stored in
421          * registers in the core, which are updated by the DQS_ENA
422          * signals. Not issuing the SCC_MGR_UPD command allows us to
423          * save lots of rank switching overhead, by calling
424          * select_shadow_regs_for_update with update_scan_chains
425          * set to 0.
426          */
427         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428                               read_group, delay, 1);
429         writel(0, &sdr_scc_mgr->update);
430 }
431
432 /**
433  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434  * @write_group:        Write group
435  * @delay:              Delay value
436  *
437  * This function sets the OCT output delay in SCC manager.
438  */
439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
440 {
441         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443         const int base = write_group * ratio;
444         int i;
445         /*
446          * Load the setting in the SCC manager
447          * Although OCT affects only write data, the OCT delay is controlled
448          * by the DQS logic block which is instantiated once per read group.
449          * For protocols where a write group consists of multiple read groups,
450          * the setting must be set multiple times.
451          */
452         for (i = 0; i < ratio; i++)
453                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
454 }
455
456 /**
457  * scc_mgr_set_hhp_extras() - Set HHP extras.
458  *
459  * Load the fixed setting in the SCC manager HHP extras.
460  */
461 static void scc_mgr_set_hhp_extras(void)
462 {
463         /*
464          * Load the fixed setting in the SCC manager
465          * bits: 0:0 = 1'b1     - DQS bypass
466          * bits: 1:1 = 1'b1     - DQ bypass
467          * bits: 4:2 = 3'b001   - rfifo_mode
468          * bits: 6:5 = 2'b01    - rfifo clock_select
469          * bits: 7:7 = 1'b0     - separate gating from ungating setting
470          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
471          */
472         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
473                           (1 << 2) | (1 << 1) | (1 << 0);
474         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
475                          SCC_MGR_HHP_GLOBALS_OFFSET |
476                          SCC_MGR_HHP_EXTRAS_OFFSET;
477
478         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
479                    __func__, __LINE__);
480         writel(value, addr);
481         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
482                    __func__, __LINE__);
483 }
484
485 /*
486  * USER Zero all DQS config
487  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
488  */
489 static void scc_mgr_zero_all(void)
490 {
491         uint32_t i, r;
492
493         /*
494          * USER Zero all DQS config settings, across all groups and all
495          * shadow registers
496          */
497         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
498              NUM_RANKS_PER_SHADOW_REG) {
499                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
500                         /*
501                          * The phases actually don't exist on a per-rank basis,
502                          * but there's no harm updating them several times, so
503                          * let's keep the code simple.
504                          */
505                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
506                         scc_mgr_set_dqs_en_phase(i, 0);
507                         scc_mgr_set_dqs_en_delay(i, 0);
508                 }
509
510                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
511                         scc_mgr_set_dqdqs_output_phase(i, 0);
512                         /* av/cv don't have out2 */
513                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
514                 }
515         }
516
517         /* multicast to all DQS group enables */
518         writel(0xff, &sdr_scc_mgr->dqs_ena);
519         writel(0, &sdr_scc_mgr->update);
520 }
521
522 /**
523  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
524  * @write_group:        Write group
525  *
526  * Set bypass mode and trigger SCC update.
527  */
528 static void scc_set_bypass_mode(const u32 write_group)
529 {
530         /* Multicast to all DQ enables. */
531         writel(0xff, &sdr_scc_mgr->dq_ena);
532         writel(0xff, &sdr_scc_mgr->dm_ena);
533
534         /* Update current DQS IO enable. */
535         writel(0, &sdr_scc_mgr->dqs_io_ena);
536
537         /* Update the DQS logic. */
538         writel(write_group, &sdr_scc_mgr->dqs_ena);
539
540         /* Hit update. */
541         writel(0, &sdr_scc_mgr->update);
542 }
543
544 /**
545  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
546  * @write_group:        Write group
547  *
548  * Load DQS settings for Write Group, do not trigger SCC update.
549  */
550 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
551 {
552         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
553                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
554         const int base = write_group * ratio;
555         int i;
556         /*
557          * Load the setting in the SCC manager
558          * Although OCT affects only write data, the OCT delay is controlled
559          * by the DQS logic block which is instantiated once per read group.
560          * For protocols where a write group consists of multiple read groups,
561          * the setting must be set multiple times.
562          */
563         for (i = 0; i < ratio; i++)
564                 writel(base + i, &sdr_scc_mgr->dqs_ena);
565 }
566
567 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
568                                int32_t out_only)
569 {
570         uint32_t i, r;
571
572         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
573                 NUM_RANKS_PER_SHADOW_REG) {
574                 /* Zero all DQ config settings */
575                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
576                         scc_mgr_set_dq_out1_delay(i, 0);
577                         if (!out_only)
578                                 scc_mgr_set_dq_in_delay(i, 0);
579                 }
580
581                 /* multicast to all DQ enables */
582                 writel(0xff, &sdr_scc_mgr->dq_ena);
583
584                 /* Zero all DM config settings */
585                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
586                         scc_mgr_set_dm_out1_delay(i, 0);
587                 }
588
589                 /* multicast to all DM enables */
590                 writel(0xff, &sdr_scc_mgr->dm_ena);
591
592                 /* zero all DQS io settings */
593                 if (!out_only)
594                         scc_mgr_set_dqs_io_in_delay(0);
595                 /* av/cv don't have out2 */
596                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
597                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
598                 scc_mgr_load_dqs_for_write_group(write_group);
599
600                 /* multicast to all DQS IO enables (only 1) */
601                 writel(0, &sdr_scc_mgr->dqs_io_ena);
602
603                 /* hit update to zero everything */
604                 writel(0, &sdr_scc_mgr->update);
605         }
606 }
607
608 /*
609  * apply and load a particular input delay for the DQ pins in a group
610  * group_bgn is the index of the first dq pin (in the write group)
611  */
612 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
613 {
614         uint32_t i, p;
615
616         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
617                 scc_mgr_set_dq_in_delay(p, delay);
618                 scc_mgr_load_dq(p);
619         }
620 }
621
622 /**
623  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
624  * @delay:              Delay value
625  *
626  * Apply and load a particular output delay for the DQ pins in a group.
627  */
628 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
629 {
630         int i;
631
632         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
633                 scc_mgr_set_dq_out1_delay(i, delay);
634                 scc_mgr_load_dq(i);
635         }
636 }
637
638 /* apply and load a particular output delay for the DM pins in a group */
639 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
640 {
641         uint32_t i;
642
643         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
644                 scc_mgr_set_dm_out1_delay(i, delay1);
645                 scc_mgr_load_dm(i);
646         }
647 }
648
649
650 /* apply and load delay on both DQS and OCT out1 */
651 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
652                                                     uint32_t delay)
653 {
654         scc_mgr_set_dqs_out1_delay(delay);
655         scc_mgr_load_dqs_io();
656
657         scc_mgr_set_oct_out1_delay(write_group, delay);
658         scc_mgr_load_dqs_for_write_group(write_group);
659 }
660
661 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
662 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
663                                                   uint32_t group_bgn,
664                                                   uint32_t delay)
665 {
666         uint32_t i, p, new_delay;
667
668         /* dq shift */
669         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
670                 new_delay = READ_SCC_DQ_OUT2_DELAY;
671                 new_delay += delay;
672
673                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
674                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
675                                    %u > %lu => %lu", __func__, __LINE__,
676                                    write_group, group_bgn, delay, i, p, new_delay,
677                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
678                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
679                         new_delay = IO_IO_OUT2_DELAY_MAX;
680                 }
681
682                 scc_mgr_load_dq(i);
683         }
684
685         /* dm shift */
686         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
687                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
688                 new_delay += delay;
689
690                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
691                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
692                                    %u > %lu => %lu\n",  __func__, __LINE__,
693                                    write_group, group_bgn, delay, i, new_delay,
694                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
695                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
696                         new_delay = IO_IO_OUT2_DELAY_MAX;
697                 }
698
699                 scc_mgr_load_dm(i);
700         }
701
702         /* dqs shift */
703         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
704         new_delay += delay;
705
706         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
707                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
708                            " adding %u to OUT1\n", __func__, __LINE__,
709                            write_group, group_bgn, delay, new_delay,
710                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
711                            new_delay - IO_IO_OUT2_DELAY_MAX);
712                 scc_mgr_set_dqs_out1_delay(new_delay -
713                                            IO_IO_OUT2_DELAY_MAX);
714                 new_delay = IO_IO_OUT2_DELAY_MAX;
715         }
716
717         scc_mgr_load_dqs_io();
718
719         /* oct shift */
720         new_delay = READ_SCC_OCT_OUT2_DELAY;
721         new_delay += delay;
722
723         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
724                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
725                            " adding %u to OUT1\n", __func__, __LINE__,
726                            write_group, group_bgn, delay, new_delay,
727                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
728                            new_delay - IO_IO_OUT2_DELAY_MAX);
729                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
730                                            IO_IO_OUT2_DELAY_MAX);
731                 new_delay = IO_IO_OUT2_DELAY_MAX;
732         }
733
734         scc_mgr_load_dqs_for_write_group(write_group);
735 }
736
737 /*
738  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
739  * and to all ranks
740  */
741 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
742         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
743 {
744         uint32_t r;
745
746         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
747                 r += NUM_RANKS_PER_SHADOW_REG) {
748                 scc_mgr_apply_group_all_out_delay_add(write_group,
749                                                       group_bgn, delay);
750                 writel(0, &sdr_scc_mgr->update);
751         }
752 }
753
754 /* optimization used to recover some slots in ddr3 inst_rom */
755 /* could be applied to other protocols if we wanted to */
756 static void set_jump_as_return(void)
757 {
758         /*
759          * to save space, we replace return with jump to special shared
760          * RETURN instruction so we set the counter to large value so that
761          * we always jump
762          */
763         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
764         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
765 }
766
767 /*
768  * should always use constants as argument to ensure all computations are
769  * performed at compile time
770  */
771 static void delay_for_n_mem_clocks(const uint32_t clocks)
772 {
773         uint32_t afi_clocks;
774         uint8_t inner = 0;
775         uint8_t outer = 0;
776         uint16_t c_loop = 0;
777
778         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
779
780
781         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
782         /* scale (rounding up) to get afi clocks */
783
784         /*
785          * Note, we don't bother accounting for being off a little bit
786          * because of a few extra instructions in outer loops
787          * Note, the loops have a test at the end, and do the test before
788          * the decrement, and so always perform the loop
789          * 1 time more than the counter value
790          */
791         if (afi_clocks == 0) {
792                 ;
793         } else if (afi_clocks <= 0x100) {
794                 inner = afi_clocks-1;
795                 outer = 0;
796                 c_loop = 0;
797         } else if (afi_clocks <= 0x10000) {
798                 inner = 0xff;
799                 outer = (afi_clocks-1) >> 8;
800                 c_loop = 0;
801         } else {
802                 inner = 0xff;
803                 outer = 0xff;
804                 c_loop = (afi_clocks-1) >> 16;
805         }
806
807         /*
808          * rom instructions are structured as follows:
809          *
810          *    IDLE_LOOP2: jnz cntr0, TARGET_A
811          *    IDLE_LOOP1: jnz cntr1, TARGET_B
812          *                return
813          *
814          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
815          * TARGET_B is set to IDLE_LOOP2 as well
816          *
817          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
818          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
819          *
820          * a little confusing, but it helps save precious space in the inst_rom
821          * and sequencer rom and keeps the delays more accurate and reduces
822          * overhead
823          */
824         if (afi_clocks <= 0x100) {
825                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
826                         &sdr_rw_load_mgr_regs->load_cntr1);
827
828                 writel(RW_MGR_IDLE_LOOP1,
829                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
830
831                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
832                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833         } else {
834                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
835                         &sdr_rw_load_mgr_regs->load_cntr0);
836
837                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
838                         &sdr_rw_load_mgr_regs->load_cntr1);
839
840                 writel(RW_MGR_IDLE_LOOP2,
841                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
842
843                 writel(RW_MGR_IDLE_LOOP2,
844                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
845
846                 /* hack to get around compiler not being smart enough */
847                 if (afi_clocks <= 0x10000) {
848                         /* only need to run once */
849                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
850                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
851                 } else {
852                         do {
853                                 writel(RW_MGR_IDLE_LOOP2,
854                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
855                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
856                         } while (c_loop-- != 0);
857                 }
858         }
859         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
860 }
861
862 static void rw_mgr_mem_initialize(void)
863 {
864         uint32_t r;
865         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
866                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
867
868         debug("%s:%d\n", __func__, __LINE__);
869
870         /* The reset / cke part of initialization is broadcasted to all ranks */
871         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
872                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
873
874         /*
875          * Here's how you load register for a loop
876          * Counters are located @ 0x800
877          * Jump address are located @ 0xC00
878          * For both, registers 0 to 3 are selected using bits 3 and 2, like
879          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
880          * I know this ain't pretty, but Avalon bus throws away the 2 least
881          * significant bits
882          */
883
884         /* start with memory RESET activated */
885
886         /* tINIT = 200us */
887
888         /*
889          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
890          * If a and b are the number of iteration in 2 nested loops
891          * it takes the following number of cycles to complete the operation:
892          * number_of_cycles = ((2 + n) * a + 2) * b
893          * where n is the number of instruction in the inner loop
894          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
895          * b = 6A
896          */
897
898         /* Load counters */
899         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
900                &sdr_rw_load_mgr_regs->load_cntr0);
901         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
902                &sdr_rw_load_mgr_regs->load_cntr1);
903         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
904                &sdr_rw_load_mgr_regs->load_cntr2);
905
906         /* Load jump address */
907         writel(RW_MGR_INIT_RESET_0_CKE_0,
908                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
909         writel(RW_MGR_INIT_RESET_0_CKE_0,
910                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
911         writel(RW_MGR_INIT_RESET_0_CKE_0,
912                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
913
914         /* Execute count instruction */
915         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
916
917         /* indicate that memory is stable */
918         writel(1, &phy_mgr_cfg->reset_mem_stbl);
919
920         /*
921          * transition the RESET to high
922          * Wait for 500us
923          */
924
925         /*
926          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
927          * If a and b are the number of iteration in 2 nested loops
928          * it takes the following number of cycles to complete the operation
929          * number_of_cycles = ((2 + n) * a + 2) * b
930          * where n is the number of instruction in the inner loop
931          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
932          * b = FF
933          */
934
935         /* Load counters */
936         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
937                &sdr_rw_load_mgr_regs->load_cntr0);
938         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
939                &sdr_rw_load_mgr_regs->load_cntr1);
940         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
941                &sdr_rw_load_mgr_regs->load_cntr2);
942
943         /* Load jump address */
944         writel(RW_MGR_INIT_RESET_1_CKE_0,
945                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
946         writel(RW_MGR_INIT_RESET_1_CKE_0,
947                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
948         writel(RW_MGR_INIT_RESET_1_CKE_0,
949                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
950
951         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
952
953         /* bring up clock enable */
954
955         /* tXRP < 250 ck cycles */
956         delay_for_n_mem_clocks(250);
957
958         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
959                 if (param->skip_ranks[r]) {
960                         /* request to skip the rank */
961                         continue;
962                 }
963
964                 /* set rank */
965                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
966
967                 /*
968                  * USER Use Mirror-ed commands for odd ranks if address
969                  * mirrorring is on
970                  */
971                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
972                         set_jump_as_return();
973                         writel(RW_MGR_MRS2_MIRR, grpaddr);
974                         delay_for_n_mem_clocks(4);
975                         set_jump_as_return();
976                         writel(RW_MGR_MRS3_MIRR, grpaddr);
977                         delay_for_n_mem_clocks(4);
978                         set_jump_as_return();
979                         writel(RW_MGR_MRS1_MIRR, grpaddr);
980                         delay_for_n_mem_clocks(4);
981                         set_jump_as_return();
982                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
983                 } else {
984                         set_jump_as_return();
985                         writel(RW_MGR_MRS2, grpaddr);
986                         delay_for_n_mem_clocks(4);
987                         set_jump_as_return();
988                         writel(RW_MGR_MRS3, grpaddr);
989                         delay_for_n_mem_clocks(4);
990                         set_jump_as_return();
991                         writel(RW_MGR_MRS1, grpaddr);
992                         set_jump_as_return();
993                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
994                 }
995                 set_jump_as_return();
996                 writel(RW_MGR_ZQCL, grpaddr);
997
998                 /* tZQinit = tDLLK = 512 ck cycles */
999                 delay_for_n_mem_clocks(512);
1000         }
1001 }
1002
1003 /*
1004  * At the end of calibration we have to program the user settings in, and
1005  * USER  hand off the memory to the user.
1006  */
1007 static void rw_mgr_mem_handoff(void)
1008 {
1009         uint32_t r;
1010         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1011                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1012
1013         debug("%s:%d\n", __func__, __LINE__);
1014         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1015                 if (param->skip_ranks[r])
1016                         /* request to skip the rank */
1017                         continue;
1018                 /* set rank */
1019                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1020
1021                 /* precharge all banks ... */
1022                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1023
1024                 /* load up MR settings specified by user */
1025
1026                 /*
1027                  * Use Mirror-ed commands for odd ranks if address
1028                  * mirrorring is on
1029                  */
1030                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1031                         set_jump_as_return();
1032                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1033                         delay_for_n_mem_clocks(4);
1034                         set_jump_as_return();
1035                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1036                         delay_for_n_mem_clocks(4);
1037                         set_jump_as_return();
1038                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1039                         delay_for_n_mem_clocks(4);
1040                         set_jump_as_return();
1041                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1042                 } else {
1043                         set_jump_as_return();
1044                         writel(RW_MGR_MRS2, grpaddr);
1045                         delay_for_n_mem_clocks(4);
1046                         set_jump_as_return();
1047                         writel(RW_MGR_MRS3, grpaddr);
1048                         delay_for_n_mem_clocks(4);
1049                         set_jump_as_return();
1050                         writel(RW_MGR_MRS1, grpaddr);
1051                         delay_for_n_mem_clocks(4);
1052                         set_jump_as_return();
1053                         writel(RW_MGR_MRS0_USER, grpaddr);
1054                 }
1055                 /*
1056                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1057                  * other commands, but we will have plenty of NIOS cycles before
1058                  * actual handoff so its okay.
1059                  */
1060         }
1061 }
1062
1063 /*
1064  * performs a guaranteed read on the patterns we are going to use during a
1065  * read test to ensure memory works
1066  */
1067 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1068         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1069         uint32_t all_ranks)
1070 {
1071         uint32_t r, vg;
1072         uint32_t correct_mask_vg;
1073         uint32_t tmp_bit_chk;
1074         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1075                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1076         uint32_t addr;
1077         uint32_t base_rw_mgr;
1078
1079         *bit_chk = param->read_correct_mask;
1080         correct_mask_vg = param->read_correct_mask_vg;
1081
1082         for (r = rank_bgn; r < rank_end; r++) {
1083                 if (param->skip_ranks[r])
1084                         /* request to skip the rank */
1085                         continue;
1086
1087                 /* set rank */
1088                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1089
1090                 /* Load up a constant bursts of read commands */
1091                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1092                 writel(RW_MGR_GUARANTEED_READ,
1093                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1094
1095                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1096                 writel(RW_MGR_GUARANTEED_READ_CONT,
1097                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1098
1099                 tmp_bit_chk = 0;
1100                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1101                         /* reset the fifos to get pointers to known state */
1102
1103                         writel(0, &phy_mgr_cmd->fifo_reset);
1104                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1105                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1106
1107                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1108                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1109
1110                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1111                         writel(RW_MGR_GUARANTEED_READ, addr +
1112                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1113                                 vg) << 2));
1114
1115                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1116                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1117
1118                         if (vg == 0)
1119                                 break;
1120                 }
1121                 *bit_chk &= tmp_bit_chk;
1122         }
1123
1124         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1125         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1126
1127         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1128         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1129                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1130                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1131         return *bit_chk == param->read_correct_mask;
1132 }
1133
1134 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1135         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1136 {
1137         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1138                 num_tries, bit_chk, 1);
1139 }
1140
1141 /* load up the patterns we are going to use during a read test */
1142 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1143         uint32_t all_ranks)
1144 {
1145         uint32_t r;
1146         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1147                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1148
1149         debug("%s:%d\n", __func__, __LINE__);
1150         for (r = rank_bgn; r < rank_end; r++) {
1151                 if (param->skip_ranks[r])
1152                         /* request to skip the rank */
1153                         continue;
1154
1155                 /* set rank */
1156                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1157
1158                 /* Load up a constant bursts */
1159                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1160
1161                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1162                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1163
1164                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1165
1166                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1167                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1168
1169                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1170
1171                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1172                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1173
1174                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1175
1176                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1177                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1178
1179                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1180                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1181         }
1182
1183         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1184 }
1185
1186 /*
1187  * try a read and see if it returns correct data back. has dummy reads
1188  * inserted into the mix used to align dqs enable. has more thorough checks
1189  * than the regular read test.
1190  */
1191 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1192         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1193         uint32_t all_groups, uint32_t all_ranks)
1194 {
1195         uint32_t r, vg;
1196         uint32_t correct_mask_vg;
1197         uint32_t tmp_bit_chk;
1198         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1199                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1200         uint32_t addr;
1201         uint32_t base_rw_mgr;
1202
1203         *bit_chk = param->read_correct_mask;
1204         correct_mask_vg = param->read_correct_mask_vg;
1205
1206         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1207                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1208
1209         for (r = rank_bgn; r < rank_end; r++) {
1210                 if (param->skip_ranks[r])
1211                         /* request to skip the rank */
1212                         continue;
1213
1214                 /* set rank */
1215                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1216
1217                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1218
1219                 writel(RW_MGR_READ_B2B_WAIT1,
1220                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1221
1222                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1223                 writel(RW_MGR_READ_B2B_WAIT2,
1224                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1225
1226                 if (quick_read_mode)
1227                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1228                         /* need at least two (1+1) reads to capture failures */
1229                 else if (all_groups)
1230                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1231                 else
1232                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1233
1234                 writel(RW_MGR_READ_B2B,
1235                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1236                 if (all_groups)
1237                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1238                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1239                                &sdr_rw_load_mgr_regs->load_cntr3);
1240                 else
1241                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1242
1243                 writel(RW_MGR_READ_B2B,
1244                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1245
1246                 tmp_bit_chk = 0;
1247                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1248                         /* reset the fifos to get pointers to known state */
1249                         writel(0, &phy_mgr_cmd->fifo_reset);
1250                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1251                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1252
1253                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1254                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1255
1256                         if (all_groups)
1257                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1258                         else
1259                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1260
1261                         writel(RW_MGR_READ_B2B, addr +
1262                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1263                                vg) << 2));
1264
1265                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1266                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1267
1268                         if (vg == 0)
1269                                 break;
1270                 }
1271                 *bit_chk &= tmp_bit_chk;
1272         }
1273
1274         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1275         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1276
1277         if (all_correct) {
1278                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1279                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1280                            (%u == %u) => %lu", __func__, __LINE__, group,
1281                            all_groups, *bit_chk, param->read_correct_mask,
1282                            (long unsigned int)(*bit_chk ==
1283                            param->read_correct_mask));
1284                 return *bit_chk == param->read_correct_mask;
1285         } else  {
1286                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1287                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1288                            (%u != %lu) => %lu\n", __func__, __LINE__,
1289                            group, all_groups, *bit_chk, (long unsigned int)0,
1290                            (long unsigned int)(*bit_chk != 0x00));
1291                 return *bit_chk != 0x00;
1292         }
1293 }
1294
1295 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1296         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1297         uint32_t all_groups)
1298 {
1299         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1300                                               bit_chk, all_groups, 1);
1301 }
1302
1303 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1304 {
1305         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1306         (*v)++;
1307 }
1308
1309 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1310 {
1311         uint32_t i;
1312
1313         for (i = 0; i < VFIFO_SIZE-1; i++)
1314                 rw_mgr_incr_vfifo(grp, v);
1315 }
1316
1317 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1318 {
1319         uint32_t  v;
1320         uint32_t fail_cnt = 0;
1321         uint32_t test_status;
1322
1323         for (v = 0; v < VFIFO_SIZE; ) {
1324                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1325                            __func__, __LINE__, v);
1326                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1327                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1328                 if (!test_status) {
1329                         fail_cnt++;
1330
1331                         if (fail_cnt == 2)
1332                                 break;
1333                 }
1334
1335                 /* fiddle with FIFO */
1336                 rw_mgr_incr_vfifo(grp, &v);
1337         }
1338
1339         if (v >= VFIFO_SIZE) {
1340                 /* no failing read found!! Something must have gone wrong */
1341                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1342                            __func__, __LINE__);
1343                 return 0;
1344         } else {
1345                 return v;
1346         }
1347 }
1348
1349 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1350                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1351                               uint32_t *v, uint32_t *d, uint32_t *p,
1352                               uint32_t *i, uint32_t *max_working_cnt)
1353 {
1354         uint32_t found_begin = 0;
1355         uint32_t tmp_delay = 0;
1356         uint32_t test_status;
1357
1358         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1359                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1360                 *work_bgn = tmp_delay;
1361                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1362
1363                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1364                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1365                                 IO_DELAY_PER_OPA_TAP) {
1366                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1367
1368                                 test_status =
1369                                 rw_mgr_mem_calibrate_read_test_all_ranks
1370                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1371
1372                                 if (test_status) {
1373                                         *max_working_cnt = 1;
1374                                         found_begin = 1;
1375                                         break;
1376                                 }
1377                         }
1378
1379                         if (found_begin)
1380                                 break;
1381
1382                         if (*p > IO_DQS_EN_PHASE_MAX)
1383                                 /* fiddle with FIFO */
1384                                 rw_mgr_incr_vfifo(*grp, v);
1385                 }
1386
1387                 if (found_begin)
1388                         break;
1389         }
1390
1391         if (*i >= VFIFO_SIZE) {
1392                 /* cannot find working solution */
1393                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1394                            ptap/dtap\n", __func__, __LINE__);
1395                 return 0;
1396         } else {
1397                 return 1;
1398         }
1399 }
1400
1401 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1402                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1403                              uint32_t *p, uint32_t *max_working_cnt)
1404 {
1405         uint32_t found_begin = 0;
1406         uint32_t tmp_delay;
1407
1408         /* Special case code for backing up a phase */
1409         if (*p == 0) {
1410                 *p = IO_DQS_EN_PHASE_MAX;
1411                 rw_mgr_decr_vfifo(*grp, v);
1412         } else {
1413                 (*p)--;
1414         }
1415         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1416         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1417
1418         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1419                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1420                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1421
1422                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1423                                                              PASS_ONE_BIT,
1424                                                              bit_chk, 0)) {
1425                         found_begin = 1;
1426                         *work_bgn = tmp_delay;
1427                         break;
1428                 }
1429         }
1430
1431         /* We have found a working dtap before the ptap found above */
1432         if (found_begin == 1)
1433                 (*max_working_cnt)++;
1434
1435         /*
1436          * Restore VFIFO to old state before we decremented it
1437          * (if needed).
1438          */
1439         (*p)++;
1440         if (*p > IO_DQS_EN_PHASE_MAX) {
1441                 *p = 0;
1442                 rw_mgr_incr_vfifo(*grp, v);
1443         }
1444
1445         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1446 }
1447
1448 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1449                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1450                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1451                              uint32_t *work_end)
1452 {
1453         uint32_t found_end = 0;
1454
1455         (*p)++;
1456         *work_end += IO_DELAY_PER_OPA_TAP;
1457         if (*p > IO_DQS_EN_PHASE_MAX) {
1458                 /* fiddle with FIFO */
1459                 *p = 0;
1460                 rw_mgr_incr_vfifo(*grp, v);
1461         }
1462
1463         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1464                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1465                         += IO_DELAY_PER_OPA_TAP) {
1466                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1467
1468                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1469                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1470                                 found_end = 1;
1471                                 break;
1472                         } else {
1473                                 (*max_working_cnt)++;
1474                         }
1475                 }
1476
1477                 if (found_end)
1478                         break;
1479
1480                 if (*p > IO_DQS_EN_PHASE_MAX) {
1481                         /* fiddle with FIFO */
1482                         rw_mgr_incr_vfifo(*grp, v);
1483                         *p = 0;
1484                 }
1485         }
1486
1487         if (*i >= VFIFO_SIZE + 1) {
1488                 /* cannot see edge of failing read */
1489                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1490                            failed\n", __func__, __LINE__);
1491                 return 0;
1492         } else {
1493                 return 1;
1494         }
1495 }
1496
1497 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1498                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1499                                   uint32_t *p, uint32_t *work_mid,
1500                                   uint32_t *work_end)
1501 {
1502         int i;
1503         int tmp_delay = 0;
1504
1505         *work_mid = (*work_bgn + *work_end) / 2;
1506
1507         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1508                    *work_bgn, *work_end, *work_mid);
1509         /* Get the middle delay to be less than a VFIFO delay */
1510         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1511                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1512                 ;
1513         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1514         while (*work_mid > tmp_delay)
1515                 *work_mid -= tmp_delay;
1516         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1517
1518         tmp_delay = 0;
1519         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1520                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1521                 ;
1522         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1523         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1524         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1525                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1526                 ;
1527         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1528
1529         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1530         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1531
1532         /*
1533          * push vfifo until we can successfully calibrate. We can do this
1534          * because the largest possible margin in 1 VFIFO cycle.
1535          */
1536         for (i = 0; i < VFIFO_SIZE; i++) {
1537                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1538                            *v);
1539                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1540                                                              PASS_ONE_BIT,
1541                                                              bit_chk, 0)) {
1542                         break;
1543                 }
1544
1545                 /* fiddle with FIFO */
1546                 rw_mgr_incr_vfifo(*grp, v);
1547         }
1548
1549         if (i >= VFIFO_SIZE) {
1550                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1551                            failed\n", __func__, __LINE__);
1552                 return 0;
1553         } else {
1554                 return 1;
1555         }
1556 }
1557
1558 /* find a good dqs enable to use */
1559 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1560 {
1561         uint32_t v, d, p, i;
1562         uint32_t max_working_cnt;
1563         uint32_t bit_chk;
1564         uint32_t dtaps_per_ptap;
1565         uint32_t work_bgn, work_mid, work_end;
1566         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1567
1568         debug("%s:%d %u\n", __func__, __LINE__, grp);
1569
1570         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1571
1572         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1573         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1574
1575         /* ************************************************************** */
1576         /* * Step 0 : Determine number of delay taps for each phase tap * */
1577         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1578
1579         /* ********************************************************* */
1580         /* * Step 1 : First push vfifo until we get a failing read * */
1581         v = find_vfifo_read(grp, &bit_chk);
1582
1583         max_working_cnt = 0;
1584
1585         /* ******************************************************** */
1586         /* * step 2: find first working phase, increment in ptaps * */
1587         work_bgn = 0;
1588         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1589                                 &p, &i, &max_working_cnt) == 0)
1590                 return 0;
1591
1592         work_end = work_bgn;
1593
1594         /*
1595          * If d is 0 then the working window covers a phase tap and
1596          * we can follow the old procedure otherwise, we've found the beginning,
1597          * and we need to increment the dtaps until we find the end.
1598          */
1599         if (d == 0) {
1600                 /* ********************************************************* */
1601                 /* * step 3a: if we have room, back off by one and
1602                 increment in dtaps * */
1603
1604                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1605                                  &max_working_cnt);
1606
1607                 /* ********************************************************* */
1608                 /* * step 4a: go forward from working phase to non working
1609                 phase, increment in ptaps * */
1610                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1611                                          &i, &max_working_cnt, &work_end) == 0)
1612                         return 0;
1613
1614                 /* ********************************************************* */
1615                 /* * step 5a:  back off one from last, increment in dtaps  * */
1616
1617                 /* Special case code for backing up a phase */
1618                 if (p == 0) {
1619                         p = IO_DQS_EN_PHASE_MAX;
1620                         rw_mgr_decr_vfifo(grp, &v);
1621                 } else {
1622                         p = p - 1;
1623                 }
1624
1625                 work_end -= IO_DELAY_PER_OPA_TAP;
1626                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1627
1628                 /* * The actual increment of dtaps is done outside of
1629                 the if/else loop to share code */
1630                 d = 0;
1631
1632                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1633                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1634                            v, p);
1635         } else {
1636                 /* ******************************************************* */
1637                 /* * step 3-5b:  Find the right edge of the window using
1638                 delay taps   * */
1639                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1640                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1641                            v, p, d, work_bgn);
1642
1643                 work_end = work_bgn;
1644
1645                 /* * The actual increment of dtaps is done outside of the
1646                 if/else loop to share code */
1647
1648                 /* Only here to counterbalance a subtract later on which is
1649                 not needed if this branch of the algorithm is taken */
1650                 max_working_cnt++;
1651         }
1652
1653         /* The dtap increment to find the failing edge is done here */
1654         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1655                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1656                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1657                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1658                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1659
1660                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1661                                                                       PASS_ONE_BIT,
1662                                                                       &bit_chk, 0)) {
1663                                 break;
1664                         }
1665         }
1666
1667         /* Go back to working dtap */
1668         if (d != 0)
1669                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1670
1671         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1672                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1673                    v, p, d-1, work_end);
1674
1675         if (work_end < work_bgn) {
1676                 /* nil range */
1677                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1678                            failed\n", __func__, __LINE__);
1679                 return 0;
1680         }
1681
1682         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1683                    __func__, __LINE__, work_bgn, work_end);
1684
1685         /* *************************************************************** */
1686         /*
1687          * * We need to calculate the number of dtaps that equal a ptap
1688          * * To do that we'll back up a ptap and re-find the edge of the
1689          * * window using dtaps
1690          */
1691
1692         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1693                    for tracking\n", __func__, __LINE__);
1694
1695         /* Special case code for backing up a phase */
1696         if (p == 0) {
1697                 p = IO_DQS_EN_PHASE_MAX;
1698                 rw_mgr_decr_vfifo(grp, &v);
1699                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1700                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1701                            v, p);
1702         } else {
1703                 p = p - 1;
1704                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1705                            phase only: v=%u p=%u", __func__, __LINE__,
1706                            v, p);
1707         }
1708
1709         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1710
1711         /*
1712          * Increase dtap until we first see a passing read (in case the
1713          * window is smaller than a ptap),
1714          * and then a failing read to mark the edge of the window again
1715          */
1716
1717         /* Find a passing read */
1718         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1719                    __func__, __LINE__);
1720         found_passing_read = 0;
1721         found_failing_read = 0;
1722         initial_failing_dtap = d;
1723         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1724                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1725                            read d=%u\n", __func__, __LINE__, d);
1726                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1727
1728                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1729                                                              PASS_ONE_BIT,
1730                                                              &bit_chk, 0)) {
1731                         found_passing_read = 1;
1732                         break;
1733                 }
1734         }
1735
1736         if (found_passing_read) {
1737                 /* Find a failing read */
1738                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1739                            read\n", __func__, __LINE__);
1740                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1741                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1742                                    testing read d=%u\n", __func__, __LINE__, d);
1743                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1744
1745                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1746                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1747                                 found_failing_read = 1;
1748                                 break;
1749                         }
1750                 }
1751         } else {
1752                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1753                            calculate dtaps", __func__, __LINE__);
1754                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1755         }
1756
1757         /*
1758          * The dynamically calculated dtaps_per_ptap is only valid if we
1759          * found a passing/failing read. If we didn't, it means d hit the max
1760          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1761          * statically calculated value.
1762          */
1763         if (found_passing_read && found_failing_read)
1764                 dtaps_per_ptap = d - initial_failing_dtap;
1765
1766         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1767         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1768                    - %u = %u",  __func__, __LINE__, d,
1769                    initial_failing_dtap, dtaps_per_ptap);
1770
1771         /* ******************************************** */
1772         /* * step 6:  Find the centre of the window   * */
1773         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1774                                    &work_mid, &work_end) == 0)
1775                 return 0;
1776
1777         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1778                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1779                    v, p-1, d);
1780         return 1;
1781 }
1782
1783 /*
1784  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1785  * dq_in_delay values
1786  */
1787 static uint32_t
1788 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1789 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1790 {
1791         uint32_t found;
1792         uint32_t i;
1793         uint32_t p;
1794         uint32_t d;
1795         uint32_t r;
1796
1797         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1798                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1799                 /* we start at zero, so have one less dq to devide among */
1800
1801         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1802               test_bgn);
1803
1804         /* try different dq_in_delays since the dq path is shorter than dqs */
1805
1806         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1807              r += NUM_RANKS_PER_SHADOW_REG) {
1808                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1809                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1810                                    vfifo_find_dqs_", __func__, __LINE__);
1811                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1812                                write_group, read_group);
1813                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1814                         scc_mgr_set_dq_in_delay(p, d);
1815                         scc_mgr_load_dq(p);
1816                 }
1817                 writel(0, &sdr_scc_mgr->update);
1818         }
1819
1820         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1821
1822         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1823                    en_phase_sweep_dq", __func__, __LINE__);
1824         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1825                    chain to zero\n", write_group, read_group, found);
1826
1827         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1828              r += NUM_RANKS_PER_SHADOW_REG) {
1829                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1830                         i++, p++) {
1831                         scc_mgr_set_dq_in_delay(p, 0);
1832                         scc_mgr_load_dq(p);
1833                 }
1834                 writel(0, &sdr_scc_mgr->update);
1835         }
1836
1837         return found;
1838 }
1839
1840 /* per-bit deskew DQ and center */
1841 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1842         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1843         uint32_t use_read_test, uint32_t update_fom)
1844 {
1845         uint32_t i, p, d, min_index;
1846         /*
1847          * Store these as signed since there are comparisons with
1848          * signed numbers.
1849          */
1850         uint32_t bit_chk;
1851         uint32_t sticky_bit_chk;
1852         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1853         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1854         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1855         int32_t mid;
1856         int32_t orig_mid_min, mid_min;
1857         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1858                 final_dqs_en;
1859         int32_t dq_margin, dqs_margin;
1860         uint32_t stop;
1861         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1862         uint32_t addr;
1863
1864         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1865
1866         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1867         start_dqs = readl(addr + (read_group << 2));
1868         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1869                 start_dqs_en = readl(addr + ((read_group << 2)
1870                                      - IO_DQS_EN_DELAY_OFFSET));
1871
1872         /* set the left and right edge of each bit to an illegal value */
1873         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1874         sticky_bit_chk = 0;
1875         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1876                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1877                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1878         }
1879
1880         /* Search for the left edge of the window for each bit */
1881         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1882                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1883
1884                 writel(0, &sdr_scc_mgr->update);
1885
1886                 /*
1887                  * Stop searching when the read test doesn't pass AND when
1888                  * we've seen a passing read on every bit.
1889                  */
1890                 if (use_read_test) {
1891                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1892                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1893                                 &bit_chk, 0, 0);
1894                 } else {
1895                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1896                                                         0, PASS_ONE_BIT,
1897                                                         &bit_chk, 0);
1898                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1899                                 (read_group - (write_group *
1900                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1901                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1902                         stop = (bit_chk == 0);
1903                 }
1904                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1905                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1906                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1907                            && %u", __func__, __LINE__, d,
1908                            sticky_bit_chk,
1909                         param->read_correct_mask, stop);
1910
1911                 if (stop == 1) {
1912                         break;
1913                 } else {
1914                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1915                                 if (bit_chk & 1) {
1916                                         /* Remember a passing test as the
1917                                         left_edge */
1918                                         left_edge[i] = d;
1919                                 } else {
1920                                         /* If a left edge has not been seen yet,
1921                                         then a future passing test will mark
1922                                         this edge as the right edge */
1923                                         if (left_edge[i] ==
1924                                                 IO_IO_IN_DELAY_MAX + 1) {
1925                                                 right_edge[i] = -(d + 1);
1926                                         }
1927                                 }
1928                                 bit_chk = bit_chk >> 1;
1929                         }
1930                 }
1931         }
1932
1933         /* Reset DQ delay chains to 0 */
1934         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1935         sticky_bit_chk = 0;
1936         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1937                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1938                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1939                            i, left_edge[i], i, right_edge[i]);
1940
1941                 /*
1942                  * Check for cases where we haven't found the left edge,
1943                  * which makes our assignment of the the right edge invalid.
1944                  * Reset it to the illegal value.
1945                  */
1946                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1947                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1948                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1949                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1950                                    right_edge[%u]: %d\n", __func__, __LINE__,
1951                                    i, right_edge[i]);
1952                 }
1953
1954                 /*
1955                  * Reset sticky bit (except for bits where we have seen
1956                  * both the left and right edge).
1957                  */
1958                 sticky_bit_chk = sticky_bit_chk << 1;
1959                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1960                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1961                         sticky_bit_chk = sticky_bit_chk | 1;
1962                 }
1963
1964                 if (i == 0)
1965                         break;
1966         }
1967
1968         /* Search for the right edge of the window for each bit */
1969         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1970                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1971                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1972                         uint32_t delay = d + start_dqs_en;
1973                         if (delay > IO_DQS_EN_DELAY_MAX)
1974                                 delay = IO_DQS_EN_DELAY_MAX;
1975                         scc_mgr_set_dqs_en_delay(read_group, delay);
1976                 }
1977                 scc_mgr_load_dqs(read_group);
1978
1979                 writel(0, &sdr_scc_mgr->update);
1980
1981                 /*
1982                  * Stop searching when the read test doesn't pass AND when
1983                  * we've seen a passing read on every bit.
1984                  */
1985                 if (use_read_test) {
1986                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1987                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1988                                 &bit_chk, 0, 0);
1989                 } else {
1990                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1991                                                         0, PASS_ONE_BIT,
1992                                                         &bit_chk, 0);
1993                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1994                                 (read_group - (write_group *
1995                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1996                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1997                         stop = (bit_chk == 0);
1998                 }
1999                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2000                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2001
2002                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2003                            %u && %u", __func__, __LINE__, d,
2004                            sticky_bit_chk, param->read_correct_mask, stop);
2005
2006                 if (stop == 1) {
2007                         break;
2008                 } else {
2009                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2010                                 if (bit_chk & 1) {
2011                                         /* Remember a passing test as
2012                                         the right_edge */
2013                                         right_edge[i] = d;
2014                                 } else {
2015                                         if (d != 0) {
2016                                                 /* If a right edge has not been
2017                                                 seen yet, then a future passing
2018                                                 test will mark this edge as the
2019                                                 left edge */
2020                                                 if (right_edge[i] ==
2021                                                 IO_IO_IN_DELAY_MAX + 1) {
2022                                                         left_edge[i] = -(d + 1);
2023                                                 }
2024                                         } else {
2025                                                 /* d = 0 failed, but it passed
2026                                                 when testing the left edge,
2027                                                 so it must be marginal,
2028                                                 set it to -1 */
2029                                                 if (right_edge[i] ==
2030                                                         IO_IO_IN_DELAY_MAX + 1 &&
2031                                                         left_edge[i] !=
2032                                                         IO_IO_IN_DELAY_MAX
2033                                                         + 1) {
2034                                                         right_edge[i] = -1;
2035                                                 }
2036                                                 /* If a right edge has not been
2037                                                 seen yet, then a future passing
2038                                                 test will mark this edge as the
2039                                                 left edge */
2040                                                 else if (right_edge[i] ==
2041                                                         IO_IO_IN_DELAY_MAX +
2042                                                         1) {
2043                                                         left_edge[i] = -(d + 1);
2044                                                 }
2045                                         }
2046                                 }
2047
2048                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2049                                            d=%u]: ", __func__, __LINE__, d);
2050                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2051                                            (int)(bit_chk & 1), i, left_edge[i]);
2052                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2053                                            right_edge[i]);
2054                                 bit_chk = bit_chk >> 1;
2055                         }
2056                 }
2057         }
2058
2059         /* Check that all bits have a window */
2060         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2061                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2062                            %d right_edge[%u]: %d", __func__, __LINE__,
2063                            i, left_edge[i], i, right_edge[i]);
2064                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2065                         == IO_IO_IN_DELAY_MAX + 1)) {
2066                         /*
2067                          * Restore delay chain settings before letting the loop
2068                          * in rw_mgr_mem_calibrate_vfifo to retry different
2069                          * dqs/ck relationships.
2070                          */
2071                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2072                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2073                                 scc_mgr_set_dqs_en_delay(read_group,
2074                                                          start_dqs_en);
2075                         }
2076                         scc_mgr_load_dqs(read_group);
2077                         writel(0, &sdr_scc_mgr->update);
2078
2079                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2080                                    find edge [%u]: %d %d", __func__, __LINE__,
2081                                    i, left_edge[i], right_edge[i]);
2082                         if (use_read_test) {
2083                                 set_failing_group_stage(read_group *
2084                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2085                                         CAL_STAGE_VFIFO,
2086                                         CAL_SUBSTAGE_VFIFO_CENTER);
2087                         } else {
2088                                 set_failing_group_stage(read_group *
2089                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2090                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2091                                         CAL_SUBSTAGE_VFIFO_CENTER);
2092                         }
2093                         return 0;
2094                 }
2095         }
2096
2097         /* Find middle of window for each DQ bit */
2098         mid_min = left_edge[0] - right_edge[0];
2099         min_index = 0;
2100         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2101                 mid = left_edge[i] - right_edge[i];
2102                 if (mid < mid_min) {
2103                         mid_min = mid;
2104                         min_index = i;
2105                 }
2106         }
2107
2108         /*
2109          * -mid_min/2 represents the amount that we need to move DQS.
2110          * If mid_min is odd and positive we'll need to add one to
2111          * make sure the rounding in further calculations is correct
2112          * (always bias to the right), so just add 1 for all positive values.
2113          */
2114         if (mid_min > 0)
2115                 mid_min++;
2116
2117         mid_min = mid_min / 2;
2118
2119         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2120                    __func__, __LINE__, mid_min, min_index);
2121
2122         /* Determine the amount we can change DQS (which is -mid_min) */
2123         orig_mid_min = mid_min;
2124         new_dqs = start_dqs - mid_min;
2125         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2126                 new_dqs = IO_DQS_IN_DELAY_MAX;
2127         else if (new_dqs < 0)
2128                 new_dqs = 0;
2129
2130         mid_min = start_dqs - new_dqs;
2131         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2132                    mid_min, new_dqs);
2133
2134         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2135                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2136                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2137                 else if (start_dqs_en - mid_min < 0)
2138                         mid_min += start_dqs_en - mid_min;
2139         }
2140         new_dqs = start_dqs - mid_min;
2141
2142         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2143                    new_dqs=%d mid_min=%d\n", start_dqs,
2144                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2145                    new_dqs, mid_min);
2146
2147         /* Initialize data for export structures */
2148         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2149         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2150
2151         /* add delay to bring centre of all DQ windows to the same "level" */
2152         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2153                 /* Use values before divide by 2 to reduce round off error */
2154                 shift_dq = (left_edge[i] - right_edge[i] -
2155                         (left_edge[min_index] - right_edge[min_index]))/2  +
2156                         (orig_mid_min - mid_min);
2157
2158                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2159                            shift_dq[%u]=%d\n", i, shift_dq);
2160
2161                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2162                 temp_dq_in_delay1 = readl(addr + (p << 2));
2163                 temp_dq_in_delay2 = readl(addr + (i << 2));
2164
2165                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2166                         (int32_t)IO_IO_IN_DELAY_MAX) {
2167                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2168                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2169                         shift_dq = -(int32_t)temp_dq_in_delay1;
2170                 }
2171                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2172                            shift_dq[%u]=%d\n", i, shift_dq);
2173                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2174                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2175                 scc_mgr_load_dq(p);
2176
2177                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2178                            left_edge[i] - shift_dq + (-mid_min),
2179                            right_edge[i] + shift_dq - (-mid_min));
2180                 /* To determine values for export structures */
2181                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2182                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2183
2184                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2185                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2186         }
2187
2188         final_dqs = new_dqs;
2189         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2190                 final_dqs_en = start_dqs_en - mid_min;
2191
2192         /* Move DQS-en */
2193         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2194                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2195                 scc_mgr_load_dqs(read_group);
2196         }
2197
2198         /* Move DQS */
2199         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2200         scc_mgr_load_dqs(read_group);
2201         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2202                    dqs_margin=%d", __func__, __LINE__,
2203                    dq_margin, dqs_margin);
2204
2205         /*
2206          * Do not remove this line as it makes sure all of our decisions
2207          * have been applied. Apply the update bit.
2208          */
2209         writel(0, &sdr_scc_mgr->update);
2210
2211         return (dq_margin >= 0) && (dqs_margin >= 0);
2212 }
2213
2214 /*
2215  * calibrate the read valid prediction FIFO.
2216  *
2217  *  - read valid prediction will consist of finding a good DQS enable phase,
2218  * DQS enable delay, DQS input phase, and DQS input delay.
2219  *  - we also do a per-bit deskew on the DQ lines.
2220  */
2221 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2222                                            uint32_t test_bgn)
2223 {
2224         uint32_t p, d, rank_bgn, sr;
2225         uint32_t dtaps_per_ptap;
2226         uint32_t tmp_delay;
2227         uint32_t bit_chk;
2228         uint32_t grp_calibrated;
2229         uint32_t write_group, write_test_bgn;
2230         uint32_t failed_substage;
2231
2232         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2233
2234         /* update info for sims */
2235         reg_file_set_stage(CAL_STAGE_VFIFO);
2236
2237         write_group = read_group;
2238         write_test_bgn = test_bgn;
2239
2240         /* USER Determine number of delay taps for each phase tap */
2241         dtaps_per_ptap = 0;
2242         tmp_delay = 0;
2243         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2244                 dtaps_per_ptap++;
2245                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2246         }
2247         dtaps_per_ptap--;
2248         tmp_delay = 0;
2249
2250         /* update info for sims */
2251         reg_file_set_group(read_group);
2252
2253         grp_calibrated = 0;
2254
2255         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2256         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2257
2258         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2259                 /*
2260                  * In RLDRAMX we may be messing the delay of pins in
2261                  * the same write group but outside of the current read
2262                  * the group, but that's ok because we haven't
2263                  * calibrated output side yet.
2264                  */
2265                 if (d > 0) {
2266                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2267                         (write_group, write_test_bgn, d);
2268                 }
2269
2270                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2271                         p++) {
2272                         /* set a particular dqdqs phase */
2273                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2274
2275                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2276                                    p=%u d=%u\n", __func__, __LINE__,
2277                                    read_group, p, d);
2278
2279                         /*
2280                          * Load up the patterns used by read calibration
2281                          * using current DQDQS phase.
2282                          */
2283                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2284                         if (!(gbl->phy_debug_mode_flags &
2285                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2286                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2287                                     (read_group, 1, &bit_chk)) {
2288                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2289                                                    __func__, __LINE__);
2290                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2291                                                    read_group, p, d);
2292                                         break;
2293                                 }
2294                         }
2295
2296 /* case:56390 */
2297                         grp_calibrated = 1;
2298                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2299                     (write_group, read_group, test_bgn)) {
2300                                 /*
2301                                  * USER Read per-bit deskew can be done on a
2302                                  * per shadow register basis.
2303                                  */
2304                                 for (rank_bgn = 0, sr = 0;
2305                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2306                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2307                                         ++sr) {
2308                                         /*
2309                                          * Determine if this set of ranks
2310                                          * should be skipped entirely.
2311                                          */
2312                                         if (!param->skip_shadow_regs[sr]) {
2313                                                 /*
2314                                                  * If doing read after write
2315                                                  * calibration, do not update
2316                                                  * FOM, now - do it then.
2317                                                  */
2318                                         if (!rw_mgr_mem_calibrate_vfifo_center
2319                                                 (rank_bgn, write_group,
2320                                                 read_group, test_bgn, 1, 0)) {
2321                                                         grp_calibrated = 0;
2322                                                         failed_substage =
2323                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2324                                                 }
2325                                         }
2326                                 }
2327                         } else {
2328                                 grp_calibrated = 0;
2329                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2330                         }
2331                 }
2332         }
2333
2334         if (grp_calibrated == 0) {
2335                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2336                                         failed_substage);
2337                 return 0;
2338         }
2339
2340         /*
2341          * Reset the delay chains back to zero if they have moved > 1
2342          * (check for > 1 because loop will increase d even when pass in
2343          * first case).
2344          */
2345         if (d > 2)
2346                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2347
2348         return 1;
2349 }
2350
2351 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2352 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2353                                                uint32_t test_bgn)
2354 {
2355         uint32_t rank_bgn, sr;
2356         uint32_t grp_calibrated;
2357         uint32_t write_group;
2358
2359         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2360
2361         /* update info for sims */
2362
2363         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2364         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2365
2366         write_group = read_group;
2367
2368         /* update info for sims */
2369         reg_file_set_group(read_group);
2370
2371         grp_calibrated = 1;
2372         /* Read per-bit deskew can be done on a per shadow register basis */
2373         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2374                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2375                 /* Determine if this set of ranks should be skipped entirely */
2376                 if (!param->skip_shadow_regs[sr]) {
2377                 /* This is the last calibration round, update FOM here */
2378                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2379                                                                 write_group,
2380                                                                 read_group,
2381                                                                 test_bgn, 0,
2382                                                                 1)) {
2383                                 grp_calibrated = 0;
2384                         }
2385                 }
2386         }
2387
2388
2389         if (grp_calibrated == 0) {
2390                 set_failing_group_stage(write_group,
2391                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2392                                         CAL_SUBSTAGE_VFIFO_CENTER);
2393                 return 0;
2394         }
2395
2396         return 1;
2397 }
2398
2399 /* Calibrate LFIFO to find smallest read latency */
2400 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2401 {
2402         uint32_t found_one;
2403         uint32_t bit_chk;
2404
2405         debug("%s:%d\n", __func__, __LINE__);
2406
2407         /* update info for sims */
2408         reg_file_set_stage(CAL_STAGE_LFIFO);
2409         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2410
2411         /* Load up the patterns used by read calibration for all ranks */
2412         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2413         found_one = 0;
2414
2415         do {
2416                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2417                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2418                            __func__, __LINE__, gbl->curr_read_lat);
2419
2420                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2421                                                               NUM_READ_TESTS,
2422                                                               PASS_ALL_BITS,
2423                                                               &bit_chk, 1)) {
2424                         break;
2425                 }
2426
2427                 found_one = 1;
2428                 /* reduce read latency and see if things are working */
2429                 /* correctly */
2430                 gbl->curr_read_lat--;
2431         } while (gbl->curr_read_lat > 0);
2432
2433         /* reset the fifos to get pointers to known state */
2434
2435         writel(0, &phy_mgr_cmd->fifo_reset);
2436
2437         if (found_one) {
2438                 /* add a fudge factor to the read latency that was determined */
2439                 gbl->curr_read_lat += 2;
2440                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2441                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2442                            read_lat=%u\n", __func__, __LINE__,
2443                            gbl->curr_read_lat);
2444                 return 1;
2445         } else {
2446                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2447                                         CAL_SUBSTAGE_READ_LATENCY);
2448
2449                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2450                            read_lat=%u\n", __func__, __LINE__,
2451                            gbl->curr_read_lat);
2452                 return 0;
2453         }
2454 }
2455
2456 /*
2457  * issue write test command.
2458  * two variants are provided. one that just tests a write pattern and
2459  * another that tests datamask functionality.
2460  */
2461 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2462                                                   uint32_t test_dm)
2463 {
2464         uint32_t mcc_instruction;
2465         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2466                 ENABLE_SUPER_QUICK_CALIBRATION);
2467         uint32_t rw_wl_nop_cycles;
2468         uint32_t addr;
2469
2470         /*
2471          * Set counter and jump addresses for the right
2472          * number of NOP cycles.
2473          * The number of supported NOP cycles can range from -1 to infinity
2474          * Three different cases are handled:
2475          *
2476          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2477          *    mechanism will be used to insert the right number of NOPs
2478          *
2479          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2480          *    issuing the write command will jump straight to the
2481          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2482          *    data (for RLD), skipping
2483          *    the NOP micro-instruction all together
2484          *
2485          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2486          *    turned on in the same micro-instruction that issues the write
2487          *    command. Then we need
2488          *    to directly jump to the micro-instruction that sends out the data
2489          *
2490          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2491          *       (2 and 3). One jump-counter (0) is used to perform multiple
2492          *       write-read operations.
2493          *       one counter left to issue this command in "multiple-group" mode
2494          */
2495
2496         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2497
2498         if (rw_wl_nop_cycles == -1) {
2499                 /*
2500                  * CNTR 2 - We want to execute the special write operation that
2501                  * turns on DQS right away and then skip directly to the
2502                  * instruction that sends out the data. We set the counter to a
2503                  * large number so that the jump is always taken.
2504                  */
2505                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2506
2507                 /* CNTR 3 - Not used */
2508                 if (test_dm) {
2509                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2510                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2511                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2512                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2513                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2514                 } else {
2515                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2516                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2517                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2518                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2519                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2520                 }
2521         } else if (rw_wl_nop_cycles == 0) {
2522                 /*
2523                  * CNTR 2 - We want to skip the NOP operation and go straight
2524                  * to the DQS enable instruction. We set the counter to a large
2525                  * number so that the jump is always taken.
2526                  */
2527                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2528
2529                 /* CNTR 3 - Not used */
2530                 if (test_dm) {
2531                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2532                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2533                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2534                 } else {
2535                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2536                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2537                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2538                 }
2539         } else {
2540                 /*
2541                  * CNTR 2 - In this case we want to execute the next instruction
2542                  * and NOT take the jump. So we set the counter to 0. The jump
2543                  * address doesn't count.
2544                  */
2545                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2546                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2547
2548                 /*
2549                  * CNTR 3 - Set the nop counter to the number of cycles we
2550                  * need to loop for, minus 1.
2551                  */
2552                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2553                 if (test_dm) {
2554                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2555                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2556                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2557                 } else {
2558                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2559                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2560                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2561                 }
2562         }
2563
2564         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2565                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2566
2567         if (quick_write_mode)
2568                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2569         else
2570                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2571
2572         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2573
2574         /*
2575          * CNTR 1 - This is used to ensure enough time elapses
2576          * for read data to come back.
2577          */
2578         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2579
2580         if (test_dm) {
2581                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2582                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2583         } else {
2584                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2585                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2586         }
2587
2588         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2589         writel(mcc_instruction, addr + (group << 2));
2590 }
2591
2592 /* Test writes, can check for a single bit pass or multiple bit pass */
2593 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2594         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2595         uint32_t *bit_chk, uint32_t all_ranks)
2596 {
2597         uint32_t r;
2598         uint32_t correct_mask_vg;
2599         uint32_t tmp_bit_chk;
2600         uint32_t vg;
2601         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2602                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2603         uint32_t addr_rw_mgr;
2604         uint32_t base_rw_mgr;
2605
2606         *bit_chk = param->write_correct_mask;
2607         correct_mask_vg = param->write_correct_mask_vg;
2608
2609         for (r = rank_bgn; r < rank_end; r++) {
2610                 if (param->skip_ranks[r]) {
2611                         /* request to skip the rank */
2612                         continue;
2613                 }
2614
2615                 /* set rank */
2616                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2617
2618                 tmp_bit_chk = 0;
2619                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2620                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2621                         /* reset the fifos to get pointers to known state */
2622                         writel(0, &phy_mgr_cmd->fifo_reset);
2623
2624                         tmp_bit_chk = tmp_bit_chk <<
2625                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2626                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2627                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2628                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2629                                 use_dm);
2630
2631                         base_rw_mgr = readl(addr_rw_mgr);
2632                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2633                         if (vg == 0)
2634                                 break;
2635                 }
2636                 *bit_chk &= tmp_bit_chk;
2637         }
2638
2639         if (all_correct) {
2640                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2641                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2642                            %u => %lu", write_group, use_dm,
2643                            *bit_chk, param->write_correct_mask,
2644                            (long unsigned int)(*bit_chk ==
2645                            param->write_correct_mask));
2646                 return *bit_chk == param->write_correct_mask;
2647         } else {
2648                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2649                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2650                        write_group, use_dm, *bit_chk);
2651                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2652                         (long unsigned int)(*bit_chk != 0));
2653                 return *bit_chk != 0x00;
2654         }
2655 }
2656
2657 /*
2658  * center all windows. do per-bit-deskew to possibly increase size of
2659  * certain windows.
2660  */
2661 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2662         uint32_t write_group, uint32_t test_bgn)
2663 {
2664         uint32_t i, p, min_index;
2665         int32_t d;
2666         /*
2667          * Store these as signed since there are comparisons with
2668          * signed numbers.
2669          */
2670         uint32_t bit_chk;
2671         uint32_t sticky_bit_chk;
2672         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2673         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2674         int32_t mid;
2675         int32_t mid_min, orig_mid_min;
2676         int32_t new_dqs, start_dqs, shift_dq;
2677         int32_t dq_margin, dqs_margin, dm_margin;
2678         uint32_t stop;
2679         uint32_t temp_dq_out1_delay;
2680         uint32_t addr;
2681
2682         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2683
2684         dm_margin = 0;
2685
2686         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2687         start_dqs = readl(addr +
2688                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2689
2690         /* per-bit deskew */
2691
2692         /*
2693          * set the left and right edge of each bit to an illegal value
2694          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2695          */
2696         sticky_bit_chk = 0;
2697         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2698                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2699                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2700         }
2701
2702         /* Search for the left edge of the window for each bit */
2703         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2704                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2705
2706                 writel(0, &sdr_scc_mgr->update);
2707
2708                 /*
2709                  * Stop searching when the read test doesn't pass AND when
2710                  * we've seen a passing read on every bit.
2711                  */
2712                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2713                         0, PASS_ONE_BIT, &bit_chk, 0);
2714                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2715                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2716                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2717                            == %u && %u [bit_chk= %u ]\n",
2718                         d, sticky_bit_chk, param->write_correct_mask,
2719                         stop, bit_chk);
2720
2721                 if (stop == 1) {
2722                         break;
2723                 } else {
2724                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2725                                 if (bit_chk & 1) {
2726                                         /*
2727                                          * Remember a passing test as the
2728                                          * left_edge.
2729                                          */
2730                                         left_edge[i] = d;
2731                                 } else {
2732                                         /*
2733                                          * If a left edge has not been seen
2734                                          * yet, then a future passing test will
2735                                          * mark this edge as the right edge.
2736                                          */
2737                                         if (left_edge[i] ==
2738                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2739                                                 right_edge[i] = -(d + 1);
2740                                         }
2741                                 }
2742                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2743                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2744                                            (int)(bit_chk & 1), i, left_edge[i]);
2745                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2746                                        right_edge[i]);
2747                                 bit_chk = bit_chk >> 1;
2748                         }
2749                 }
2750         }
2751
2752         /* Reset DQ delay chains to 0 */
2753         scc_mgr_apply_group_dq_out1_delay(0);
2754         sticky_bit_chk = 0;
2755         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2756                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2757                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2758                            i, left_edge[i], i, right_edge[i]);
2759
2760                 /*
2761                  * Check for cases where we haven't found the left edge,
2762                  * which makes our assignment of the the right edge invalid.
2763                  * Reset it to the illegal value.
2764                  */
2765                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2766                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2767                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2768                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2769                                    right_edge[%u]: %d\n", __func__, __LINE__,
2770                                    i, right_edge[i]);
2771                 }
2772
2773                 /*
2774                  * Reset sticky bit (except for bits where we have
2775                  * seen the left edge).
2776                  */
2777                 sticky_bit_chk = sticky_bit_chk << 1;
2778                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2779                         sticky_bit_chk = sticky_bit_chk | 1;
2780
2781                 if (i == 0)
2782                         break;
2783         }
2784
2785         /* Search for the right edge of the window for each bit */
2786         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2787                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2788                                                         d + start_dqs);
2789
2790                 writel(0, &sdr_scc_mgr->update);
2791
2792                 /*
2793                  * Stop searching when the read test doesn't pass AND when
2794                  * we've seen a passing read on every bit.
2795                  */
2796                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2797                         0, PASS_ONE_BIT, &bit_chk, 0);
2798
2799                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2800                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2801
2802                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2803                            %u && %u\n", d, sticky_bit_chk,
2804                            param->write_correct_mask, stop);
2805
2806                 if (stop == 1) {
2807                         if (d == 0) {
2808                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2809                                         i++) {
2810                                         /* d = 0 failed, but it passed when
2811                                         testing the left edge, so it must be
2812                                         marginal, set it to -1 */
2813                                         if (right_edge[i] ==
2814                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2815                                                 left_edge[i] !=
2816                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2817                                                 right_edge[i] = -1;
2818                                         }
2819                                 }
2820                         }
2821                         break;
2822                 } else {
2823                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2824                                 if (bit_chk & 1) {
2825                                         /*
2826                                          * Remember a passing test as
2827                                          * the right_edge.
2828                                          */
2829                                         right_edge[i] = d;
2830                                 } else {
2831                                         if (d != 0) {
2832                                                 /*
2833                                                  * If a right edge has not
2834                                                  * been seen yet, then a future
2835                                                  * passing test will mark this
2836                                                  * edge as the left edge.
2837                                                  */
2838                                                 if (right_edge[i] ==
2839                                                     IO_IO_OUT1_DELAY_MAX + 1)
2840                                                         left_edge[i] = -(d + 1);
2841                                         } else {
2842                                                 /*
2843                                                  * d = 0 failed, but it passed
2844                                                  * when testing the left edge,
2845                                                  * so it must be marginal, set
2846                                                  * it to -1.
2847                                                  */
2848                                                 if (right_edge[i] ==
2849                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2850                                                     left_edge[i] !=
2851                                                     IO_IO_OUT1_DELAY_MAX + 1)
2852                                                         right_edge[i] = -1;
2853                                                 /*
2854                                                  * If a right edge has not been
2855                                                  * seen yet, then a future
2856                                                  * passing test will mark this
2857                                                  * edge as the left edge.
2858                                                  */
2859                                                 else if (right_edge[i] ==
2860                                                         IO_IO_OUT1_DELAY_MAX +
2861                                                         1)
2862                                                         left_edge[i] = -(d + 1);
2863                                         }
2864                                 }
2865                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2866                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2867                                            (int)(bit_chk & 1), i, left_edge[i]);
2868                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2869                                            right_edge[i]);
2870                                 bit_chk = bit_chk >> 1;
2871                         }
2872                 }
2873         }
2874
2875         /* Check that all bits have a window */
2876         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2877                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2878                            %d right_edge[%u]: %d", __func__, __LINE__,
2879                            i, left_edge[i], i, right_edge[i]);
2880                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2881                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2882                         set_failing_group_stage(test_bgn + i,
2883                                                 CAL_STAGE_WRITES,
2884                                                 CAL_SUBSTAGE_WRITES_CENTER);
2885                         return 0;
2886                 }
2887         }
2888
2889         /* Find middle of window for each DQ bit */
2890         mid_min = left_edge[0] - right_edge[0];
2891         min_index = 0;
2892         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2893                 mid = left_edge[i] - right_edge[i];
2894                 if (mid < mid_min) {
2895                         mid_min = mid;
2896                         min_index = i;
2897                 }
2898         }
2899
2900         /*
2901          * -mid_min/2 represents the amount that we need to move DQS.
2902          * If mid_min is odd and positive we'll need to add one to
2903          * make sure the rounding in further calculations is correct
2904          * (always bias to the right), so just add 1 for all positive values.
2905          */
2906         if (mid_min > 0)
2907                 mid_min++;
2908         mid_min = mid_min / 2;
2909         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2910                    __LINE__, mid_min);
2911
2912         /* Determine the amount we can change DQS (which is -mid_min) */
2913         orig_mid_min = mid_min;
2914         new_dqs = start_dqs;
2915         mid_min = 0;
2916         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2917                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2918         /* Initialize data for export structures */
2919         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2920         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2921
2922         /* add delay to bring centre of all DQ windows to the same "level" */
2923         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2924                 /* Use values before divide by 2 to reduce round off error */
2925                 shift_dq = (left_edge[i] - right_edge[i] -
2926                         (left_edge[min_index] - right_edge[min_index]))/2  +
2927                 (orig_mid_min - mid_min);
2928
2929                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2930                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2931
2932                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2933                 temp_dq_out1_delay = readl(addr + (i << 2));
2934                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2935                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2936                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2937                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2938                         shift_dq = -(int32_t)temp_dq_out1_delay;
2939                 }
2940                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2941                            i, shift_dq);
2942                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2943                 scc_mgr_load_dq(i);
2944
2945                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2946                            left_edge[i] - shift_dq + (-mid_min),
2947                            right_edge[i] + shift_dq - (-mid_min));
2948                 /* To determine values for export structures */
2949                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2950                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2951
2952                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2953                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2954         }
2955
2956         /* Move DQS */
2957         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2958         writel(0, &sdr_scc_mgr->update);
2959
2960         /* Centre DM */
2961         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2962
2963         /*
2964          * set the left and right edge of each bit to an illegal value,
2965          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2966          */
2967         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2968         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2969         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2970         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2971         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2972         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2973         int32_t win_best = 0;
2974
2975         /* Search for the/part of the window with DM shift */
2976         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2977                 scc_mgr_apply_group_dm_out1_delay(d);
2978                 writel(0, &sdr_scc_mgr->update);
2979
2980                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2981                                                     PASS_ALL_BITS, &bit_chk,
2982                                                     0)) {
2983                         /* USE Set current end of the window */
2984                         end_curr = -d;
2985                         /*
2986                          * If a starting edge of our window has not been seen
2987                          * this is our current start of the DM window.
2988                          */
2989                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2990                                 bgn_curr = -d;
2991
2992                         /*
2993                          * If current window is bigger than best seen.
2994                          * Set best seen to be current window.
2995                          */
2996                         if ((end_curr-bgn_curr+1) > win_best) {
2997                                 win_best = end_curr-bgn_curr+1;
2998                                 bgn_best = bgn_curr;
2999                                 end_best = end_curr;
3000                         }
3001                 } else {
3002                         /* We just saw a failing test. Reset temp edge */
3003                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3004                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3005                         }
3006                 }
3007
3008
3009         /* Reset DM delay chains to 0 */
3010         scc_mgr_apply_group_dm_out1_delay(0);
3011
3012         /*
3013          * Check to see if the current window nudges up aganist 0 delay.
3014          * If so we need to continue the search by shifting DQS otherwise DQS
3015          * search begins as a new search. */
3016         if (end_curr != 0) {
3017                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3018                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3019         }
3020
3021         /* Search for the/part of the window with DQS shifts */
3022         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3023                 /*
3024                  * Note: This only shifts DQS, so are we limiting ourselve to
3025                  * width of DQ unnecessarily.
3026                  */
3027                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3028                                                         d + new_dqs);
3029
3030                 writel(0, &sdr_scc_mgr->update);
3031                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3032                                                     PASS_ALL_BITS, &bit_chk,
3033                                                     0)) {
3034                         /* USE Set current end of the window */
3035                         end_curr = d;
3036                         /*
3037                          * If a beginning edge of our window has not been seen
3038                          * this is our current begin of the DM window.
3039                          */
3040                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3041                                 bgn_curr = d;
3042
3043                         /*
3044                          * If current window is bigger than best seen. Set best
3045                          * seen to be current window.
3046                          */
3047                         if ((end_curr-bgn_curr+1) > win_best) {
3048                                 win_best = end_curr-bgn_curr+1;
3049                                 bgn_best = bgn_curr;
3050                                 end_best = end_curr;
3051                         }
3052                 } else {
3053                         /* We just saw a failing test. Reset temp edge */
3054                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3055                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3056
3057                         /* Early exit optimization: if ther remaining delay
3058                         chain space is less than already seen largest window
3059                         we can exit */
3060                         if ((win_best-1) >
3061                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3062                                         break;
3063                                 }
3064                         }
3065                 }
3066
3067         /* assign left and right edge for cal and reporting; */
3068         left_edge[0] = -1*bgn_best;
3069         right_edge[0] = end_best;
3070
3071         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3072                    __LINE__, left_edge[0], right_edge[0]);
3073
3074         /* Move DQS (back to orig) */
3075         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3076
3077         /* Move DM */
3078
3079         /* Find middle of window for the DM bit */
3080         mid = (left_edge[0] - right_edge[0]) / 2;
3081
3082         /* only move right, since we are not moving DQS/DQ */
3083         if (mid < 0)
3084                 mid = 0;
3085
3086         /* dm_marign should fail if we never find a window */
3087         if (win_best == 0)
3088                 dm_margin = -1;
3089         else
3090                 dm_margin = left_edge[0] - mid;
3091
3092         scc_mgr_apply_group_dm_out1_delay(mid);
3093         writel(0, &sdr_scc_mgr->update);
3094
3095         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3096                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3097                    right_edge[0], mid, dm_margin);
3098         /* Export values */
3099         gbl->fom_out += dq_margin + dqs_margin;
3100
3101         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3102                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3103                    dq_margin, dqs_margin, dm_margin);
3104
3105         /*
3106          * Do not remove this line as it makes sure all of our
3107          * decisions have been applied.
3108          */
3109         writel(0, &sdr_scc_mgr->update);
3110         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3111 }
3112
3113 /* calibrate the write operations */
3114 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3115         uint32_t test_bgn)
3116 {
3117         /* update info for sims */
3118         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3119
3120         reg_file_set_stage(CAL_STAGE_WRITES);
3121         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3122
3123         reg_file_set_group(g);
3124
3125         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3126                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3127                                         CAL_SUBSTAGE_WRITES_CENTER);
3128                 return 0;
3129         }
3130
3131         return 1;
3132 }
3133
3134 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3135 static void mem_precharge_and_activate(void)
3136 {
3137         uint32_t r;
3138
3139         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3140                 if (param->skip_ranks[r]) {
3141                         /* request to skip the rank */
3142                         continue;
3143                 }
3144
3145                 /* set rank */
3146                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3147
3148                 /* precharge all banks ... */
3149                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3150                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3151
3152                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3153                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3154                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3155
3156                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3157                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3158                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3159
3160                 /* activate rows */
3161                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3162                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3163         }
3164 }
3165
3166 /* Configure various memory related parameters. */
3167 static void mem_config(void)
3168 {
3169         uint32_t rlat, wlat;
3170         uint32_t rw_wl_nop_cycles;
3171         uint32_t max_latency;
3172
3173         debug("%s:%d\n", __func__, __LINE__);
3174         /* read in write and read latency */
3175         wlat = readl(&data_mgr->t_wl_add);
3176         wlat += readl(&data_mgr->mem_t_add);
3177
3178         /* WL for hard phy does not include additive latency */
3179
3180         /*
3181          * add addtional write latency to offset the address/command extra
3182          * clock cycle. We change the AC mux setting causing AC to be delayed
3183          * by one mem clock cycle. Only do this for DDR3
3184          */
3185         wlat = wlat + 1;
3186
3187         rlat = readl(&data_mgr->t_rl_add);
3188
3189         rw_wl_nop_cycles = wlat - 2;
3190         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3191
3192         /*
3193          * For AV/CV, lfifo is hardened and always runs at full rate so
3194          * max latency in AFI clocks, used here, is correspondingly smaller.
3195          */
3196         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3197         /* configure for a burst length of 8 */
3198
3199         /* write latency */
3200         /* Adjust Write Latency for Hard PHY */
3201         wlat = wlat + 1;
3202
3203         /* set a pretty high read latency initially */
3204         gbl->curr_read_lat = rlat + 16;
3205
3206         if (gbl->curr_read_lat > max_latency)
3207                 gbl->curr_read_lat = max_latency;
3208
3209         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3210
3211         /* advertise write latency */
3212         gbl->curr_write_lat = wlat;
3213         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3214
3215         /* initialize bit slips */
3216         mem_precharge_and_activate();
3217 }
3218
3219 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3220 static void mem_skip_calibrate(void)
3221 {
3222         uint32_t vfifo_offset;
3223         uint32_t i, j, r;
3224
3225         debug("%s:%d\n", __func__, __LINE__);
3226         /* Need to update every shadow register set used by the interface */
3227         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3228                 r += NUM_RANKS_PER_SHADOW_REG) {
3229                 /*
3230                  * Set output phase alignment settings appropriate for
3231                  * skip calibration.
3232                  */
3233                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3234                         scc_mgr_set_dqs_en_phase(i, 0);
3235 #if IO_DLL_CHAIN_LENGTH == 6
3236                         scc_mgr_set_dqdqs_output_phase(i, 6);
3237 #else
3238                         scc_mgr_set_dqdqs_output_phase(i, 7);
3239 #endif
3240                         /*
3241                          * Case:33398
3242                          *
3243                          * Write data arrives to the I/O two cycles before write
3244                          * latency is reached (720 deg).
3245                          *   -> due to bit-slip in a/c bus
3246                          *   -> to allow board skew where dqs is longer than ck
3247                          *      -> how often can this happen!?
3248                          *      -> can claim back some ptaps for high freq
3249                          *       support if we can relax this, but i digress...
3250                          *
3251                          * The write_clk leads mem_ck by 90 deg
3252                          * The minimum ptap of the OPA is 180 deg
3253                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3254                          * The write_clk is always delayed by 2 ptaps
3255                          *
3256                          * Hence, to make DQS aligned to CK, we need to delay
3257                          * DQS by:
3258                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3259                          *
3260                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3261                          * gives us the number of ptaps, which simplies to:
3262                          *
3263                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3264                          */
3265                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3266                                 IO_DLL_CHAIN_LENGTH - 2));
3267                 }
3268                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3269                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3270
3271                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3272                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3273                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3274                 }
3275                 writel(0xff, &sdr_scc_mgr->dq_ena);
3276                 writel(0xff, &sdr_scc_mgr->dm_ena);
3277                 writel(0, &sdr_scc_mgr->update);
3278         }
3279
3280         /* Compensate for simulation model behaviour */
3281         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3282                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3283                 scc_mgr_load_dqs(i);
3284         }
3285         writel(0, &sdr_scc_mgr->update);
3286
3287         /*
3288          * ArriaV has hard FIFOs that can only be initialized by incrementing
3289          * in sequencer.
3290          */
3291         vfifo_offset = CALIB_VFIFO_OFFSET;
3292         for (j = 0; j < vfifo_offset; j++) {
3293                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3294         }
3295         writel(0, &phy_mgr_cmd->fifo_reset);
3296
3297         /*
3298          * For ACV with hard lfifo, we get the skip-cal setting from
3299          * generation-time constant.
3300          */
3301         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3302         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3303 }
3304
3305 /* Memory calibration entry point */
3306 static uint32_t mem_calibrate(void)
3307 {
3308         uint32_t i;
3309         uint32_t rank_bgn, sr;
3310         uint32_t write_group, write_test_bgn;
3311         uint32_t read_group, read_test_bgn;
3312         uint32_t run_groups, current_run;
3313         uint32_t failing_groups = 0;
3314         uint32_t group_failed = 0;
3315         uint32_t sr_failed = 0;
3316
3317         debug("%s:%d\n", __func__, __LINE__);
3318         /* Initialize the data settings */
3319
3320         gbl->error_substage = CAL_SUBSTAGE_NIL;
3321         gbl->error_stage = CAL_STAGE_NIL;
3322         gbl->error_group = 0xff;
3323         gbl->fom_in = 0;
3324         gbl->fom_out = 0;
3325
3326         mem_config();
3327
3328         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3329                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3330                           SCC_MGR_GROUP_COUNTER_OFFSET);
3331                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3332                 if (i == 0)
3333                         scc_mgr_set_hhp_extras();
3334
3335                 scc_set_bypass_mode(i);
3336         }
3337
3338         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3339                 /*
3340                  * Set VFIFO and LFIFO to instant-on settings in skip
3341                  * calibration mode.
3342                  */
3343                 mem_skip_calibrate();
3344         } else {
3345                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3346                         /*
3347                          * Zero all delay chain/phase settings for all
3348                          * groups and all shadow register sets.
3349                          */
3350                         scc_mgr_zero_all();
3351
3352                         run_groups = ~param->skip_groups;
3353
3354                         for (write_group = 0, write_test_bgn = 0; write_group
3355                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3356                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3357                                 /* Initialized the group failure */
3358                                 group_failed = 0;
3359
3360                                 current_run = run_groups & ((1 <<
3361                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3362                                 run_groups = run_groups >>
3363                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3364
3365                                 if (current_run == 0)
3366                                         continue;
3367
3368                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3369                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3370                                 scc_mgr_zero_group(write_group, write_test_bgn,
3371                                                    0);
3372
3373                                 for (read_group = write_group *
3374                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3375                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3376                                         read_test_bgn = 0;
3377                                         read_group < (write_group + 1) *
3378                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3379                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3380                                         group_failed == 0;
3381                                         read_group++, read_test_bgn +=
3382                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3383                                         /* Calibrate the VFIFO */
3384                                         if (!((STATIC_CALIB_STEPS) &
3385                                                 CALIB_SKIP_VFIFO)) {
3386                                                 if (!rw_mgr_mem_calibrate_vfifo
3387                                                         (read_group,
3388                                                         read_test_bgn)) {
3389                                                         group_failed = 1;
3390
3391                                                         if (!(gbl->
3392                                                         phy_debug_mode_flags &
3393                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3394                                                                 return 0;
3395                                                         }
3396                                                 }
3397                                         }
3398                                 }
3399
3400                                 /* Calibrate the output side */
3401                                 if (group_failed == 0)  {
3402                                         for (rank_bgn = 0, sr = 0; rank_bgn
3403                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3404                                                 rank_bgn +=
3405                                                 NUM_RANKS_PER_SHADOW_REG,
3406                                                 ++sr) {
3407                                                 sr_failed = 0;
3408                                                 if (!((STATIC_CALIB_STEPS) &
3409                                                 CALIB_SKIP_WRITES)) {
3410                                                         if ((STATIC_CALIB_STEPS)
3411                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3412                                                 /* not needed in quick mode! */
3413                                                         } else {
3414                                                 /*
3415                                                  * Determine if this set of
3416                                                  * ranks should be skipped
3417                                                  * entirely.
3418                                                  */
3419                                         if (!param->skip_shadow_regs[sr]) {
3420                                                 if (!rw_mgr_mem_calibrate_writes
3421                                                 (rank_bgn, write_group,
3422                                                 write_test_bgn)) {
3423                                                         sr_failed = 1;
3424                                                         if (!(gbl->
3425                                                         phy_debug_mode_flags &
3426                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3427                                                                 return 0;
3428                                                                         }
3429                                                                         }
3430                                                                 }
3431                                                         }
3432                                                 }
3433                                                 if (sr_failed != 0)
3434                                                         group_failed = 1;
3435                                         }
3436                                 }
3437
3438                                 if (group_failed == 0) {
3439                                         for (read_group = write_group *
3440                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3441                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3442                                         read_test_bgn = 0;
3443                                                 read_group < (write_group + 1)
3444                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3445                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3446                                                 group_failed == 0;
3447                                                 read_group++, read_test_bgn +=
3448                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3449                                                 if (!((STATIC_CALIB_STEPS) &
3450                                                         CALIB_SKIP_WRITES)) {
3451                                         if (!rw_mgr_mem_calibrate_vfifo_end
3452                                                 (read_group, read_test_bgn)) {
3453                                                         group_failed = 1;
3454
3455                                                 if (!(gbl->phy_debug_mode_flags
3456                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3457                                                                 return 0;
3458                                                                 }
3459                                                         }
3460                                                 }
3461                                         }
3462                                 }
3463
3464                                 if (group_failed != 0)
3465                                         failing_groups++;
3466                         }
3467
3468                         /*
3469                          * USER If there are any failing groups then report
3470                          * the failure.
3471                          */
3472                         if (failing_groups != 0)
3473                                 return 0;
3474
3475                         /* Calibrate the LFIFO */
3476                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3477                                 /*
3478                                  * If we're skipping groups as part of debug,
3479                                  * don't calibrate LFIFO.
3480                                  */
3481                                 if (param->skip_groups == 0) {
3482                                         if (!rw_mgr_mem_calibrate_lfifo())
3483                                                 return 0;
3484                                 }
3485                         }
3486                 }
3487         }
3488
3489         /*
3490          * Do not remove this line as it makes sure all of our decisions
3491          * have been applied.
3492          */
3493         writel(0, &sdr_scc_mgr->update);
3494         return 1;
3495 }
3496
3497 static uint32_t run_mem_calibrate(void)
3498 {
3499         uint32_t pass;
3500         uint32_t debug_info;
3501
3502         debug("%s:%d\n", __func__, __LINE__);
3503
3504         /* Reset pass/fail status shown on afi_cal_success/fail */
3505         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3506
3507         /* stop tracking manger */
3508         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3509
3510         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3511
3512         initialize();
3513         rw_mgr_mem_initialize();
3514
3515         pass = mem_calibrate();
3516
3517         mem_precharge_and_activate();
3518         writel(0, &phy_mgr_cmd->fifo_reset);
3519
3520         /*
3521          * Handoff:
3522          * Don't return control of the PHY back to AFI when in debug mode.
3523          */
3524         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3525                 rw_mgr_mem_handoff();
3526                 /*
3527                  * In Hard PHY this is a 2-bit control:
3528                  * 0: AFI Mux Select
3529                  * 1: DDIO Mux Select
3530                  */
3531                 writel(0x2, &phy_mgr_cfg->mux_sel);
3532         }
3533
3534         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3535
3536         if (pass) {
3537                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3538
3539                 gbl->fom_in /= 2;
3540                 gbl->fom_out /= 2;
3541
3542                 if (gbl->fom_in > 0xff)
3543                         gbl->fom_in = 0xff;
3544
3545                 if (gbl->fom_out > 0xff)
3546                         gbl->fom_out = 0xff;
3547
3548                 /* Update the FOM in the register file */
3549                 debug_info = gbl->fom_in;
3550                 debug_info |= gbl->fom_out << 8;
3551                 writel(debug_info, &sdr_reg_file->fom);
3552
3553                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3554                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3555         } else {
3556                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3557
3558                 debug_info = gbl->error_stage;
3559                 debug_info |= gbl->error_substage << 8;
3560                 debug_info |= gbl->error_group << 16;
3561
3562                 writel(debug_info, &sdr_reg_file->failing_stage);
3563                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3564                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3565
3566                 /* Update the failing group/stage in the register file */
3567                 debug_info = gbl->error_stage;
3568                 debug_info |= gbl->error_substage << 8;
3569                 debug_info |= gbl->error_group << 16;
3570                 writel(debug_info, &sdr_reg_file->failing_stage);
3571         }
3572
3573         return pass;
3574 }
3575
3576 /**
3577  * hc_initialize_rom_data() - Initialize ROM data
3578  *
3579  * Initialize ROM data.
3580  */
3581 static void hc_initialize_rom_data(void)
3582 {
3583         u32 i, addr;
3584
3585         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3586         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3587                 writel(inst_rom_init[i], addr + (i << 2));
3588
3589         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3590         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3591                 writel(ac_rom_init[i], addr + (i << 2));
3592 }
3593
3594 /**
3595  * initialize_reg_file() - Initialize SDR register file
3596  *
3597  * Initialize SDR register file.
3598  */
3599 static void initialize_reg_file(void)
3600 {
3601         /* Initialize the register file with the correct data */
3602         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3603         writel(0, &sdr_reg_file->debug_data_addr);
3604         writel(0, &sdr_reg_file->cur_stage);
3605         writel(0, &sdr_reg_file->fom);
3606         writel(0, &sdr_reg_file->failing_stage);
3607         writel(0, &sdr_reg_file->debug1);
3608         writel(0, &sdr_reg_file->debug2);
3609 }
3610
3611 /**
3612  * initialize_hps_phy() - Initialize HPS PHY
3613  *
3614  * Initialize HPS PHY.
3615  */
3616 static void initialize_hps_phy(void)
3617 {
3618         uint32_t reg;
3619         /*
3620          * Tracking also gets configured here because it's in the
3621          * same register.
3622          */
3623         uint32_t trk_sample_count = 7500;
3624         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3625         /*
3626          * Format is number of outer loops in the 16 MSB, sample
3627          * count in 16 LSB.
3628          */
3629
3630         reg = 0;
3631         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3632         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3633         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3634         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3635         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3637         /*
3638          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3639          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3640          */
3641         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3642         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3643                 trk_sample_count);
3644         writel(reg, &sdr_ctrl->phy_ctrl0);
3645
3646         reg = 0;
3647         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3648                 trk_sample_count >>
3649                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3650         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3651                 trk_long_idle_sample_count);
3652         writel(reg, &sdr_ctrl->phy_ctrl1);
3653
3654         reg = 0;
3655         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3656                 trk_long_idle_sample_count >>
3657                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3658         writel(reg, &sdr_ctrl->phy_ctrl2);
3659 }
3660
3661 static void initialize_tracking(void)
3662 {
3663         uint32_t concatenated_longidle = 0x0;
3664         uint32_t concatenated_delays = 0x0;
3665         uint32_t concatenated_rw_addr = 0x0;
3666         uint32_t concatenated_refresh = 0x0;
3667         uint32_t trk_sample_count = 7500;
3668         uint32_t dtaps_per_ptap;
3669         uint32_t tmp_delay;
3670
3671         /*
3672          * compute usable version of value in case we skip full
3673          * computation later
3674          */
3675         dtaps_per_ptap = 0;
3676         tmp_delay = 0;
3677         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3678                 dtaps_per_ptap++;
3679                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3680         }
3681         dtaps_per_ptap--;
3682
3683         concatenated_longidle = concatenated_longidle ^ 10;
3684                 /*longidle outer loop */
3685         concatenated_longidle = concatenated_longidle << 16;
3686         concatenated_longidle = concatenated_longidle ^ 100;
3687                 /*longidle sample count */
3688         concatenated_delays = concatenated_delays ^ 243;
3689                 /* trfc, worst case of 933Mhz 4Gb */
3690         concatenated_delays = concatenated_delays << 8;
3691         concatenated_delays = concatenated_delays ^ 14;
3692                 /* trcd, worst case */
3693         concatenated_delays = concatenated_delays << 8;
3694         concatenated_delays = concatenated_delays ^ 10;
3695                 /* vfifo wait */
3696         concatenated_delays = concatenated_delays << 8;
3697         concatenated_delays = concatenated_delays ^ 4;
3698                 /* mux delay */
3699
3700         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3701         concatenated_rw_addr = concatenated_rw_addr << 8;
3702         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3703         concatenated_rw_addr = concatenated_rw_addr << 8;
3704         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3705         concatenated_rw_addr = concatenated_rw_addr << 8;
3706         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3707
3708         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3709         concatenated_refresh = concatenated_refresh << 24;
3710         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3711
3712         /* Initialize the register file with the correct data */
3713         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3714         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3715         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3716         writel(concatenated_delays, &sdr_reg_file->delays);
3717         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3718         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3719         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3720 }
3721
3722 int sdram_calibration_full(void)
3723 {
3724         struct param_type my_param;
3725         struct gbl_type my_gbl;
3726         uint32_t pass;
3727         uint32_t i;
3728
3729         param = &my_param;
3730         gbl = &my_gbl;
3731
3732         /* Initialize the debug mode flags */
3733         gbl->phy_debug_mode_flags = 0;
3734         /* Set the calibration enabled by default */
3735         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3736         /*
3737          * Only sweep all groups (regardless of fail state) by default
3738          * Set enabled read test by default.
3739          */
3740 #if DISABLE_GUARANTEED_READ
3741         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3742 #endif
3743         /* Initialize the register file */
3744         initialize_reg_file();
3745
3746         /* Initialize any PHY CSR */
3747         initialize_hps_phy();
3748
3749         scc_mgr_initialize();
3750
3751         initialize_tracking();
3752
3753         /* USER Enable all ranks, groups */
3754         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3755                 param->skip_ranks[i] = 0;
3756         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3757                 param->skip_shadow_regs[i] = 0;
3758         param->skip_groups = 0;
3759
3760         printf("%s: Preparing to start memory calibration\n", __FILE__);
3761
3762         debug("%s:%d\n", __func__, __LINE__);
3763         debug_cond(DLEVEL == 1,
3764                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3765                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3766                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3767                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3768                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3769         debug_cond(DLEVEL == 1,
3770                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3771                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3772                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3773                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3774         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3775                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3776         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3777                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3778                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3779         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3780                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3781                    IO_IO_OUT2_DELAY_MAX);
3782         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3783                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3784
3785         hc_initialize_rom_data();
3786
3787         /* update info for sims */
3788         reg_file_set_stage(CAL_STAGE_NIL);
3789         reg_file_set_group(0);
3790
3791         /*
3792          * Load global needed for those actions that require
3793          * some dynamic calibration support.
3794          */
3795         dyn_calib_steps = STATIC_CALIB_STEPS;
3796         /*
3797          * Load global to allow dynamic selection of delay loop settings
3798          * based on calibration mode.
3799          */
3800         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3801                 skip_delay_mask = 0xff;
3802         else
3803                 skip_delay_mask = 0x0;
3804
3805         pass = run_mem_calibrate();
3806
3807         printf("%s: Calibration complete\n", __FILE__);
3808         return pass;
3809 }