]> git.sur5r.net Git - u-boot/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Internal rw_mgr_mem_calibrate_vfifo() cleanup part 4
[u-boot] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33
34 static struct socfpga_data_mgr *data_mgr =
35         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39
40 #define DELTA_D         1
41
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59         STATIC_SKIP_DELAY_LOOPS)
60
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72
73 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
74
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76         ((non_skip_value) & skip_delay_mask)
77
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83         uint32_t write_group, uint32_t use_dm,
84         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87         uint32_t substage)
88 {
89         /*
90          * Only set the global stage if there was not been any other
91          * failing group
92          */
93         if (gbl->error_stage == CAL_STAGE_NIL)  {
94                 gbl->error_substage = substage;
95                 gbl->error_stage = stage;
96                 gbl->error_group = group;
97         }
98 }
99
100 static void reg_file_set_group(u16 set_group)
101 {
102         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104
105 static void reg_file_set_stage(u8 set_stage)
106 {
107         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112         set_sub_stage &= 0xff;
113         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115
116 /**
117  * phy_mgr_initialize() - Initialize PHY Manager
118  *
119  * Initialize PHY Manager.
120  */
121 static void phy_mgr_initialize(void)
122 {
123         u32 ratio;
124
125         debug("%s:%d\n", __func__, __LINE__);
126         /* Calibration has control over path to memory */
127         /*
128          * In Hard PHY this is a 2-bit control:
129          * 0: AFI Mux Select
130          * 1: DDIO Mux Select
131          */
132         writel(0x3, &phy_mgr_cfg->mux_sel);
133
134         /* USER memory clock is not stable we begin initialization  */
135         writel(0, &phy_mgr_cfg->reset_mem_stbl);
136
137         /* USER calibration status all set to zero */
138         writel(0, &phy_mgr_cfg->cal_status);
139
140         writel(0, &phy_mgr_cfg->cal_debug_info);
141
142         /* Init params only if we do NOT skip calibration. */
143         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
144                 return;
145
146         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
147                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
148         param->read_correct_mask_vg = (1 << ratio) - 1;
149         param->write_correct_mask_vg = (1 << ratio) - 1;
150         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
151         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
152         ratio = RW_MGR_MEM_DATA_WIDTH /
153                 RW_MGR_MEM_DATA_MASK_WIDTH;
154         param->dm_correct_mask = (1 << ratio) - 1;
155 }
156
157 /**
158  * set_rank_and_odt_mask() - Set Rank and ODT mask
159  * @rank:       Rank mask
160  * @odt_mode:   ODT mode, OFF or READ_WRITE
161  *
162  * Set Rank and ODT mask (On-Die Termination).
163  */
164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
165 {
166         u32 odt_mask_0 = 0;
167         u32 odt_mask_1 = 0;
168         u32 cs_and_odt_mask;
169
170         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
171                 odt_mask_0 = 0x0;
172                 odt_mask_1 = 0x0;
173         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
174                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
175                 case 1: /* 1 Rank */
176                         /* Read: ODT = 0 ; Write: ODT = 1 */
177                         odt_mask_0 = 0x0;
178                         odt_mask_1 = 0x1;
179                         break;
180                 case 2: /* 2 Ranks */
181                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
182                                 /*
183                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
184                                  *   OR
185                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
186                                  *
187                                  * Since MEM_NUMBER_OF_RANKS is 2, they
188                                  * are both single rank with 2 CS each
189                                  * (special for RDIMM).
190                                  *
191                                  * Read: Turn on ODT on the opposite rank
192                                  * Write: Turn on ODT on all ranks
193                                  */
194                                 odt_mask_0 = 0x3 & ~(1 << rank);
195                                 odt_mask_1 = 0x3;
196                         } else {
197                                 /*
198                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
199                                  *
200                                  * Read: Turn on ODT off on all ranks
201                                  * Write: Turn on ODT on active rank
202                                  */
203                                 odt_mask_0 = 0x0;
204                                 odt_mask_1 = 0x3 & (1 << rank);
205                         }
206                         break;
207                 case 4: /* 4 Ranks */
208                         /* Read:
209                          * ----------+-----------------------+
210                          *           |         ODT           |
211                          * Read From +-----------------------+
212                          *   Rank    |  3  |  2  |  1  |  0  |
213                          * ----------+-----+-----+-----+-----+
214                          *     0     |  0  |  1  |  0  |  0  |
215                          *     1     |  1  |  0  |  0  |  0  |
216                          *     2     |  0  |  0  |  0  |  1  |
217                          *     3     |  0  |  0  |  1  |  0  |
218                          * ----------+-----+-----+-----+-----+
219                          *
220                          * Write:
221                          * ----------+-----------------------+
222                          *           |         ODT           |
223                          * Write To  +-----------------------+
224                          *   Rank    |  3  |  2  |  1  |  0  |
225                          * ----------+-----+-----+-----+-----+
226                          *     0     |  0  |  1  |  0  |  1  |
227                          *     1     |  1  |  0  |  1  |  0  |
228                          *     2     |  0  |  1  |  0  |  1  |
229                          *     3     |  1  |  0  |  1  |  0  |
230                          * ----------+-----+-----+-----+-----+
231                          */
232                         switch (rank) {
233                         case 0:
234                                 odt_mask_0 = 0x4;
235                                 odt_mask_1 = 0x5;
236                                 break;
237                         case 1:
238                                 odt_mask_0 = 0x8;
239                                 odt_mask_1 = 0xA;
240                                 break;
241                         case 2:
242                                 odt_mask_0 = 0x1;
243                                 odt_mask_1 = 0x5;
244                                 break;
245                         case 3:
246                                 odt_mask_0 = 0x2;
247                                 odt_mask_1 = 0xA;
248                                 break;
249                         }
250                         break;
251                 }
252         }
253
254         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
255                           ((0xFF & odt_mask_0) << 8) |
256                           ((0xFF & odt_mask_1) << 16);
257         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
258                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
259 }
260
261 /**
262  * scc_mgr_set() - Set SCC Manager register
263  * @off:        Base offset in SCC Manager space
264  * @grp:        Read/Write group
265  * @val:        Value to be set
266  *
267  * This function sets the SCC Manager (Scan Chain Control Manager) register.
268  */
269 static void scc_mgr_set(u32 off, u32 grp, u32 val)
270 {
271         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
272 }
273
274 /**
275  * scc_mgr_initialize() - Initialize SCC Manager registers
276  *
277  * Initialize SCC Manager registers.
278  */
279 static void scc_mgr_initialize(void)
280 {
281         /*
282          * Clear register file for HPS. 16 (2^4) is the size of the
283          * full register file in the scc mgr:
284          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
285          *                             MEM_IF_READ_DQS_WIDTH - 1);
286          */
287         int i;
288
289         for (i = 0; i < 16; i++) {
290                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
291                            __func__, __LINE__, i);
292                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
293         }
294 }
295
296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
297 {
298         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
299 }
300
301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
302 {
303         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
304 }
305
306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
307 {
308         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
309 }
310
311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
312 {
313         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
314 }
315
316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
317 {
318         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
319                     delay);
320 }
321
322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
323 {
324         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
325 }
326
327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
328 {
329         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
330 }
331
332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
333 {
334         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
335                     delay);
336 }
337
338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
339 {
340         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
341                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
342                     delay);
343 }
344
345 /* load up dqs config settings */
346 static void scc_mgr_load_dqs(uint32_t dqs)
347 {
348         writel(dqs, &sdr_scc_mgr->dqs_ena);
349 }
350
351 /* load up dqs io config settings */
352 static void scc_mgr_load_dqs_io(void)
353 {
354         writel(0, &sdr_scc_mgr->dqs_io_ena);
355 }
356
357 /* load up dq config settings */
358 static void scc_mgr_load_dq(uint32_t dq_in_group)
359 {
360         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
361 }
362
363 /* load up dm config settings */
364 static void scc_mgr_load_dm(uint32_t dm)
365 {
366         writel(dm, &sdr_scc_mgr->dm_ena);
367 }
368
369 /**
370  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
371  * @off:        Base offset in SCC Manager space
372  * @grp:        Read/Write group
373  * @val:        Value to be set
374  * @update:     If non-zero, trigger SCC Manager update for all ranks
375  *
376  * This function sets the SCC Manager (Scan Chain Control Manager) register
377  * and optionally triggers the SCC update for all ranks.
378  */
379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
380                                   const int update)
381 {
382         u32 r;
383
384         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
385              r += NUM_RANKS_PER_SHADOW_REG) {
386                 scc_mgr_set(off, grp, val);
387
388                 if (update || (r == 0)) {
389                         writel(grp, &sdr_scc_mgr->dqs_ena);
390                         writel(0, &sdr_scc_mgr->update);
391                 }
392         }
393 }
394
395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
396 {
397         /*
398          * USER although the h/w doesn't support different phases per
399          * shadow register, for simplicity our scc manager modeling
400          * keeps different phase settings per shadow reg, and it's
401          * important for us to keep them in sync to match h/w.
402          * for efficiency, the scan chain update should occur only
403          * once to sr0.
404          */
405         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
406                               read_group, phase, 0);
407 }
408
409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
410                                                      uint32_t phase)
411 {
412         /*
413          * USER although the h/w doesn't support different phases per
414          * shadow register, for simplicity our scc manager modeling
415          * keeps different phase settings per shadow reg, and it's
416          * important for us to keep them in sync to match h/w.
417          * for efficiency, the scan chain update should occur only
418          * once to sr0.
419          */
420         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
421                               write_group, phase, 0);
422 }
423
424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
425                                                uint32_t delay)
426 {
427         /*
428          * In shadow register mode, the T11 settings are stored in
429          * registers in the core, which are updated by the DQS_ENA
430          * signals. Not issuing the SCC_MGR_UPD command allows us to
431          * save lots of rank switching overhead, by calling
432          * select_shadow_regs_for_update with update_scan_chains
433          * set to 0.
434          */
435         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
436                               read_group, delay, 1);
437         writel(0, &sdr_scc_mgr->update);
438 }
439
440 /**
441  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
442  * @write_group:        Write group
443  * @delay:              Delay value
444  *
445  * This function sets the OCT output delay in SCC manager.
446  */
447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
448 {
449         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
450                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
451         const int base = write_group * ratio;
452         int i;
453         /*
454          * Load the setting in the SCC manager
455          * Although OCT affects only write data, the OCT delay is controlled
456          * by the DQS logic block which is instantiated once per read group.
457          * For protocols where a write group consists of multiple read groups,
458          * the setting must be set multiple times.
459          */
460         for (i = 0; i < ratio; i++)
461                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
462 }
463
464 /**
465  * scc_mgr_set_hhp_extras() - Set HHP extras.
466  *
467  * Load the fixed setting in the SCC manager HHP extras.
468  */
469 static void scc_mgr_set_hhp_extras(void)
470 {
471         /*
472          * Load the fixed setting in the SCC manager
473          * bits: 0:0 = 1'b1     - DQS bypass
474          * bits: 1:1 = 1'b1     - DQ bypass
475          * bits: 4:2 = 3'b001   - rfifo_mode
476          * bits: 6:5 = 2'b01    - rfifo clock_select
477          * bits: 7:7 = 1'b0     - separate gating from ungating setting
478          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
479          */
480         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
481                           (1 << 2) | (1 << 1) | (1 << 0);
482         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
483                          SCC_MGR_HHP_GLOBALS_OFFSET |
484                          SCC_MGR_HHP_EXTRAS_OFFSET;
485
486         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
487                    __func__, __LINE__);
488         writel(value, addr);
489         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
490                    __func__, __LINE__);
491 }
492
493 /**
494  * scc_mgr_zero_all() - Zero all DQS config
495  *
496  * Zero all DQS config.
497  */
498 static void scc_mgr_zero_all(void)
499 {
500         int i, r;
501
502         /*
503          * USER Zero all DQS config settings, across all groups and all
504          * shadow registers
505          */
506         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
507              r += NUM_RANKS_PER_SHADOW_REG) {
508                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
509                         /*
510                          * The phases actually don't exist on a per-rank basis,
511                          * but there's no harm updating them several times, so
512                          * let's keep the code simple.
513                          */
514                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
515                         scc_mgr_set_dqs_en_phase(i, 0);
516                         scc_mgr_set_dqs_en_delay(i, 0);
517                 }
518
519                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
520                         scc_mgr_set_dqdqs_output_phase(i, 0);
521                         /* Arria V/Cyclone V don't have out2. */
522                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
523                 }
524         }
525
526         /* Multicast to all DQS group enables. */
527         writel(0xff, &sdr_scc_mgr->dqs_ena);
528         writel(0, &sdr_scc_mgr->update);
529 }
530
531 /**
532  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
533  * @write_group:        Write group
534  *
535  * Set bypass mode and trigger SCC update.
536  */
537 static void scc_set_bypass_mode(const u32 write_group)
538 {
539         /* Multicast to all DQ enables. */
540         writel(0xff, &sdr_scc_mgr->dq_ena);
541         writel(0xff, &sdr_scc_mgr->dm_ena);
542
543         /* Update current DQS IO enable. */
544         writel(0, &sdr_scc_mgr->dqs_io_ena);
545
546         /* Update the DQS logic. */
547         writel(write_group, &sdr_scc_mgr->dqs_ena);
548
549         /* Hit update. */
550         writel(0, &sdr_scc_mgr->update);
551 }
552
553 /**
554  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
555  * @write_group:        Write group
556  *
557  * Load DQS settings for Write Group, do not trigger SCC update.
558  */
559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
560 {
561         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
562                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
563         const int base = write_group * ratio;
564         int i;
565         /*
566          * Load the setting in the SCC manager
567          * Although OCT affects only write data, the OCT delay is controlled
568          * by the DQS logic block which is instantiated once per read group.
569          * For protocols where a write group consists of multiple read groups,
570          * the setting must be set multiple times.
571          */
572         for (i = 0; i < ratio; i++)
573                 writel(base + i, &sdr_scc_mgr->dqs_ena);
574 }
575
576 /**
577  * scc_mgr_zero_group() - Zero all configs for a group
578  *
579  * Zero DQ, DM, DQS and OCT configs for a group.
580  */
581 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
582 {
583         int i, r;
584
585         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
586              r += NUM_RANKS_PER_SHADOW_REG) {
587                 /* Zero all DQ config settings. */
588                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
589                         scc_mgr_set_dq_out1_delay(i, 0);
590                         if (!out_only)
591                                 scc_mgr_set_dq_in_delay(i, 0);
592                 }
593
594                 /* Multicast to all DQ enables. */
595                 writel(0xff, &sdr_scc_mgr->dq_ena);
596
597                 /* Zero all DM config settings. */
598                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
599                         scc_mgr_set_dm_out1_delay(i, 0);
600
601                 /* Multicast to all DM enables. */
602                 writel(0xff, &sdr_scc_mgr->dm_ena);
603
604                 /* Zero all DQS IO settings. */
605                 if (!out_only)
606                         scc_mgr_set_dqs_io_in_delay(0);
607
608                 /* Arria V/Cyclone V don't have out2. */
609                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
610                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
611                 scc_mgr_load_dqs_for_write_group(write_group);
612
613                 /* Multicast to all DQS IO enables (only 1 in total). */
614                 writel(0, &sdr_scc_mgr->dqs_io_ena);
615
616                 /* Hit update to zero everything. */
617                 writel(0, &sdr_scc_mgr->update);
618         }
619 }
620
621 /*
622  * apply and load a particular input delay for the DQ pins in a group
623  * group_bgn is the index of the first dq pin (in the write group)
624  */
625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
626 {
627         uint32_t i, p;
628
629         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
630                 scc_mgr_set_dq_in_delay(p, delay);
631                 scc_mgr_load_dq(p);
632         }
633 }
634
635 /**
636  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
637  * @delay:              Delay value
638  *
639  * Apply and load a particular output delay for the DQ pins in a group.
640  */
641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
642 {
643         int i;
644
645         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
646                 scc_mgr_set_dq_out1_delay(i, delay);
647                 scc_mgr_load_dq(i);
648         }
649 }
650
651 /* apply and load a particular output delay for the DM pins in a group */
652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
653 {
654         uint32_t i;
655
656         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
657                 scc_mgr_set_dm_out1_delay(i, delay1);
658                 scc_mgr_load_dm(i);
659         }
660 }
661
662
663 /* apply and load delay on both DQS and OCT out1 */
664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
665                                                     uint32_t delay)
666 {
667         scc_mgr_set_dqs_out1_delay(delay);
668         scc_mgr_load_dqs_io();
669
670         scc_mgr_set_oct_out1_delay(write_group, delay);
671         scc_mgr_load_dqs_for_write_group(write_group);
672 }
673
674 /**
675  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
676  * @write_group:        Write group
677  * @delay:              Delay value
678  *
679  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
680  */
681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
682                                                   const u32 delay)
683 {
684         u32 i, new_delay;
685
686         /* DQ shift */
687         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
688                 scc_mgr_load_dq(i);
689
690         /* DM shift */
691         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
692                 scc_mgr_load_dm(i);
693
694         /* DQS shift */
695         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
696         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
697                 debug_cond(DLEVEL == 1,
698                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
699                            __func__, __LINE__, write_group, delay, new_delay,
700                            IO_IO_OUT2_DELAY_MAX,
701                            new_delay - IO_IO_OUT2_DELAY_MAX);
702                 new_delay -= IO_IO_OUT2_DELAY_MAX;
703                 scc_mgr_set_dqs_out1_delay(new_delay);
704         }
705
706         scc_mgr_load_dqs_io();
707
708         /* OCT shift */
709         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
710         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
711                 debug_cond(DLEVEL == 1,
712                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
713                            __func__, __LINE__, write_group, delay,
714                            new_delay, IO_IO_OUT2_DELAY_MAX,
715                            new_delay - IO_IO_OUT2_DELAY_MAX);
716                 new_delay -= IO_IO_OUT2_DELAY_MAX;
717                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
718         }
719
720         scc_mgr_load_dqs_for_write_group(write_group);
721 }
722
723 /**
724  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
725  * @write_group:        Write group
726  * @delay:              Delay value
727  *
728  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
729  */
730 static void
731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
732                                                 const u32 delay)
733 {
734         int r;
735
736         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
737              r += NUM_RANKS_PER_SHADOW_REG) {
738                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
739                 writel(0, &sdr_scc_mgr->update);
740         }
741 }
742
743 /**
744  * set_jump_as_return() - Return instruction optimization
745  *
746  * Optimization used to recover some slots in ddr3 inst_rom could be
747  * applied to other protocols if we wanted to
748  */
749 static void set_jump_as_return(void)
750 {
751         /*
752          * To save space, we replace return with jump to special shared
753          * RETURN instruction so we set the counter to large value so that
754          * we always jump.
755          */
756         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
757         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
758 }
759
760 /*
761  * should always use constants as argument to ensure all computations are
762  * performed at compile time
763  */
764 static void delay_for_n_mem_clocks(const uint32_t clocks)
765 {
766         uint32_t afi_clocks;
767         uint8_t inner = 0;
768         uint8_t outer = 0;
769         uint16_t c_loop = 0;
770
771         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772
773
774         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
775         /* scale (rounding up) to get afi clocks */
776
777         /*
778          * Note, we don't bother accounting for being off a little bit
779          * because of a few extra instructions in outer loops
780          * Note, the loops have a test at the end, and do the test before
781          * the decrement, and so always perform the loop
782          * 1 time more than the counter value
783          */
784         if (afi_clocks == 0) {
785                 ;
786         } else if (afi_clocks <= 0x100) {
787                 inner = afi_clocks-1;
788                 outer = 0;
789                 c_loop = 0;
790         } else if (afi_clocks <= 0x10000) {
791                 inner = 0xff;
792                 outer = (afi_clocks-1) >> 8;
793                 c_loop = 0;
794         } else {
795                 inner = 0xff;
796                 outer = 0xff;
797                 c_loop = (afi_clocks-1) >> 16;
798         }
799
800         /*
801          * rom instructions are structured as follows:
802          *
803          *    IDLE_LOOP2: jnz cntr0, TARGET_A
804          *    IDLE_LOOP1: jnz cntr1, TARGET_B
805          *                return
806          *
807          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
808          * TARGET_B is set to IDLE_LOOP2 as well
809          *
810          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
811          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
812          *
813          * a little confusing, but it helps save precious space in the inst_rom
814          * and sequencer rom and keeps the delays more accurate and reduces
815          * overhead
816          */
817         if (afi_clocks <= 0x100) {
818                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
819                         &sdr_rw_load_mgr_regs->load_cntr1);
820
821                 writel(RW_MGR_IDLE_LOOP1,
822                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
823
824                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
825                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
826         } else {
827                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
828                         &sdr_rw_load_mgr_regs->load_cntr0);
829
830                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
831                         &sdr_rw_load_mgr_regs->load_cntr1);
832
833                 writel(RW_MGR_IDLE_LOOP2,
834                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
835
836                 writel(RW_MGR_IDLE_LOOP2,
837                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
838
839                 /* hack to get around compiler not being smart enough */
840                 if (afi_clocks <= 0x10000) {
841                         /* only need to run once */
842                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
843                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
844                 } else {
845                         do {
846                                 writel(RW_MGR_IDLE_LOOP2,
847                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
848                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
849                         } while (c_loop-- != 0);
850                 }
851         }
852         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
853 }
854
855 /**
856  * rw_mgr_mem_init_load_regs() - Load instruction registers
857  * @cntr0:      Counter 0 value
858  * @cntr1:      Counter 1 value
859  * @cntr2:      Counter 2 value
860  * @jump:       Jump instruction value
861  *
862  * Load instruction registers.
863  */
864 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
865 {
866         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
867                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
868
869         /* Load counters */
870         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
871                &sdr_rw_load_mgr_regs->load_cntr0);
872         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
873                &sdr_rw_load_mgr_regs->load_cntr1);
874         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
875                &sdr_rw_load_mgr_regs->load_cntr2);
876
877         /* Load jump address */
878         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
879         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
880         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
881
882         /* Execute count instruction */
883         writel(jump, grpaddr);
884 }
885
886 /**
887  * rw_mgr_mem_load_user() - Load user calibration values
888  * @fin1:       Final instruction 1
889  * @fin2:       Final instruction 2
890  * @precharge:  If 1, precharge the banks at the end
891  *
892  * Load user calibration values and optionally precharge the banks.
893  */
894 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
895                                  const int precharge)
896 {
897         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
898                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
899         u32 r;
900
901         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
902                 if (param->skip_ranks[r]) {
903                         /* request to skip the rank */
904                         continue;
905                 }
906
907                 /* set rank */
908                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
909
910                 /* precharge all banks ... */
911                 if (precharge)
912                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
913
914                 /*
915                  * USER Use Mirror-ed commands for odd ranks if address
916                  * mirrorring is on
917                  */
918                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
919                         set_jump_as_return();
920                         writel(RW_MGR_MRS2_MIRR, grpaddr);
921                         delay_for_n_mem_clocks(4);
922                         set_jump_as_return();
923                         writel(RW_MGR_MRS3_MIRR, grpaddr);
924                         delay_for_n_mem_clocks(4);
925                         set_jump_as_return();
926                         writel(RW_MGR_MRS1_MIRR, grpaddr);
927                         delay_for_n_mem_clocks(4);
928                         set_jump_as_return();
929                         writel(fin1, grpaddr);
930                 } else {
931                         set_jump_as_return();
932                         writel(RW_MGR_MRS2, grpaddr);
933                         delay_for_n_mem_clocks(4);
934                         set_jump_as_return();
935                         writel(RW_MGR_MRS3, grpaddr);
936                         delay_for_n_mem_clocks(4);
937                         set_jump_as_return();
938                         writel(RW_MGR_MRS1, grpaddr);
939                         set_jump_as_return();
940                         writel(fin2, grpaddr);
941                 }
942
943                 if (precharge)
944                         continue;
945
946                 set_jump_as_return();
947                 writel(RW_MGR_ZQCL, grpaddr);
948
949                 /* tZQinit = tDLLK = 512 ck cycles */
950                 delay_for_n_mem_clocks(512);
951         }
952 }
953
954 /**
955  * rw_mgr_mem_initialize() - Initialize RW Manager
956  *
957  * Initialize RW Manager.
958  */
959 static void rw_mgr_mem_initialize(void)
960 {
961         debug("%s:%d\n", __func__, __LINE__);
962
963         /* The reset / cke part of initialization is broadcasted to all ranks */
964         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
965                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
966
967         /*
968          * Here's how you load register for a loop
969          * Counters are located @ 0x800
970          * Jump address are located @ 0xC00
971          * For both, registers 0 to 3 are selected using bits 3 and 2, like
972          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
973          * I know this ain't pretty, but Avalon bus throws away the 2 least
974          * significant bits
975          */
976
977         /* Start with memory RESET activated */
978
979         /* tINIT = 200us */
980
981         /*
982          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
983          * If a and b are the number of iteration in 2 nested loops
984          * it takes the following number of cycles to complete the operation:
985          * number_of_cycles = ((2 + n) * a + 2) * b
986          * where n is the number of instruction in the inner loop
987          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
988          * b = 6A
989          */
990         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
991                                   SEQ_TINIT_CNTR2_VAL,
992                                   RW_MGR_INIT_RESET_0_CKE_0);
993
994         /* Indicate that memory is stable. */
995         writel(1, &phy_mgr_cfg->reset_mem_stbl);
996
997         /*
998          * transition the RESET to high
999          * Wait for 500us
1000          */
1001
1002         /*
1003          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1004          * If a and b are the number of iteration in 2 nested loops
1005          * it takes the following number of cycles to complete the operation
1006          * number_of_cycles = ((2 + n) * a + 2) * b
1007          * where n is the number of instruction in the inner loop
1008          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1009          * b = FF
1010          */
1011         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1012                                   SEQ_TRESET_CNTR2_VAL,
1013                                   RW_MGR_INIT_RESET_1_CKE_0);
1014
1015         /* Bring up clock enable. */
1016
1017         /* tXRP < 250 ck cycles */
1018         delay_for_n_mem_clocks(250);
1019
1020         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1021                              0);
1022 }
1023
1024 /*
1025  * At the end of calibration we have to program the user settings in, and
1026  * USER  hand off the memory to the user.
1027  */
1028 static void rw_mgr_mem_handoff(void)
1029 {
1030         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1031         /*
1032          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1033          * other commands, but we will have plenty of NIOS cycles before
1034          * actual handoff so its okay.
1035          */
1036 }
1037
1038 /*
1039  * performs a guaranteed read on the patterns we are going to use during a
1040  * read test to ensure memory works
1041  */
1042 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1043         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1044         uint32_t all_ranks)
1045 {
1046         uint32_t r, vg;
1047         uint32_t correct_mask_vg;
1048         uint32_t tmp_bit_chk;
1049         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1050                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1051         uint32_t addr;
1052         uint32_t base_rw_mgr;
1053
1054         *bit_chk = param->read_correct_mask;
1055         correct_mask_vg = param->read_correct_mask_vg;
1056
1057         for (r = rank_bgn; r < rank_end; r++) {
1058                 if (param->skip_ranks[r])
1059                         /* request to skip the rank */
1060                         continue;
1061
1062                 /* set rank */
1063                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1064
1065                 /* Load up a constant bursts of read commands */
1066                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1067                 writel(RW_MGR_GUARANTEED_READ,
1068                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1069
1070                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1071                 writel(RW_MGR_GUARANTEED_READ_CONT,
1072                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1073
1074                 tmp_bit_chk = 0;
1075                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1076                         /* reset the fifos to get pointers to known state */
1077
1078                         writel(0, &phy_mgr_cmd->fifo_reset);
1079                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1080                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1081
1082                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1083                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1084
1085                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1086                         writel(RW_MGR_GUARANTEED_READ, addr +
1087                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1088                                 vg) << 2));
1089
1090                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1091                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1092
1093                         if (vg == 0)
1094                                 break;
1095                 }
1096                 *bit_chk &= tmp_bit_chk;
1097         }
1098
1099         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1100         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1101
1102         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1103         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1104                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1105                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1106         return *bit_chk == param->read_correct_mask;
1107 }
1108
1109 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1110         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1111 {
1112         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1113                 num_tries, bit_chk, 1);
1114 }
1115
1116 /* load up the patterns we are going to use during a read test */
1117 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1118         uint32_t all_ranks)
1119 {
1120         uint32_t r;
1121         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1122                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1123
1124         debug("%s:%d\n", __func__, __LINE__);
1125         for (r = rank_bgn; r < rank_end; r++) {
1126                 if (param->skip_ranks[r])
1127                         /* request to skip the rank */
1128                         continue;
1129
1130                 /* set rank */
1131                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1132
1133                 /* Load up a constant bursts */
1134                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1135
1136                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1137                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1138
1139                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1140
1141                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1142                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1143
1144                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1145
1146                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1147                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1148
1149                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1150
1151                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1152                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1153
1154                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1156         }
1157
1158         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1159 }
1160
1161 /*
1162  * try a read and see if it returns correct data back. has dummy reads
1163  * inserted into the mix used to align dqs enable. has more thorough checks
1164  * than the regular read test.
1165  */
1166 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1167         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1168         uint32_t all_groups, uint32_t all_ranks)
1169 {
1170         uint32_t r, vg;
1171         uint32_t correct_mask_vg;
1172         uint32_t tmp_bit_chk;
1173         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1174                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1175         uint32_t addr;
1176         uint32_t base_rw_mgr;
1177
1178         *bit_chk = param->read_correct_mask;
1179         correct_mask_vg = param->read_correct_mask_vg;
1180
1181         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1182                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1183
1184         for (r = rank_bgn; r < rank_end; r++) {
1185                 if (param->skip_ranks[r])
1186                         /* request to skip the rank */
1187                         continue;
1188
1189                 /* set rank */
1190                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1191
1192                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1193
1194                 writel(RW_MGR_READ_B2B_WAIT1,
1195                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1196
1197                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1198                 writel(RW_MGR_READ_B2B_WAIT2,
1199                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1200
1201                 if (quick_read_mode)
1202                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1203                         /* need at least two (1+1) reads to capture failures */
1204                 else if (all_groups)
1205                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1206                 else
1207                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1208
1209                 writel(RW_MGR_READ_B2B,
1210                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1211                 if (all_groups)
1212                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1213                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1214                                &sdr_rw_load_mgr_regs->load_cntr3);
1215                 else
1216                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1217
1218                 writel(RW_MGR_READ_B2B,
1219                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1220
1221                 tmp_bit_chk = 0;
1222                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1223                         /* reset the fifos to get pointers to known state */
1224                         writel(0, &phy_mgr_cmd->fifo_reset);
1225                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1226                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1227
1228                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1229                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1230
1231                         if (all_groups)
1232                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1233                         else
1234                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1235
1236                         writel(RW_MGR_READ_B2B, addr +
1237                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1238                                vg) << 2));
1239
1240                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1241                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1242
1243                         if (vg == 0)
1244                                 break;
1245                 }
1246                 *bit_chk &= tmp_bit_chk;
1247         }
1248
1249         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1250         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1251
1252         if (all_correct) {
1253                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1254                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1255                            (%u == %u) => %lu", __func__, __LINE__, group,
1256                            all_groups, *bit_chk, param->read_correct_mask,
1257                            (long unsigned int)(*bit_chk ==
1258                            param->read_correct_mask));
1259                 return *bit_chk == param->read_correct_mask;
1260         } else  {
1261                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1262                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1263                            (%u != %lu) => %lu\n", __func__, __LINE__,
1264                            group, all_groups, *bit_chk, (long unsigned int)0,
1265                            (long unsigned int)(*bit_chk != 0x00));
1266                 return *bit_chk != 0x00;
1267         }
1268 }
1269
1270 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1271         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1272         uint32_t all_groups)
1273 {
1274         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1275                                               bit_chk, all_groups, 1);
1276 }
1277
1278 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1279 {
1280         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1281         (*v)++;
1282 }
1283
1284 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1285 {
1286         uint32_t i;
1287
1288         for (i = 0; i < VFIFO_SIZE-1; i++)
1289                 rw_mgr_incr_vfifo(grp, v);
1290 }
1291
1292 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1293 {
1294         uint32_t  v;
1295         uint32_t fail_cnt = 0;
1296         uint32_t test_status;
1297
1298         for (v = 0; v < VFIFO_SIZE; ) {
1299                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1300                            __func__, __LINE__, v);
1301                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1302                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1303                 if (!test_status) {
1304                         fail_cnt++;
1305
1306                         if (fail_cnt == 2)
1307                                 break;
1308                 }
1309
1310                 /* fiddle with FIFO */
1311                 rw_mgr_incr_vfifo(grp, &v);
1312         }
1313
1314         if (v >= VFIFO_SIZE) {
1315                 /* no failing read found!! Something must have gone wrong */
1316                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1317                            __func__, __LINE__);
1318                 return 0;
1319         } else {
1320                 return v;
1321         }
1322 }
1323
1324 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1325                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1326                               uint32_t *v, uint32_t *d, uint32_t *p,
1327                               uint32_t *i, uint32_t *max_working_cnt)
1328 {
1329         uint32_t found_begin = 0;
1330         uint32_t tmp_delay = 0;
1331         uint32_t test_status;
1332
1333         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1334                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1335                 *work_bgn = tmp_delay;
1336                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1337
1338                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1339                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1340                                 IO_DELAY_PER_OPA_TAP) {
1341                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1342
1343                                 test_status =
1344                                 rw_mgr_mem_calibrate_read_test_all_ranks
1345                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1346
1347                                 if (test_status) {
1348                                         *max_working_cnt = 1;
1349                                         found_begin = 1;
1350                                         break;
1351                                 }
1352                         }
1353
1354                         if (found_begin)
1355                                 break;
1356
1357                         if (*p > IO_DQS_EN_PHASE_MAX)
1358                                 /* fiddle with FIFO */
1359                                 rw_mgr_incr_vfifo(*grp, v);
1360                 }
1361
1362                 if (found_begin)
1363                         break;
1364         }
1365
1366         if (*i >= VFIFO_SIZE) {
1367                 /* cannot find working solution */
1368                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1369                            ptap/dtap\n", __func__, __LINE__);
1370                 return 0;
1371         } else {
1372                 return 1;
1373         }
1374 }
1375
1376 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1377                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1378                              uint32_t *p, uint32_t *max_working_cnt)
1379 {
1380         uint32_t found_begin = 0;
1381         uint32_t tmp_delay;
1382
1383         /* Special case code for backing up a phase */
1384         if (*p == 0) {
1385                 *p = IO_DQS_EN_PHASE_MAX;
1386                 rw_mgr_decr_vfifo(*grp, v);
1387         } else {
1388                 (*p)--;
1389         }
1390         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1391         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1392
1393         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1394                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1395                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1396
1397                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1398                                                              PASS_ONE_BIT,
1399                                                              bit_chk, 0)) {
1400                         found_begin = 1;
1401                         *work_bgn = tmp_delay;
1402                         break;
1403                 }
1404         }
1405
1406         /* We have found a working dtap before the ptap found above */
1407         if (found_begin == 1)
1408                 (*max_working_cnt)++;
1409
1410         /*
1411          * Restore VFIFO to old state before we decremented it
1412          * (if needed).
1413          */
1414         (*p)++;
1415         if (*p > IO_DQS_EN_PHASE_MAX) {
1416                 *p = 0;
1417                 rw_mgr_incr_vfifo(*grp, v);
1418         }
1419
1420         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1421 }
1422
1423 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1424                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1425                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1426                              uint32_t *work_end)
1427 {
1428         uint32_t found_end = 0;
1429
1430         (*p)++;
1431         *work_end += IO_DELAY_PER_OPA_TAP;
1432         if (*p > IO_DQS_EN_PHASE_MAX) {
1433                 /* fiddle with FIFO */
1434                 *p = 0;
1435                 rw_mgr_incr_vfifo(*grp, v);
1436         }
1437
1438         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1439                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1440                         += IO_DELAY_PER_OPA_TAP) {
1441                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1442
1443                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1444                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1445                                 found_end = 1;
1446                                 break;
1447                         } else {
1448                                 (*max_working_cnt)++;
1449                         }
1450                 }
1451
1452                 if (found_end)
1453                         break;
1454
1455                 if (*p > IO_DQS_EN_PHASE_MAX) {
1456                         /* fiddle with FIFO */
1457                         rw_mgr_incr_vfifo(*grp, v);
1458                         *p = 0;
1459                 }
1460         }
1461
1462         if (*i >= VFIFO_SIZE + 1) {
1463                 /* cannot see edge of failing read */
1464                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1465                            failed\n", __func__, __LINE__);
1466                 return 0;
1467         } else {
1468                 return 1;
1469         }
1470 }
1471
1472 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1473                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1474                                   uint32_t *p, uint32_t *work_mid,
1475                                   uint32_t *work_end)
1476 {
1477         int i;
1478         int tmp_delay = 0;
1479
1480         *work_mid = (*work_bgn + *work_end) / 2;
1481
1482         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1483                    *work_bgn, *work_end, *work_mid);
1484         /* Get the middle delay to be less than a VFIFO delay */
1485         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1486                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1487                 ;
1488         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1489         while (*work_mid > tmp_delay)
1490                 *work_mid -= tmp_delay;
1491         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1492
1493         tmp_delay = 0;
1494         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1495                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1496                 ;
1497         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1498         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1499         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1500                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1501                 ;
1502         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1503
1504         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1505         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1506
1507         /*
1508          * push vfifo until we can successfully calibrate. We can do this
1509          * because the largest possible margin in 1 VFIFO cycle.
1510          */
1511         for (i = 0; i < VFIFO_SIZE; i++) {
1512                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1513                            *v);
1514                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1515                                                              PASS_ONE_BIT,
1516                                                              bit_chk, 0)) {
1517                         break;
1518                 }
1519
1520                 /* fiddle with FIFO */
1521                 rw_mgr_incr_vfifo(*grp, v);
1522         }
1523
1524         if (i >= VFIFO_SIZE) {
1525                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1526                            failed\n", __func__, __LINE__);
1527                 return 0;
1528         } else {
1529                 return 1;
1530         }
1531 }
1532
1533 /* find a good dqs enable to use */
1534 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1535 {
1536         uint32_t v, d, p, i;
1537         uint32_t max_working_cnt;
1538         uint32_t bit_chk;
1539         uint32_t dtaps_per_ptap;
1540         uint32_t work_bgn, work_mid, work_end;
1541         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1542
1543         debug("%s:%d %u\n", __func__, __LINE__, grp);
1544
1545         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1546
1547         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1548         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1549
1550         /* ************************************************************** */
1551         /* * Step 0 : Determine number of delay taps for each phase tap * */
1552         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1553
1554         /* ********************************************************* */
1555         /* * Step 1 : First push vfifo until we get a failing read * */
1556         v = find_vfifo_read(grp, &bit_chk);
1557
1558         max_working_cnt = 0;
1559
1560         /* ******************************************************** */
1561         /* * step 2: find first working phase, increment in ptaps * */
1562         work_bgn = 0;
1563         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1564                                 &p, &i, &max_working_cnt) == 0)
1565                 return 0;
1566
1567         work_end = work_bgn;
1568
1569         /*
1570          * If d is 0 then the working window covers a phase tap and
1571          * we can follow the old procedure otherwise, we've found the beginning,
1572          * and we need to increment the dtaps until we find the end.
1573          */
1574         if (d == 0) {
1575                 /* ********************************************************* */
1576                 /* * step 3a: if we have room, back off by one and
1577                 increment in dtaps * */
1578
1579                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1580                                  &max_working_cnt);
1581
1582                 /* ********************************************************* */
1583                 /* * step 4a: go forward from working phase to non working
1584                 phase, increment in ptaps * */
1585                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1586                                          &i, &max_working_cnt, &work_end) == 0)
1587                         return 0;
1588
1589                 /* ********************************************************* */
1590                 /* * step 5a:  back off one from last, increment in dtaps  * */
1591
1592                 /* Special case code for backing up a phase */
1593                 if (p == 0) {
1594                         p = IO_DQS_EN_PHASE_MAX;
1595                         rw_mgr_decr_vfifo(grp, &v);
1596                 } else {
1597                         p = p - 1;
1598                 }
1599
1600                 work_end -= IO_DELAY_PER_OPA_TAP;
1601                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1602
1603                 /* * The actual increment of dtaps is done outside of
1604                 the if/else loop to share code */
1605                 d = 0;
1606
1607                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1608                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1609                            v, p);
1610         } else {
1611                 /* ******************************************************* */
1612                 /* * step 3-5b:  Find the right edge of the window using
1613                 delay taps   * */
1614                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1615                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1616                            v, p, d, work_bgn);
1617
1618                 work_end = work_bgn;
1619
1620                 /* * The actual increment of dtaps is done outside of the
1621                 if/else loop to share code */
1622
1623                 /* Only here to counterbalance a subtract later on which is
1624                 not needed if this branch of the algorithm is taken */
1625                 max_working_cnt++;
1626         }
1627
1628         /* The dtap increment to find the failing edge is done here */
1629         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1630                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1631                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1632                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1633                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1634
1635                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1636                                                                       PASS_ONE_BIT,
1637                                                                       &bit_chk, 0)) {
1638                                 break;
1639                         }
1640         }
1641
1642         /* Go back to working dtap */
1643         if (d != 0)
1644                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1645
1646         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1647                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1648                    v, p, d-1, work_end);
1649
1650         if (work_end < work_bgn) {
1651                 /* nil range */
1652                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1653                            failed\n", __func__, __LINE__);
1654                 return 0;
1655         }
1656
1657         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1658                    __func__, __LINE__, work_bgn, work_end);
1659
1660         /* *************************************************************** */
1661         /*
1662          * * We need to calculate the number of dtaps that equal a ptap
1663          * * To do that we'll back up a ptap and re-find the edge of the
1664          * * window using dtaps
1665          */
1666
1667         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1668                    for tracking\n", __func__, __LINE__);
1669
1670         /* Special case code for backing up a phase */
1671         if (p == 0) {
1672                 p = IO_DQS_EN_PHASE_MAX;
1673                 rw_mgr_decr_vfifo(grp, &v);
1674                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1675                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1676                            v, p);
1677         } else {
1678                 p = p - 1;
1679                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1680                            phase only: v=%u p=%u", __func__, __LINE__,
1681                            v, p);
1682         }
1683
1684         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1685
1686         /*
1687          * Increase dtap until we first see a passing read (in case the
1688          * window is smaller than a ptap),
1689          * and then a failing read to mark the edge of the window again
1690          */
1691
1692         /* Find a passing read */
1693         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1694                    __func__, __LINE__);
1695         found_passing_read = 0;
1696         found_failing_read = 0;
1697         initial_failing_dtap = d;
1698         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1699                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1700                            read d=%u\n", __func__, __LINE__, d);
1701                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1702
1703                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1704                                                              PASS_ONE_BIT,
1705                                                              &bit_chk, 0)) {
1706                         found_passing_read = 1;
1707                         break;
1708                 }
1709         }
1710
1711         if (found_passing_read) {
1712                 /* Find a failing read */
1713                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1714                            read\n", __func__, __LINE__);
1715                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1716                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1717                                    testing read d=%u\n", __func__, __LINE__, d);
1718                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1719
1720                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1721                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1722                                 found_failing_read = 1;
1723                                 break;
1724                         }
1725                 }
1726         } else {
1727                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1728                            calculate dtaps", __func__, __LINE__);
1729                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1730         }
1731
1732         /*
1733          * The dynamically calculated dtaps_per_ptap is only valid if we
1734          * found a passing/failing read. If we didn't, it means d hit the max
1735          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1736          * statically calculated value.
1737          */
1738         if (found_passing_read && found_failing_read)
1739                 dtaps_per_ptap = d - initial_failing_dtap;
1740
1741         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1742         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1743                    - %u = %u",  __func__, __LINE__, d,
1744                    initial_failing_dtap, dtaps_per_ptap);
1745
1746         /* ******************************************** */
1747         /* * step 6:  Find the centre of the window   * */
1748         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1749                                    &work_mid, &work_end) == 0)
1750                 return 0;
1751
1752         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1753                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1754                    v, p-1, d);
1755         return 1;
1756 }
1757
1758 /*
1759  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1760  * dq_in_delay values
1761  */
1762 static uint32_t
1763 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1764 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1765 {
1766         uint32_t found;
1767         uint32_t i;
1768         uint32_t p;
1769         uint32_t d;
1770         uint32_t r;
1771
1772         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1773                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1774                 /* we start at zero, so have one less dq to devide among */
1775
1776         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1777               test_bgn);
1778
1779         /* try different dq_in_delays since the dq path is shorter than dqs */
1780
1781         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1782              r += NUM_RANKS_PER_SHADOW_REG) {
1783                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1784                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1785                                    vfifo_find_dqs_", __func__, __LINE__);
1786                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1787                                write_group, read_group);
1788                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1789                         scc_mgr_set_dq_in_delay(p, d);
1790                         scc_mgr_load_dq(p);
1791                 }
1792                 writel(0, &sdr_scc_mgr->update);
1793         }
1794
1795         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1796
1797         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1798                    en_phase_sweep_dq", __func__, __LINE__);
1799         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1800                    chain to zero\n", write_group, read_group, found);
1801
1802         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1803              r += NUM_RANKS_PER_SHADOW_REG) {
1804                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1805                         i++, p++) {
1806                         scc_mgr_set_dq_in_delay(p, 0);
1807                         scc_mgr_load_dq(p);
1808                 }
1809                 writel(0, &sdr_scc_mgr->update);
1810         }
1811
1812         return found;
1813 }
1814
1815 /* per-bit deskew DQ and center */
1816 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1817         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1818         uint32_t use_read_test, uint32_t update_fom)
1819 {
1820         uint32_t i, p, d, min_index;
1821         /*
1822          * Store these as signed since there are comparisons with
1823          * signed numbers.
1824          */
1825         uint32_t bit_chk;
1826         uint32_t sticky_bit_chk;
1827         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1828         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1829         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1830         int32_t mid;
1831         int32_t orig_mid_min, mid_min;
1832         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1833                 final_dqs_en;
1834         int32_t dq_margin, dqs_margin;
1835         uint32_t stop;
1836         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1837         uint32_t addr;
1838
1839         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1840
1841         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1842         start_dqs = readl(addr + (read_group << 2));
1843         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1844                 start_dqs_en = readl(addr + ((read_group << 2)
1845                                      - IO_DQS_EN_DELAY_OFFSET));
1846
1847         /* set the left and right edge of each bit to an illegal value */
1848         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1849         sticky_bit_chk = 0;
1850         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1851                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1852                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1853         }
1854
1855         /* Search for the left edge of the window for each bit */
1856         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1857                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1858
1859                 writel(0, &sdr_scc_mgr->update);
1860
1861                 /*
1862                  * Stop searching when the read test doesn't pass AND when
1863                  * we've seen a passing read on every bit.
1864                  */
1865                 if (use_read_test) {
1866                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1867                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1868                                 &bit_chk, 0, 0);
1869                 } else {
1870                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1871                                                         0, PASS_ONE_BIT,
1872                                                         &bit_chk, 0);
1873                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1874                                 (read_group - (write_group *
1875                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1876                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1877                         stop = (bit_chk == 0);
1878                 }
1879                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1880                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1881                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1882                            && %u", __func__, __LINE__, d,
1883                            sticky_bit_chk,
1884                         param->read_correct_mask, stop);
1885
1886                 if (stop == 1) {
1887                         break;
1888                 } else {
1889                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1890                                 if (bit_chk & 1) {
1891                                         /* Remember a passing test as the
1892                                         left_edge */
1893                                         left_edge[i] = d;
1894                                 } else {
1895                                         /* If a left edge has not been seen yet,
1896                                         then a future passing test will mark
1897                                         this edge as the right edge */
1898                                         if (left_edge[i] ==
1899                                                 IO_IO_IN_DELAY_MAX + 1) {
1900                                                 right_edge[i] = -(d + 1);
1901                                         }
1902                                 }
1903                                 bit_chk = bit_chk >> 1;
1904                         }
1905                 }
1906         }
1907
1908         /* Reset DQ delay chains to 0 */
1909         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1910         sticky_bit_chk = 0;
1911         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1912                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1913                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1914                            i, left_edge[i], i, right_edge[i]);
1915
1916                 /*
1917                  * Check for cases where we haven't found the left edge,
1918                  * which makes our assignment of the the right edge invalid.
1919                  * Reset it to the illegal value.
1920                  */
1921                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1922                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1923                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1924                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1925                                    right_edge[%u]: %d\n", __func__, __LINE__,
1926                                    i, right_edge[i]);
1927                 }
1928
1929                 /*
1930                  * Reset sticky bit (except for bits where we have seen
1931                  * both the left and right edge).
1932                  */
1933                 sticky_bit_chk = sticky_bit_chk << 1;
1934                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1935                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1936                         sticky_bit_chk = sticky_bit_chk | 1;
1937                 }
1938
1939                 if (i == 0)
1940                         break;
1941         }
1942
1943         /* Search for the right edge of the window for each bit */
1944         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1945                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1946                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1947                         uint32_t delay = d + start_dqs_en;
1948                         if (delay > IO_DQS_EN_DELAY_MAX)
1949                                 delay = IO_DQS_EN_DELAY_MAX;
1950                         scc_mgr_set_dqs_en_delay(read_group, delay);
1951                 }
1952                 scc_mgr_load_dqs(read_group);
1953
1954                 writel(0, &sdr_scc_mgr->update);
1955
1956                 /*
1957                  * Stop searching when the read test doesn't pass AND when
1958                  * we've seen a passing read on every bit.
1959                  */
1960                 if (use_read_test) {
1961                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1962                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1963                                 &bit_chk, 0, 0);
1964                 } else {
1965                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1966                                                         0, PASS_ONE_BIT,
1967                                                         &bit_chk, 0);
1968                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1969                                 (read_group - (write_group *
1970                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1971                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1972                         stop = (bit_chk == 0);
1973                 }
1974                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1975                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1976
1977                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1978                            %u && %u", __func__, __LINE__, d,
1979                            sticky_bit_chk, param->read_correct_mask, stop);
1980
1981                 if (stop == 1) {
1982                         break;
1983                 } else {
1984                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1985                                 if (bit_chk & 1) {
1986                                         /* Remember a passing test as
1987                                         the right_edge */
1988                                         right_edge[i] = d;
1989                                 } else {
1990                                         if (d != 0) {
1991                                                 /* If a right edge has not been
1992                                                 seen yet, then a future passing
1993                                                 test will mark this edge as the
1994                                                 left edge */
1995                                                 if (right_edge[i] ==
1996                                                 IO_IO_IN_DELAY_MAX + 1) {
1997                                                         left_edge[i] = -(d + 1);
1998                                                 }
1999                                         } else {
2000                                                 /* d = 0 failed, but it passed
2001                                                 when testing the left edge,
2002                                                 so it must be marginal,
2003                                                 set it to -1 */
2004                                                 if (right_edge[i] ==
2005                                                         IO_IO_IN_DELAY_MAX + 1 &&
2006                                                         left_edge[i] !=
2007                                                         IO_IO_IN_DELAY_MAX
2008                                                         + 1) {
2009                                                         right_edge[i] = -1;
2010                                                 }
2011                                                 /* If a right edge has not been
2012                                                 seen yet, then a future passing
2013                                                 test will mark this edge as the
2014                                                 left edge */
2015                                                 else if (right_edge[i] ==
2016                                                         IO_IO_IN_DELAY_MAX +
2017                                                         1) {
2018                                                         left_edge[i] = -(d + 1);
2019                                                 }
2020                                         }
2021                                 }
2022
2023                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2024                                            d=%u]: ", __func__, __LINE__, d);
2025                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2026                                            (int)(bit_chk & 1), i, left_edge[i]);
2027                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2028                                            right_edge[i]);
2029                                 bit_chk = bit_chk >> 1;
2030                         }
2031                 }
2032         }
2033
2034         /* Check that all bits have a window */
2035         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2036                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2037                            %d right_edge[%u]: %d", __func__, __LINE__,
2038                            i, left_edge[i], i, right_edge[i]);
2039                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2040                         == IO_IO_IN_DELAY_MAX + 1)) {
2041                         /*
2042                          * Restore delay chain settings before letting the loop
2043                          * in rw_mgr_mem_calibrate_vfifo to retry different
2044                          * dqs/ck relationships.
2045                          */
2046                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2047                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2048                                 scc_mgr_set_dqs_en_delay(read_group,
2049                                                          start_dqs_en);
2050                         }
2051                         scc_mgr_load_dqs(read_group);
2052                         writel(0, &sdr_scc_mgr->update);
2053
2054                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2055                                    find edge [%u]: %d %d", __func__, __LINE__,
2056                                    i, left_edge[i], right_edge[i]);
2057                         if (use_read_test) {
2058                                 set_failing_group_stage(read_group *
2059                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2060                                         CAL_STAGE_VFIFO,
2061                                         CAL_SUBSTAGE_VFIFO_CENTER);
2062                         } else {
2063                                 set_failing_group_stage(read_group *
2064                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2065                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2066                                         CAL_SUBSTAGE_VFIFO_CENTER);
2067                         }
2068                         return 0;
2069                 }
2070         }
2071
2072         /* Find middle of window for each DQ bit */
2073         mid_min = left_edge[0] - right_edge[0];
2074         min_index = 0;
2075         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2076                 mid = left_edge[i] - right_edge[i];
2077                 if (mid < mid_min) {
2078                         mid_min = mid;
2079                         min_index = i;
2080                 }
2081         }
2082
2083         /*
2084          * -mid_min/2 represents the amount that we need to move DQS.
2085          * If mid_min is odd and positive we'll need to add one to
2086          * make sure the rounding in further calculations is correct
2087          * (always bias to the right), so just add 1 for all positive values.
2088          */
2089         if (mid_min > 0)
2090                 mid_min++;
2091
2092         mid_min = mid_min / 2;
2093
2094         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2095                    __func__, __LINE__, mid_min, min_index);
2096
2097         /* Determine the amount we can change DQS (which is -mid_min) */
2098         orig_mid_min = mid_min;
2099         new_dqs = start_dqs - mid_min;
2100         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2101                 new_dqs = IO_DQS_IN_DELAY_MAX;
2102         else if (new_dqs < 0)
2103                 new_dqs = 0;
2104
2105         mid_min = start_dqs - new_dqs;
2106         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2107                    mid_min, new_dqs);
2108
2109         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2110                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2111                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2112                 else if (start_dqs_en - mid_min < 0)
2113                         mid_min += start_dqs_en - mid_min;
2114         }
2115         new_dqs = start_dqs - mid_min;
2116
2117         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2118                    new_dqs=%d mid_min=%d\n", start_dqs,
2119                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2120                    new_dqs, mid_min);
2121
2122         /* Initialize data for export structures */
2123         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2124         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2125
2126         /* add delay to bring centre of all DQ windows to the same "level" */
2127         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2128                 /* Use values before divide by 2 to reduce round off error */
2129                 shift_dq = (left_edge[i] - right_edge[i] -
2130                         (left_edge[min_index] - right_edge[min_index]))/2  +
2131                         (orig_mid_min - mid_min);
2132
2133                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2134                            shift_dq[%u]=%d\n", i, shift_dq);
2135
2136                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2137                 temp_dq_in_delay1 = readl(addr + (p << 2));
2138                 temp_dq_in_delay2 = readl(addr + (i << 2));
2139
2140                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2141                         (int32_t)IO_IO_IN_DELAY_MAX) {
2142                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2143                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2144                         shift_dq = -(int32_t)temp_dq_in_delay1;
2145                 }
2146                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2147                            shift_dq[%u]=%d\n", i, shift_dq);
2148                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2149                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2150                 scc_mgr_load_dq(p);
2151
2152                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2153                            left_edge[i] - shift_dq + (-mid_min),
2154                            right_edge[i] + shift_dq - (-mid_min));
2155                 /* To determine values for export structures */
2156                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2157                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2158
2159                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2160                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2161         }
2162
2163         final_dqs = new_dqs;
2164         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2165                 final_dqs_en = start_dqs_en - mid_min;
2166
2167         /* Move DQS-en */
2168         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2169                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2170                 scc_mgr_load_dqs(read_group);
2171         }
2172
2173         /* Move DQS */
2174         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2175         scc_mgr_load_dqs(read_group);
2176         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2177                    dqs_margin=%d", __func__, __LINE__,
2178                    dq_margin, dqs_margin);
2179
2180         /*
2181          * Do not remove this line as it makes sure all of our decisions
2182          * have been applied. Apply the update bit.
2183          */
2184         writel(0, &sdr_scc_mgr->update);
2185
2186         return (dq_margin >= 0) && (dqs_margin >= 0);
2187 }
2188
2189 /**
2190  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2191  * @rw_group:           Read/Write Group
2192  * @test_bgn:           Rank at which the test begins
2193  *
2194  * Stage 1: Calibrate the read valid prediction FIFO.
2195  *
2196  * This function implements UniPHY calibration Stage 1, as explained in
2197  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2198  *
2199  * - read valid prediction will consist of finding:
2200  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2201  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2202  *  - we also do a per-bit deskew on the DQ lines.
2203  */
2204 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2205                                            uint32_t test_bgn)
2206 {
2207         uint32_t p, d, rank_bgn, sr;
2208         uint32_t dtaps_per_ptap;
2209         uint32_t bit_chk;
2210         uint32_t grp_calibrated;
2211         uint32_t write_group, write_test_bgn;
2212         uint32_t failed_substage;
2213
2214         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2215
2216         /* update info for sims */
2217         reg_file_set_stage(CAL_STAGE_VFIFO);
2218
2219         write_group = read_group;
2220         write_test_bgn = test_bgn;
2221
2222         /* USER Determine number of delay taps for each phase tap */
2223         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2224                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2225
2226         /* update info for sims */
2227         reg_file_set_group(read_group);
2228
2229         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2230         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2231
2232         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2233                 /*
2234                  * In RLDRAMX we may be messing the delay of pins in
2235                  * the same write group but outside of the current read
2236                  * the group, but that's ok because we haven't calibrated
2237                  * output side yet.
2238                  */
2239                 if (d > 0) {
2240                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2241                                                                 write_group, d);
2242                 }
2243
2244                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2245                         /* set a particular dqdqs phase */
2246                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2247
2248                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2249                                    p=%u d=%u\n", __func__, __LINE__,
2250                                    read_group, p, d);
2251
2252                         /*
2253                          * Load up the patterns used by read calibration
2254                          * using current DQDQS phase.
2255                          */
2256                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2257                         if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2258                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2259                                                                 (read_group, 1, &bit_chk)) {
2260                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2261                                                    __func__, __LINE__);
2262                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2263                                                    read_group, p, d);
2264                                         break;
2265                                 }
2266                         }
2267
2268                         /* case:56390 */
2269                         if (!rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2270                             (write_group, read_group, test_bgn)) {
2271                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2272                                 continue;
2273                         }
2274
2275                         /*
2276                          * USER Read per-bit deskew can be done on a
2277                          * per shadow register basis.
2278                          */
2279                         grp_calibrated = 1;
2280                         for (rank_bgn = 0, sr = 0;
2281                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2282                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2283                                 /*
2284                                  * Determine if this set of ranks
2285                                  * should be skipped entirely.
2286                                  */
2287                                 if (param->skip_shadow_regs[sr])
2288                                         continue;
2289                                 /*
2290                                  * If doing read after write
2291                                  * calibration, do not update
2292                                  * FOM, now - do it then.
2293                                  */
2294                                 if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2295                                                         write_group, read_group,
2296                                                         test_bgn, 1, 0))
2297
2298                                         continue;
2299
2300                                 grp_calibrated = 0;
2301                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2302                         }
2303
2304                         if (grp_calibrated)
2305                                 goto cal_done_ok;
2306                 }
2307         }
2308
2309         /* Calibration Stage 1 failed. */
2310         set_failing_group_stage(write_group, CAL_STAGE_VFIFO, failed_substage);
2311         return 0;
2312
2313         /* Calibration Stage 1 completed OK. */
2314 cal_done_ok:
2315         /*
2316          * Reset the delay chains back to zero if they have moved > 1
2317          * (check for > 1 because loop will increase d even when pass in
2318          * first case).
2319          */
2320         if (d > 2)
2321                 scc_mgr_zero_group(write_group, 1);
2322
2323         return 1;
2324 }
2325
2326 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2327 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2328                                                uint32_t test_bgn)
2329 {
2330         uint32_t rank_bgn, sr;
2331         uint32_t grp_calibrated;
2332         uint32_t write_group;
2333
2334         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2335
2336         /* update info for sims */
2337
2338         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2339         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2340
2341         write_group = read_group;
2342
2343         /* update info for sims */
2344         reg_file_set_group(read_group);
2345
2346         grp_calibrated = 1;
2347         /* Read per-bit deskew can be done on a per shadow register basis */
2348         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2349                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2350                 /* Determine if this set of ranks should be skipped entirely */
2351                 if (!param->skip_shadow_regs[sr]) {
2352                 /* This is the last calibration round, update FOM here */
2353                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2354                                                                 write_group,
2355                                                                 read_group,
2356                                                                 test_bgn, 0,
2357                                                                 1)) {
2358                                 grp_calibrated = 0;
2359                         }
2360                 }
2361         }
2362
2363
2364         if (grp_calibrated == 0) {
2365                 set_failing_group_stage(write_group,
2366                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2367                                         CAL_SUBSTAGE_VFIFO_CENTER);
2368                 return 0;
2369         }
2370
2371         return 1;
2372 }
2373
2374 /* Calibrate LFIFO to find smallest read latency */
2375 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2376 {
2377         uint32_t found_one;
2378         uint32_t bit_chk;
2379
2380         debug("%s:%d\n", __func__, __LINE__);
2381
2382         /* update info for sims */
2383         reg_file_set_stage(CAL_STAGE_LFIFO);
2384         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2385
2386         /* Load up the patterns used by read calibration for all ranks */
2387         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2388         found_one = 0;
2389
2390         do {
2391                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2392                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2393                            __func__, __LINE__, gbl->curr_read_lat);
2394
2395                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2396                                                               NUM_READ_TESTS,
2397                                                               PASS_ALL_BITS,
2398                                                               &bit_chk, 1)) {
2399                         break;
2400                 }
2401
2402                 found_one = 1;
2403                 /* reduce read latency and see if things are working */
2404                 /* correctly */
2405                 gbl->curr_read_lat--;
2406         } while (gbl->curr_read_lat > 0);
2407
2408         /* reset the fifos to get pointers to known state */
2409
2410         writel(0, &phy_mgr_cmd->fifo_reset);
2411
2412         if (found_one) {
2413                 /* add a fudge factor to the read latency that was determined */
2414                 gbl->curr_read_lat += 2;
2415                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2416                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2417                            read_lat=%u\n", __func__, __LINE__,
2418                            gbl->curr_read_lat);
2419                 return 1;
2420         } else {
2421                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2422                                         CAL_SUBSTAGE_READ_LATENCY);
2423
2424                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2425                            read_lat=%u\n", __func__, __LINE__,
2426                            gbl->curr_read_lat);
2427                 return 0;
2428         }
2429 }
2430
2431 /*
2432  * issue write test command.
2433  * two variants are provided. one that just tests a write pattern and
2434  * another that tests datamask functionality.
2435  */
2436 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2437                                                   uint32_t test_dm)
2438 {
2439         uint32_t mcc_instruction;
2440         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2441                 ENABLE_SUPER_QUICK_CALIBRATION);
2442         uint32_t rw_wl_nop_cycles;
2443         uint32_t addr;
2444
2445         /*
2446          * Set counter and jump addresses for the right
2447          * number of NOP cycles.
2448          * The number of supported NOP cycles can range from -1 to infinity
2449          * Three different cases are handled:
2450          *
2451          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2452          *    mechanism will be used to insert the right number of NOPs
2453          *
2454          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2455          *    issuing the write command will jump straight to the
2456          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2457          *    data (for RLD), skipping
2458          *    the NOP micro-instruction all together
2459          *
2460          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2461          *    turned on in the same micro-instruction that issues the write
2462          *    command. Then we need
2463          *    to directly jump to the micro-instruction that sends out the data
2464          *
2465          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2466          *       (2 and 3). One jump-counter (0) is used to perform multiple
2467          *       write-read operations.
2468          *       one counter left to issue this command in "multiple-group" mode
2469          */
2470
2471         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2472
2473         if (rw_wl_nop_cycles == -1) {
2474                 /*
2475                  * CNTR 2 - We want to execute the special write operation that
2476                  * turns on DQS right away and then skip directly to the
2477                  * instruction that sends out the data. We set the counter to a
2478                  * large number so that the jump is always taken.
2479                  */
2480                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2481
2482                 /* CNTR 3 - Not used */
2483                 if (test_dm) {
2484                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2485                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2486                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2487                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2488                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2489                 } else {
2490                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2491                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2492                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2493                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2494                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2495                 }
2496         } else if (rw_wl_nop_cycles == 0) {
2497                 /*
2498                  * CNTR 2 - We want to skip the NOP operation and go straight
2499                  * to the DQS enable instruction. We set the counter to a large
2500                  * number so that the jump is always taken.
2501                  */
2502                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2503
2504                 /* CNTR 3 - Not used */
2505                 if (test_dm) {
2506                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2507                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2508                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2509                 } else {
2510                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2511                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2512                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2513                 }
2514         } else {
2515                 /*
2516                  * CNTR 2 - In this case we want to execute the next instruction
2517                  * and NOT take the jump. So we set the counter to 0. The jump
2518                  * address doesn't count.
2519                  */
2520                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2521                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2522
2523                 /*
2524                  * CNTR 3 - Set the nop counter to the number of cycles we
2525                  * need to loop for, minus 1.
2526                  */
2527                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2528                 if (test_dm) {
2529                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2530                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2531                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2532                 } else {
2533                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2534                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2535                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2536                 }
2537         }
2538
2539         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2540                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2541
2542         if (quick_write_mode)
2543                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2544         else
2545                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2546
2547         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2548
2549         /*
2550          * CNTR 1 - This is used to ensure enough time elapses
2551          * for read data to come back.
2552          */
2553         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2554
2555         if (test_dm) {
2556                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2557                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2558         } else {
2559                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2560                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2561         }
2562
2563         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2564         writel(mcc_instruction, addr + (group << 2));
2565 }
2566
2567 /* Test writes, can check for a single bit pass or multiple bit pass */
2568 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2569         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2570         uint32_t *bit_chk, uint32_t all_ranks)
2571 {
2572         uint32_t r;
2573         uint32_t correct_mask_vg;
2574         uint32_t tmp_bit_chk;
2575         uint32_t vg;
2576         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2577                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2578         uint32_t addr_rw_mgr;
2579         uint32_t base_rw_mgr;
2580
2581         *bit_chk = param->write_correct_mask;
2582         correct_mask_vg = param->write_correct_mask_vg;
2583
2584         for (r = rank_bgn; r < rank_end; r++) {
2585                 if (param->skip_ranks[r]) {
2586                         /* request to skip the rank */
2587                         continue;
2588                 }
2589
2590                 /* set rank */
2591                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2592
2593                 tmp_bit_chk = 0;
2594                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2595                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2596                         /* reset the fifos to get pointers to known state */
2597                         writel(0, &phy_mgr_cmd->fifo_reset);
2598
2599                         tmp_bit_chk = tmp_bit_chk <<
2600                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2601                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2602                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2603                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2604                                 use_dm);
2605
2606                         base_rw_mgr = readl(addr_rw_mgr);
2607                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2608                         if (vg == 0)
2609                                 break;
2610                 }
2611                 *bit_chk &= tmp_bit_chk;
2612         }
2613
2614         if (all_correct) {
2615                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2616                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2617                            %u => %lu", write_group, use_dm,
2618                            *bit_chk, param->write_correct_mask,
2619                            (long unsigned int)(*bit_chk ==
2620                            param->write_correct_mask));
2621                 return *bit_chk == param->write_correct_mask;
2622         } else {
2623                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2624                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2625                        write_group, use_dm, *bit_chk);
2626                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2627                         (long unsigned int)(*bit_chk != 0));
2628                 return *bit_chk != 0x00;
2629         }
2630 }
2631
2632 /*
2633  * center all windows. do per-bit-deskew to possibly increase size of
2634  * certain windows.
2635  */
2636 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2637         uint32_t write_group, uint32_t test_bgn)
2638 {
2639         uint32_t i, p, min_index;
2640         int32_t d;
2641         /*
2642          * Store these as signed since there are comparisons with
2643          * signed numbers.
2644          */
2645         uint32_t bit_chk;
2646         uint32_t sticky_bit_chk;
2647         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2648         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2649         int32_t mid;
2650         int32_t mid_min, orig_mid_min;
2651         int32_t new_dqs, start_dqs, shift_dq;
2652         int32_t dq_margin, dqs_margin, dm_margin;
2653         uint32_t stop;
2654         uint32_t temp_dq_out1_delay;
2655         uint32_t addr;
2656
2657         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2658
2659         dm_margin = 0;
2660
2661         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2662         start_dqs = readl(addr +
2663                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2664
2665         /* per-bit deskew */
2666
2667         /*
2668          * set the left and right edge of each bit to an illegal value
2669          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2670          */
2671         sticky_bit_chk = 0;
2672         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2673                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2674                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2675         }
2676
2677         /* Search for the left edge of the window for each bit */
2678         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2679                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2680
2681                 writel(0, &sdr_scc_mgr->update);
2682
2683                 /*
2684                  * Stop searching when the read test doesn't pass AND when
2685                  * we've seen a passing read on every bit.
2686                  */
2687                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2688                         0, PASS_ONE_BIT, &bit_chk, 0);
2689                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2690                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2691                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2692                            == %u && %u [bit_chk= %u ]\n",
2693                         d, sticky_bit_chk, param->write_correct_mask,
2694                         stop, bit_chk);
2695
2696                 if (stop == 1) {
2697                         break;
2698                 } else {
2699                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2700                                 if (bit_chk & 1) {
2701                                         /*
2702                                          * Remember a passing test as the
2703                                          * left_edge.
2704                                          */
2705                                         left_edge[i] = d;
2706                                 } else {
2707                                         /*
2708                                          * If a left edge has not been seen
2709                                          * yet, then a future passing test will
2710                                          * mark this edge as the right edge.
2711                                          */
2712                                         if (left_edge[i] ==
2713                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2714                                                 right_edge[i] = -(d + 1);
2715                                         }
2716                                 }
2717                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2718                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2719                                            (int)(bit_chk & 1), i, left_edge[i]);
2720                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2721                                        right_edge[i]);
2722                                 bit_chk = bit_chk >> 1;
2723                         }
2724                 }
2725         }
2726
2727         /* Reset DQ delay chains to 0 */
2728         scc_mgr_apply_group_dq_out1_delay(0);
2729         sticky_bit_chk = 0;
2730         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2731                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2732                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2733                            i, left_edge[i], i, right_edge[i]);
2734
2735                 /*
2736                  * Check for cases where we haven't found the left edge,
2737                  * which makes our assignment of the the right edge invalid.
2738                  * Reset it to the illegal value.
2739                  */
2740                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2741                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2742                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2743                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2744                                    right_edge[%u]: %d\n", __func__, __LINE__,
2745                                    i, right_edge[i]);
2746                 }
2747
2748                 /*
2749                  * Reset sticky bit (except for bits where we have
2750                  * seen the left edge).
2751                  */
2752                 sticky_bit_chk = sticky_bit_chk << 1;
2753                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2754                         sticky_bit_chk = sticky_bit_chk | 1;
2755
2756                 if (i == 0)
2757                         break;
2758         }
2759
2760         /* Search for the right edge of the window for each bit */
2761         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2762                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2763                                                         d + start_dqs);
2764
2765                 writel(0, &sdr_scc_mgr->update);
2766
2767                 /*
2768                  * Stop searching when the read test doesn't pass AND when
2769                  * we've seen a passing read on every bit.
2770                  */
2771                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2772                         0, PASS_ONE_BIT, &bit_chk, 0);
2773
2774                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2775                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2776
2777                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2778                            %u && %u\n", d, sticky_bit_chk,
2779                            param->write_correct_mask, stop);
2780
2781                 if (stop == 1) {
2782                         if (d == 0) {
2783                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2784                                         i++) {
2785                                         /* d = 0 failed, but it passed when
2786                                         testing the left edge, so it must be
2787                                         marginal, set it to -1 */
2788                                         if (right_edge[i] ==
2789                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2790                                                 left_edge[i] !=
2791                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2792                                                 right_edge[i] = -1;
2793                                         }
2794                                 }
2795                         }
2796                         break;
2797                 } else {
2798                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2799                                 if (bit_chk & 1) {
2800                                         /*
2801                                          * Remember a passing test as
2802                                          * the right_edge.
2803                                          */
2804                                         right_edge[i] = d;
2805                                 } else {
2806                                         if (d != 0) {
2807                                                 /*
2808                                                  * If a right edge has not
2809                                                  * been seen yet, then a future
2810                                                  * passing test will mark this
2811                                                  * edge as the left edge.
2812                                                  */
2813                                                 if (right_edge[i] ==
2814                                                     IO_IO_OUT1_DELAY_MAX + 1)
2815                                                         left_edge[i] = -(d + 1);
2816                                         } else {
2817                                                 /*
2818                                                  * d = 0 failed, but it passed
2819                                                  * when testing the left edge,
2820                                                  * so it must be marginal, set
2821                                                  * it to -1.
2822                                                  */
2823                                                 if (right_edge[i] ==
2824                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2825                                                     left_edge[i] !=
2826                                                     IO_IO_OUT1_DELAY_MAX + 1)
2827                                                         right_edge[i] = -1;
2828                                                 /*
2829                                                  * If a right edge has not been
2830                                                  * seen yet, then a future
2831                                                  * passing test will mark this
2832                                                  * edge as the left edge.
2833                                                  */
2834                                                 else if (right_edge[i] ==
2835                                                         IO_IO_OUT1_DELAY_MAX +
2836                                                         1)
2837                                                         left_edge[i] = -(d + 1);
2838                                         }
2839                                 }
2840                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2841                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2842                                            (int)(bit_chk & 1), i, left_edge[i]);
2843                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2844                                            right_edge[i]);
2845                                 bit_chk = bit_chk >> 1;
2846                         }
2847                 }
2848         }
2849
2850         /* Check that all bits have a window */
2851         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2852                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2853                            %d right_edge[%u]: %d", __func__, __LINE__,
2854                            i, left_edge[i], i, right_edge[i]);
2855                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2856                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2857                         set_failing_group_stage(test_bgn + i,
2858                                                 CAL_STAGE_WRITES,
2859                                                 CAL_SUBSTAGE_WRITES_CENTER);
2860                         return 0;
2861                 }
2862         }
2863
2864         /* Find middle of window for each DQ bit */
2865         mid_min = left_edge[0] - right_edge[0];
2866         min_index = 0;
2867         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2868                 mid = left_edge[i] - right_edge[i];
2869                 if (mid < mid_min) {
2870                         mid_min = mid;
2871                         min_index = i;
2872                 }
2873         }
2874
2875         /*
2876          * -mid_min/2 represents the amount that we need to move DQS.
2877          * If mid_min is odd and positive we'll need to add one to
2878          * make sure the rounding in further calculations is correct
2879          * (always bias to the right), so just add 1 for all positive values.
2880          */
2881         if (mid_min > 0)
2882                 mid_min++;
2883         mid_min = mid_min / 2;
2884         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2885                    __LINE__, mid_min);
2886
2887         /* Determine the amount we can change DQS (which is -mid_min) */
2888         orig_mid_min = mid_min;
2889         new_dqs = start_dqs;
2890         mid_min = 0;
2891         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2892                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2893         /* Initialize data for export structures */
2894         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2895         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2896
2897         /* add delay to bring centre of all DQ windows to the same "level" */
2898         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2899                 /* Use values before divide by 2 to reduce round off error */
2900                 shift_dq = (left_edge[i] - right_edge[i] -
2901                         (left_edge[min_index] - right_edge[min_index]))/2  +
2902                 (orig_mid_min - mid_min);
2903
2904                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2905                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2906
2907                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2908                 temp_dq_out1_delay = readl(addr + (i << 2));
2909                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2910                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2911                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2912                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2913                         shift_dq = -(int32_t)temp_dq_out1_delay;
2914                 }
2915                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2916                            i, shift_dq);
2917                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2918                 scc_mgr_load_dq(i);
2919
2920                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2921                            left_edge[i] - shift_dq + (-mid_min),
2922                            right_edge[i] + shift_dq - (-mid_min));
2923                 /* To determine values for export structures */
2924                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2925                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2926
2927                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2928                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2929         }
2930
2931         /* Move DQS */
2932         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2933         writel(0, &sdr_scc_mgr->update);
2934
2935         /* Centre DM */
2936         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2937
2938         /*
2939          * set the left and right edge of each bit to an illegal value,
2940          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2941          */
2942         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2943         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2944         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2945         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2946         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2947         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2948         int32_t win_best = 0;
2949
2950         /* Search for the/part of the window with DM shift */
2951         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2952                 scc_mgr_apply_group_dm_out1_delay(d);
2953                 writel(0, &sdr_scc_mgr->update);
2954
2955                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2956                                                     PASS_ALL_BITS, &bit_chk,
2957                                                     0)) {
2958                         /* USE Set current end of the window */
2959                         end_curr = -d;
2960                         /*
2961                          * If a starting edge of our window has not been seen
2962                          * this is our current start of the DM window.
2963                          */
2964                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2965                                 bgn_curr = -d;
2966
2967                         /*
2968                          * If current window is bigger than best seen.
2969                          * Set best seen to be current window.
2970                          */
2971                         if ((end_curr-bgn_curr+1) > win_best) {
2972                                 win_best = end_curr-bgn_curr+1;
2973                                 bgn_best = bgn_curr;
2974                                 end_best = end_curr;
2975                         }
2976                 } else {
2977                         /* We just saw a failing test. Reset temp edge */
2978                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2979                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2980                         }
2981                 }
2982
2983
2984         /* Reset DM delay chains to 0 */
2985         scc_mgr_apply_group_dm_out1_delay(0);
2986
2987         /*
2988          * Check to see if the current window nudges up aganist 0 delay.
2989          * If so we need to continue the search by shifting DQS otherwise DQS
2990          * search begins as a new search. */
2991         if (end_curr != 0) {
2992                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2993                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2994         }
2995
2996         /* Search for the/part of the window with DQS shifts */
2997         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2998                 /*
2999                  * Note: This only shifts DQS, so are we limiting ourselve to
3000                  * width of DQ unnecessarily.
3001                  */
3002                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3003                                                         d + new_dqs);
3004
3005                 writel(0, &sdr_scc_mgr->update);
3006                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3007                                                     PASS_ALL_BITS, &bit_chk,
3008                                                     0)) {
3009                         /* USE Set current end of the window */
3010                         end_curr = d;
3011                         /*
3012                          * If a beginning edge of our window has not been seen
3013                          * this is our current begin of the DM window.
3014                          */
3015                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3016                                 bgn_curr = d;
3017
3018                         /*
3019                          * If current window is bigger than best seen. Set best
3020                          * seen to be current window.
3021                          */
3022                         if ((end_curr-bgn_curr+1) > win_best) {
3023                                 win_best = end_curr-bgn_curr+1;
3024                                 bgn_best = bgn_curr;
3025                                 end_best = end_curr;
3026                         }
3027                 } else {
3028                         /* We just saw a failing test. Reset temp edge */
3029                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3030                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3031
3032                         /* Early exit optimization: if ther remaining delay
3033                         chain space is less than already seen largest window
3034                         we can exit */
3035                         if ((win_best-1) >
3036                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3037                                         break;
3038                                 }
3039                         }
3040                 }
3041
3042         /* assign left and right edge for cal and reporting; */
3043         left_edge[0] = -1*bgn_best;
3044         right_edge[0] = end_best;
3045
3046         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3047                    __LINE__, left_edge[0], right_edge[0]);
3048
3049         /* Move DQS (back to orig) */
3050         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3051
3052         /* Move DM */
3053
3054         /* Find middle of window for the DM bit */
3055         mid = (left_edge[0] - right_edge[0]) / 2;
3056
3057         /* only move right, since we are not moving DQS/DQ */
3058         if (mid < 0)
3059                 mid = 0;
3060
3061         /* dm_marign should fail if we never find a window */
3062         if (win_best == 0)
3063                 dm_margin = -1;
3064         else
3065                 dm_margin = left_edge[0] - mid;
3066
3067         scc_mgr_apply_group_dm_out1_delay(mid);
3068         writel(0, &sdr_scc_mgr->update);
3069
3070         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3071                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3072                    right_edge[0], mid, dm_margin);
3073         /* Export values */
3074         gbl->fom_out += dq_margin + dqs_margin;
3075
3076         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3077                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3078                    dq_margin, dqs_margin, dm_margin);
3079
3080         /*
3081          * Do not remove this line as it makes sure all of our
3082          * decisions have been applied.
3083          */
3084         writel(0, &sdr_scc_mgr->update);
3085         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3086 }
3087
3088 /* calibrate the write operations */
3089 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3090         uint32_t test_bgn)
3091 {
3092         /* update info for sims */
3093         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3094
3095         reg_file_set_stage(CAL_STAGE_WRITES);
3096         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3097
3098         reg_file_set_group(g);
3099
3100         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3101                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3102                                         CAL_SUBSTAGE_WRITES_CENTER);
3103                 return 0;
3104         }
3105
3106         return 1;
3107 }
3108
3109 /**
3110  * mem_precharge_and_activate() - Precharge all banks and activate
3111  *
3112  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3113  */
3114 static void mem_precharge_and_activate(void)
3115 {
3116         int r;
3117
3118         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3119                 /* Test if the rank should be skipped. */
3120                 if (param->skip_ranks[r])
3121                         continue;
3122
3123                 /* Set rank. */
3124                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3125
3126                 /* Precharge all banks. */
3127                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3128                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3129
3130                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3131                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3132                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3133
3134                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3135                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3136                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3137
3138                 /* Activate rows. */
3139                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3140                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3141         }
3142 }
3143
3144 /**
3145  * mem_init_latency() - Configure memory RLAT and WLAT settings
3146  *
3147  * Configure memory RLAT and WLAT parameters.
3148  */
3149 static void mem_init_latency(void)
3150 {
3151         /*
3152          * For AV/CV, LFIFO is hardened and always runs at full rate
3153          * so max latency in AFI clocks, used here, is correspondingly
3154          * smaller.
3155          */
3156         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3157         u32 rlat, wlat;
3158
3159         debug("%s:%d\n", __func__, __LINE__);
3160
3161         /*
3162          * Read in write latency.
3163          * WL for Hard PHY does not include additive latency.
3164          */
3165         wlat = readl(&data_mgr->t_wl_add);
3166         wlat += readl(&data_mgr->mem_t_add);
3167
3168         gbl->rw_wl_nop_cycles = wlat - 1;
3169
3170         /* Read in readl latency. */
3171         rlat = readl(&data_mgr->t_rl_add);
3172
3173         /* Set a pretty high read latency initially. */
3174         gbl->curr_read_lat = rlat + 16;
3175         if (gbl->curr_read_lat > max_latency)
3176                 gbl->curr_read_lat = max_latency;
3177
3178         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3179
3180         /* Advertise write latency. */
3181         writel(wlat, &phy_mgr_cfg->afi_wlat);
3182 }
3183
3184 /**
3185  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3186  *
3187  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3188  */
3189 static void mem_skip_calibrate(void)
3190 {
3191         uint32_t vfifo_offset;
3192         uint32_t i, j, r;
3193
3194         debug("%s:%d\n", __func__, __LINE__);
3195         /* Need to update every shadow register set used by the interface */
3196         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3197              r += NUM_RANKS_PER_SHADOW_REG) {
3198                 /*
3199                  * Set output phase alignment settings appropriate for
3200                  * skip calibration.
3201                  */
3202                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3203                         scc_mgr_set_dqs_en_phase(i, 0);
3204 #if IO_DLL_CHAIN_LENGTH == 6
3205                         scc_mgr_set_dqdqs_output_phase(i, 6);
3206 #else
3207                         scc_mgr_set_dqdqs_output_phase(i, 7);
3208 #endif
3209                         /*
3210                          * Case:33398
3211                          *
3212                          * Write data arrives to the I/O two cycles before write
3213                          * latency is reached (720 deg).
3214                          *   -> due to bit-slip in a/c bus
3215                          *   -> to allow board skew where dqs is longer than ck
3216                          *      -> how often can this happen!?
3217                          *      -> can claim back some ptaps for high freq
3218                          *       support if we can relax this, but i digress...
3219                          *
3220                          * The write_clk leads mem_ck by 90 deg
3221                          * The minimum ptap of the OPA is 180 deg
3222                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3223                          * The write_clk is always delayed by 2 ptaps
3224                          *
3225                          * Hence, to make DQS aligned to CK, we need to delay
3226                          * DQS by:
3227                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3228                          *
3229                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3230                          * gives us the number of ptaps, which simplies to:
3231                          *
3232                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3233                          */
3234                         scc_mgr_set_dqdqs_output_phase(i,
3235                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3236                 }
3237                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3238                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3239
3240                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3241                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3242                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3243                 }
3244                 writel(0xff, &sdr_scc_mgr->dq_ena);
3245                 writel(0xff, &sdr_scc_mgr->dm_ena);
3246                 writel(0, &sdr_scc_mgr->update);
3247         }
3248
3249         /* Compensate for simulation model behaviour */
3250         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3251                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3252                 scc_mgr_load_dqs(i);
3253         }
3254         writel(0, &sdr_scc_mgr->update);
3255
3256         /*
3257          * ArriaV has hard FIFOs that can only be initialized by incrementing
3258          * in sequencer.
3259          */
3260         vfifo_offset = CALIB_VFIFO_OFFSET;
3261         for (j = 0; j < vfifo_offset; j++)
3262                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3263         writel(0, &phy_mgr_cmd->fifo_reset);
3264
3265         /*
3266          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3267          * setting from generation-time constant.
3268          */
3269         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3270         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3271 }
3272
3273 /**
3274  * mem_calibrate() - Memory calibration entry point.
3275  *
3276  * Perform memory calibration.
3277  */
3278 static uint32_t mem_calibrate(void)
3279 {
3280         uint32_t i;
3281         uint32_t rank_bgn, sr;
3282         uint32_t write_group, write_test_bgn;
3283         uint32_t read_group, read_test_bgn;
3284         uint32_t run_groups, current_run;
3285         uint32_t failing_groups = 0;
3286         uint32_t group_failed = 0;
3287
3288         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3289                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3290
3291         debug("%s:%d\n", __func__, __LINE__);
3292
3293         /* Initialize the data settings */
3294         gbl->error_substage = CAL_SUBSTAGE_NIL;
3295         gbl->error_stage = CAL_STAGE_NIL;
3296         gbl->error_group = 0xff;
3297         gbl->fom_in = 0;
3298         gbl->fom_out = 0;
3299
3300         /* Initialize WLAT and RLAT. */
3301         mem_init_latency();
3302
3303         /* Initialize bit slips. */
3304         mem_precharge_and_activate();
3305
3306         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3307                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3308                           SCC_MGR_GROUP_COUNTER_OFFSET);
3309                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3310                 if (i == 0)
3311                         scc_mgr_set_hhp_extras();
3312
3313                 scc_set_bypass_mode(i);
3314         }
3315
3316         /* Calibration is skipped. */
3317         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3318                 /*
3319                  * Set VFIFO and LFIFO to instant-on settings in skip
3320                  * calibration mode.
3321                  */
3322                 mem_skip_calibrate();
3323
3324                 /*
3325                  * Do not remove this line as it makes sure all of our
3326                  * decisions have been applied.
3327                  */
3328                 writel(0, &sdr_scc_mgr->update);
3329                 return 1;
3330         }
3331
3332         /* Calibration is not skipped. */
3333         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3334                 /*
3335                  * Zero all delay chain/phase settings for all
3336                  * groups and all shadow register sets.
3337                  */
3338                 scc_mgr_zero_all();
3339
3340                 run_groups = ~param->skip_groups;
3341
3342                 for (write_group = 0, write_test_bgn = 0; write_group
3343                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3344                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3345
3346                         /* Initialize the group failure */
3347                         group_failed = 0;
3348
3349                         current_run = run_groups & ((1 <<
3350                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3351                         run_groups = run_groups >>
3352                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3353
3354                         if (current_run == 0)
3355                                 continue;
3356
3357                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3358                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3359                         scc_mgr_zero_group(write_group, 0);
3360
3361                         for (read_group = write_group * rwdqs_ratio,
3362                              read_test_bgn = 0;
3363                              read_group < (write_group + 1) * rwdqs_ratio;
3364                              read_group++,
3365                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3366                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3367                                         continue;
3368
3369                                 /* Calibrate the VFIFO */
3370                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3371                                                                read_test_bgn))
3372                                         continue;
3373
3374                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3375                                         return 0;
3376
3377                                 /* The group failed, we're done. */
3378                                 goto grp_failed;
3379                         }
3380
3381                         /* Calibrate the output side */
3382                         for (rank_bgn = 0, sr = 0;
3383                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3384                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3385                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3386                                         continue;
3387
3388                                 /* Not needed in quick mode! */
3389                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3390                                         continue;
3391
3392                                 /*
3393                                  * Determine if this set of ranks
3394                                  * should be skipped entirely.
3395                                  */
3396                                 if (param->skip_shadow_regs[sr])
3397                                         continue;
3398
3399                                 /* Calibrate WRITEs */
3400                                 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3401                                                 write_group, write_test_bgn))
3402                                         continue;
3403
3404                                 group_failed = 1;
3405                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3406                                         return 0;
3407                         }
3408
3409                         /* Some group failed, we're done. */
3410                         if (group_failed)
3411                                 goto grp_failed;
3412
3413                         for (read_group = write_group * rwdqs_ratio,
3414                              read_test_bgn = 0;
3415                              read_group < (write_group + 1) * rwdqs_ratio;
3416                              read_group++,
3417                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3418                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3419                                         continue;
3420
3421                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3422                                                                 read_test_bgn))
3423                                         continue;
3424
3425                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3426                                         return 0;
3427
3428                                 /* The group failed, we're done. */
3429                                 goto grp_failed;
3430                         }
3431
3432                         /* No group failed, continue as usual. */
3433                         continue;
3434
3435 grp_failed:             /* A group failed, increment the counter. */
3436                         failing_groups++;
3437                 }
3438
3439                 /*
3440                  * USER If there are any failing groups then report
3441                  * the failure.
3442                  */
3443                 if (failing_groups != 0)
3444                         return 0;
3445
3446                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3447                         continue;
3448
3449                 /*
3450                  * If we're skipping groups as part of debug,
3451                  * don't calibrate LFIFO.
3452                  */
3453                 if (param->skip_groups != 0)
3454                         continue;
3455
3456                 /* Calibrate the LFIFO */
3457                 if (!rw_mgr_mem_calibrate_lfifo())
3458                         return 0;
3459         }
3460
3461         /*
3462          * Do not remove this line as it makes sure all of our decisions
3463          * have been applied.
3464          */
3465         writel(0, &sdr_scc_mgr->update);
3466         return 1;
3467 }
3468
3469 /**
3470  * run_mem_calibrate() - Perform memory calibration
3471  *
3472  * This function triggers the entire memory calibration procedure.
3473  */
3474 static int run_mem_calibrate(void)
3475 {
3476         int pass;
3477
3478         debug("%s:%d\n", __func__, __LINE__);
3479
3480         /* Reset pass/fail status shown on afi_cal_success/fail */
3481         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3482
3483         /* Stop tracking manager. */
3484         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3485
3486         phy_mgr_initialize();
3487         rw_mgr_mem_initialize();
3488
3489         /* Perform the actual memory calibration. */
3490         pass = mem_calibrate();
3491
3492         mem_precharge_and_activate();
3493         writel(0, &phy_mgr_cmd->fifo_reset);
3494
3495         /* Handoff. */
3496         rw_mgr_mem_handoff();
3497         /*
3498          * In Hard PHY this is a 2-bit control:
3499          * 0: AFI Mux Select
3500          * 1: DDIO Mux Select
3501          */
3502         writel(0x2, &phy_mgr_cfg->mux_sel);
3503
3504         /* Start tracking manager. */
3505         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3506
3507         return pass;
3508 }
3509
3510 /**
3511  * debug_mem_calibrate() - Report result of memory calibration
3512  * @pass:       Value indicating whether calibration passed or failed
3513  *
3514  * This function reports the results of the memory calibration
3515  * and writes debug information into the register file.
3516  */
3517 static void debug_mem_calibrate(int pass)
3518 {
3519         uint32_t debug_info;
3520
3521         if (pass) {
3522                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3523
3524                 gbl->fom_in /= 2;
3525                 gbl->fom_out /= 2;
3526
3527                 if (gbl->fom_in > 0xff)
3528                         gbl->fom_in = 0xff;
3529
3530                 if (gbl->fom_out > 0xff)
3531                         gbl->fom_out = 0xff;
3532
3533                 /* Update the FOM in the register file */
3534                 debug_info = gbl->fom_in;
3535                 debug_info |= gbl->fom_out << 8;
3536                 writel(debug_info, &sdr_reg_file->fom);
3537
3538                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3539                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3540         } else {
3541                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3542
3543                 debug_info = gbl->error_stage;
3544                 debug_info |= gbl->error_substage << 8;
3545                 debug_info |= gbl->error_group << 16;
3546
3547                 writel(debug_info, &sdr_reg_file->failing_stage);
3548                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3549                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3550
3551                 /* Update the failing group/stage in the register file */
3552                 debug_info = gbl->error_stage;
3553                 debug_info |= gbl->error_substage << 8;
3554                 debug_info |= gbl->error_group << 16;
3555                 writel(debug_info, &sdr_reg_file->failing_stage);
3556         }
3557
3558         printf("%s: Calibration complete\n", __FILE__);
3559 }
3560
3561 /**
3562  * hc_initialize_rom_data() - Initialize ROM data
3563  *
3564  * Initialize ROM data.
3565  */
3566 static void hc_initialize_rom_data(void)
3567 {
3568         u32 i, addr;
3569
3570         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3571         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3572                 writel(inst_rom_init[i], addr + (i << 2));
3573
3574         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3575         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3576                 writel(ac_rom_init[i], addr + (i << 2));
3577 }
3578
3579 /**
3580  * initialize_reg_file() - Initialize SDR register file
3581  *
3582  * Initialize SDR register file.
3583  */
3584 static void initialize_reg_file(void)
3585 {
3586         /* Initialize the register file with the correct data */
3587         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3588         writel(0, &sdr_reg_file->debug_data_addr);
3589         writel(0, &sdr_reg_file->cur_stage);
3590         writel(0, &sdr_reg_file->fom);
3591         writel(0, &sdr_reg_file->failing_stage);
3592         writel(0, &sdr_reg_file->debug1);
3593         writel(0, &sdr_reg_file->debug2);
3594 }
3595
3596 /**
3597  * initialize_hps_phy() - Initialize HPS PHY
3598  *
3599  * Initialize HPS PHY.
3600  */
3601 static void initialize_hps_phy(void)
3602 {
3603         uint32_t reg;
3604         /*
3605          * Tracking also gets configured here because it's in the
3606          * same register.
3607          */
3608         uint32_t trk_sample_count = 7500;
3609         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3610         /*
3611          * Format is number of outer loops in the 16 MSB, sample
3612          * count in 16 LSB.
3613          */
3614
3615         reg = 0;
3616         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3617         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3618         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3619         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3620         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3621         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3622         /*
3623          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3624          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3625          */
3626         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3627         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3628                 trk_sample_count);
3629         writel(reg, &sdr_ctrl->phy_ctrl0);
3630
3631         reg = 0;
3632         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3633                 trk_sample_count >>
3634                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3635         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3636                 trk_long_idle_sample_count);
3637         writel(reg, &sdr_ctrl->phy_ctrl1);
3638
3639         reg = 0;
3640         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3641                 trk_long_idle_sample_count >>
3642                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3643         writel(reg, &sdr_ctrl->phy_ctrl2);
3644 }
3645
3646 /**
3647  * initialize_tracking() - Initialize tracking
3648  *
3649  * Initialize the register file with usable initial data.
3650  */
3651 static void initialize_tracking(void)
3652 {
3653         /*
3654          * Initialize the register file with the correct data.
3655          * Compute usable version of value in case we skip full
3656          * computation later.
3657          */
3658         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3659                &sdr_reg_file->dtaps_per_ptap);
3660
3661         /* trk_sample_count */
3662         writel(7500, &sdr_reg_file->trk_sample_count);
3663
3664         /* longidle outer loop [15:0] */
3665         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3666
3667         /*
3668          * longidle sample count [31:24]
3669          * trfc, worst case of 933Mhz 4Gb [23:16]
3670          * trcd, worst case [15:8]
3671          * vfifo wait [7:0]
3672          */
3673         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3674                &sdr_reg_file->delays);
3675
3676         /* mux delay */
3677         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3678                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3679                &sdr_reg_file->trk_rw_mgr_addr);
3680
3681         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3682                &sdr_reg_file->trk_read_dqs_width);
3683
3684         /* trefi [7:0] */
3685         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3686                &sdr_reg_file->trk_rfsh);
3687 }
3688
3689 int sdram_calibration_full(void)
3690 {
3691         struct param_type my_param;
3692         struct gbl_type my_gbl;
3693         uint32_t pass;
3694
3695         memset(&my_param, 0, sizeof(my_param));
3696         memset(&my_gbl, 0, sizeof(my_gbl));
3697
3698         param = &my_param;
3699         gbl = &my_gbl;
3700
3701         /* Set the calibration enabled by default */
3702         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3703         /*
3704          * Only sweep all groups (regardless of fail state) by default
3705          * Set enabled read test by default.
3706          */
3707 #if DISABLE_GUARANTEED_READ
3708         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3709 #endif
3710         /* Initialize the register file */
3711         initialize_reg_file();
3712
3713         /* Initialize any PHY CSR */
3714         initialize_hps_phy();
3715
3716         scc_mgr_initialize();
3717
3718         initialize_tracking();
3719
3720         printf("%s: Preparing to start memory calibration\n", __FILE__);
3721
3722         debug("%s:%d\n", __func__, __LINE__);
3723         debug_cond(DLEVEL == 1,
3724                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3725                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3726                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3727                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3728                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3729         debug_cond(DLEVEL == 1,
3730                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3731                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3732                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3733                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3734         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3735                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3736         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3737                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3738                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3739         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3740                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3741                    IO_IO_OUT2_DELAY_MAX);
3742         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3743                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3744
3745         hc_initialize_rom_data();
3746
3747         /* update info for sims */
3748         reg_file_set_stage(CAL_STAGE_NIL);
3749         reg_file_set_group(0);
3750
3751         /*
3752          * Load global needed for those actions that require
3753          * some dynamic calibration support.
3754          */
3755         dyn_calib_steps = STATIC_CALIB_STEPS;
3756         /*
3757          * Load global to allow dynamic selection of delay loop settings
3758          * based on calibration mode.
3759          */
3760         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3761                 skip_delay_mask = 0xff;
3762         else
3763                 skip_delay_mask = 0x0;
3764
3765         pass = run_mem_calibrate();
3766         debug_mem_calibrate(pass);
3767         return pass;
3768 }