1 /**************************************************************************
2 Inter Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
22 You should have received a copy of the GNU General Public License along with
23 this program; if not, write to the Free Software Foundation, Inc., 59
24 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 The full GNU General Public License is included in this distribution in the
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 *******************************************************************************/
35 * Copyright (C) Archway Digital Solutions.
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
47 #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
50 #define TOUT_LOOP 100000
53 #define virt_to_bus(x) ((unsigned long)x)
54 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
55 #define mdelay(n) udelay((n)*1000)
57 #define E1000_DEFAULT_PBA 0x00000030
59 /* NIC specific static variables go here */
61 static char tx_pool[128 + 16];
62 static char rx_pool[128 + 16];
63 static char packet[2096];
65 static struct e1000_tx_desc *tx_base;
66 static struct e1000_rx_desc *rx_base;
69 static int rx_tail, rx_last;
71 static struct pci_device_id supported[] = {
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
87 /* Function forward declarations */
88 static int e1000_setup_link(struct eth_device *nic);
89 static int e1000_setup_fiber_link(struct eth_device *nic);
90 static int e1000_setup_copper_link(struct eth_device *nic);
91 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
92 static void e1000_config_collision_dist(struct e1000_hw *hw);
93 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
94 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
95 static int e1000_check_for_link(struct eth_device *nic);
96 static int e1000_wait_autoneg(struct e1000_hw *hw);
97 static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
99 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
100 uint16_t * phy_data);
101 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
103 static void e1000_phy_hw_reset(struct e1000_hw *hw);
104 static int e1000_phy_reset(struct e1000_hw *hw);
105 static int e1000_detect_gig_phy(struct e1000_hw *hw);
107 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
108 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
109 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
110 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
111 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
112 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
113 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
115 #ifndef CONFIG_AP1000 /* remove for warnings */
116 /******************************************************************************
117 * Raises the EEPROM's clock input.
119 * hw - Struct containing variables accessed by shared code
120 * eecd - EECD's current value
121 *****************************************************************************/
123 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
125 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
126 * wait 50 microseconds.
128 *eecd = *eecd | E1000_EECD_SK;
129 E1000_WRITE_REG(hw, EECD, *eecd);
130 E1000_WRITE_FLUSH(hw);
134 /******************************************************************************
135 * Lowers the EEPROM's clock input.
137 * hw - Struct containing variables accessed by shared code
138 * eecd - EECD's current value
139 *****************************************************************************/
141 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
143 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
144 * wait 50 microseconds.
146 *eecd = *eecd & ~E1000_EECD_SK;
147 E1000_WRITE_REG(hw, EECD, *eecd);
148 E1000_WRITE_FLUSH(hw);
152 /******************************************************************************
153 * Shift data bits out to the EEPROM.
155 * hw - Struct containing variables accessed by shared code
156 * data - data to send to the EEPROM
157 * count - number of bits to shift out
158 *****************************************************************************/
160 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
165 /* We need to shift "count" bits out to the EEPROM. So, value in the
166 * "data" parameter will be shifted out to the EEPROM one bit at a time.
167 * In order to do this, "data" must be broken down into bits.
169 mask = 0x01 << (count - 1);
170 eecd = E1000_READ_REG(hw, EECD);
171 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
173 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
174 * and then raising and then lowering the clock (the SK bit controls
175 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
176 * by setting "DI" to "0" and then raising and then lowering the clock.
178 eecd &= ~E1000_EECD_DI;
181 eecd |= E1000_EECD_DI;
183 E1000_WRITE_REG(hw, EECD, eecd);
184 E1000_WRITE_FLUSH(hw);
188 e1000_raise_ee_clk(hw, &eecd);
189 e1000_lower_ee_clk(hw, &eecd);
195 /* We leave the "DI" bit set to "0" when we leave this routine. */
196 eecd &= ~E1000_EECD_DI;
197 E1000_WRITE_REG(hw, EECD, eecd);
200 /******************************************************************************
201 * Shift data bits in from the EEPROM
203 * hw - Struct containing variables accessed by shared code
204 *****************************************************************************/
206 e1000_shift_in_ee_bits(struct e1000_hw *hw)
212 /* In order to read a register from the EEPROM, we need to shift 16 bits
213 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
214 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
215 * bit. During this "shifting in" process the "DI" bit should always be
219 eecd = E1000_READ_REG(hw, EECD);
221 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
224 for (i = 0; i < 16; i++) {
226 e1000_raise_ee_clk(hw, &eecd);
228 eecd = E1000_READ_REG(hw, EECD);
230 eecd &= ~(E1000_EECD_DI);
231 if (eecd & E1000_EECD_DO)
234 e1000_lower_ee_clk(hw, &eecd);
240 /******************************************************************************
241 * Prepares EEPROM for access
243 * hw - Struct containing variables accessed by shared code
245 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
246 * function should be called before issuing a command to the EEPROM.
247 *****************************************************************************/
249 e1000_setup_eeprom(struct e1000_hw *hw)
253 eecd = E1000_READ_REG(hw, EECD);
255 /* Clear SK and DI */
256 eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
257 E1000_WRITE_REG(hw, EECD, eecd);
260 eecd |= E1000_EECD_CS;
261 E1000_WRITE_REG(hw, EECD, eecd);
264 /******************************************************************************
265 * Returns EEPROM to a "standby" state
267 * hw - Struct containing variables accessed by shared code
268 *****************************************************************************/
270 e1000_standby_eeprom(struct e1000_hw *hw)
274 eecd = E1000_READ_REG(hw, EECD);
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 E1000_WRITE_REG(hw, EECD, eecd);
279 E1000_WRITE_FLUSH(hw);
283 eecd |= E1000_EECD_SK;
284 E1000_WRITE_REG(hw, EECD, eecd);
285 E1000_WRITE_FLUSH(hw);
289 eecd |= E1000_EECD_CS;
290 E1000_WRITE_REG(hw, EECD, eecd);
291 E1000_WRITE_FLUSH(hw);
295 eecd &= ~E1000_EECD_SK;
296 E1000_WRITE_REG(hw, EECD, eecd);
297 E1000_WRITE_FLUSH(hw);
301 /******************************************************************************
302 * Reads a 16 bit word from the EEPROM.
304 * hw - Struct containing variables accessed by shared code
305 * offset - offset of word in the EEPROM to read
306 * data - word read from the EEPROM
307 *****************************************************************************/
309 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
313 int large_eeprom = FALSE;
315 /* Request EEPROM Access */
316 if (hw->mac_type > e1000_82544) {
317 eecd = E1000_READ_REG(hw, EECD);
318 if (eecd & E1000_EECD_SIZE)
320 eecd |= E1000_EECD_REQ;
321 E1000_WRITE_REG(hw, EECD, eecd);
322 eecd = E1000_READ_REG(hw, EECD);
323 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
326 eecd = E1000_READ_REG(hw, EECD);
328 if (!(eecd & E1000_EECD_GNT)) {
329 eecd &= ~E1000_EECD_REQ;
330 E1000_WRITE_REG(hw, EECD, eecd);
331 DEBUGOUT("Could not acquire EEPROM grant\n");
332 return -E1000_ERR_EEPROM;
336 /* Prepare the EEPROM for reading */
337 e1000_setup_eeprom(hw);
339 /* Send the READ command (opcode + addr) */
340 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
341 e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
344 *data = e1000_shift_in_ee_bits(hw);
346 /* End this read operation */
347 e1000_standby_eeprom(hw);
349 /* Stop requesting EEPROM access */
350 if (hw->mac_type > e1000_82544) {
351 eecd = E1000_READ_REG(hw, EECD);
352 eecd &= ~E1000_EECD_REQ;
353 E1000_WRITE_REG(hw, EECD, eecd);
361 e1000_eeprom_cleanup(struct e1000_hw *hw)
365 eecd = E1000_READ_REG(hw, EECD);
366 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
367 E1000_WRITE_REG(hw, EECD, eecd);
368 e1000_raise_ee_clk(hw, &eecd);
369 e1000_lower_ee_clk(hw, &eecd);
373 e1000_wait_eeprom_done(struct e1000_hw *hw)
378 e1000_standby_eeprom(hw);
379 for (i = 0; i < 200; i++) {
380 eecd = E1000_READ_REG(hw, EECD);
381 if (eecd & E1000_EECD_DO)
389 e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
392 int large_eeprom = FALSE;
395 /* Request EEPROM Access */
396 if (hw->mac_type > e1000_82544) {
397 eecd = E1000_READ_REG(hw, EECD);
398 if (eecd & E1000_EECD_SIZE)
400 eecd |= E1000_EECD_REQ;
401 E1000_WRITE_REG(hw, EECD, eecd);
402 eecd = E1000_READ_REG(hw, EECD);
403 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
406 eecd = E1000_READ_REG(hw, EECD);
408 if (!(eecd & E1000_EECD_GNT)) {
409 eecd &= ~E1000_EECD_REQ;
410 E1000_WRITE_REG(hw, EECD, eecd);
411 DEBUGOUT("Could not acquire EEPROM grant\n");
415 e1000_setup_eeprom(hw);
416 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
417 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
418 e1000_standby_eeprom(hw);
419 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
420 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
421 e1000_shift_out_ee_bits(hw, Data, 16);
422 if (!e1000_wait_eeprom_done(hw)) {
425 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
426 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
427 e1000_eeprom_cleanup(hw);
429 /* Stop requesting EEPROM access */
430 if (hw->mac_type > e1000_82544) {
431 eecd = E1000_READ_REG(hw, EECD);
432 eecd &= ~E1000_EECD_REQ;
433 E1000_WRITE_REG(hw, EECD, eecd);
436 eecd = E1000_READ_REG(hw, EECD);
437 while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
440 eecd = E1000_READ_REG(hw, EECD);
442 if ((eecd & E1000_EECD_GNT)) {
443 DEBUGOUT("Could not release EEPROM grant\n");
449 /******************************************************************************
450 * Verifies that the EEPROM has a valid checksum
452 * hw - Struct containing variables accessed by shared code
454 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
455 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
457 *****************************************************************************/
459 e1000_validate_eeprom_checksum(struct eth_device *nic)
461 struct e1000_hw *hw = nic->priv;
462 uint16_t checksum = 0;
463 uint16_t i, eeprom_data;
467 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
468 if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
469 DEBUGOUT("EEPROM Read Error\n");
470 return -E1000_ERR_EEPROM;
472 checksum += eeprom_data;
475 if (checksum == (uint16_t) EEPROM_SUM) {
478 DEBUGOUT("EEPROM Checksum Invalid\n");
479 return -E1000_ERR_EEPROM;
482 #endif /* #ifndef CONFIG_AP1000 */
484 /******************************************************************************
485 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
486 * second function of dual function devices
488 * nic - Struct containing variables accessed by shared code
489 *****************************************************************************/
491 e1000_read_mac_addr(struct eth_device *nic)
493 #ifndef CONFIG_AP1000
494 struct e1000_hw *hw = nic->priv;
496 uint16_t eeprom_data;
501 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
503 if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
504 DEBUGOUT("EEPROM Read Error\n");
505 return -E1000_ERR_EEPROM;
507 nic->enetaddr[i] = eeprom_data & 0xff;
508 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
510 if ((hw->mac_type == e1000_82546) &&
511 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
512 /* Invert the last bit if this is the second device */
513 nic->enetaddr[5] += 1;
517 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
518 * environment variables. Currently this does not support the addition
519 * of a PMC e1000 card, which is certainly a possibility, so this should
520 * be updated to properly use the env variable only for the onboard e1000
528 s = getenv ("ethaddr");
530 return -E1000_ERR_EEPROM;
533 for(ii = 0; ii < 6; ii++) {
534 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
536 s = (*e) ? e + 1 : e;
544 /******************************************************************************
545 * Initializes receive address filters.
547 * hw - Struct containing variables accessed by shared code
549 * Places the MAC address in receive address register 0 and clears the rest
550 * of the receive addresss registers. Clears the multicast table. Assumes
551 * the receiver is in reset when the routine is called.
552 *****************************************************************************/
554 e1000_init_rx_addrs(struct eth_device *nic)
556 struct e1000_hw *hw = nic->priv;
563 /* Setup the receive address. */
564 DEBUGOUT("Programming MAC Address into RAR[0]\n");
565 addr_low = (nic->enetaddr[0] |
566 (nic->enetaddr[1] << 8) |
567 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
569 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
571 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
572 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
574 /* Zero out the other 15 receive addresses. */
575 DEBUGOUT("Clearing RAR[1-15]\n");
576 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
577 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
578 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
582 /******************************************************************************
583 * Clears the VLAN filer table
585 * hw - Struct containing variables accessed by shared code
586 *****************************************************************************/
588 e1000_clear_vfta(struct e1000_hw *hw)
592 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
593 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
596 /******************************************************************************
597 * Set the mac type member in the hw struct.
599 * hw - Struct containing variables accessed by shared code
600 *****************************************************************************/
602 e1000_set_mac_type(struct e1000_hw *hw)
606 switch (hw->device_id) {
607 case E1000_DEV_ID_82542:
608 switch (hw->revision_id) {
609 case E1000_82542_2_0_REV_ID:
610 hw->mac_type = e1000_82542_rev2_0;
612 case E1000_82542_2_1_REV_ID:
613 hw->mac_type = e1000_82542_rev2_1;
616 /* Invalid 82542 revision ID */
617 return -E1000_ERR_MAC_TYPE;
620 case E1000_DEV_ID_82543GC_FIBER:
621 case E1000_DEV_ID_82543GC_COPPER:
622 hw->mac_type = e1000_82543;
624 case E1000_DEV_ID_82544EI_COPPER:
625 case E1000_DEV_ID_82544EI_FIBER:
626 case E1000_DEV_ID_82544GC_COPPER:
627 case E1000_DEV_ID_82544GC_LOM:
628 hw->mac_type = e1000_82544;
630 case E1000_DEV_ID_82540EM:
631 case E1000_DEV_ID_82540EM_LOM:
632 hw->mac_type = e1000_82540;
634 case E1000_DEV_ID_82545EM_COPPER:
635 case E1000_DEV_ID_82545EM_FIBER:
636 hw->mac_type = e1000_82545;
638 case E1000_DEV_ID_82546EB_COPPER:
639 case E1000_DEV_ID_82546EB_FIBER:
640 hw->mac_type = e1000_82546;
643 /* Should never have loaded on this device */
644 return -E1000_ERR_MAC_TYPE;
646 return E1000_SUCCESS;
649 /******************************************************************************
650 * Reset the transmit and receive units; mask and clear all interrupts.
652 * hw - Struct containing variables accessed by shared code
653 *****************************************************************************/
655 e1000_reset_hw(struct e1000_hw *hw)
664 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
665 if (hw->mac_type == e1000_82542_rev2_0) {
666 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
667 pci_write_config_word(hw->pdev, PCI_COMMAND,
669 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
672 /* Clear interrupt mask to stop board from generating interrupts */
673 DEBUGOUT("Masking off all interrupts\n");
674 E1000_WRITE_REG(hw, IMC, 0xffffffff);
676 /* Disable the Transmit and Receive units. Then delay to allow
677 * any pending transactions to complete before we hit the MAC with
680 E1000_WRITE_REG(hw, RCTL, 0);
681 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
682 E1000_WRITE_FLUSH(hw);
684 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
685 hw->tbi_compatibility_on = FALSE;
687 /* Delay to allow any outstanding PCI transactions to complete before
688 * resetting the device
692 /* Issue a global reset to the MAC. This will reset the chip's
693 * transmit, receive, DMA, and link units. It will not effect
694 * the current PCI configuration. The global reset bit is self-
695 * clearing, and should clear within a microsecond.
697 DEBUGOUT("Issuing a global reset to MAC\n");
698 ctrl = E1000_READ_REG(hw, CTRL);
701 if (hw->mac_type > e1000_82543)
702 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
705 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
707 /* Force a reload from the EEPROM if necessary */
708 if (hw->mac_type < e1000_82540) {
709 /* Wait for reset to complete */
711 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
712 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
713 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
714 E1000_WRITE_FLUSH(hw);
715 /* Wait for EEPROM reload */
718 /* Wait for EEPROM reload (it happens automatically) */
720 /* Dissable HW ARPs on ASF enabled adapters */
721 manc = E1000_READ_REG(hw, MANC);
722 manc &= ~(E1000_MANC_ARP_EN);
723 E1000_WRITE_REG(hw, MANC, manc);
726 /* Clear interrupt mask to stop board from generating interrupts */
727 DEBUGOUT("Masking off all interrupts\n");
728 E1000_WRITE_REG(hw, IMC, 0xffffffff);
730 /* Clear any pending interrupt events. */
731 icr = E1000_READ_REG(hw, ICR);
733 /* If MWI was previously enabled, reenable it. */
734 if (hw->mac_type == e1000_82542_rev2_0) {
735 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
739 /******************************************************************************
740 * Performs basic configuration of the adapter.
742 * hw - Struct containing variables accessed by shared code
744 * Assumes that the controller has previously been reset and is in a
745 * post-reset uninitialized state. Initializes the receive address registers,
746 * multicast table, and VLAN filter table. Calls routines to setup link
747 * configuration and flow control settings. Clears all on-chip counters. Leaves
748 * the transmit and receive units disabled and uninitialized.
749 *****************************************************************************/
751 e1000_init_hw(struct eth_device *nic)
753 struct e1000_hw *hw = nic->priv;
754 uint32_t ctrl, status;
757 uint16_t pcix_cmd_word;
758 uint16_t pcix_stat_hi_word;
761 e1000_bus_type bus_type = e1000_bus_type_unknown;
765 /* Initialize Identification LED */
766 ret_val = e1000_id_led_init(hw);
768 DEBUGOUT("Error Initializing Identification LED\n");
772 /* Set the Media Type and exit with error if it is not valid. */
773 if (hw->mac_type != e1000_82543) {
774 /* tbi_compatibility is only valid on 82543 */
775 hw->tbi_compatibility_en = FALSE;
778 if (hw->mac_type >= e1000_82543) {
779 status = E1000_READ_REG(hw, STATUS);
780 if (status & E1000_STATUS_TBIMODE) {
781 hw->media_type = e1000_media_type_fiber;
782 /* tbi_compatibility not valid on fiber */
783 hw->tbi_compatibility_en = FALSE;
785 hw->media_type = e1000_media_type_copper;
788 /* This is an 82542 (fiber only) */
789 hw->media_type = e1000_media_type_fiber;
792 /* Disabling VLAN filtering. */
793 DEBUGOUT("Initializing the IEEE VLAN\n");
794 E1000_WRITE_REG(hw, VET, 0);
796 e1000_clear_vfta(hw);
798 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
799 if (hw->mac_type == e1000_82542_rev2_0) {
800 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
801 pci_write_config_word(hw->pdev, PCI_COMMAND,
803 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
804 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
805 E1000_WRITE_FLUSH(hw);
809 /* Setup the receive address. This involves initializing all of the Receive
810 * Address Registers (RARs 0 - 15).
812 e1000_init_rx_addrs(nic);
814 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
815 if (hw->mac_type == e1000_82542_rev2_0) {
816 E1000_WRITE_REG(hw, RCTL, 0);
817 E1000_WRITE_FLUSH(hw);
819 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
822 /* Zero out the Multicast HASH table */
823 DEBUGOUT("Zeroing the MTA\n");
824 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
825 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
828 /* Set the PCI priority bit correctly in the CTRL register. This
829 * determines if the adapter gives priority to receives, or if it
830 * gives equal priority to transmits and receives.
832 if (hw->dma_fairness) {
833 ctrl = E1000_READ_REG(hw, CTRL);
834 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
837 if (hw->mac_type >= e1000_82543) {
838 status = E1000_READ_REG(hw, STATUS);
839 bus_type = (status & E1000_STATUS_PCIX_MODE) ?
840 e1000_bus_type_pcix : e1000_bus_type_pci;
842 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
843 if (bus_type == e1000_bus_type_pcix) {
844 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
846 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
849 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
850 PCIX_COMMAND_MMRBC_SHIFT;
852 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
853 PCIX_STATUS_HI_MMRBC_SHIFT;
854 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
855 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
856 if (cmd_mmrbc > stat_mmrbc) {
857 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
858 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
859 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
864 /* Call a subroutine to configure the link and setup flow control. */
865 ret_val = e1000_setup_link(nic);
867 /* Set the transmit descriptor write-back policy */
868 if (hw->mac_type > e1000_82544) {
869 ctrl = E1000_READ_REG(hw, TXDCTL);
871 (ctrl & ~E1000_TXDCTL_WTHRESH) |
872 E1000_TXDCTL_FULL_TX_DESC_WB;
873 E1000_WRITE_REG(hw, TXDCTL, ctrl);
876 /* Clear all of the statistics registers (clear on read). It is
877 * important that we do this after we have tried to establish link
878 * because the symbol error count will increment wildly if there
881 e1000_clear_hw_cntrs(hw);
887 /******************************************************************************
888 * Configures flow control and link settings.
890 * hw - Struct containing variables accessed by shared code
892 * Determines which flow control settings to use. Calls the apropriate media-
893 * specific link configuration function. Configures the flow control settings.
894 * Assuming the adapter has a valid link partner, a valid link should be
895 * established. Assumes the hardware has previously been reset and the
896 * transmitter and receiver are not enabled.
897 *****************************************************************************/
899 e1000_setup_link(struct eth_device *nic)
901 struct e1000_hw *hw = nic->priv;
904 uint16_t eeprom_data;
908 #ifndef CONFIG_AP1000
909 /* Read and store word 0x0F of the EEPROM. This word contains bits
910 * that determine the hardware's default PAUSE (flow control) mode,
911 * a bit that determines whether the HW defaults to enabling or
912 * disabling auto-negotiation, and the direction of the
913 * SW defined pins. If there is no SW over-ride of the flow
914 * control setting, then the variable hw->fc will
915 * be initialized based on a value in the EEPROM.
917 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
918 DEBUGOUT("EEPROM Read Error\n");
919 return -E1000_ERR_EEPROM;
922 /* we have to hardcode the proper value for our hardware. */
923 /* this value is for the 82540EM pci card used for prototyping, and it works. */
924 eeprom_data = 0xb220;
927 if (hw->fc == e1000_fc_default) {
928 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
929 hw->fc = e1000_fc_none;
930 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
931 EEPROM_WORD0F_ASM_DIR)
932 hw->fc = e1000_fc_tx_pause;
934 hw->fc = e1000_fc_full;
937 /* We want to save off the original Flow Control configuration just
938 * in case we get disconnected and then reconnected into a different
939 * hub or switch with different Flow Control capabilities.
941 if (hw->mac_type == e1000_82542_rev2_0)
942 hw->fc &= (~e1000_fc_tx_pause);
944 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
945 hw->fc &= (~e1000_fc_rx_pause);
947 hw->original_fc = hw->fc;
949 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
951 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
952 * polarity value for the SW controlled pins, and setup the
953 * Extended Device Control reg with that info.
954 * This is needed because one of the SW controlled pins is used for
955 * signal detection. So this should be done before e1000_setup_pcs_link()
956 * or e1000_phy_setup() is called.
958 if (hw->mac_type == e1000_82543) {
959 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
961 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
964 /* Call the necessary subroutine to configure the link. */
965 ret_val = (hw->media_type == e1000_media_type_fiber) ?
966 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
971 /* Initialize the flow control address, type, and PAUSE timer
972 * registers to their default values. This is done even if flow
973 * control is disabled, because it does not hurt anything to
974 * initialize these registers.
977 ("Initializing the Flow Control address, type and timer regs\n");
979 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
980 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
981 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
982 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
984 /* Set the flow control receive threshold registers. Normally,
985 * these registers will be set to a default threshold that may be
986 * adjusted later by the driver's runtime code. However, if the
987 * ability to transmit pause frames in not enabled, then these
988 * registers will be set to 0.
990 if (!(hw->fc & e1000_fc_tx_pause)) {
991 E1000_WRITE_REG(hw, FCRTL, 0);
992 E1000_WRITE_REG(hw, FCRTH, 0);
994 /* We need to set up the Receive Threshold high and low water marks
995 * as well as (optionally) enabling the transmission of XON frames.
997 if (hw->fc_send_xon) {
998 E1000_WRITE_REG(hw, FCRTL,
999 (hw->fc_low_water | E1000_FCRTL_XONE));
1000 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1002 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1003 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1009 /******************************************************************************
1010 * Sets up link for a fiber based adapter
1012 * hw - Struct containing variables accessed by shared code
1014 * Manipulates Physical Coding Sublayer functions in order to configure
1015 * link. Assumes the hardware has been previously reset and the transmitter
1016 * and receiver are not enabled.
1017 *****************************************************************************/
1019 e1000_setup_fiber_link(struct eth_device *nic)
1021 struct e1000_hw *hw = nic->priv;
1030 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1031 * set when the optics detect a signal. On older adapters, it will be
1032 * cleared when there is a signal
1034 ctrl = E1000_READ_REG(hw, CTRL);
1035 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1036 signal = E1000_CTRL_SWDPIN1;
1040 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1042 /* Take the link out of reset */
1043 ctrl &= ~(E1000_CTRL_LRST);
1045 e1000_config_collision_dist(hw);
1047 /* Check for a software override of the flow control settings, and setup
1048 * the device accordingly. If auto-negotiation is enabled, then software
1049 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1050 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1051 * auto-negotiation is disabled, then software will have to manually
1052 * configure the two flow control enable bits in the CTRL register.
1054 * The possible values of the "fc" parameter are:
1055 * 0: Flow control is completely disabled
1056 * 1: Rx flow control is enabled (we can receive pause frames, but
1057 * not send pause frames).
1058 * 2: Tx flow control is enabled (we can send pause frames but we do
1059 * not support receiving pause frames).
1060 * 3: Both Rx and TX flow control (symmetric) are enabled.
1064 /* Flow control is completely disabled by a software over-ride. */
1065 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1067 case e1000_fc_rx_pause:
1068 /* RX Flow control is enabled and TX Flow control is disabled by a
1069 * software over-ride. Since there really isn't a way to advertise
1070 * that we are capable of RX Pause ONLY, we will advertise that we
1071 * support both symmetric and asymmetric RX PAUSE. Later, we will
1072 * disable the adapter's ability to send PAUSE frames.
1074 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1076 case e1000_fc_tx_pause:
1077 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1078 * software over-ride.
1080 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1083 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1084 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1087 DEBUGOUT("Flow control param set incorrectly\n");
1088 return -E1000_ERR_CONFIG;
1092 /* Since auto-negotiation is enabled, take the link out of reset (the link
1093 * will be in reset, because we previously reset the chip). This will
1094 * restart auto-negotiation. If auto-neogtiation is successful then the
1095 * link-up status bit will be set and the flow control enable bits (RFCE
1096 * and TFCE) will be set according to their negotiated value.
1098 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1100 E1000_WRITE_REG(hw, TXCW, txcw);
1101 E1000_WRITE_REG(hw, CTRL, ctrl);
1102 E1000_WRITE_FLUSH(hw);
1107 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1108 * indication in the Device Status Register. Time-out if a link isn't
1109 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1110 * less than 500 milliseconds even if the other end is doing it in SW).
1112 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1113 DEBUGOUT("Looking for Link\n");
1114 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1116 status = E1000_READ_REG(hw, STATUS);
1117 if (status & E1000_STATUS_LU)
1120 if (i == (LINK_UP_TIMEOUT / 10)) {
1121 /* AutoNeg failed to achieve a link, so we'll call
1122 * e1000_check_for_link. This routine will force the link up if we
1123 * detect a signal. This will allow us to communicate with
1124 * non-autonegotiating link partners.
1126 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1127 hw->autoneg_failed = 1;
1128 ret_val = e1000_check_for_link(nic);
1130 DEBUGOUT("Error while checking for link\n");
1133 hw->autoneg_failed = 0;
1135 hw->autoneg_failed = 0;
1136 DEBUGOUT("Valid Link Found\n");
1139 DEBUGOUT("No Signal Detected\n");
1140 return -E1000_ERR_NOLINK;
1145 /******************************************************************************
1146 * Detects which PHY is present and the speed and duplex
1148 * hw - Struct containing variables accessed by shared code
1149 ******************************************************************************/
1151 e1000_setup_copper_link(struct eth_device *nic)
1153 struct e1000_hw *hw = nic->priv;
1161 ctrl = E1000_READ_REG(hw, CTRL);
1162 /* With 82543, we need to force speed and duplex on the MAC equal to what
1163 * the PHY speed and duplex configuration is. In addition, we need to
1164 * perform a hardware reset on the PHY to take it out of reset.
1166 if (hw->mac_type > e1000_82543) {
1167 ctrl |= E1000_CTRL_SLU;
1168 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1169 E1000_WRITE_REG(hw, CTRL, ctrl);
1172 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1173 E1000_WRITE_REG(hw, CTRL, ctrl);
1174 e1000_phy_hw_reset(hw);
1177 /* Make sure we have a valid PHY */
1178 ret_val = e1000_detect_gig_phy(hw);
1180 DEBUGOUT("Error, did not detect valid phy.\n");
1183 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
1185 /* Enable CRS on TX. This must be set for half-duplex operation. */
1186 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
1187 DEBUGOUT("PHY Read Error\n");
1188 return -E1000_ERR_PHY;
1190 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1194 * MDI/MDI-X = 0 (default)
1195 * 0 - Auto for all speeds
1198 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1200 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1203 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1206 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1209 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1213 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1217 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1222 * disable_polarity_correction = 0 (default)
1223 * Automatic Correction for Reversed Cable Polarity
1227 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1228 if (hw->disable_polarity_correction == 1)
1229 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1231 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1233 if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
1234 DEBUGOUT("PHY Write Error\n");
1235 return -E1000_ERR_PHY;
1238 /* Force TX_CLK in the Extended PHY Specific Control Register
1241 if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
1242 DEBUGOUT("PHY Read Error\n");
1243 return -E1000_ERR_PHY;
1245 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1246 /* Configure Master and Slave downshift values */
1247 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1248 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1249 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1250 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1251 if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
1252 DEBUGOUT("PHY Write Error\n");
1253 return -E1000_ERR_PHY;
1256 /* SW Reset the PHY so all changes take effect */
1257 ret_val = e1000_phy_reset(hw);
1259 DEBUGOUT("Error Resetting the PHY\n");
1264 * autoneg = 1 (default)
1265 * PHY will advertise value(s) parsed from
1266 * autoneg_advertised and fc
1268 * PHY will be set to 10H, 10F, 100H, or 100F
1269 * depending on value parsed from forced_speed_duplex.
1272 /* Is autoneg enabled? This is enabled by default or by software override.
1273 * If so, call e1000_phy_setup_autoneg routine to parse the
1274 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
1275 * user should have provided a speed/duplex override. If so, then call
1276 * e1000_phy_force_speed_duplex to parse and set this up.
1278 /* Perform some bounds checking on the hw->autoneg_advertised
1279 * parameter. If this variable is zero, then set it to the default.
1281 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1283 /* If autoneg_advertised is zero, we assume it was not defaulted
1284 * by the calling code so we set to advertise full capability.
1286 if (hw->autoneg_advertised == 0)
1287 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1289 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1290 ret_val = e1000_phy_setup_autoneg(hw);
1292 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1295 DEBUGOUT("Restarting Auto-Neg\n");
1297 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1298 * the Auto Neg Restart bit in the PHY control register.
1300 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
1301 DEBUGOUT("PHY Read Error\n");
1302 return -E1000_ERR_PHY;
1304 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1305 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
1306 DEBUGOUT("PHY Write Error\n");
1307 return -E1000_ERR_PHY;
1310 /* Does the user want to wait for Auto-Neg to complete here, or
1311 * check at a later time (for example, callback routine).
1313 if (hw->wait_autoneg_complete) {
1314 ret_val = e1000_wait_autoneg(hw);
1317 ("Error while waiting for autoneg to complete\n");
1322 /* If we do not wait for autonegtation to complete I
1323 * do not see a valid link status.
1325 ret_val = e1000_wait_autoneg(hw);
1327 DEBUGOUT("Error while waiting for autoneg to complete\n");
1332 /* Check link status. Wait up to 100 microseconds for link to become
1335 for (i = 0; i < 10; i++) {
1336 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1337 DEBUGOUT("PHY Read Error\n");
1338 return -E1000_ERR_PHY;
1340 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1341 DEBUGOUT("PHY Read Error\n");
1342 return -E1000_ERR_PHY;
1344 if (phy_data & MII_SR_LINK_STATUS) {
1345 /* We have link, so we need to finish the config process:
1346 * 1) Set up the MAC to the current PHY speed/duplex
1347 * if we are on 82543. If we
1348 * are on newer silicon, we only need to configure
1349 * collision distance in the Transmit Control Register.
1350 * 2) Set up flow control on the MAC to that established with
1353 if (hw->mac_type >= e1000_82544) {
1354 e1000_config_collision_dist(hw);
1356 ret_val = e1000_config_mac_to_phy(hw);
1359 ("Error configuring MAC to PHY settings\n");
1363 ret_val = e1000_config_fc_after_link_up(hw);
1365 DEBUGOUT("Error Configuring Flow Control\n");
1368 DEBUGOUT("Valid link established!!!\n");
1374 DEBUGOUT("Unable to establish link!!!\n");
1375 return -E1000_ERR_NOLINK;
1378 /******************************************************************************
1379 * Configures PHY autoneg and flow control advertisement settings
1381 * hw - Struct containing variables accessed by shared code
1382 ******************************************************************************/
1384 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1386 uint16_t mii_autoneg_adv_reg;
1387 uint16_t mii_1000t_ctrl_reg;
1391 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1392 if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
1393 DEBUGOUT("PHY Read Error\n");
1394 return -E1000_ERR_PHY;
1397 /* Read the MII 1000Base-T Control Register (Address 9). */
1398 if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
1399 DEBUGOUT("PHY Read Error\n");
1400 return -E1000_ERR_PHY;
1403 /* Need to parse both autoneg_advertised and fc and set up
1404 * the appropriate PHY registers. First we will parse for
1405 * autoneg_advertised software override. Since we can advertise
1406 * a plethora of combinations, we need to check each bit
1410 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1411 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1412 * the 1000Base-T Control Register (Address 9).
1414 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1415 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1417 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
1419 /* Do we want to advertise 10 Mb Half Duplex? */
1420 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1421 DEBUGOUT("Advertise 10mb Half duplex\n");
1422 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1425 /* Do we want to advertise 10 Mb Full Duplex? */
1426 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1427 DEBUGOUT("Advertise 10mb Full duplex\n");
1428 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1431 /* Do we want to advertise 100 Mb Half Duplex? */
1432 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1433 DEBUGOUT("Advertise 100mb Half duplex\n");
1434 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1437 /* Do we want to advertise 100 Mb Full Duplex? */
1438 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1439 DEBUGOUT("Advertise 100mb Full duplex\n");
1440 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1443 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1444 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1446 ("Advertise 1000mb Half duplex requested, request denied!\n");
1449 /* Do we want to advertise 1000 Mb Full Duplex? */
1450 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1451 DEBUGOUT("Advertise 1000mb Full duplex\n");
1452 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1455 /* Check for a software override of the flow control settings, and
1456 * setup the PHY advertisement registers accordingly. If
1457 * auto-negotiation is enabled, then software will have to set the
1458 * "PAUSE" bits to the correct value in the Auto-Negotiation
1459 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1461 * The possible values of the "fc" parameter are:
1462 * 0: Flow control is completely disabled
1463 * 1: Rx flow control is enabled (we can receive pause frames
1464 * but not send pause frames).
1465 * 2: Tx flow control is enabled (we can send pause frames
1466 * but we do not support receiving pause frames).
1467 * 3: Both Rx and TX flow control (symmetric) are enabled.
1468 * other: No software override. The flow control configuration
1469 * in the EEPROM is used.
1472 case e1000_fc_none: /* 0 */
1473 /* Flow control (RX & TX) is completely disabled by a
1474 * software over-ride.
1476 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1478 case e1000_fc_rx_pause: /* 1 */
1479 /* RX Flow control is enabled, and TX Flow control is
1480 * disabled, by a software over-ride.
1482 /* Since there really isn't a way to advertise that we are
1483 * capable of RX Pause ONLY, we will advertise that we
1484 * support both symmetric and asymmetric RX PAUSE. Later
1485 * (in e1000_config_fc_after_link_up) we will disable the
1486 *hw's ability to send PAUSE frames.
1488 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1490 case e1000_fc_tx_pause: /* 2 */
1491 /* TX Flow control is enabled, and RX Flow control is
1492 * disabled, by a software over-ride.
1494 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1495 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1497 case e1000_fc_full: /* 3 */
1498 /* Flow control (both RX and TX) is enabled by a software
1501 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1504 DEBUGOUT("Flow control param set incorrectly\n");
1505 return -E1000_ERR_CONFIG;
1508 if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
1509 DEBUGOUT("PHY Write Error\n");
1510 return -E1000_ERR_PHY;
1513 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1515 if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
1516 DEBUGOUT("PHY Write Error\n");
1517 return -E1000_ERR_PHY;
1522 /******************************************************************************
1523 * Sets the collision distance in the Transmit Control register
1525 * hw - Struct containing variables accessed by shared code
1527 * Link should have been established previously. Reads the speed and duplex
1528 * information from the Device Status register.
1529 ******************************************************************************/
1531 e1000_config_collision_dist(struct e1000_hw *hw)
1535 tctl = E1000_READ_REG(hw, TCTL);
1537 tctl &= ~E1000_TCTL_COLD;
1538 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1540 E1000_WRITE_REG(hw, TCTL, tctl);
1541 E1000_WRITE_FLUSH(hw);
1544 /******************************************************************************
1545 * Sets MAC speed and duplex settings to reflect the those in the PHY
1547 * hw - Struct containing variables accessed by shared code
1548 * mii_reg - data to write to the MII control register
1550 * The contents of the PHY register containing the needed information need to
1552 ******************************************************************************/
1554 e1000_config_mac_to_phy(struct e1000_hw *hw)
1561 /* Read the Device Control Register and set the bits to Force Speed
1564 ctrl = E1000_READ_REG(hw, CTRL);
1565 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1566 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1568 /* Set up duplex in the Device Control and Transmit Control
1569 * registers depending on negotiated values.
1571 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
1572 DEBUGOUT("PHY Read Error\n");
1573 return -E1000_ERR_PHY;
1575 if (phy_data & M88E1000_PSSR_DPLX)
1576 ctrl |= E1000_CTRL_FD;
1578 ctrl &= ~E1000_CTRL_FD;
1580 e1000_config_collision_dist(hw);
1582 /* Set up speed in the Device Control register depending on
1583 * negotiated values.
1585 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1586 ctrl |= E1000_CTRL_SPD_1000;
1587 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1588 ctrl |= E1000_CTRL_SPD_100;
1589 /* Write the configured values back to the Device Control Reg. */
1590 E1000_WRITE_REG(hw, CTRL, ctrl);
1594 /******************************************************************************
1595 * Forces the MAC's flow control settings.
1597 * hw - Struct containing variables accessed by shared code
1599 * Sets the TFCE and RFCE bits in the device control register to reflect
1600 * the adapter settings. TFCE and RFCE need to be explicitly set by
1601 * software when a Copper PHY is used because autonegotiation is managed
1602 * by the PHY rather than the MAC. Software must also configure these
1603 * bits when link is forced on a fiber connection.
1604 *****************************************************************************/
1606 e1000_force_mac_fc(struct e1000_hw *hw)
1612 /* Get the current configuration of the Device Control Register */
1613 ctrl = E1000_READ_REG(hw, CTRL);
1615 /* Because we didn't get link via the internal auto-negotiation
1616 * mechanism (we either forced link or we got link via PHY
1617 * auto-neg), we have to manually enable/disable transmit an
1618 * receive flow control.
1620 * The "Case" statement below enables/disable flow control
1621 * according to the "hw->fc" parameter.
1623 * The possible values of the "fc" parameter are:
1624 * 0: Flow control is completely disabled
1625 * 1: Rx flow control is enabled (we can receive pause
1626 * frames but not send pause frames).
1627 * 2: Tx flow control is enabled (we can send pause frames
1628 * frames but we do not receive pause frames).
1629 * 3: Both Rx and TX flow control (symmetric) is enabled.
1630 * other: No other values should be possible at this point.
1635 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1637 case e1000_fc_rx_pause:
1638 ctrl &= (~E1000_CTRL_TFCE);
1639 ctrl |= E1000_CTRL_RFCE;
1641 case e1000_fc_tx_pause:
1642 ctrl &= (~E1000_CTRL_RFCE);
1643 ctrl |= E1000_CTRL_TFCE;
1646 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1649 DEBUGOUT("Flow control param set incorrectly\n");
1650 return -E1000_ERR_CONFIG;
1653 /* Disable TX Flow Control for 82542 (rev 2.0) */
1654 if (hw->mac_type == e1000_82542_rev2_0)
1655 ctrl &= (~E1000_CTRL_TFCE);
1657 E1000_WRITE_REG(hw, CTRL, ctrl);
1661 /******************************************************************************
1662 * Configures flow control settings after link is established
1664 * hw - Struct containing variables accessed by shared code
1666 * Should be called immediately after a valid link has been established.
1667 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1668 * and autonegotiation is enabled, the MAC flow control settings will be set
1669 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1670 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1671 *****************************************************************************/
1673 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1676 uint16_t mii_status_reg;
1677 uint16_t mii_nway_adv_reg;
1678 uint16_t mii_nway_lp_ability_reg;
1684 /* Check for the case where we have fiber media and auto-neg failed
1685 * so we had to force link. In this case, we need to force the
1686 * configuration of the MAC to match the "fc" parameter.
1688 if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
1689 ret_val = e1000_force_mac_fc(hw);
1691 DEBUGOUT("Error forcing flow control settings\n");
1696 /* Check for the case where we have copper media and auto-neg is
1697 * enabled. In this case, we need to check and see if Auto-Neg
1698 * has completed, and if so, how the PHY and link partner has
1699 * flow control configured.
1701 if (hw->media_type == e1000_media_type_copper) {
1702 /* Read the MII Status Register and check to see if AutoNeg
1703 * has completed. We read this twice because this reg has
1704 * some "sticky" (latched) bits.
1706 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1707 DEBUGOUT("PHY Read Error \n");
1708 return -E1000_ERR_PHY;
1710 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1711 DEBUGOUT("PHY Read Error \n");
1712 return -E1000_ERR_PHY;
1715 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1716 /* The AutoNeg process has completed, so we now need to
1717 * read both the Auto Negotiation Advertisement Register
1718 * (Address 4) and the Auto_Negotiation Base Page Ability
1719 * Register (Address 5) to determine how flow control was
1722 if (e1000_read_phy_reg
1723 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
1724 DEBUGOUT("PHY Read Error\n");
1725 return -E1000_ERR_PHY;
1727 if (e1000_read_phy_reg
1728 (hw, PHY_LP_ABILITY,
1729 &mii_nway_lp_ability_reg) < 0) {
1730 DEBUGOUT("PHY Read Error\n");
1731 return -E1000_ERR_PHY;
1734 /* Two bits in the Auto Negotiation Advertisement Register
1735 * (Address 4) and two bits in the Auto Negotiation Base
1736 * Page Ability Register (Address 5) determine flow control
1737 * for both the PHY and the link partner. The following
1738 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1739 * 1999, describes these PAUSE resolution bits and how flow
1740 * control is determined based upon these settings.
1741 * NOTE: DC = Don't Care
1743 * LOCAL DEVICE | LINK PARTNER
1744 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1745 *-------|---------|-------|---------|--------------------
1746 * 0 | 0 | DC | DC | e1000_fc_none
1747 * 0 | 1 | 0 | DC | e1000_fc_none
1748 * 0 | 1 | 1 | 0 | e1000_fc_none
1749 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1750 * 1 | 0 | 0 | DC | e1000_fc_none
1751 * 1 | DC | 1 | DC | e1000_fc_full
1752 * 1 | 1 | 0 | 0 | e1000_fc_none
1753 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1756 /* Are both PAUSE bits set to 1? If so, this implies
1757 * Symmetric Flow Control is enabled at both ends. The
1758 * ASM_DIR bits are irrelevant per the spec.
1760 * For Symmetric Flow Control:
1762 * LOCAL DEVICE | LINK PARTNER
1763 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1764 *-------|---------|-------|---------|--------------------
1765 * 1 | DC | 1 | DC | e1000_fc_full
1768 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1769 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1770 /* Now we need to check if the user selected RX ONLY
1771 * of pause frames. In this case, we had to advertise
1772 * FULL flow control because we could not advertise RX
1773 * ONLY. Hence, we must now check to see if we need to
1774 * turn OFF the TRANSMISSION of PAUSE frames.
1776 if (hw->original_fc == e1000_fc_full) {
1777 hw->fc = e1000_fc_full;
1778 DEBUGOUT("Flow Control = FULL.\r\n");
1780 hw->fc = e1000_fc_rx_pause;
1782 ("Flow Control = RX PAUSE frames only.\r\n");
1785 /* For receiving PAUSE frames ONLY.
1787 * LOCAL DEVICE | LINK PARTNER
1788 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1789 *-------|---------|-------|---------|--------------------
1790 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1793 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1794 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1795 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1796 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1798 hw->fc = e1000_fc_tx_pause;
1800 ("Flow Control = TX PAUSE frames only.\r\n");
1802 /* For transmitting PAUSE frames ONLY.
1804 * LOCAL DEVICE | LINK PARTNER
1805 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1806 *-------|---------|-------|---------|--------------------
1807 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1810 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1811 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1812 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1813 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1815 hw->fc = e1000_fc_rx_pause;
1817 ("Flow Control = RX PAUSE frames only.\r\n");
1819 /* Per the IEEE spec, at this point flow control should be
1820 * disabled. However, we want to consider that we could
1821 * be connected to a legacy switch that doesn't advertise
1822 * desired flow control, but can be forced on the link
1823 * partner. So if we advertised no flow control, that is
1824 * what we will resolve to. If we advertised some kind of
1825 * receive capability (Rx Pause Only or Full Flow Control)
1826 * and the link partner advertised none, we will configure
1827 * ourselves to enable Rx Flow Control only. We can do
1828 * this safely for two reasons: If the link partner really
1829 * didn't want flow control enabled, and we enable Rx, no
1830 * harm done since we won't be receiving any PAUSE frames
1831 * anyway. If the intent on the link partner was to have
1832 * flow control enabled, then by us enabling RX only, we
1833 * can at least receive pause frames and process them.
1834 * This is a good idea because in most cases, since we are
1835 * predominantly a server NIC, more times than not we will
1836 * be asked to delay transmission of packets than asking
1837 * our link partner to pause transmission of frames.
1839 else if (hw->original_fc == e1000_fc_none ||
1840 hw->original_fc == e1000_fc_tx_pause) {
1841 hw->fc = e1000_fc_none;
1842 DEBUGOUT("Flow Control = NONE.\r\n");
1844 hw->fc = e1000_fc_rx_pause;
1846 ("Flow Control = RX PAUSE frames only.\r\n");
1849 /* Now we need to do one last check... If we auto-
1850 * negotiated to HALF DUPLEX, flow control should not be
1851 * enabled per IEEE 802.3 spec.
1853 e1000_get_speed_and_duplex(hw, &speed, &duplex);
1855 if (duplex == HALF_DUPLEX)
1856 hw->fc = e1000_fc_none;
1858 /* Now we call a subroutine to actually force the MAC
1859 * controller to use the correct flow control settings.
1861 ret_val = e1000_force_mac_fc(hw);
1864 ("Error forcing flow control settings\n");
1869 ("Copper PHY and Auto Neg has not completed.\r\n");
1875 /******************************************************************************
1876 * Checks to see if the link status of the hardware has changed.
1878 * hw - Struct containing variables accessed by shared code
1880 * Called by any function that needs to check the link status of the adapter.
1881 *****************************************************************************/
1883 e1000_check_for_link(struct eth_device *nic)
1885 struct e1000_hw *hw = nic->priv;
1893 uint16_t lp_capability;
1897 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1898 * set when the optics detect a signal. On older adapters, it will be
1899 * cleared when there is a signal
1901 ctrl = E1000_READ_REG(hw, CTRL);
1902 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1903 signal = E1000_CTRL_SWDPIN1;
1907 status = E1000_READ_REG(hw, STATUS);
1908 rxcw = E1000_READ_REG(hw, RXCW);
1909 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
1911 /* If we have a copper PHY then we only want to go out to the PHY
1912 * registers to see if Auto-Neg has completed and/or if our link
1913 * status has changed. The get_link_status flag will be set if we
1914 * receive a Link Status Change interrupt or we have Rx Sequence
1917 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1918 /* First we want to see if the MII Status Register reports
1919 * link. If so, then we want to get the current speed/duplex
1921 * Read the register twice since the link bit is sticky.
1923 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1924 DEBUGOUT("PHY Read Error\n");
1925 return -E1000_ERR_PHY;
1927 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1928 DEBUGOUT("PHY Read Error\n");
1929 return -E1000_ERR_PHY;
1932 if (phy_data & MII_SR_LINK_STATUS) {
1933 hw->get_link_status = FALSE;
1935 /* No link detected */
1936 return -E1000_ERR_NOLINK;
1939 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
1940 * have Si on board that is 82544 or newer, Auto
1941 * Speed Detection takes care of MAC speed/duplex
1942 * configuration. So we only need to configure Collision
1943 * Distance in the MAC. Otherwise, we need to force
1944 * speed/duplex on the MAC to the current PHY speed/duplex
1947 if (hw->mac_type >= e1000_82544)
1948 e1000_config_collision_dist(hw);
1950 ret_val = e1000_config_mac_to_phy(hw);
1953 ("Error configuring MAC to PHY settings\n");
1958 /* Configure Flow Control now that Auto-Neg has completed. First, we
1959 * need to restore the desired flow control settings because we may
1960 * have had to re-autoneg with a different link partner.
1962 ret_val = e1000_config_fc_after_link_up(hw);
1964 DEBUGOUT("Error configuring flow control\n");
1968 /* At this point we know that we are on copper and we have
1969 * auto-negotiated link. These are conditions for checking the link
1970 * parter capability register. We use the link partner capability to
1971 * determine if TBI Compatibility needs to be turned on or off. If
1972 * the link partner advertises any speed in addition to Gigabit, then
1973 * we assume that they are GMII-based, and TBI compatibility is not
1974 * needed. If no other speeds are advertised, we assume the link
1975 * partner is TBI-based, and we turn on TBI Compatibility.
1977 if (hw->tbi_compatibility_en) {
1978 if (e1000_read_phy_reg
1979 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
1980 DEBUGOUT("PHY Read Error\n");
1981 return -E1000_ERR_PHY;
1983 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
1984 NWAY_LPAR_10T_FD_CAPS |
1985 NWAY_LPAR_100TX_HD_CAPS |
1986 NWAY_LPAR_100TX_FD_CAPS |
1987 NWAY_LPAR_100T4_CAPS)) {
1988 /* If our link partner advertises anything in addition to
1989 * gigabit, we do not need to enable TBI compatibility.
1991 if (hw->tbi_compatibility_on) {
1992 /* If we previously were in the mode, turn it off. */
1993 rctl = E1000_READ_REG(hw, RCTL);
1994 rctl &= ~E1000_RCTL_SBP;
1995 E1000_WRITE_REG(hw, RCTL, rctl);
1996 hw->tbi_compatibility_on = FALSE;
1999 /* If TBI compatibility is was previously off, turn it on. For
2000 * compatibility with a TBI link partner, we will store bad
2001 * packets. Some frames have an additional byte on the end and
2002 * will look like CRC errors to to the hardware.
2004 if (!hw->tbi_compatibility_on) {
2005 hw->tbi_compatibility_on = TRUE;
2006 rctl = E1000_READ_REG(hw, RCTL);
2007 rctl |= E1000_RCTL_SBP;
2008 E1000_WRITE_REG(hw, RCTL, rctl);
2013 /* If we don't have link (auto-negotiation failed or link partner cannot
2014 * auto-negotiate), the cable is plugged in (we have signal), and our
2015 * link partner is not trying to auto-negotiate with us (we are receiving
2016 * idles or data), we need to force link up. We also need to give
2017 * auto-negotiation time to complete, in case the cable was just plugged
2018 * in. The autoneg_failed flag does this.
2020 else if ((hw->media_type == e1000_media_type_fiber) &&
2021 (!(status & E1000_STATUS_LU)) &&
2022 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
2023 (!(rxcw & E1000_RXCW_C))) {
2024 if (hw->autoneg_failed == 0) {
2025 hw->autoneg_failed = 1;
2028 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2030 /* Disable auto-negotiation in the TXCW register */
2031 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2033 /* Force link-up and also force full-duplex. */
2034 ctrl = E1000_READ_REG(hw, CTRL);
2035 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2036 E1000_WRITE_REG(hw, CTRL, ctrl);
2038 /* Configure Flow Control after forcing link up. */
2039 ret_val = e1000_config_fc_after_link_up(hw);
2041 DEBUGOUT("Error configuring flow control\n");
2045 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2046 * auto-negotiation in the TXCW register and disable forced link in the
2047 * Device Control register in an attempt to auto-negotiate with our link
2050 else if ((hw->media_type == e1000_media_type_fiber) &&
2051 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2053 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2054 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2055 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2060 /******************************************************************************
2061 * Detects the current speed and duplex settings of the hardware.
2063 * hw - Struct containing variables accessed by shared code
2064 * speed - Speed of the connection
2065 * duplex - Duplex setting of the connection
2066 *****************************************************************************/
2068 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2069 uint16_t * speed, uint16_t * duplex)
2075 if (hw->mac_type >= e1000_82543) {
2076 status = E1000_READ_REG(hw, STATUS);
2077 if (status & E1000_STATUS_SPEED_1000) {
2078 *speed = SPEED_1000;
2079 DEBUGOUT("1000 Mbs, ");
2080 } else if (status & E1000_STATUS_SPEED_100) {
2082 DEBUGOUT("100 Mbs, ");
2085 DEBUGOUT("10 Mbs, ");
2088 if (status & E1000_STATUS_FD) {
2089 *duplex = FULL_DUPLEX;
2090 DEBUGOUT("Full Duplex\r\n");
2092 *duplex = HALF_DUPLEX;
2093 DEBUGOUT(" Half Duplex\r\n");
2096 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2097 *speed = SPEED_1000;
2098 *duplex = FULL_DUPLEX;
2102 /******************************************************************************
2103 * Blocks until autoneg completes or times out (~4.5 seconds)
2105 * hw - Struct containing variables accessed by shared code
2106 ******************************************************************************/
2108 e1000_wait_autoneg(struct e1000_hw *hw)
2114 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2116 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2117 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2118 /* Read the MII Status Register and wait for Auto-Neg
2119 * Complete bit to be set.
2121 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2122 DEBUGOUT("PHY Read Error\n");
2123 return -E1000_ERR_PHY;
2125 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2126 DEBUGOUT("PHY Read Error\n");
2127 return -E1000_ERR_PHY;
2129 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2130 DEBUGOUT("Auto-Neg complete.\n");
2135 DEBUGOUT("Auto-Neg timedout.\n");
2136 return -E1000_ERR_TIMEOUT;
2139 /******************************************************************************
2140 * Raises the Management Data Clock
2142 * hw - Struct containing variables accessed by shared code
2143 * ctrl - Device control register's current value
2144 ******************************************************************************/
2146 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2148 /* Raise the clock input to the Management Data Clock (by setting the MDC
2149 * bit), and then delay 2 microseconds.
2151 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2152 E1000_WRITE_FLUSH(hw);
2156 /******************************************************************************
2157 * Lowers the Management Data Clock
2159 * hw - Struct containing variables accessed by shared code
2160 * ctrl - Device control register's current value
2161 ******************************************************************************/
2163 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2165 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2166 * bit), and then delay 2 microseconds.
2168 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2169 E1000_WRITE_FLUSH(hw);
2173 /******************************************************************************
2174 * Shifts data bits out to the PHY
2176 * hw - Struct containing variables accessed by shared code
2177 * data - Data to send out to the PHY
2178 * count - Number of bits to shift out
2180 * Bits are shifted out in MSB to LSB order.
2181 ******************************************************************************/
2183 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
2188 /* We need to shift "count" number of bits out to the PHY. So, the value
2189 * in the "data" parameter will be shifted out to the PHY one bit at a
2190 * time. In order to do this, "data" must be broken down into bits.
2193 mask <<= (count - 1);
2195 ctrl = E1000_READ_REG(hw, CTRL);
2197 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2198 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2201 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2202 * then raising and lowering the Management Data Clock. A "0" is
2203 * shifted out to the PHY by setting the MDIO bit to "0" and then
2204 * raising and lowering the clock.
2207 ctrl |= E1000_CTRL_MDIO;
2209 ctrl &= ~E1000_CTRL_MDIO;
2211 E1000_WRITE_REG(hw, CTRL, ctrl);
2212 E1000_WRITE_FLUSH(hw);
2216 e1000_raise_mdi_clk(hw, &ctrl);
2217 e1000_lower_mdi_clk(hw, &ctrl);
2223 /******************************************************************************
2224 * Shifts data bits in from the PHY
2226 * hw - Struct containing variables accessed by shared code
2228 * Bits are shifted in in MSB to LSB order.
2229 ******************************************************************************/
2231 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2237 /* In order to read a register from the PHY, we need to shift in a total
2238 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2239 * to avoid contention on the MDIO pin when a read operation is performed.
2240 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2241 * by raising the input to the Management Data Clock (setting the MDC bit),
2242 * and then reading the value of the MDIO bit.
2244 ctrl = E1000_READ_REG(hw, CTRL);
2246 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2247 ctrl &= ~E1000_CTRL_MDIO_DIR;
2248 ctrl &= ~E1000_CTRL_MDIO;
2250 E1000_WRITE_REG(hw, CTRL, ctrl);
2251 E1000_WRITE_FLUSH(hw);
2253 /* Raise and Lower the clock before reading in the data. This accounts for
2254 * the turnaround bits. The first clock occurred when we clocked out the
2255 * last bit of the Register Address.
2257 e1000_raise_mdi_clk(hw, &ctrl);
2258 e1000_lower_mdi_clk(hw, &ctrl);
2260 for (data = 0, i = 0; i < 16; i++) {
2262 e1000_raise_mdi_clk(hw, &ctrl);
2263 ctrl = E1000_READ_REG(hw, CTRL);
2264 /* Check to see if we shifted in a "1". */
2265 if (ctrl & E1000_CTRL_MDIO)
2267 e1000_lower_mdi_clk(hw, &ctrl);
2270 e1000_raise_mdi_clk(hw, &ctrl);
2271 e1000_lower_mdi_clk(hw, &ctrl);
2276 /*****************************************************************************
2277 * Reads the value from a PHY register
2279 * hw - Struct containing variables accessed by shared code
2280 * reg_addr - address of the PHY register to read
2281 ******************************************************************************/
2283 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
2287 const uint32_t phy_addr = 1;
2289 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2290 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2291 return -E1000_ERR_PARAM;
2294 if (hw->mac_type > e1000_82543) {
2295 /* Set up Op-code, Phy Address, and register address in the MDI
2296 * Control register. The MAC will take care of interfacing with the
2297 * PHY to retrieve the desired data.
2299 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2300 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2301 (E1000_MDIC_OP_READ));
2303 E1000_WRITE_REG(hw, MDIC, mdic);
2305 /* Poll the ready bit to see if the MDI read completed */
2306 for (i = 0; i < 64; i++) {
2308 mdic = E1000_READ_REG(hw, MDIC);
2309 if (mdic & E1000_MDIC_READY)
2312 if (!(mdic & E1000_MDIC_READY)) {
2313 DEBUGOUT("MDI Read did not complete\n");
2314 return -E1000_ERR_PHY;
2316 if (mdic & E1000_MDIC_ERROR) {
2317 DEBUGOUT("MDI Error\n");
2318 return -E1000_ERR_PHY;
2320 *phy_data = (uint16_t) mdic;
2322 /* We must first send a preamble through the MDIO pin to signal the
2323 * beginning of an MII instruction. This is done by sending 32
2324 * consecutive "1" bits.
2326 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2328 /* Now combine the next few fields that are required for a read
2329 * operation. We use this method instead of calling the
2330 * e1000_shift_out_mdi_bits routine five different times. The format of
2331 * a MII read instruction consists of a shift out of 14 bits and is
2332 * defined as follows:
2333 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2334 * followed by a shift in of 18 bits. This first two bits shifted in
2335 * are TurnAround bits used to avoid contention on the MDIO pin when a
2336 * READ operation is performed. These two bits are thrown away
2337 * followed by a shift in of 16 bits which contains the desired data.
2339 mdic = ((reg_addr) | (phy_addr << 5) |
2340 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2342 e1000_shift_out_mdi_bits(hw, mdic, 14);
2344 /* Now that we've shifted out the read command to the MII, we need to
2345 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2348 *phy_data = e1000_shift_in_mdi_bits(hw);
2353 /******************************************************************************
2354 * Writes a value to a PHY register
2356 * hw - Struct containing variables accessed by shared code
2357 * reg_addr - address of the PHY register to write
2358 * data - data to write to the PHY
2359 ******************************************************************************/
2361 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
2365 const uint32_t phy_addr = 1;
2367 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2368 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2369 return -E1000_ERR_PARAM;
2372 if (hw->mac_type > e1000_82543) {
2373 /* Set up Op-code, Phy Address, register address, and data intended
2374 * for the PHY register in the MDI Control register. The MAC will take
2375 * care of interfacing with the PHY to send the desired data.
2377 mdic = (((uint32_t) phy_data) |
2378 (reg_addr << E1000_MDIC_REG_SHIFT) |
2379 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2380 (E1000_MDIC_OP_WRITE));
2382 E1000_WRITE_REG(hw, MDIC, mdic);
2384 /* Poll the ready bit to see if the MDI read completed */
2385 for (i = 0; i < 64; i++) {
2387 mdic = E1000_READ_REG(hw, MDIC);
2388 if (mdic & E1000_MDIC_READY)
2391 if (!(mdic & E1000_MDIC_READY)) {
2392 DEBUGOUT("MDI Write did not complete\n");
2393 return -E1000_ERR_PHY;
2396 /* We'll need to use the SW defined pins to shift the write command
2397 * out to the PHY. We first send a preamble to the PHY to signal the
2398 * beginning of the MII instruction. This is done by sending 32
2399 * consecutive "1" bits.
2401 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2403 /* Now combine the remaining required fields that will indicate a
2404 * write operation. We use this method instead of calling the
2405 * e1000_shift_out_mdi_bits routine for each field in the command. The
2406 * format of a MII write instruction is as follows:
2407 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2409 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2410 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2412 mdic |= (uint32_t) phy_data;
2414 e1000_shift_out_mdi_bits(hw, mdic, 32);
2419 /******************************************************************************
2420 * Returns the PHY to the power-on reset state
2422 * hw - Struct containing variables accessed by shared code
2423 ******************************************************************************/
2425 e1000_phy_hw_reset(struct e1000_hw *hw)
2432 DEBUGOUT("Resetting Phy...\n");
2434 if (hw->mac_type > e1000_82543) {
2435 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2436 * bit. Then, take it out of reset.
2438 ctrl = E1000_READ_REG(hw, CTRL);
2439 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2440 E1000_WRITE_FLUSH(hw);
2442 E1000_WRITE_REG(hw, CTRL, ctrl);
2443 E1000_WRITE_FLUSH(hw);
2445 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2446 * bit to put the PHY into reset. Then, take it out of reset.
2448 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2449 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2450 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2451 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2452 E1000_WRITE_FLUSH(hw);
2454 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2455 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2456 E1000_WRITE_FLUSH(hw);
2461 /******************************************************************************
2464 * hw - Struct containing variables accessed by shared code
2466 * Sets bit 15 of the MII Control regiser
2467 ******************************************************************************/
2469 e1000_phy_reset(struct e1000_hw *hw)
2475 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
2476 DEBUGOUT("PHY Read Error\n");
2477 return -E1000_ERR_PHY;
2479 phy_data |= MII_CR_RESET;
2480 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
2481 DEBUGOUT("PHY Write Error\n");
2482 return -E1000_ERR_PHY;
2488 /******************************************************************************
2489 * Probes the expected PHY address for known PHY IDs
2491 * hw - Struct containing variables accessed by shared code
2492 ******************************************************************************/
2494 e1000_detect_gig_phy(struct e1000_hw *hw)
2496 uint16_t phy_id_high, phy_id_low;
2501 /* Read the PHY ID Registers to identify which PHY is onboard. */
2502 if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
2503 DEBUGOUT("PHY Read Error\n");
2504 return -E1000_ERR_PHY;
2506 hw->phy_id = (uint32_t) (phy_id_high << 16);
2508 if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
2509 DEBUGOUT("PHY Read Error\n");
2510 return -E1000_ERR_PHY;
2512 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2514 switch (hw->mac_type) {
2516 if (hw->phy_id == M88E1000_E_PHY_ID)
2520 if (hw->phy_id == M88E1000_I_PHY_ID)
2526 if (hw->phy_id == M88E1011_I_PHY_ID)
2530 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
2531 return -E1000_ERR_CONFIG;
2534 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
2537 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
2538 return -E1000_ERR_PHY;
2542 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2544 * e1000_sw_init initializes the Adapter private data structure.
2545 * Fields are initialized based on PCI device information and
2546 * OS network device settings (MTU size).
2550 e1000_sw_init(struct eth_device *nic, int cardnum)
2552 struct e1000_hw *hw = (typeof(hw)) nic->priv;
2555 /* PCI config space info */
2556 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
2557 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
2558 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2559 &hw->subsystem_vendor_id);
2560 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
2562 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
2563 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
2565 /* identify the MAC */
2566 result = e1000_set_mac_type(hw);
2568 E1000_ERR("Unknown MAC Type\n");
2572 /* lan a vs. lan b settings */
2573 if (hw->mac_type == e1000_82546)
2574 /*this also works w/ multiple 82546 cards */
2575 /*but not if they're intermingled /w other e1000s */
2576 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
2578 hw->lan_loc = e1000_lan_a;
2580 /* flow control settings */
2581 hw->fc_high_water = E1000_FC_HIGH_THRESH;
2582 hw->fc_low_water = E1000_FC_LOW_THRESH;
2583 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
2584 hw->fc_send_xon = 1;
2586 /* Media type - copper or fiber */
2588 if (hw->mac_type >= e1000_82543) {
2589 uint32_t status = E1000_READ_REG(hw, STATUS);
2591 if (status & E1000_STATUS_TBIMODE) {
2592 DEBUGOUT("fiber interface\n");
2593 hw->media_type = e1000_media_type_fiber;
2595 DEBUGOUT("copper interface\n");
2596 hw->media_type = e1000_media_type_copper;
2599 hw->media_type = e1000_media_type_fiber;
2602 if (hw->mac_type < e1000_82543)
2603 hw->report_tx_early = 0;
2605 hw->report_tx_early = 1;
2607 hw->tbi_compatibility_en = TRUE;
2609 hw->wait_autoneg_complete = FALSE;
2610 hw->adaptive_ifs = TRUE;
2612 /* Copper options */
2613 if (hw->media_type == e1000_media_type_copper) {
2614 hw->mdix = AUTO_ALL_MODES;
2615 hw->disable_polarity_correction = FALSE;
2618 return E1000_SUCCESS;
2622 fill_rx(struct e1000_hw *hw)
2624 struct e1000_rx_desc *rd;
2627 rd = rx_base + rx_tail;
2628 rx_tail = (rx_tail + 1) % 8;
2630 rd->buffer_addr = cpu_to_le64((u32) & packet);
2631 E1000_WRITE_REG(hw, RDT, rx_tail);
2635 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2636 * @adapter: board private structure
2638 * Configure the Tx unit of the MAC after a reset.
2642 e1000_configure_tx(struct e1000_hw *hw)
2648 ptr = (u32) tx_pool;
2650 ptr = (ptr + 0x10) & (~0xf);
2652 tx_base = (typeof(tx_base)) ptr;
2654 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
2655 E1000_WRITE_REG(hw, TDBAH, 0);
2657 E1000_WRITE_REG(hw, TDLEN, 128);
2659 /* Setup the HW Tx Head and Tail descriptor pointers */
2660 E1000_WRITE_REG(hw, TDH, 0);
2661 E1000_WRITE_REG(hw, TDT, 0);
2664 /* Set the default values for the Tx Inter Packet Gap timer */
2665 switch (hw->mac_type) {
2666 case e1000_82542_rev2_0:
2667 case e1000_82542_rev2_1:
2668 tipg = DEFAULT_82542_TIPG_IPGT;
2669 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2670 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2673 if (hw->media_type == e1000_media_type_fiber)
2674 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2676 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2677 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2678 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2680 E1000_WRITE_REG(hw, TIPG, tipg);
2682 /* Set the Tx Interrupt Delay register */
2683 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
2684 if (hw->mac_type >= e1000_82540)
2685 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
2687 /* Program the Transmit Control Register */
2688 tctl = E1000_READ_REG(hw, TCTL);
2689 tctl &= ~E1000_TCTL_CT;
2690 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
2691 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2692 E1000_WRITE_REG(hw, TCTL, tctl);
2694 e1000_config_collision_dist(hw);
2696 /* Setup Transmit Descriptor Settings for this adapter */
2697 adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
2699 if (adapter->hw.report_tx_early == 1)
2700 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2702 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
2707 * e1000_setup_rctl - configure the receive control register
2708 * @adapter: Board private structure
2711 e1000_setup_rctl(struct e1000_hw *hw)
2715 rctl = E1000_READ_REG(hw, RCTL);
2717 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2719 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* |
2720 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
2722 if (hw->tbi_compatibility_on == 1)
2723 rctl |= E1000_RCTL_SBP;
2725 rctl &= ~E1000_RCTL_SBP;
2727 rctl &= ~(E1000_RCTL_SZ_4096);
2729 switch (adapter->rx_buffer_len) {
2730 case E1000_RXBUFFER_2048:
2733 rctl |= E1000_RCTL_SZ_2048;
2734 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
2737 case E1000_RXBUFFER_4096:
2738 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2740 case E1000_RXBUFFER_8192:
2741 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2743 case E1000_RXBUFFER_16384:
2744 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2748 E1000_WRITE_REG(hw, RCTL, rctl);
2752 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2753 * @adapter: board private structure
2755 * Configure the Rx unit of the MAC after a reset.
2758 e1000_configure_rx(struct e1000_hw *hw)
2763 unsigned long rxcsum;
2766 /* make sure receives are disabled while setting up the descriptors */
2767 rctl = E1000_READ_REG(hw, RCTL);
2768 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2770 /* set the Receive Delay Timer Register */
2772 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2774 if (hw->mac_type >= e1000_82540) {
2776 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2778 /* Set the interrupt throttling rate. Value is calculated
2779 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
2780 #define MAX_INTS_PER_SEC 8000
2781 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
2782 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
2785 /* Setup the Base and Length of the Rx Descriptor Ring */
2786 ptr = (u32) rx_pool;
2788 ptr = (ptr + 0x10) & (~0xf);
2789 rx_base = (typeof(rx_base)) ptr;
2790 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
2791 E1000_WRITE_REG(hw, RDBAH, 0);
2793 E1000_WRITE_REG(hw, RDLEN, 128);
2795 /* Setup the HW Rx Head and Tail Descriptor Pointers */
2796 E1000_WRITE_REG(hw, RDH, 0);
2797 E1000_WRITE_REG(hw, RDT, 0);
2799 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2800 if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
2801 rxcsum = E1000_READ_REG(hw, RXCSUM);
2802 rxcsum |= E1000_RXCSUM_TUOFL;
2803 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2806 /* Enable Receives */
2808 E1000_WRITE_REG(hw, RCTL, rctl);
2812 /**************************************************************************
2813 POLL - Wait for a frame
2814 ***************************************************************************/
2816 e1000_poll(struct eth_device *nic)
2818 struct e1000_hw *hw = nic->priv;
2819 struct e1000_rx_desc *rd;
2820 /* return true if there's an ethernet packet ready to read */
2821 rd = rx_base + rx_last;
2822 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
2824 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
2825 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
2830 /**************************************************************************
2831 TRANSMIT - Transmit a frame
2832 ***************************************************************************/
2834 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
2836 struct e1000_hw *hw = nic->priv;
2837 struct e1000_tx_desc *txp;
2840 txp = tx_base + tx_tail;
2841 tx_tail = (tx_tail + 1) % 8;
2843 txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
2844 txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
2845 E1000_TXD_CMD_IFCS | length);
2846 txp->upper.data = 0;
2847 E1000_WRITE_REG(hw, TDT, tx_tail);
2849 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
2850 if (i++ > TOUT_LOOP) {
2851 DEBUGOUT("e1000: tx timeout\n");
2854 udelay(10); /* give the nic a chance to write to the register */
2861 e1000_reset(struct eth_device *nic)
2863 struct e1000_hw *hw = nic->priv;
2866 if (hw->mac_type >= e1000_82544) {
2867 E1000_WRITE_REG(hw, WUC, 0);
2869 return e1000_init_hw(nic);
2872 /**************************************************************************
2873 DISABLE - Turn off ethernet interface
2874 ***************************************************************************/
2876 e1000_disable(struct eth_device *nic)
2878 struct e1000_hw *hw = nic->priv;
2880 /* Turn off the ethernet interface */
2881 E1000_WRITE_REG(hw, RCTL, 0);
2882 E1000_WRITE_REG(hw, TCTL, 0);
2884 /* Clear the transmit ring */
2885 E1000_WRITE_REG(hw, TDH, 0);
2886 E1000_WRITE_REG(hw, TDT, 0);
2888 /* Clear the receive ring */
2889 E1000_WRITE_REG(hw, RDH, 0);
2890 E1000_WRITE_REG(hw, RDT, 0);
2892 /* put the card in its initial state */
2894 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
2900 /**************************************************************************
2901 INIT - set up ethernet interface(s)
2902 ***************************************************************************/
2904 e1000_init(struct eth_device *nic, bd_t * bis)
2906 struct e1000_hw *hw = nic->priv;
2909 ret_val = e1000_reset(nic);
2911 if ((ret_val == -E1000_ERR_NOLINK) ||
2912 (ret_val == -E1000_ERR_TIMEOUT)) {
2913 E1000_ERR("Valid Link not detected\n");
2915 E1000_ERR("Hardware Initialization Failed\n");
2919 e1000_configure_tx(hw);
2920 e1000_setup_rctl(hw);
2921 e1000_configure_rx(hw);
2925 /**************************************************************************
2926 PROBE - Look for an adapter, this routine's visible to the outside
2927 You should omit the last argument struct pci_device * for a non-PCI NIC
2928 ***************************************************************************/
2930 e1000_initialize(bd_t * bis)
2933 int card_number = 0;
2934 struct eth_device *nic = NULL;
2935 struct e1000_hw *hw = NULL;
2940 while (1) { /* Find PCI device(s) */
2941 if ((devno = pci_find_devices(supported, idx++)) < 0) {
2945 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
2946 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
2947 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
2949 pci_write_config_dword(devno, PCI_COMMAND,
2950 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
2951 /* Check if I/O accesses and Bus Mastering are enabled. */
2952 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
2953 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
2954 printf("Error: Can not enable MEM access.\n");
2956 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
2957 printf("Error: Can not enable Bus Mastering.\n");
2961 nic = (struct eth_device *) malloc(sizeof (*nic));
2962 hw = (struct e1000_hw *) malloc(sizeof (*hw));
2965 nic->iobase = bus_to_phys(devno, iobase);
2967 sprintf(nic->name, "e1000#%d", card_number);
2969 /* Are these variables needed? */
2971 hw->fc = e1000_fc_none;
2972 hw->original_fc = e1000_fc_none;
2974 hw->fc = e1000_fc_default;
2975 hw->original_fc = e1000_fc_default;
2977 hw->autoneg_failed = 0;
2978 hw->get_link_status = TRUE;
2979 hw->hw_addr = (typeof(hw->hw_addr)) iobase;
2980 hw->mac_type = e1000_undefined;
2982 /* MAC and Phy settings */
2983 if (e1000_sw_init(nic, card_number) < 0) {
2988 #ifndef CONFIG_AP1000
2989 if (e1000_validate_eeprom_checksum(nic) < 0) {
2990 printf("The EEPROM Checksum Is Not Valid\n");
2996 e1000_read_mac_addr(nic);
2998 E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
3000 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
3001 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
3002 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
3004 nic->init = e1000_init;
3005 nic->recv = e1000_poll;
3006 nic->send = e1000_transmit;
3007 nic->halt = e1000_disable;