3 * Stefano Babic, DENX Software Engineering, sbabic@denx.de.
6 * Rich Ireland, Enterasys Networks, rireland@enterasys.com.
8 * ispVM functions adapted from Lattice's ispmVMEmbedded code:
9 * Copyright 2009 Lattice Semiconductor Corp.
11 * SPDX-License-Identifier: GPL-2.0+
19 static lattice_board_specific_func *pfns;
20 static const char *fpga_image;
21 static unsigned long read_bytes;
22 static unsigned long bufsize;
23 static unsigned short expectedCRC;
26 * External variables and functions declared in ivm_core.c module.
28 extern unsigned short g_usCalculatedCRC;
29 extern unsigned short g_usDataType;
30 extern unsigned char *g_pucIntelBuffer;
31 extern unsigned char *g_pucHeapMemory;
32 extern unsigned short g_iHeapCounter;
33 extern unsigned short g_iHEAPSize;
34 extern unsigned short g_usIntelDataIndex;
35 extern unsigned short g_usIntelBufferSize;
36 extern char *const g_szSupportedVersions[];
42 * Users must implement a delay to observe a_usTimeDelay, where
43 * bit 15 of the a_usTimeDelay defines the unit.
47 * a_usTimeDelay = 0x0001 = 1 microsecond delay.
48 * a_usTimeDelay = 0x8001 = 1 millisecond delay.
50 * This subroutine is called upon to provide a delay from 1 millisecond to a few
51 * hundreds milliseconds each time.
52 * It is understood that due to a_usTimeDelay is defined as unsigned short, a 16
53 * bits integer, this function is restricted to produce a delay to 64000
54 * micro-seconds or 32000 milli-second maximum. The VME file will never pass on
55 * to this function a delay time > those maximum number. If it needs more than
56 * those maximum, the VME file will launch the delay function several times to
57 * realize a larger delay time cummulatively.
58 * It is perfectly alright to provide a longer delay than required. It is not
59 * acceptable if the delay is shorter.
61 void ispVMDelay(unsigned short delay)
64 delay = (delay & ~0x8000) * 1000;
68 void writePort(unsigned char a_ucPins, unsigned char a_ucValue)
70 a_ucValue = a_ucValue ? 1 : 0;
74 pfns->jtag_set_tdi(a_ucValue);
77 pfns->jtag_set_tck(a_ucValue);
80 pfns->jtag_set_tms(a_ucValue);
83 printf("%s: requested unknown pin\n", __func__);
87 unsigned char readPort(void)
89 return pfns->jtag_get_tdo();
94 writePort(g_ucPinTCK, 0x01);
95 writePort(g_ucPinTCK, 0x00);
98 void calibration(void)
100 /* Apply 2 pulses to TCK. */
101 writePort(g_ucPinTCK, 0x00);
102 writePort(g_ucPinTCK, 0x01);
103 writePort(g_ucPinTCK, 0x00);
104 writePort(g_ucPinTCK, 0x01);
105 writePort(g_ucPinTCK, 0x00);
109 /* Apply 2 pulses to TCK. */
110 writePort(g_ucPinTCK, 0x01);
111 writePort(g_ucPinTCK, 0x00);
112 writePort(g_ucPinTCK, 0x01);
113 writePort(g_ucPinTCK, 0x00);
119 * Returns a byte to the caller. The returned byte depends on the
120 * g_usDataType register. If the HEAP_IN bit is set, then the byte
121 * is returned from the HEAP. If the LHEAP_IN bit is set, then
122 * the byte is returned from the intelligent buffer. Otherwise,
123 * the byte is returned directly from the VME file.
125 unsigned char GetByte(void)
127 unsigned char ucData;
128 unsigned int block_size = 4 * 1024;
130 if (g_usDataType & HEAP_IN) {
133 * Get data from repeat buffer.
136 if (g_iHeapCounter > g_iHEAPSize) {
145 ucData = g_pucHeapMemory[g_iHeapCounter++];
146 } else if (g_usDataType & LHEAP_IN) {
149 * Get data from intel buffer.
152 if (g_usIntelDataIndex >= g_usIntelBufferSize) {
156 ucData = g_pucIntelBuffer[g_usIntelDataIndex++];
158 if (read_bytes == bufsize) {
161 ucData = *fpga_image++;
164 if (!(read_bytes % block_size)) {
165 printf("Downloading FPGA %ld/%ld completed\r",
170 if (expectedCRC != 0) {
171 ispVMCalculateCRC32(ucData);
178 signed char ispVM(void)
180 char szFileVersion[9] = { 0 };
181 signed char cRetCode = 0;
182 signed char cIndex = 0;
183 signed char cVersionIndex = 0;
184 unsigned char ucReadByte = 0;
187 g_pucHeapMemory = NULL;
190 g_usIntelDataIndex = 0;
191 g_usIntelBufferSize = 0;
192 g_usCalculatedCRC = 0;
194 ucReadByte = GetByte();
195 switch (ucReadByte) {
197 crc = (unsigned char)GetByte();
202 for (cIndex = 0; cIndex < 8; cIndex++)
203 szFileVersion[cIndex] = GetByte();
207 szFileVersion[0] = (signed char) ucReadByte;
208 for (cIndex = 1; cIndex < 8; cIndex++)
209 szFileVersion[cIndex] = GetByte();
216 * Compare the VME file version against the supported version.
220 for (cVersionIndex = 0; g_szSupportedVersions[cVersionIndex] != 0;
222 for (cIndex = 0; cIndex < 8; cIndex++) {
223 if (szFileVersion[cIndex] !=
224 g_szSupportedVersions[cVersionIndex][cIndex]) {
225 cRetCode = VME_VERSION_FAILURE;
237 return VME_VERSION_FAILURE;
240 printf("VME file checked: starting downloading to FPGA\n");
244 cRetCode = ispVMCode();
250 if (cRetCode == 0 && expectedCRC != 0 &&
251 (expectedCRC != g_usCalculatedCRC)) {
252 printf("Expected CRC: 0x%.4X\n", expectedCRC);
253 printf("Calculated CRC: 0x%.4X\n", g_usCalculatedCRC);
254 return VME_CRC_FAILURE;
259 static int lattice_validate(Lattice_desc *desc, const char *fn)
264 if ((desc->family > min_lattice_type) &&
265 (desc->family < max_lattice_type)) {
266 if ((desc->iface > min_lattice_iface_type) &&
267 (desc->iface < max_lattice_iface_type)) {
271 printf("%s: NULL part size\n", fn);
274 printf("%s: Invalid Interface type, %d\n",
278 printf("%s: Invalid family type, %d\n",
282 printf("%s: NULL descriptor!\n", fn);
288 int lattice_load(Lattice_desc *desc, const void *buf, size_t bsize)
290 int ret_val = FPGA_FAIL;
292 if (!lattice_validate(desc, (char *)__func__)) {
293 printf("%s: Invalid device descriptor\n", __func__);
295 pfns = desc->iface_fns;
297 switch (desc->family) {
302 debug("%s: Launching the Lattice ISPVME Loader:"
303 " addr %p size 0x%lx...\n",
304 __func__, fpga_image, bufsize);
307 printf("%s: error %d downloading FPGA image\n",
310 puts("FPGA downloaded successfully\n");
313 printf("%s: Unsupported family type, %d\n",
314 __func__, desc->family);
321 int lattice_dump(Lattice_desc *desc, const void *buf, size_t bsize)
323 puts("Dump not supported for Lattice FPGA\n");
329 int lattice_info(Lattice_desc *desc)
331 int ret_val = FPGA_FAIL;
333 if (lattice_validate(desc, (char *)__func__)) {
334 printf("Family: \t");
335 switch (desc->family) {
339 /* Add new family types here */
341 printf("Unknown family type, %d\n", desc->family);
344 puts("Interface type:\t");
345 switch (desc->iface) {
346 case lattice_jtag_mode:
349 /* Add new interface types here */
351 printf("Unsupported interface type, %d\n", desc->iface);
354 printf("Device Size: \t%d bytes\n",
357 if (desc->iface_fns) {
358 printf("Device Function Table @ 0x%p\n",
360 switch (desc->family) {
363 /* Add new family types here */
368 puts("No Device Function Table.\n");
372 printf("Model: \t%s\n", desc->desc);
374 ret_val = FPGA_SUCCESS;
376 printf("%s: Invalid device descriptor\n", __func__);