2 * Chromium OS cros_ec driver
4 * Copyright (c) 2012 The Chromium OS Authors.
6 * SPDX-License-Identifier: GPL-2.0+
10 * This is the interface to the Chrome OS EC. It provides keyboard functions,
11 * power control and battery management. Quite a few other functions are
12 * provided to enable the EC software to be updated, talk to the EC's I2C bus
13 * and store a small amount of data in a memory which persists while the EC
25 #include <asm/errno.h>
27 #include <asm-generic/gpio.h>
28 #include <dm/device-internal.h>
29 #include <dm/uclass-internal.h>
32 #define debug_trace(fmt, b...) debug(fmt, #b)
34 #define debug_trace(fmt, b...)
38 /* Timeout waiting for a flash erase command to complete */
39 CROS_EC_CMD_TIMEOUT_MS = 5000,
40 /* Timeout waiting for a synchronous hash to be recomputed */
41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
44 DECLARE_GLOBAL_DATA_PTR;
46 /* Note: depends on enum ec_current_image */
47 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
49 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
56 printf("cmd=%#x: ", cmd);
57 for (i = 0; i < len; i++)
58 printf("%02x ", data[i]);
64 * Calculate a simple 8-bit checksum of a data block
66 * @param data Data block to checksum
67 * @param size Size of data block in bytes
68 * @return checksum value (0 to 255)
70 int cros_ec_calc_checksum(const uint8_t *data, int size)
74 for (i = csum = 0; i < size; i++)
80 * Create a request packet for protocol version 3.
82 * The packet is stored in the device's internal output buffer.
84 * @param dev CROS-EC device
85 * @param cmd Command to send (EC_CMD_...)
86 * @param cmd_version Version of command to send (EC_VER_...)
87 * @param dout Output data (may be NULL If dout_len=0)
88 * @param dout_len Size of output data in bytes
89 * @return packet size in bytes, or <0 if error.
91 static int create_proto3_request(struct cros_ec_dev *dev,
92 int cmd, int cmd_version,
93 const void *dout, int dout_len)
95 struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
96 int out_bytes = dout_len + sizeof(*rq);
98 /* Fail if output size is too big */
99 if (out_bytes > (int)sizeof(dev->dout)) {
100 debug("%s: Cannot send %d bytes\n", __func__, dout_len);
101 return -EC_RES_REQUEST_TRUNCATED;
104 /* Fill in request packet */
105 rq->struct_version = EC_HOST_REQUEST_VERSION;
108 rq->command_version = cmd_version;
110 rq->data_len = dout_len;
112 /* Copy data after header */
113 memcpy(rq + 1, dout, dout_len);
115 /* Write checksum field so the entire packet sums to 0 */
116 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
118 cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
120 /* Return size of request packet */
125 * Prepare the device to receive a protocol version 3 response.
127 * @param dev CROS-EC device
128 * @param din_len Maximum size of response in bytes
129 * @return maximum expected number of bytes in response, or <0 if error.
131 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
133 int in_bytes = din_len + sizeof(struct ec_host_response);
135 /* Fail if input size is too big */
136 if (in_bytes > (int)sizeof(dev->din)) {
137 debug("%s: Cannot receive %d bytes\n", __func__, din_len);
138 return -EC_RES_RESPONSE_TOO_BIG;
141 /* Return expected size of response packet */
146 * Handle a protocol version 3 response packet.
148 * The packet must already be stored in the device's internal input buffer.
150 * @param dev CROS-EC device
151 * @param dinp Returns pointer to response data
152 * @param din_len Maximum size of response in bytes
153 * @return number of bytes of response data, or <0 if error. Note that error
154 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
157 static int handle_proto3_response(struct cros_ec_dev *dev,
158 uint8_t **dinp, int din_len)
160 struct ec_host_response *rs = (struct ec_host_response *)dev->din;
164 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
166 /* Check input data */
167 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
168 debug("%s: EC response version mismatch\n", __func__);
169 return -EC_RES_INVALID_RESPONSE;
173 debug("%s: EC response reserved != 0\n", __func__);
174 return -EC_RES_INVALID_RESPONSE;
177 if (rs->data_len > din_len) {
178 debug("%s: EC returned too much data\n", __func__);
179 return -EC_RES_RESPONSE_TOO_BIG;
182 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
184 /* Update in_bytes to actual data size */
185 in_bytes = sizeof(*rs) + rs->data_len;
187 /* Verify checksum */
188 csum = cros_ec_calc_checksum(dev->din, in_bytes);
190 debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
192 return -EC_RES_INVALID_CHECKSUM;
195 /* Return error result, if any */
197 return -(int)rs->result;
199 /* If we're still here, set response data pointer and return length */
200 *dinp = (uint8_t *)(rs + 1);
205 static int send_command_proto3(struct cros_ec_dev *dev,
206 int cmd, int cmd_version,
207 const void *dout, int dout_len,
208 uint8_t **dinp, int din_len)
210 struct dm_cros_ec_ops *ops;
211 int out_bytes, in_bytes;
214 /* Create request packet */
215 out_bytes = create_proto3_request(dev, cmd, cmd_version,
220 /* Prepare response buffer */
221 in_bytes = prepare_proto3_response_buffer(dev, din_len);
225 ops = dm_cros_ec_get_ops(dev->dev);
226 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS;
230 /* Process the response */
231 return handle_proto3_response(dev, dinp, din_len);
234 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
235 const void *dout, int dout_len,
236 uint8_t **dinp, int din_len)
238 struct dm_cros_ec_ops *ops;
241 /* Handle protocol version 3 support */
242 if (dev->protocol_version == 3) {
243 return send_command_proto3(dev, cmd, cmd_version,
244 dout, dout_len, dinp, din_len);
247 ops = dm_cros_ec_get_ops(dev->dev);
248 ret = ops->command(dev->dev, cmd, cmd_version,
249 (const uint8_t *)dout, dout_len, dinp, din_len);
255 * Send a command to the CROS-EC device and return the reply.
257 * The device's internal input/output buffers are used.
259 * @param dev CROS-EC device
260 * @param cmd Command to send (EC_CMD_...)
261 * @param cmd_version Version of command to send (EC_VER_...)
262 * @param dout Output data (may be NULL If dout_len=0)
263 * @param dout_len Size of output data in bytes
264 * @param dinp Response data (may be NULL If din_len=0).
265 * If not NULL, it will be updated to point to the data
266 * and will always be double word aligned (64-bits)
267 * @param din_len Maximum size of response in bytes
268 * @return number of bytes in response, or -ve on error
270 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
271 int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
277 len = send_command(dev, cmd, cmd_version, dout, dout_len,
280 /* If the command doesn't complete, wait a while */
281 if (len == -EC_RES_IN_PROGRESS) {
282 struct ec_response_get_comms_status *resp = NULL;
285 /* Wait for command to complete */
286 start = get_timer(0);
290 mdelay(50); /* Insert some reasonable delay */
291 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
293 (uint8_t **)&resp, sizeof(*resp));
297 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
298 debug("%s: Command %#02x timeout\n",
300 return -EC_RES_TIMEOUT;
302 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
304 /* OK it completed, so read the status response */
305 /* not sure why it was 0 for the last argument */
306 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
307 NULL, 0, &din, din_len);
310 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
311 dinp ? *dinp : NULL);
313 /* If we have any data to return, it must be 64bit-aligned */
314 assert(len <= 0 || !((uintptr_t)din & 7));
322 * Send a command to the CROS-EC device and return the reply.
324 * The device's internal input/output buffers are used.
326 * @param dev CROS-EC device
327 * @param cmd Command to send (EC_CMD_...)
328 * @param cmd_version Version of command to send (EC_VER_...)
329 * @param dout Output data (may be NULL If dout_len=0)
330 * @param dout_len Size of output data in bytes
331 * @param din Response data (may be NULL If din_len=0).
332 * It not NULL, it is a place for ec_command() to copy the
334 * @param din_len Maximum size of response in bytes
335 * @return number of bytes in response, or -ve on error
337 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
338 const void *dout, int dout_len,
339 void *din, int din_len)
344 assert((din_len == 0) || din);
345 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
346 &in_buffer, din_len);
349 * If we were asked to put it somewhere, do so, otherwise just
350 * disregard the result.
352 if (din && in_buffer) {
353 assert(len <= din_len);
354 memmove(din, in_buffer, len);
360 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
362 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
363 sizeof(scan->data)) != sizeof(scan->data))
369 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
371 struct ec_response_get_version *r;
373 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
374 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
377 if (maxlen > (int)sizeof(r->version_string_ro))
378 maxlen = sizeof(r->version_string_ro);
380 switch (r->current_image) {
382 memcpy(id, r->version_string_ro, maxlen);
385 memcpy(id, r->version_string_rw, maxlen);
391 id[maxlen - 1] = '\0';
395 int cros_ec_read_version(struct cros_ec_dev *dev,
396 struct ec_response_get_version **versionp)
398 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
399 (uint8_t **)versionp, sizeof(**versionp))
400 != sizeof(**versionp))
406 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
408 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
409 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
415 int cros_ec_read_current_image(struct cros_ec_dev *dev,
416 enum ec_current_image *image)
418 struct ec_response_get_version *r;
420 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
421 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
424 *image = r->current_image;
428 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
429 struct ec_response_vboot_hash *hash)
431 struct ec_params_vboot_hash p;
434 start = get_timer(0);
435 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
436 mdelay(50); /* Insert some reasonable delay */
438 p.cmd = EC_VBOOT_HASH_GET;
439 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
440 hash, sizeof(*hash)) < 0)
443 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
444 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
445 return -EC_RES_TIMEOUT;
452 int cros_ec_read_hash(struct cros_ec_dev *dev,
453 struct ec_response_vboot_hash *hash)
455 struct ec_params_vboot_hash p;
458 p.cmd = EC_VBOOT_HASH_GET;
459 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
460 hash, sizeof(*hash)) < 0)
463 /* If the EC is busy calculating the hash, fidget until it's done. */
464 rv = cros_ec_wait_on_hash_done(dev, hash);
468 /* If the hash is valid, we're done. Otherwise, we have to kick it off
469 * again and wait for it to complete. Note that we explicitly assume
470 * that hashing zero bytes is always wrong, even though that would
471 * produce a valid hash value. */
472 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
475 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
476 __func__, hash->status, hash->size);
478 p.cmd = EC_VBOOT_HASH_START;
479 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
481 p.offset = EC_VBOOT_HASH_OFFSET_RW;
483 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
484 hash, sizeof(*hash)) < 0)
487 rv = cros_ec_wait_on_hash_done(dev, hash);
491 debug("%s: hash done\n", __func__);
496 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
498 struct ec_params_vboot_hash p;
499 struct ec_response_vboot_hash *hash;
501 /* We don't have an explict command for the EC to discard its current
502 * hash value, so we'll just tell it to calculate one that we know is
503 * wrong (we claim that hashing zero bytes is always invalid).
505 p.cmd = EC_VBOOT_HASH_RECALC;
506 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
511 debug("%s:\n", __func__);
513 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
514 (uint8_t **)&hash, sizeof(*hash)) < 0)
517 /* No need to wait for it to finish */
521 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
524 struct ec_params_reboot_ec p;
529 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
533 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
535 * EC reboot will take place immediately so delay to allow it
536 * to complete. Note that some reboot types (EC_REBOOT_COLD)
537 * will reboot the AP as well, in which case we won't actually
541 * TODO(rspangler@chromium.org): Would be nice if we had a
542 * better way to determine when the reboot is complete. Could
543 * we poll a memory-mapped LPC value?
551 int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
553 /* no interrupt support : always poll */
554 if (!dm_gpio_is_valid(&dev->ec_int))
557 return dm_gpio_get_value(&dev->ec_int);
560 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
562 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
563 sizeof(*info)) != sizeof(*info))
569 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
571 struct ec_response_host_event_mask *resp;
574 * Use the B copy of the event flags, because the main copy is already
577 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
578 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
581 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
584 *events_ptr = resp->mask;
588 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
590 struct ec_params_host_event_mask params;
592 params.mask = events;
595 * Use the B copy of the event flags, so it affects the data returned
596 * by cros_ec_get_host_events().
598 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
599 ¶ms, sizeof(params), NULL, 0) < 0)
605 int cros_ec_flash_protect(struct cros_ec_dev *dev,
606 uint32_t set_mask, uint32_t set_flags,
607 struct ec_response_flash_protect *resp)
609 struct ec_params_flash_protect params;
611 params.mask = set_mask;
612 params.flags = set_flags;
614 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
615 ¶ms, sizeof(params),
616 resp, sizeof(*resp)) != sizeof(*resp))
622 static int cros_ec_check_version(struct cros_ec_dev *dev)
624 struct ec_params_hello req;
625 struct ec_response_hello *resp;
627 struct dm_cros_ec_ops *ops;
630 ops = dm_cros_ec_get_ops(dev->dev);
631 if (ops->check_version) {
632 ret = ops->check_version(dev->dev);
638 * TODO(sjg@chromium.org).
639 * There is a strange oddity here with the EC. We could just ignore
640 * the response, i.e. pass the last two parameters as NULL and 0.
641 * In this case we won't read back very many bytes from the EC.
642 * On the I2C bus the EC gets upset about this and will try to send
643 * the bytes anyway. This means that we will have to wait for that
644 * to complete before continuing with a new EC command.
646 * This problem is probably unique to the I2C bus.
648 * So for now, just read all the data anyway.
651 /* Try sending a version 3 packet */
652 dev->protocol_version = 3;
654 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
655 (uint8_t **)&resp, sizeof(*resp)) > 0) {
659 /* Try sending a version 2 packet */
660 dev->protocol_version = 2;
661 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
662 (uint8_t **)&resp, sizeof(*resp)) > 0) {
667 * Fail if we're still here, since the EC doesn't understand any
668 * protcol version we speak. Version 1 interface without command
669 * version is no longer supported, and we don't know about any new
672 dev->protocol_version = 0;
673 printf("%s: ERROR: old EC interface not supported\n", __func__);
677 int cros_ec_test(struct cros_ec_dev *dev)
679 struct ec_params_hello req;
680 struct ec_response_hello *resp;
682 req.in_data = 0x12345678;
683 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
684 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
685 printf("ec_command_inptr() returned error\n");
688 if (resp->out_data != req.in_data + 0x01020304) {
689 printf("Received invalid handshake %x\n", resp->out_data);
696 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
697 uint32_t *offset, uint32_t *size)
699 struct ec_params_flash_region_info p;
700 struct ec_response_flash_region_info *r;
704 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
705 EC_VER_FLASH_REGION_INFO,
706 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
707 if (ret != sizeof(*r))
718 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
720 struct ec_params_flash_erase p;
724 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
729 * Write a single block to the flash
731 * Write a block of data to the EC flash. The size must not exceed the flash
732 * write block size which you can obtain from cros_ec_flash_write_burst_size().
734 * The offset starts at 0. You can obtain the region information from
735 * cros_ec_flash_offset() to find out where to write for a particular region.
737 * Attempting to write to the region where the EC is currently running from
738 * will result in an error.
740 * @param dev CROS-EC device
741 * @param data Pointer to data buffer to write
742 * @param offset Offset within flash to write to.
743 * @param size Number of bytes to write
744 * @return 0 if ok, -1 on error
746 static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
747 const uint8_t *data, uint32_t offset, uint32_t size)
749 struct ec_params_flash_write p;
753 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
754 memcpy(&p + 1, data, p.size);
756 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
757 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
761 * Return optimal flash write burst size
763 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
765 return EC_FLASH_WRITE_VER0_SIZE;
769 * Check if a block of data is erased (all 0xff)
771 * This function is useful when dealing with flash, for checking whether a
772 * data block is erased and thus does not need to be programmed.
774 * @param data Pointer to data to check (must be word-aligned)
775 * @param size Number of bytes to check (must be word-aligned)
776 * @return 0 if erased, non-zero if any word is not erased
778 static int cros_ec_data_is_erased(const uint32_t *data, int size)
781 size /= sizeof(uint32_t);
782 for (; size > 0; size -= 4, data++)
789 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
790 uint32_t offset, uint32_t size)
792 uint32_t burst = cros_ec_flash_write_burst_size(dev);
797 * TODO: round up to the nearest multiple of write size. Can get away
798 * without that on link right now because its write size is 4 bytes.
801 for (off = offset; off < end; off += burst, data += burst) {
804 /* If the data is empty, there is no point in programming it */
805 todo = min(end - off, burst);
806 if (dev->optimise_flash_write &&
807 cros_ec_data_is_erased((uint32_t *)data, todo))
810 ret = cros_ec_flash_write_block(dev, data, off, todo);
819 * Read a single block from the flash
821 * Read a block of data from the EC flash. The size must not exceed the flash
822 * write block size which you can obtain from cros_ec_flash_write_burst_size().
824 * The offset starts at 0. You can obtain the region information from
825 * cros_ec_flash_offset() to find out where to read for a particular region.
827 * @param dev CROS-EC device
828 * @param data Pointer to data buffer to read into
829 * @param offset Offset within flash to read from
830 * @param size Number of bytes to read
831 * @return 0 if ok, -1 on error
833 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
834 uint32_t offset, uint32_t size)
836 struct ec_params_flash_read p;
841 return ec_command(dev, EC_CMD_FLASH_READ, 0,
842 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
845 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
848 uint32_t burst = cros_ec_flash_write_burst_size(dev);
853 for (off = offset; off < end; off += burst, data += burst) {
854 ret = cros_ec_flash_read_block(dev, data, off,
855 min(end - off, burst));
863 int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
864 const uint8_t *image, int image_size)
866 uint32_t rw_offset, rw_size;
869 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
871 if (image_size > (int)rw_size)
874 /* Invalidate the existing hash, just in case the AP reboots
875 * unexpectedly during the update. If that happened, the EC RW firmware
876 * would be invalid, but the EC would still have the original hash.
878 ret = cros_ec_invalidate_hash(dev);
883 * Erase the entire RW section, so that the EC doesn't see any garbage
884 * past the new image if it's smaller than the current image.
886 * TODO: could optimize this to erase just the current image, since
887 * presumably everything past that is 0xff's. But would still need to
888 * round up to the nearest multiple of erase size.
890 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
894 /* Write the image */
895 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
902 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
904 struct ec_params_vbnvcontext p;
907 p.op = EC_VBNV_CONTEXT_OP_READ;
909 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
910 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
911 if (len < EC_VBNV_BLOCK_SIZE)
917 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
919 struct ec_params_vbnvcontext p;
922 p.op = EC_VBNV_CONTEXT_OP_WRITE;
923 memcpy(p.block, block, sizeof(p.block));
925 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
926 &p, sizeof(p), NULL, 0);
933 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
935 struct ec_params_ldo_set params;
937 params.index = index;
938 params.state = state;
940 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
941 ¶ms, sizeof(params),
948 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
950 struct ec_params_ldo_get params;
951 struct ec_response_ldo_get *resp;
953 params.index = index;
955 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
956 ¶ms, sizeof(params),
957 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
960 *state = resp->state;
965 int cros_ec_register(struct udevice *dev)
967 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
968 const void *blob = gd->fdt_blob;
969 int node = dev->of_offset;
973 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
975 cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
976 "optimise-flash-write");
978 if (cros_ec_check_version(cdev)) {
979 debug("%s: Could not detect CROS-EC version\n", __func__);
980 return -CROS_EC_ERR_CHECK_VERSION;
983 if (cros_ec_read_id(cdev, id, sizeof(id))) {
984 debug("%s: Could not read KBC ID\n", __func__);
985 return -CROS_EC_ERR_READ_ID;
988 /* Remember this device for use by the cros_ec command */
989 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
990 cdev->protocol_version, id);
995 int cros_ec_decode_region(int argc, char * const argv[])
998 if (0 == strcmp(*argv, "rw"))
999 return EC_FLASH_REGION_RW;
1000 else if (0 == strcmp(*argv, "ro"))
1001 return EC_FLASH_REGION_RO;
1003 debug("%s: Invalid region '%s'\n", __func__, *argv);
1005 debug("%s: Missing region parameter\n", __func__);
1011 int cros_ec_decode_ec_flash(const void *blob, int node,
1012 struct fdt_cros_ec *config)
1016 flash_node = fdt_subnode_offset(blob, node, "flash");
1017 if (flash_node < 0) {
1018 debug("Failed to find flash node\n");
1022 if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
1024 debug("Failed to decode flash node in chrome-ec'\n");
1028 config->flash_erase_value = fdtdec_get_int(blob, flash_node,
1030 for (node = fdt_first_subnode(blob, flash_node); node >= 0;
1031 node = fdt_next_subnode(blob, node)) {
1032 const char *name = fdt_get_name(blob, node, NULL);
1033 enum ec_flash_region region;
1035 if (0 == strcmp(name, "ro")) {
1036 region = EC_FLASH_REGION_RO;
1037 } else if (0 == strcmp(name, "rw")) {
1038 region = EC_FLASH_REGION_RW;
1039 } else if (0 == strcmp(name, "wp-ro")) {
1040 region = EC_FLASH_REGION_WP_RO;
1042 debug("Unknown EC flash region name '%s'\n", name);
1046 if (fdtdec_read_fmap_entry(blob, node, "reg",
1047 &config->region[region])) {
1048 debug("Failed to decode flash region in chrome-ec'\n");
1056 int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr,
1057 int alen, uchar *buffer, int len, int is_read)
1060 struct ec_params_i2c_passthru p;
1061 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1064 struct ec_response_i2c_passthru r;
1065 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1067 struct ec_params_i2c_passthru *p = ¶ms.p;
1068 struct ec_response_i2c_passthru *r = &response.r;
1069 struct ec_params_i2c_passthru_msg *msg = p->msg;
1071 int read_len, write_len;
1078 printf("Unsupported address length %d\n", alen);
1087 write_len = alen + len;
1091 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1092 if (size + write_len > sizeof(params)) {
1093 puts("Params too large for buffer\n");
1096 if (sizeof(*r) + read_len > sizeof(response)) {
1097 puts("Read length too big for buffer\n");
1101 /* Create a message to write the register address and optional data */
1102 pdata = (uint8_t *)p + size;
1103 msg->addr_flags = chip;
1104 msg->len = write_len;
1107 memcpy(pdata + 1, buffer, len);
1111 msg->addr_flags = chip | EC_I2C_FLAG_READ;
1112 msg->len = read_len;
1115 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
1116 r, sizeof(*r) + read_len);
1120 /* Parse response */
1121 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1122 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1126 if (rv < sizeof(*r) + read_len) {
1127 puts("Truncated read response\n");
1132 memcpy(buffer, r->data, read_len);
1137 #ifdef CONFIG_CMD_CROS_EC
1140 * Perform a flash read or write command
1142 * @param dev CROS-EC device to read/write
1143 * @param is_write 1 do to a write, 0 to do a read
1144 * @param argc Number of arguments
1145 * @param argv Arguments (2 is region, 3 is address)
1146 * @return 0 for ok, 1 for a usage error or -ve for ec command error
1147 * (negative EC_RES_...)
1149 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
1150 char * const argv[])
1152 uint32_t offset, size = -1U, region_size;
1158 region = cros_ec_decode_region(argc - 2, argv + 2);
1163 addr = simple_strtoul(argv[3], &endp, 16);
1164 if (*argv[3] == 0 || *endp != 0)
1167 size = simple_strtoul(argv[4], &endp, 16);
1168 if (*argv[4] == 0 || *endp != 0)
1172 ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size);
1174 debug("%s: Could not read region info\n", __func__);
1181 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
1182 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
1184 debug("%s: Could not %s region\n", __func__,
1185 is_write ? "write" : "read");
1193 * get_alen() - Small parser helper function to get address length
1195 * Returns the address length.
1197 static uint get_alen(char *arg)
1203 for (j = 0; j < 8; j++) {
1204 if (arg[j] == '.') {
1205 alen = arg[j+1] - '0';
1207 } else if (arg[j] == '\0') {
1214 #define DISP_LINE_LEN 16
1217 * TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c
1218 * so we can remove it later.
1220 static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
1221 char * const argv[])
1224 uint addr, alen, length = 0x10;
1225 int j, nbytes, linebytes;
1228 return CMD_RET_USAGE;
1230 if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
1232 * New command specified.
1238 chip = simple_strtoul(argv[0], NULL, 16);
1241 * I2C data address within the chip. This can be 1 or
1242 * 2 bytes long. Some day it might be 3 bytes long :-).
1244 addr = simple_strtoul(argv[1], NULL, 16);
1245 alen = get_alen(argv[1]);
1247 return CMD_RET_USAGE;
1250 * If another parameter, it is the length to display.
1251 * Length is the number of objects, not number of bytes.
1254 length = simple_strtoul(argv[2], NULL, 16);
1260 * We buffer all read data, so we can make sure data is read only
1265 unsigned char linebuf[DISP_LINE_LEN];
1268 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
1270 if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes,
1272 puts("Error reading the chip.\n");
1274 printf("%04x:", addr);
1276 for (j = 0; j < linebytes; j++) {
1277 printf(" %02x", *cp++);
1282 for (j = 0; j < linebytes; j++) {
1283 if ((*cp < 0x20) || (*cp > 0x7e))
1291 nbytes -= linebytes;
1292 } while (nbytes > 0);
1297 static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
1298 char * const argv[])
1306 if ((argc < 3) || (argc > 4))
1307 return CMD_RET_USAGE;
1310 * Chip is always specified.
1312 chip = simple_strtoul(argv[0], NULL, 16);
1315 * Address is always specified.
1317 addr = simple_strtoul(argv[1], NULL, 16);
1318 alen = get_alen(argv[1]);
1320 return CMD_RET_USAGE;
1323 * Value to write is always specified.
1325 byte = simple_strtoul(argv[2], NULL, 16);
1331 count = simple_strtoul(argv[3], NULL, 16);
1335 while (count-- > 0) {
1336 if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0))
1337 puts("Error writing the chip.\n");
1339 * Wait for the write to complete. The write can take
1340 * up to 10mSec (we allow a little more time).
1343 * No write delay with FRAM devices.
1345 #if !defined(CONFIG_SYS_I2C_FRAM)
1353 /* Temporary code until we have driver model and can use the i2c command */
1354 static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
1355 int argc, char * const argv[])
1360 return CMD_RET_USAGE;
1363 if (0 == strcmp("md", cmd))
1364 cros_ec_i2c_md(dev, flag, argc, argv);
1365 else if (0 == strcmp("mw", cmd))
1366 cros_ec_i2c_mw(dev, flag, argc, argv);
1368 return CMD_RET_USAGE;
1373 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1375 struct cros_ec_dev *dev;
1376 struct udevice *udev;
1381 return CMD_RET_USAGE;
1384 if (0 == strcmp("init", cmd)) {
1385 /* Remove any existing device */
1386 ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
1388 device_remove(udev);
1389 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1391 printf("Could not init cros_ec device (err %d)\n", ret);
1397 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1399 printf("Cannot get cros-ec device (err=%d)\n", ret);
1402 dev = dev_get_uclass_priv(udev);
1403 if (0 == strcmp("id", cmd)) {
1406 if (cros_ec_read_id(dev, id, sizeof(id))) {
1407 debug("%s: Could not read KBC ID\n", __func__);
1411 } else if (0 == strcmp("info", cmd)) {
1412 struct ec_response_mkbp_info info;
1414 if (cros_ec_info(dev, &info)) {
1415 debug("%s: Could not read KBC info\n", __func__);
1418 printf("rows = %u\n", info.rows);
1419 printf("cols = %u\n", info.cols);
1420 printf("switches = %#x\n", info.switches);
1421 } else if (0 == strcmp("curimage", cmd)) {
1422 enum ec_current_image image;
1424 if (cros_ec_read_current_image(dev, &image)) {
1425 debug("%s: Could not read KBC image\n", __func__);
1428 printf("%d\n", image);
1429 } else if (0 == strcmp("hash", cmd)) {
1430 struct ec_response_vboot_hash hash;
1433 if (cros_ec_read_hash(dev, &hash)) {
1434 debug("%s: Could not read KBC hash\n", __func__);
1438 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
1439 printf("type: SHA-256\n");
1441 printf("type: %d\n", hash.hash_type);
1443 printf("offset: 0x%08x\n", hash.offset);
1444 printf("size: 0x%08x\n", hash.size);
1447 for (i = 0; i < hash.digest_size; i++)
1448 printf("%02x", hash.hash_digest[i]);
1450 } else if (0 == strcmp("reboot", cmd)) {
1452 enum ec_reboot_cmd cmd;
1454 if (argc >= 3 && !strcmp(argv[2], "cold"))
1455 cmd = EC_REBOOT_COLD;
1457 region = cros_ec_decode_region(argc - 2, argv + 2);
1458 if (region == EC_FLASH_REGION_RO)
1459 cmd = EC_REBOOT_JUMP_RO;
1460 else if (region == EC_FLASH_REGION_RW)
1461 cmd = EC_REBOOT_JUMP_RW;
1463 return CMD_RET_USAGE;
1466 if (cros_ec_reboot(dev, cmd, 0)) {
1467 debug("%s: Could not reboot KBC\n", __func__);
1470 } else if (0 == strcmp("events", cmd)) {
1473 if (cros_ec_get_host_events(dev, &events)) {
1474 debug("%s: Could not read host events\n", __func__);
1477 printf("0x%08x\n", events);
1478 } else if (0 == strcmp("clrevents", cmd)) {
1479 uint32_t events = 0x7fffffff;
1482 events = simple_strtol(argv[2], NULL, 0);
1484 if (cros_ec_clear_host_events(dev, events)) {
1485 debug("%s: Could not clear host events\n", __func__);
1488 } else if (0 == strcmp("read", cmd)) {
1489 ret = do_read_write(dev, 0, argc, argv);
1491 return CMD_RET_USAGE;
1492 } else if (0 == strcmp("write", cmd)) {
1493 ret = do_read_write(dev, 1, argc, argv);
1495 return CMD_RET_USAGE;
1496 } else if (0 == strcmp("erase", cmd)) {
1497 int region = cros_ec_decode_region(argc - 2, argv + 2);
1498 uint32_t offset, size;
1501 return CMD_RET_USAGE;
1502 if (cros_ec_flash_offset(dev, region, &offset, &size)) {
1503 debug("%s: Could not read region info\n", __func__);
1506 ret = cros_ec_flash_erase(dev, offset, size);
1508 debug("%s: Could not erase region\n",
1512 } else if (0 == strcmp("regioninfo", cmd)) {
1513 int region = cros_ec_decode_region(argc - 2, argv + 2);
1514 uint32_t offset, size;
1517 return CMD_RET_USAGE;
1518 ret = cros_ec_flash_offset(dev, region, &offset, &size);
1520 debug("%s: Could not read region info\n", __func__);
1522 printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
1524 printf("Offset: %x\n", offset);
1525 printf("Size: %x\n", size);
1527 } else if (0 == strcmp("vbnvcontext", cmd)) {
1528 uint8_t block[EC_VBNV_BLOCK_SIZE];
1531 unsigned long result;
1534 ret = cros_ec_read_vbnvcontext(dev, block);
1536 printf("vbnv_block: ");
1537 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
1538 printf("%02x", block[i]);
1543 * TODO(clchiou): Move this to a utility function as
1544 * cmd_spi might want to call it.
1546 memset(block, 0, EC_VBNV_BLOCK_SIZE);
1547 len = strlen(argv[2]);
1549 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
1552 buf[0] = argv[2][i * 2];
1553 if (i * 2 + 1 >= len)
1556 buf[1] = argv[2][i * 2 + 1];
1557 strict_strtoul(buf, 16, &result);
1560 ret = cros_ec_write_vbnvcontext(dev, block);
1563 debug("%s: Could not %s VbNvContext\n", __func__,
1564 argc <= 2 ? "read" : "write");
1566 } else if (0 == strcmp("test", cmd)) {
1567 int result = cros_ec_test(dev);
1570 printf("Test failed with error %d\n", result);
1572 puts("Test passed\n");
1573 } else if (0 == strcmp("version", cmd)) {
1574 struct ec_response_get_version *p;
1577 ret = cros_ec_read_version(dev, &p);
1579 /* Print versions */
1580 printf("RO version: %1.*s\n",
1581 (int)sizeof(p->version_string_ro),
1582 p->version_string_ro);
1583 printf("RW version: %1.*s\n",
1584 (int)sizeof(p->version_string_rw),
1585 p->version_string_rw);
1586 printf("Firmware copy: %s\n",
1588 ARRAY_SIZE(ec_current_image_name) ?
1589 ec_current_image_name[p->current_image] :
1591 ret = cros_ec_read_build_info(dev, &build_string);
1593 printf("Build info: %s\n", build_string);
1595 } else if (0 == strcmp("ldo", cmd)) {
1596 uint8_t index, state;
1600 return CMD_RET_USAGE;
1601 index = simple_strtoul(argv[2], &endp, 10);
1602 if (*argv[2] == 0 || *endp != 0)
1603 return CMD_RET_USAGE;
1605 state = simple_strtoul(argv[3], &endp, 10);
1606 if (*argv[3] == 0 || *endp != 0)
1607 return CMD_RET_USAGE;
1608 ret = cros_ec_set_ldo(dev, index, state);
1610 ret = cros_ec_get_ldo(dev, index, &state);
1612 printf("LDO%d: %s\n", index,
1613 state == EC_LDO_STATE_ON ?
1619 debug("%s: Could not access LDO%d\n", __func__, index);
1622 } else if (0 == strcmp("i2c", cmd)) {
1623 ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
1625 return CMD_RET_USAGE;
1629 printf("Error: CROS-EC command failed (error %d)\n", ret);
1637 crosec, 6, 1, do_cros_ec,
1638 "CROS-EC utility command",
1639 "init Re-init CROS-EC (done on startup automatically)\n"
1640 "crosec id Read CROS-EC ID\n"
1641 "crosec info Read CROS-EC info\n"
1642 "crosec curimage Read CROS-EC current image\n"
1643 "crosec hash Read CROS-EC hash\n"
1644 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
1645 "crosec events Read CROS-EC host events\n"
1646 "crosec clrevents [mask] Clear CROS-EC host events\n"
1647 "crosec regioninfo <ro|rw> Read image info\n"
1648 "crosec erase <ro|rw> Erase EC image\n"
1649 "crosec read <ro|rw> <addr> [<size>] Read EC image\n"
1650 "crosec write <ro|rw> <addr> [<size>] Write EC image\n"
1651 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
1652 "crosec ldo <idx> [<state>] Switch/Read LDO state\n"
1653 "crosec test run tests on cros_ec\n"
1654 "crosec version Read CROS-EC version\n"
1655 "crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
1656 "crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
1660 UCLASS_DRIVER(cros_ec) = {
1661 .id = UCLASS_CROS_EC,
1663 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev),