2 * Core registration and callback routines for MTD
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * SPDX-License-Identifier: GPL-2.0+
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/seq_file.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/major.h>
21 #include <linux/err.h>
22 #include <linux/ioctl.h>
23 #include <linux/init.h>
24 #include <linux/proc_fs.h>
25 #include <linux/idr.h>
26 #include <linux/backing-dev.h>
27 #include <linux/gfp.h>
28 #include <linux/slab.h>
30 #include <linux/err.h>
31 #include <ubi_uboot.h>
34 #include <linux/log2.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
42 * backing device capabilities for non-mappable devices (such as NAND flash)
43 * - permits private mappings, copies are taken of the data
45 static struct backing_dev_info mtd_bdi_unmappable = {
46 .capabilities = BDI_CAP_MAP_COPY,
50 * backing device capabilities for R/O mappable devices (such as ROM)
51 * - permits private mappings, copies are taken of the data
52 * - permits non-writable shared mappings
54 static struct backing_dev_info mtd_bdi_ro_mappable = {
55 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
56 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60 * backing device capabilities for writable mappable devices (such as RAM)
61 * - permits private mappings, copies are taken of the data
62 * - permits non-writable shared mappings
64 static struct backing_dev_info mtd_bdi_rw_mappable = {
65 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
66 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
71 static int mtd_cls_resume(struct device *dev);
73 static struct class mtd_class = {
76 .suspend = mtd_cls_suspend,
77 .resume = mtd_cls_resume,
80 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
90 struct idr_layer id[MAX_IDR_ID];
93 #define DEFINE_IDR(name) struct idr name;
95 void idr_remove(struct idr *idp, int id)
102 void *idr_find(struct idr *idp, int id)
104 if (idp->id[id].used)
105 return idp->id[id].ptr;
110 void *idr_get_next(struct idr *idp, int *next)
115 ret = idr_find(idp, id);
118 if (!idp->id[id].used)
128 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
130 struct idr_layer *idl;
133 while (i < MAX_IDR_ID) {
135 if (idl->used == 0) {
146 static DEFINE_IDR(mtd_idr);
148 /* These are exported solely for the purpose of mtd_blkdevs.c. You
149 should not use them for _anything_ else */
150 DEFINE_MUTEX(mtd_table_mutex);
151 EXPORT_SYMBOL_GPL(mtd_table_mutex);
153 struct mtd_info *__mtd_next_device(int i)
155 return idr_get_next(&mtd_idr, &i);
157 EXPORT_SYMBOL_GPL(__mtd_next_device);
160 static LIST_HEAD(mtd_notifiers);
163 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
165 /* REVISIT once MTD uses the driver model better, whoever allocates
166 * the mtd_info will probably want to use the release() hook...
168 static void mtd_release(struct device *dev)
170 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
171 dev_t index = MTD_DEVT(mtd->index);
173 /* remove /dev/mtdXro node if needed */
175 device_destroy(&mtd_class, index + 1);
178 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
180 struct mtd_info *mtd = dev_get_drvdata(dev);
182 return mtd ? mtd_suspend(mtd) : 0;
185 static int mtd_cls_resume(struct device *dev)
187 struct mtd_info *mtd = dev_get_drvdata(dev);
194 static ssize_t mtd_type_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
197 struct mtd_info *mtd = dev_get_drvdata(dev);
222 case MTD_MLCNANDFLASH:
229 return snprintf(buf, PAGE_SIZE, "%s\n", type);
231 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
233 static ssize_t mtd_flags_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
236 struct mtd_info *mtd = dev_get_drvdata(dev);
238 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
241 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
243 static ssize_t mtd_size_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
246 struct mtd_info *mtd = dev_get_drvdata(dev);
248 return snprintf(buf, PAGE_SIZE, "%llu\n",
249 (unsigned long long)mtd->size);
252 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
254 static ssize_t mtd_erasesize_show(struct device *dev,
255 struct device_attribute *attr, char *buf)
257 struct mtd_info *mtd = dev_get_drvdata(dev);
259 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
262 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
264 static ssize_t mtd_writesize_show(struct device *dev,
265 struct device_attribute *attr, char *buf)
267 struct mtd_info *mtd = dev_get_drvdata(dev);
269 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
272 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
274 static ssize_t mtd_subpagesize_show(struct device *dev,
275 struct device_attribute *attr, char *buf)
277 struct mtd_info *mtd = dev_get_drvdata(dev);
278 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
280 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
283 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
285 static ssize_t mtd_oobsize_show(struct device *dev,
286 struct device_attribute *attr, char *buf)
288 struct mtd_info *mtd = dev_get_drvdata(dev);
290 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
293 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
295 static ssize_t mtd_numeraseregions_show(struct device *dev,
296 struct device_attribute *attr, char *buf)
298 struct mtd_info *mtd = dev_get_drvdata(dev);
300 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
303 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
306 static ssize_t mtd_name_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
309 struct mtd_info *mtd = dev_get_drvdata(dev);
311 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
314 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
316 static ssize_t mtd_ecc_strength_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
319 struct mtd_info *mtd = dev_get_drvdata(dev);
321 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
323 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
325 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
326 struct device_attribute *attr,
329 struct mtd_info *mtd = dev_get_drvdata(dev);
331 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
334 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
335 struct device_attribute *attr,
336 const char *buf, size_t count)
338 struct mtd_info *mtd = dev_get_drvdata(dev);
339 unsigned int bitflip_threshold;
342 retval = kstrtouint(buf, 0, &bitflip_threshold);
346 mtd->bitflip_threshold = bitflip_threshold;
349 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
350 mtd_bitflip_threshold_show,
351 mtd_bitflip_threshold_store);
353 static ssize_t mtd_ecc_step_size_show(struct device *dev,
354 struct device_attribute *attr, char *buf)
356 struct mtd_info *mtd = dev_get_drvdata(dev);
358 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
361 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
363 static struct attribute *mtd_attrs[] = {
365 &dev_attr_flags.attr,
367 &dev_attr_erasesize.attr,
368 &dev_attr_writesize.attr,
369 &dev_attr_subpagesize.attr,
370 &dev_attr_oobsize.attr,
371 &dev_attr_numeraseregions.attr,
373 &dev_attr_ecc_strength.attr,
374 &dev_attr_ecc_step_size.attr,
375 &dev_attr_bitflip_threshold.attr,
378 ATTRIBUTE_GROUPS(mtd);
380 static struct device_type mtd_devtype = {
382 .groups = mtd_groups,
383 .release = mtd_release,
388 * add_mtd_device - register an MTD device
389 * @mtd: pointer to new MTD device info structure
391 * Add a device to the list of MTD devices present in the system, and
392 * notify each currently active MTD 'user' of its arrival. Returns
393 * zero on success or 1 on failure, which currently will only happen
394 * if there is insufficient memory or a sysfs error.
397 int add_mtd_device(struct mtd_info *mtd)
400 struct mtd_notifier *not;
405 if (!mtd->backing_dev_info) {
408 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
411 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
414 mtd->backing_dev_info = &mtd_bdi_unmappable;
420 BUG_ON(mtd->writesize == 0);
421 mutex_lock(&mtd_table_mutex);
423 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
430 /* default value if not set by driver */
431 if (mtd->bitflip_threshold == 0)
432 mtd->bitflip_threshold = mtd->ecc_strength;
434 if (is_power_of_2(mtd->erasesize))
435 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
437 mtd->erasesize_shift = 0;
439 if (is_power_of_2(mtd->writesize))
440 mtd->writesize_shift = ffs(mtd->writesize) - 1;
442 mtd->writesize_shift = 0;
444 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
445 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
447 /* Some chips always power up locked. Unlock them now */
448 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
449 error = mtd_unlock(mtd, 0, mtd->size);
450 if (error && error != -EOPNOTSUPP)
452 "%s: unlock failed, writes may not work\n",
457 /* Caller should have set dev.parent to match the
460 mtd->dev.type = &mtd_devtype;
461 mtd->dev.class = &mtd_class;
462 mtd->dev.devt = MTD_DEVT(i);
463 dev_set_name(&mtd->dev, "mtd%d", i);
464 dev_set_drvdata(&mtd->dev, mtd);
465 if (device_register(&mtd->dev) != 0)
469 device_create(&mtd_class, mtd->dev.parent,
473 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
474 /* No need to get a refcount on the module containing
475 the notifier, since we hold the mtd_table_mutex */
476 list_for_each_entry(not, &mtd_notifiers, list)
479 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
482 mutex_unlock(&mtd_table_mutex);
483 /* We _know_ we aren't being removed, because
484 our caller is still holding us here. So none
485 of this try_ nonsense, and no bitching about it
487 __module_get(THIS_MODULE);
492 idr_remove(&mtd_idr, i);
495 mutex_unlock(&mtd_table_mutex);
500 * del_mtd_device - unregister an MTD device
501 * @mtd: pointer to MTD device info structure
503 * Remove a device from the list of MTD devices present in the system,
504 * and notify each currently active MTD 'user' of its departure.
505 * Returns zero on success or 1 on failure, which currently will happen
506 * if the requested device does not appear to be present in the list.
509 int del_mtd_device(struct mtd_info *mtd)
513 struct mtd_notifier *not;
516 mutex_lock(&mtd_table_mutex);
518 if (idr_find(&mtd_idr, mtd->index) != mtd) {
524 /* No need to get a refcount on the module containing
525 the notifier, since we hold the mtd_table_mutex */
526 list_for_each_entry(not, &mtd_notifiers, list)
531 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
532 mtd->index, mtd->name, mtd->usecount);
536 device_unregister(&mtd->dev);
539 idr_remove(&mtd_idr, mtd->index);
541 module_put(THIS_MODULE);
546 mutex_unlock(&mtd_table_mutex);
552 * mtd_device_parse_register - parse partitions and register an MTD device.
554 * @mtd: the MTD device to register
555 * @types: the list of MTD partition probes to try, see
556 * 'parse_mtd_partitions()' for more information
557 * @parser_data: MTD partition parser-specific data
558 * @parts: fallback partition information to register, if parsing fails;
559 * only valid if %nr_parts > %0
560 * @nr_parts: the number of partitions in parts, if zero then the full
561 * MTD device is registered if no partition info is found
563 * This function aggregates MTD partitions parsing (done by
564 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
565 * basically follows the most common pattern found in many MTD drivers:
567 * * It first tries to probe partitions on MTD device @mtd using parsers
568 * specified in @types (if @types is %NULL, then the default list of parsers
569 * is used, see 'parse_mtd_partitions()' for more information). If none are
570 * found this functions tries to fallback to information specified in
572 * * If any partitioning info was found, this function registers the found
574 * * If no partitions were found this function just registers the MTD device
577 * Returns zero in case of success and a negative error code in case of failure.
579 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
580 struct mtd_part_parser_data *parser_data,
581 const struct mtd_partition *parts,
585 struct mtd_partition *real_parts;
587 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
588 if (err <= 0 && nr_parts && parts) {
589 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
598 err = add_mtd_partitions(mtd, real_parts, err);
600 } else if (err == 0) {
601 err = add_mtd_device(mtd);
608 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
611 * mtd_device_unregister - unregister an existing MTD device.
613 * @master: the MTD device to unregister. This will unregister both the master
614 * and any partitions if registered.
616 int mtd_device_unregister(struct mtd_info *master)
620 err = del_mtd_partitions(master);
624 if (!device_is_registered(&master->dev))
627 return del_mtd_device(master);
629 EXPORT_SYMBOL_GPL(mtd_device_unregister);
632 * register_mtd_user - register a 'user' of MTD devices.
633 * @new: pointer to notifier info structure
635 * Registers a pair of callbacks function to be called upon addition
636 * or removal of MTD devices. Causes the 'add' callback to be immediately
637 * invoked for each MTD device currently present in the system.
639 void register_mtd_user (struct mtd_notifier *new)
641 struct mtd_info *mtd;
643 mutex_lock(&mtd_table_mutex);
645 list_add(&new->list, &mtd_notifiers);
647 __module_get(THIS_MODULE);
649 mtd_for_each_device(mtd)
652 mutex_unlock(&mtd_table_mutex);
654 EXPORT_SYMBOL_GPL(register_mtd_user);
657 * unregister_mtd_user - unregister a 'user' of MTD devices.
658 * @old: pointer to notifier info structure
660 * Removes a callback function pair from the list of 'users' to be
661 * notified upon addition or removal of MTD devices. Causes the
662 * 'remove' callback to be immediately invoked for each MTD device
663 * currently present in the system.
665 int unregister_mtd_user (struct mtd_notifier *old)
667 struct mtd_info *mtd;
669 mutex_lock(&mtd_table_mutex);
671 module_put(THIS_MODULE);
673 mtd_for_each_device(mtd)
676 list_del(&old->list);
677 mutex_unlock(&mtd_table_mutex);
680 EXPORT_SYMBOL_GPL(unregister_mtd_user);
684 * get_mtd_device - obtain a validated handle for an MTD device
685 * @mtd: last known address of the required MTD device
686 * @num: internal device number of the required MTD device
688 * Given a number and NULL address, return the num'th entry in the device
689 * table, if any. Given an address and num == -1, search the device table
690 * for a device with that address and return if it's still present. Given
691 * both, return the num'th driver only if its address matches. Return
694 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
696 struct mtd_info *ret = NULL, *other;
699 mutex_lock(&mtd_table_mutex);
702 mtd_for_each_device(other) {
708 } else if (num >= 0) {
709 ret = idr_find(&mtd_idr, num);
710 if (mtd && mtd != ret)
719 err = __get_mtd_device(ret);
723 mutex_unlock(&mtd_table_mutex);
726 EXPORT_SYMBOL_GPL(get_mtd_device);
729 int __get_mtd_device(struct mtd_info *mtd)
733 if (!try_module_get(mtd->owner))
736 if (mtd->_get_device) {
737 err = mtd->_get_device(mtd);
740 module_put(mtd->owner);
747 EXPORT_SYMBOL_GPL(__get_mtd_device);
750 * get_mtd_device_nm - obtain a validated handle for an MTD device by
752 * @name: MTD device name to open
754 * This function returns MTD device description structure in case of
755 * success and an error code in case of failure.
757 struct mtd_info *get_mtd_device_nm(const char *name)
760 struct mtd_info *mtd = NULL, *other;
762 mutex_lock(&mtd_table_mutex);
764 mtd_for_each_device(other) {
765 if (!strcmp(name, other->name)) {
774 err = __get_mtd_device(mtd);
778 mutex_unlock(&mtd_table_mutex);
782 mutex_unlock(&mtd_table_mutex);
785 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
787 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
789 * mtd_get_len_incl_bad
791 * Check if length including bad blocks fits into device.
793 * @param mtd an MTD device
794 * @param offset offset in flash
795 * @param length image length
796 * @return image length including bad blocks in *len_incl_bad and whether or not
797 * the length returned was truncated in *truncated
799 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
800 const uint64_t length, uint64_t *len_incl_bad,
806 if (!mtd->_block_isbad) {
807 *len_incl_bad = length;
811 uint64_t len_excl_bad = 0;
814 while (len_excl_bad < length) {
815 if (offset >= mtd->size) {
820 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
822 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
823 len_excl_bad += block_len;
825 *len_incl_bad += block_len;
829 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
831 void put_mtd_device(struct mtd_info *mtd)
833 mutex_lock(&mtd_table_mutex);
834 __put_mtd_device(mtd);
835 mutex_unlock(&mtd_table_mutex);
838 EXPORT_SYMBOL_GPL(put_mtd_device);
840 void __put_mtd_device(struct mtd_info *mtd)
843 BUG_ON(mtd->usecount < 0);
845 if (mtd->_put_device)
846 mtd->_put_device(mtd);
848 module_put(mtd->owner);
850 EXPORT_SYMBOL_GPL(__put_mtd_device);
853 * Erase is an asynchronous operation. Device drivers are supposed
854 * to call instr->callback() whenever the operation completes, even
855 * if it completes with a failure.
856 * Callers are supposed to pass a callback function and wait for it
857 * to be called before writing to the block.
859 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
861 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
863 if (!(mtd->flags & MTD_WRITEABLE))
865 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
867 instr->state = MTD_ERASE_DONE;
868 mtd_erase_callback(instr);
871 return mtd->_erase(mtd, instr);
873 EXPORT_SYMBOL_GPL(mtd_erase);
877 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
879 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
880 void **virt, resource_size_t *phys)
888 if (from < 0 || from > mtd->size || len > mtd->size - from)
892 return mtd->_point(mtd, from, len, retlen, virt, phys);
894 EXPORT_SYMBOL_GPL(mtd_point);
896 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
897 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
901 if (from < 0 || from > mtd->size || len > mtd->size - from)
905 return mtd->_unpoint(mtd, from, len);
907 EXPORT_SYMBOL_GPL(mtd_unpoint);
911 * Allow NOMMU mmap() to directly map the device (if not NULL)
912 * - return the address to which the offset maps
913 * - return -ENOSYS to indicate refusal to do the mapping
915 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
916 unsigned long offset, unsigned long flags)
918 if (!mtd->_get_unmapped_area)
920 if (offset > mtd->size || len > mtd->size - offset)
922 return mtd->_get_unmapped_area(mtd, len, offset, flags);
924 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
926 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
931 if (from < 0 || from > mtd->size || len > mtd->size - from)
937 * In the absence of an error, drivers return a non-negative integer
938 * representing the maximum number of bitflips that were corrected on
939 * any one ecc region (if applicable; zero otherwise).
941 ret_code = mtd->_read(mtd, from, len, retlen, buf);
942 if (unlikely(ret_code < 0))
944 if (mtd->ecc_strength == 0)
945 return 0; /* device lacks ecc */
946 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
948 EXPORT_SYMBOL_GPL(mtd_read);
950 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
954 if (to < 0 || to > mtd->size || len > mtd->size - to)
956 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
960 return mtd->_write(mtd, to, len, retlen, buf);
962 EXPORT_SYMBOL_GPL(mtd_write);
965 * In blackbox flight recorder like scenarios we want to make successful writes
966 * in interrupt context. panic_write() is only intended to be called when its
967 * known the kernel is about to panic and we need the write to succeed. Since
968 * the kernel is not going to be running for much longer, this function can
969 * break locks and delay to ensure the write succeeds (but not sleep).
971 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
975 if (!mtd->_panic_write)
977 if (to < 0 || to > mtd->size || len > mtd->size - to)
979 if (!(mtd->flags & MTD_WRITEABLE))
983 return mtd->_panic_write(mtd, to, len, retlen, buf);
985 EXPORT_SYMBOL_GPL(mtd_panic_write);
987 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
990 ops->retlen = ops->oobretlen = 0;
994 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
995 * similar to mtd->_read(), returning a non-negative integer
996 * representing max bitflips. In other cases, mtd->_read_oob() may
997 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
999 ret_code = mtd->_read_oob(mtd, from, ops);
1000 if (unlikely(ret_code < 0))
1002 if (mtd->ecc_strength == 0)
1003 return 0; /* device lacks ecc */
1004 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1006 EXPORT_SYMBOL_GPL(mtd_read_oob);
1009 * Method to access the protection register area, present in some flash
1010 * devices. The user data is one time programmable but the factory data is read
1013 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1014 struct otp_info *buf)
1016 if (!mtd->_get_fact_prot_info)
1020 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1022 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1024 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1025 size_t *retlen, u_char *buf)
1028 if (!mtd->_read_fact_prot_reg)
1032 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1034 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1036 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1037 struct otp_info *buf)
1039 if (!mtd->_get_user_prot_info)
1043 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1045 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1047 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1048 size_t *retlen, u_char *buf)
1051 if (!mtd->_read_user_prot_reg)
1055 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1057 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1059 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1060 size_t *retlen, u_char *buf)
1065 if (!mtd->_write_user_prot_reg)
1069 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1074 * If no data could be written at all, we are out of memory and
1075 * must return -ENOSPC.
1077 return (*retlen) ? 0 : -ENOSPC;
1079 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1081 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1083 if (!mtd->_lock_user_prot_reg)
1087 return mtd->_lock_user_prot_reg(mtd, from, len);
1089 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1091 /* Chip-supported device locking */
1092 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1096 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1100 return mtd->_lock(mtd, ofs, len);
1102 EXPORT_SYMBOL_GPL(mtd_lock);
1104 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1108 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1112 return mtd->_unlock(mtd, ofs, len);
1114 EXPORT_SYMBOL_GPL(mtd_unlock);
1116 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1118 if (!mtd->_is_locked)
1120 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1124 return mtd->_is_locked(mtd, ofs, len);
1126 EXPORT_SYMBOL_GPL(mtd_is_locked);
1128 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1130 if (ofs < 0 || ofs > mtd->size)
1132 if (!mtd->_block_isreserved)
1134 return mtd->_block_isreserved(mtd, ofs);
1136 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1138 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1140 if (ofs < 0 || ofs > mtd->size)
1142 if (!mtd->_block_isbad)
1144 return mtd->_block_isbad(mtd, ofs);
1146 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1148 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1150 if (!mtd->_block_markbad)
1152 if (ofs < 0 || ofs > mtd->size)
1154 if (!(mtd->flags & MTD_WRITEABLE))
1156 return mtd->_block_markbad(mtd, ofs);
1158 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1162 * default_mtd_writev - the default writev method
1163 * @mtd: mtd device description object pointer
1164 * @vecs: the vectors to write
1165 * @count: count of vectors in @vecs
1166 * @to: the MTD device offset to write to
1167 * @retlen: on exit contains the count of bytes written to the MTD device.
1169 * This function returns zero in case of success and a negative error code in
1172 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1173 unsigned long count, loff_t to, size_t *retlen)
1176 size_t totlen = 0, thislen;
1179 for (i = 0; i < count; i++) {
1180 if (!vecs[i].iov_len)
1182 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1185 if (ret || thislen != vecs[i].iov_len)
1187 to += vecs[i].iov_len;
1194 * mtd_writev - the vector-based MTD write method
1195 * @mtd: mtd device description object pointer
1196 * @vecs: the vectors to write
1197 * @count: count of vectors in @vecs
1198 * @to: the MTD device offset to write to
1199 * @retlen: on exit contains the count of bytes written to the MTD device.
1201 * This function returns zero in case of success and a negative error code in
1204 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1205 unsigned long count, loff_t to, size_t *retlen)
1208 if (!(mtd->flags & MTD_WRITEABLE))
1211 return default_mtd_writev(mtd, vecs, count, to, retlen);
1212 return mtd->_writev(mtd, vecs, count, to, retlen);
1214 EXPORT_SYMBOL_GPL(mtd_writev);
1217 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1218 * @mtd: mtd device description object pointer
1219 * @size: a pointer to the ideal or maximum size of the allocation, points
1220 * to the actual allocation size on success.
1222 * This routine attempts to allocate a contiguous kernel buffer up to
1223 * the specified size, backing off the size of the request exponentially
1224 * until the request succeeds or until the allocation size falls below
1225 * the system page size. This attempts to make sure it does not adversely
1226 * impact system performance, so when allocating more than one page, we
1227 * ask the memory allocator to avoid re-trying, swapping, writing back
1228 * or performing I/O.
1230 * Note, this function also makes sure that the allocated buffer is aligned to
1231 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1233 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1234 * to handle smaller (i.e. degraded) buffer allocations under low- or
1235 * fragmented-memory situations where such reduced allocations, from a
1236 * requested ideal, are allowed.
1238 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1240 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1242 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1243 __GFP_NORETRY | __GFP_NO_KSWAPD;
1244 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1247 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1249 while (*size > min_alloc) {
1250 kbuf = kmalloc(*size, flags);
1255 *size = ALIGN(*size, mtd->writesize);
1259 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1260 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1262 return kmalloc(*size, GFP_KERNEL);
1264 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1267 #ifdef CONFIG_PROC_FS
1269 /*====================================================================*/
1270 /* Support for /proc/mtd */
1272 static int mtd_proc_show(struct seq_file *m, void *v)
1274 struct mtd_info *mtd;
1276 seq_puts(m, "dev: size erasesize name\n");
1277 mutex_lock(&mtd_table_mutex);
1278 mtd_for_each_device(mtd) {
1279 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1280 mtd->index, (unsigned long long)mtd->size,
1281 mtd->erasesize, mtd->name);
1283 mutex_unlock(&mtd_table_mutex);
1287 static int mtd_proc_open(struct inode *inode, struct file *file)
1289 return single_open(file, mtd_proc_show, NULL);
1292 static const struct file_operations mtd_proc_ops = {
1293 .open = mtd_proc_open,
1295 .llseek = seq_lseek,
1296 .release = single_release,
1298 #endif /* CONFIG_PROC_FS */
1300 /*====================================================================*/
1304 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1308 ret = bdi_init(bdi);
1310 ret = bdi_register(bdi, NULL, "%s", name);
1318 static struct proc_dir_entry *proc_mtd;
1320 static int __init init_mtd(void)
1324 ret = class_register(&mtd_class);
1328 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1332 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1336 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1340 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1342 ret = init_mtdchar();
1350 remove_proc_entry("mtd", NULL);
1352 bdi_destroy(&mtd_bdi_ro_mappable);
1354 bdi_destroy(&mtd_bdi_unmappable);
1356 class_unregister(&mtd_class);
1358 pr_err("Error registering mtd class or bdi: %d\n", ret);
1362 static void __exit cleanup_mtd(void)
1366 remove_proc_entry("mtd", NULL);
1367 class_unregister(&mtd_class);
1368 bdi_destroy(&mtd_bdi_unmappable);
1369 bdi_destroy(&mtd_bdi_ro_mappable);
1370 bdi_destroy(&mtd_bdi_rw_mappable);
1373 module_init(init_mtd);
1374 module_exit(cleanup_mtd);
1377 MODULE_LICENSE("GPL");
1378 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1379 MODULE_DESCRIPTION("Core MTD registration and access routines");