]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/fsl_ifc_spl.c
mtd: nand: mxs_nand: add device tree support
[u-boot] / drivers / mtd / nand / fsl_ifc_spl.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NAND boot for Freescale Integrated Flash Controller, NAND FCM
4  *
5  * Copyright 2011 Freescale Semiconductor, Inc.
6  * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
7  */
8
9 #include <common.h>
10 #include <asm/io.h>
11 #include <fsl_ifc.h>
12 #include <linux/mtd/rawnand.h>
13 #ifdef CONFIG_CHAIN_OF_TRUST
14 #include <fsl_validate.h>
15 #endif
16
17 static inline int is_blank(uchar *addr, int page_size)
18 {
19         int i;
20
21         for (i = 0; i < page_size; i++) {
22                 if (__raw_readb(&addr[i]) != 0xff)
23                         return 0;
24         }
25
26         /*
27          * For the SPL, don't worry about uncorrectable errors
28          * where the main area is all FFs but shouldn't be.
29          */
30         return 1;
31 }
32
33 /* returns nonzero if entire page is blank */
34 static inline int check_read_ecc(uchar *buf, u32 *eccstat,
35                                  unsigned int bufnum, int page_size)
36 {
37         u32 reg = eccstat[bufnum / 4];
38         int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
39
40         if (errors == 0xf) { /* uncorrectable */
41                 /* Blank pages fail hw ECC checks */
42                 if (is_blank(buf, page_size))
43                         return 1;
44
45                 puts("ecc error\n");
46                 for (;;)
47                         ;
48         }
49
50         return 0;
51 }
52
53 static inline struct fsl_ifc_runtime *runtime_regs_address(void)
54 {
55         struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
56         int ver = 0;
57
58         ver = ifc_in32(&regs.gregs->ifc_rev);
59         if (ver >= FSL_IFC_V2_0_0)
60                 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
61         else
62                 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
63
64         return regs.rregs;
65 }
66
67 static inline void nand_wait(uchar *buf, int bufnum, int page_size)
68 {
69         struct fsl_ifc_runtime *ifc = runtime_regs_address();
70         u32 status;
71         u32 eccstat[8];
72         int bufperpage = page_size / 512;
73         int bufnum_end, i;
74
75         bufnum *= bufperpage;
76         bufnum_end = bufnum + bufperpage - 1;
77
78         do {
79                 status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
80         } while (!(status & IFC_NAND_EVTER_STAT_OPC));
81
82         if (status & IFC_NAND_EVTER_STAT_FTOER) {
83                 puts("flash time out error\n");
84                 for (;;)
85                         ;
86         }
87
88         for (i = bufnum / 4; i <= bufnum_end / 4; i++)
89                 eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
90
91         for (i = bufnum; i <= bufnum_end; i++) {
92                 if (check_read_ecc(buf, eccstat, i, page_size))
93                         break;
94         }
95
96         ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
97 }
98
99 static inline int bad_block(uchar *marker, int port_size)
100 {
101         if (port_size == 8)
102                 return __raw_readb(marker) != 0xff;
103         else
104                 return __raw_readw((u16 *)marker) != 0xffff;
105 }
106
107 int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
108 {
109         struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
110         struct fsl_ifc_runtime *ifc = NULL;
111         uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
112         int page_size;
113         int port_size;
114         int pages_per_blk;
115         int blk_size;
116         int bad_marker = 0;
117         int bufnum_mask, bufnum, ver = 0;
118
119         int csor, cspr;
120         int pos = 0;
121         int j = 0;
122
123         int sram_addr;
124         int pg_no;
125         uchar *dst = vdst;
126
127         ifc = runtime_regs_address();
128
129         /* Get NAND Flash configuration */
130         csor = CONFIG_SYS_NAND_CSOR;
131         cspr = CONFIG_SYS_NAND_CSPR;
132
133         port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
134
135         if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
136                 page_size = 8192;
137                 bufnum_mask = 0x0;
138         } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
139                 page_size = 4096;
140                 bufnum_mask = 0x1;
141         } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
142                 page_size = 2048;
143                 bufnum_mask = 0x3;
144         } else {
145                 page_size = 512;
146                 bufnum_mask = 0xf;
147
148                 if (port_size == 8)
149                         bad_marker = 5;
150         }
151
152         ver = ifc_in32(&gregs->ifc_rev);
153         if (ver >= FSL_IFC_V2_0_0)
154                 bufnum_mask = (bufnum_mask * 2) + 1;
155
156         pages_per_blk =
157                 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
158
159         blk_size = pages_per_blk * page_size;
160
161         /* Open Full SRAM mapping for spare are access */
162         ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
163
164         /* Clear Boot events */
165         ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
166
167         /* Program FIR/FCR for Large/Small page */
168         if (page_size > 512) {
169                 ifc_out32(&ifc->ifc_nand.nand_fir0,
170                           (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
171                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
172                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
173                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
174                           (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
175                 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
176
177                 ifc_out32(&ifc->ifc_nand.nand_fcr0,
178                           (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
179                           (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
180         } else {
181                 ifc_out32(&ifc->ifc_nand.nand_fir0,
182                           (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
183                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
184                           (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
185                           (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
186                 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
187
188                 ifc_out32(&ifc->ifc_nand.nand_fcr0,
189                           NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
190         }
191
192         /* Program FBCR = 0 for full page read */
193         ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
194
195         /* Read and copy u-boot on SDRAM from NAND device, In parallel
196          * check for Bad block if found skip it and read continue to
197          * next Block
198          */
199         while (pos < uboot_size) {
200                 int i = 0;
201                 do {
202                         pg_no = offs / page_size;
203                         bufnum = pg_no & bufnum_mask;
204                         sram_addr = bufnum * page_size * 2;
205
206                         ifc_out32(&ifc->ifc_nand.row0, pg_no);
207                         ifc_out32(&ifc->ifc_nand.col0, 0);
208                         /* start read */
209                         ifc_out32(&ifc->ifc_nand.nandseq_strt,
210                                   IFC_NAND_SEQ_STRT_FIR_STRT);
211
212                         /* wait for read to complete */
213                         nand_wait(&buf[sram_addr], bufnum, page_size);
214
215                         /*
216                          * If either of the first two pages are marked bad,
217                          * continue to the next block.
218                          */
219                         if (i++ < 2 &&
220                             bad_block(&buf[sram_addr + page_size + bad_marker],
221                                       port_size)) {
222                                 puts("skipping\n");
223                                 offs = (offs + blk_size) & ~(blk_size - 1);
224                                 pos &= ~(blk_size - 1);
225                                 break;
226                         }
227
228                         for (j = 0; j < page_size; j++)
229                                 dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
230
231                         pos += page_size;
232                         offs += page_size;
233                 } while ((offs & (blk_size - 1)) && (pos < uboot_size));
234         }
235
236         return 0;
237 }
238
239 /*
240  * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
241  * configured and available since this code loads the main U-Boot image
242  * from NAND into SDRAM and starts from there.
243  */
244 void nand_boot(void)
245 {
246         __attribute__((noreturn)) void (*uboot)(void);
247         /*
248          * Load U-Boot image from NAND into RAM
249          */
250         nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
251                             CONFIG_SYS_NAND_U_BOOT_SIZE,
252                             (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
253
254 #ifdef CONFIG_NAND_ENV_DST
255         nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
256                             (uchar *)CONFIG_NAND_ENV_DST);
257
258 #ifdef CONFIG_ENV_OFFSET_REDUND
259         nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
260                             (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
261 #endif
262 #endif
263         /*
264          * Jump to U-Boot image
265          */
266 #ifdef CONFIG_SPL_FLUSH_IMAGE
267         /*
268          * Clean d-cache and invalidate i-cache, to
269          * make sure that no stale data is executed.
270          */
271         flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
272 #endif
273
274 #ifdef CONFIG_CHAIN_OF_TRUST
275         /*
276          * U-Boot header is appended at end of U-boot image, so
277          * calculate U-boot header address using U-boot header size.
278          */
279 #define CONFIG_U_BOOT_HDR_ADDR \
280                 ((CONFIG_SYS_NAND_U_BOOT_START + \
281                   CONFIG_SYS_NAND_U_BOOT_SIZE) - \
282                  CONFIG_U_BOOT_HDR_SIZE)
283         spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
284                            CONFIG_SYS_NAND_U_BOOT_START);
285         /*
286          * In case of failure in validation, spl_validate_uboot would
287          * not return back in case of Production environment with ITS=1.
288          * Thus U-Boot will not start.
289          * In Development environment (ITS=0 and SB_EN=1), the function
290          * may return back in case of non-fatal failures.
291          */
292 #endif
293
294         uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
295         uboot();
296 }
297
298 #ifndef CONFIG_SPL_NAND_INIT
299 void nand_init(void)
300 {
301 }
302
303 void nand_deselect(void)
304 {
305 }
306 #endif