2 * drivers/mtd/nand/nand_util.c
4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
7 * @author: Guido Classen <clagix@gmail.com>
8 * @descr: NAND Flash support
9 * @references: borrowed heavily from Linux mtd-utils code:
10 * flash_eraseall.c by Arcom Control System Ltd
11 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12 * and Thomas Gleixner (tglx@linutronix.de)
14 * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
15 * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
17 * See file CREDITS for list of people who contributed to this
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License version
22 * 2 as published by the Free Software Foundation.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
34 * Copyright 2010 Freescale Semiconductor
35 * The portions of this file whose copyright is held by Freescale and which
36 * are not considered a derived work of GPL v2-only code may be distributed
37 * and/or modified under the terms of the GNU General Public License as
38 * published by the Free Software Foundation; either version 2 of the
39 * License, or (at your option) any later version.
48 #include <asm/errno.h>
49 #include <linux/mtd/mtd.h>
51 #include <jffs2/jffs2.h>
53 typedef struct erase_info erase_info_t;
54 typedef struct mtd_info mtd_info_t;
56 /* support only for native endian JFFS2 */
57 #define cpu_to_je16(x) (x)
58 #define cpu_to_je32(x) (x)
61 * nand_erase_opts: - erase NAND flash with support for various options
64 * @param meminfo NAND device to erase
65 * @param opts options, @see struct nand_erase_options
66 * @return 0 in case of success
68 * This code is ported from flash_eraseall.c from Linux mtd utils by
69 * Arcom Control System Ltd.
71 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
73 struct jffs2_unknown_node cleanmarker;
75 unsigned long erase_length, erased_length; /* in blocks */
78 int percent_complete = -1;
79 const char *mtd_device = meminfo->name;
80 struct mtd_oob_ops oob_opts;
81 struct nand_chip *chip = meminfo->priv;
83 if ((opts->offset & (meminfo->erasesize - 1)) != 0) {
84 printf("Attempt to erase non block-aligned data\n");
88 memset(&erase, 0, sizeof(erase));
89 memset(&oob_opts, 0, sizeof(oob_opts));
92 erase.len = meminfo->erasesize;
93 erase.addr = opts->offset;
94 erase_length = lldiv(opts->length + meminfo->erasesize - 1,
97 cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
98 cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
99 cleanmarker.totlen = cpu_to_je32(8);
101 /* scrub option allows to erase badblock. To prevent internal
102 * check from erase() method, set block check method to dummy
103 * and disable bad block table while erasing.
106 erase.scrub = opts->scrub;
108 * We don't need the bad block table anymore...
109 * after scrub, there are no bad blocks left!
117 for (erased_length = 0;
118 erased_length < erase_length;
119 erase.addr += meminfo->erasesize) {
123 if (!opts->scrub && bbtest) {
124 int ret = meminfo->block_isbad(meminfo, erase.addr);
127 printf("\rSkipping bad block at "
137 } else if (ret < 0) {
138 printf("\n%s: MTD get bad block failed: %d\n",
147 result = meminfo->erase(meminfo, &erase);
149 printf("\n%s: MTD Erase failure: %d\n",
154 /* format for JFFS2 ? */
155 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
156 chip->ops.ooblen = 8;
157 chip->ops.datbuf = NULL;
158 chip->ops.oobbuf = (uint8_t *)&cleanmarker;
159 chip->ops.ooboffs = 0;
160 chip->ops.mode = MTD_OOB_AUTO;
162 result = meminfo->write_oob(meminfo,
166 printf("\n%s: MTD writeoob failure: %d\n",
173 unsigned long long n = erased_length * 100ULL;
176 do_div(n, erase_length);
179 /* output progress message only at whole percent
180 * steps to reduce the number of messages printed
181 * on (slow) serial consoles
183 if (percent != percent_complete) {
184 percent_complete = percent;
186 printf("\rErasing at 0x%llx -- %3d%% complete.",
187 erase.addr, percent);
189 if (opts->jffs2 && result == 0)
190 printf(" Cleanmarker written at 0x%llx.",
199 chip->scan_bbt(meminfo);
204 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
206 /******************************************************************************
207 * Support for locking / unlocking operations of some NAND devices
208 *****************************************************************************/
211 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
214 * @param mtd nand mtd instance
215 * @param tight bring device in lock tight mode
217 * @return 0 on success, -1 in case of error
219 * The lock / lock-tight command only applies to the whole chip. To get some
220 * parts of the chip lock and others unlocked use the following sequence:
222 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
223 * - Call nand_unlock() once for each consecutive area to be unlocked
224 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
226 * If the device is in lock-tight state software can't change the
227 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
228 * calls will fail. It is only posible to leave lock-tight state by
229 * an hardware signal (low pulse on _WP pin) or by power down.
231 int nand_lock(struct mtd_info *mtd, int tight)
235 struct nand_chip *chip = mtd->priv;
237 /* select the NAND device */
238 chip->select_chip(mtd, 0);
240 /* check the Lock Tight Status */
241 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
242 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
243 printf("nand_lock: Device is locked tight!\n");
249 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
252 /* call wait ready function */
253 status = chip->waitfunc(mtd, chip);
255 /* see if device thinks it succeeded */
261 /* de-select the NAND device */
262 chip->select_chip(mtd, -1);
267 * nand_get_lock_status: - query current lock state from one page of NAND
270 * @param mtd nand mtd instance
271 * @param offset page address to query (must be page-aligned!)
273 * @return -1 in case of error
275 * bitfield with the following combinations:
276 * NAND_LOCK_STATUS_TIGHT: page in tight state
277 * NAND_LOCK_STATUS_UNLOCK: page unlocked
280 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
285 struct nand_chip *chip = mtd->priv;
287 /* select the NAND device */
288 chipnr = (int)(offset >> chip->chip_shift);
289 chip->select_chip(mtd, chipnr);
292 if ((offset & (mtd->writesize - 1)) != 0) {
293 printf("nand_get_lock_status: "
294 "Start address must be beginning of "
300 /* check the Lock Status */
301 page = (int)(offset >> chip->page_shift);
302 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
304 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
305 | NAND_LOCK_STATUS_UNLOCK);
308 /* de-select the NAND device */
309 chip->select_chip(mtd, -1);
314 * nand_unlock: - Unlock area of NAND pages
315 * only one consecutive area can be unlocked at one time!
317 * @param mtd nand mtd instance
318 * @param start start byte address
319 * @param length number of bytes to unlock (must be a multiple of
320 * page size nand->writesize)
321 * @param allexcept if set, unlock everything not selected
323 * @return 0 on success, -1 in case of error
325 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
332 struct nand_chip *chip = mtd->priv;
334 debug("nand_unlock%s: start: %08llx, length: %d!\n",
335 allexcept ? " (allexcept)" : "", start, length);
337 /* select the NAND device */
338 chipnr = (int)(start >> chip->chip_shift);
339 chip->select_chip(mtd, chipnr);
341 /* check the WP bit */
342 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
343 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
344 printf("nand_unlock: Device is write protected!\n");
349 /* check the Lock Tight Status */
350 page = (int)(start >> chip->page_shift);
351 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
352 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
353 printf("nand_unlock: Device is locked tight!\n");
358 if ((start & (mtd->erasesize - 1)) != 0) {
359 printf("nand_unlock: Start address must be beginning of "
365 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
366 printf("nand_unlock: Length must be a multiple of nand block "
367 "size %08x!\n", mtd->erasesize);
373 * Set length so that the last address is set to the
374 * starting address of the last block
376 length -= mtd->erasesize;
378 /* submit address of first page to unlock */
379 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
381 /* submit ADDRESS of LAST page to unlock */
382 page += (int)(length >> chip->page_shift);
385 * Page addresses for unlocking are supposed to be block-aligned.
386 * At least some NAND chips use the low bit to indicate that the
387 * page range should be inverted.
392 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
394 /* call wait ready function */
395 status = chip->waitfunc(mtd, chip);
396 /* see if device thinks it succeeded */
398 /* there was an error */
404 /* de-select the NAND device */
405 chip->select_chip(mtd, -1);
413 * Check if there are any bad blocks, and whether length including bad
414 * blocks fits into device
416 * @param nand NAND device
417 * @param offset offset in flash
418 * @param length image length
419 * @param used length of flash needed for the requested length
420 * @return 0 if the image fits and there are no bad blocks
421 * 1 if the image fits, but there are bad blocks
422 * -1 if the image does not fit
424 static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length,
427 size_t len_excl_bad = 0;
430 while (len_excl_bad < length) {
431 size_t block_len, block_off;
434 if (offset >= nand->size)
437 block_start = offset & ~(loff_t)(nand->erasesize - 1);
438 block_off = offset & (nand->erasesize - 1);
439 block_len = nand->erasesize - block_off;
441 if (!nand_block_isbad(nand, block_start))
442 len_excl_bad += block_len;
450 /* If the length is not a multiple of block_len, adjust. */
451 if (len_excl_bad > length)
452 *used -= (len_excl_bad - length);
457 #ifdef CONFIG_CMD_NAND_TRIMFFS
458 static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
463 for (i = l - 1; i >= 0; i--)
467 /* The resulting length must be aligned to the minimum flash I/O size */
469 l = (l + nand->writesize - 1) / nand->writesize;
470 l *= nand->writesize;
473 * since the input length may be unaligned, prevent access past the end
481 * nand_write_skip_bad:
483 * Write image to NAND flash.
484 * Blocks that are marked bad are skipped and the is written to the next
485 * block instead as long as the image is short enough to fit even after
486 * skipping the bad blocks. Due to bad blocks we may not be able to
487 * perform the requested write. In the case where the write would
488 * extend beyond the end of the NAND device, both length and actual (if
489 * not NULL) are set to 0. In the case where the write would extend
490 * beyond the limit we are passed, length is set to 0 and actual is set
491 * to the required length.
493 * @param nand NAND device
494 * @param offset offset in flash
495 * @param length buffer length
496 * @param actual set to size required to write length worth of
497 * buffer or 0 on error, if not NULL
498 * @param lim maximum size that actual may be in order to not
500 * @param buffer buffer to read from
501 * @param flags flags modifying the behaviour of the write to NAND
502 * @return 0 in case of success
504 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
505 size_t *actual, loff_t lim, u_char *buffer, int flags)
507 int rval = 0, blocksize;
508 size_t left_to_write = *length;
509 size_t used_for_write = 0;
510 u_char *p_buffer = buffer;
516 #ifdef CONFIG_CMD_NAND_YAFFS
517 if (flags & WITH_YAFFS_OOB) {
518 if (flags & ~WITH_YAFFS_OOB)
522 pages = nand->erasesize / nand->writesize;
523 blocksize = (pages * nand->oobsize) + nand->erasesize;
524 if (*length % (nand->writesize + nand->oobsize)) {
525 printf("Attempt to write incomplete page"
532 blocksize = nand->erasesize;
536 * nand_write() handles unaligned, partial page writes.
538 * We allow length to be unaligned, for convenience in
539 * using the $filesize variable.
541 * However, starting at an unaligned offset makes the
542 * semantics of bad block skipping ambiguous (really,
543 * you should only start a block skipping access at a
544 * partition boundary). So don't try to handle that.
546 if ((offset & (nand->writesize - 1)) != 0) {
547 printf("Attempt to write non page-aligned data\n");
552 need_skip = check_skip_len(nand, offset, *length, &used_for_write);
555 *actual = used_for_write;
558 printf("Attempt to write outside the flash area\n");
563 if (used_for_write > lim) {
564 puts("Size of write exceeds partition or device limit\n");
569 if (!need_skip && !(flags & WITH_DROP_FFS)) {
570 rval = nand_write(nand, offset, length, buffer);
575 printf("NAND write to offset %llx failed %d\n",
580 while (left_to_write > 0) {
581 size_t block_offset = offset & (nand->erasesize - 1);
582 size_t write_size, truncated_write_size;
586 if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
587 printf("Skip bad block 0x%08llx\n",
588 offset & ~(nand->erasesize - 1));
589 offset += nand->erasesize - block_offset;
593 if (left_to_write < (blocksize - block_offset))
594 write_size = left_to_write;
596 write_size = blocksize - block_offset;
598 #ifdef CONFIG_CMD_NAND_YAFFS
599 if (flags & WITH_YAFFS_OOB) {
601 size_t pagesize = nand->writesize;
602 size_t pagesize_oob = pagesize + nand->oobsize;
603 struct mtd_oob_ops ops;
606 ops.ooblen = nand->oobsize;
607 ops.mode = MTD_OOB_AUTO;
610 pages = write_size / pagesize_oob;
611 for (page = 0; page < pages; page++) {
614 ops.datbuf = p_buffer;
615 ops.oobbuf = ops.datbuf + pagesize;
617 rval = nand->write_oob(nand, offset, &ops);
622 p_buffer += pagesize_oob;
628 truncated_write_size = write_size;
629 #ifdef CONFIG_CMD_NAND_TRIMFFS
630 if (flags & WITH_DROP_FFS)
631 truncated_write_size = drop_ffs(nand, p_buffer,
635 rval = nand_write(nand, offset, &truncated_write_size,
637 offset += write_size;
638 p_buffer += write_size;
642 printf("NAND write to offset %llx failed %d\n",
644 *length -= left_to_write;
648 left_to_write -= write_size;
655 * nand_read_skip_bad:
657 * Read image from NAND flash.
658 * Blocks that are marked bad are skipped and the next block is read
659 * instead as long as the image is short enough to fit even after
660 * skipping the bad blocks. Due to bad blocks we may not be able to
661 * perform the requested read. In the case where the read would extend
662 * beyond the end of the NAND device, both length and actual (if not
663 * NULL) are set to 0. In the case where the read would extend beyond
664 * the limit we are passed, length is set to 0 and actual is set to the
667 * @param nand NAND device
668 * @param offset offset in flash
669 * @param length buffer length, on return holds number of read bytes
670 * @param actual set to size required to read length worth of buffer or 0
671 * on error, if not NULL
672 * @param lim maximum size that actual may be in order to not exceed the
674 * @param buffer buffer to write to
675 * @return 0 in case of success
677 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
678 size_t *actual, loff_t lim, u_char *buffer)
681 size_t left_to_read = *length;
682 size_t used_for_read = 0;
683 u_char *p_buffer = buffer;
686 if ((offset & (nand->writesize - 1)) != 0) {
687 printf("Attempt to read non page-aligned data\n");
694 need_skip = check_skip_len(nand, offset, *length, &used_for_read);
697 *actual = used_for_read;
700 printf("Attempt to read outside the flash area\n");
705 if (used_for_read > lim) {
706 puts("Size of read exceeds partition or device limit\n");
712 rval = nand_read(nand, offset, length, buffer);
713 if (!rval || rval == -EUCLEAN)
717 printf("NAND read from offset %llx failed %d\n",
722 while (left_to_read > 0) {
723 size_t block_offset = offset & (nand->erasesize - 1);
728 if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
729 printf("Skipping bad block 0x%08llx\n",
730 offset & ~(nand->erasesize - 1));
731 offset += nand->erasesize - block_offset;
735 if (left_to_read < (nand->erasesize - block_offset))
736 read_length = left_to_read;
738 read_length = nand->erasesize - block_offset;
740 rval = nand_read(nand, offset, &read_length, p_buffer);
741 if (rval && rval != -EUCLEAN) {
742 printf("NAND read from offset %llx failed %d\n",
744 *length -= left_to_read;
748 left_to_read -= read_length;
749 offset += read_length;
750 p_buffer += read_length;
756 #ifdef CONFIG_CMD_NAND_TORTURE
761 * Check if buffer contains only a certain byte pattern.
763 * @param buf buffer to check
764 * @param patt the pattern to check
765 * @param size buffer size in bytes
766 * @return 1 if there are only patt bytes in buf
767 * 0 if something else was found
769 static int check_pattern(const u_char *buf, u_char patt, int size)
773 for (i = 0; i < size; i++)
782 * Torture a block of NAND flash.
783 * This is useful to determine if a block that caused a write error is still
784 * good or should be marked as bad.
786 * @param nand NAND device
787 * @param offset offset in flash
788 * @return 0 if the block is still good
790 int nand_torture(nand_info_t *nand, loff_t offset)
792 u_char patterns[] = {0xa5, 0x5a, 0x00};
793 struct erase_info instr = {
796 .len = nand->erasesize,
799 int err, ret = -1, i, patt_count;
802 if ((offset & (nand->erasesize - 1)) != 0) {
803 puts("Attempt to torture a block at a non block-aligned offset\n");
807 if (offset + nand->erasesize > nand->size) {
808 puts("Attempt to torture a block outside the flash area\n");
812 patt_count = ARRAY_SIZE(patterns);
814 buf = malloc(nand->erasesize);
816 puts("Out of memory for erase block buffer\n");
820 for (i = 0; i < patt_count; i++) {
821 err = nand->erase(nand, &instr);
823 printf("%s: erase() failed for block at 0x%llx: %d\n",
824 nand->name, instr.addr, err);
828 /* Make sure the block contains only 0xff bytes */
829 err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
830 if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
831 printf("%s: read() failed for block at 0x%llx: %d\n",
832 nand->name, instr.addr, err);
836 err = check_pattern(buf, 0xff, nand->erasesize);
838 printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
844 /* Write a pattern and check it */
845 memset(buf, patterns[i], nand->erasesize);
846 err = nand->write(nand, offset, nand->erasesize, &retlen, buf);
847 if (err || retlen != nand->erasesize) {
848 printf("%s: write() failed for block at 0x%llx: %d\n",
849 nand->name, instr.addr, err);
853 err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
854 if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
855 printf("%s: read() failed for block at 0x%llx: %d\n",
856 nand->name, instr.addr, err);
860 err = check_pattern(buf, patterns[i], nand->erasesize);
862 printf("Pattern 0x%.2x checking failed for block at "
863 "0x%llx\n", patterns[i], offset);