]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/nand_util.c
nand: consolidate duplicated constants
[u-boot] / drivers / mtd / nand / nand_util.c
1 /*
2  * drivers/mtd/nand/nand_util.c
3  *
4  * Copyright (C) 2006 by Weiss-Electronic GmbH.
5  * All rights reserved.
6  *
7  * @author:     Guido Classen <clagix@gmail.com>
8  * @descr:      NAND Flash support
9  * @references: borrowed heavily from Linux mtd-utils code:
10  *              flash_eraseall.c by Arcom Control System Ltd
11  *              nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12  *                             and Thomas Gleixner (tglx@linutronix.de)
13  *
14  * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
15  * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
16  *
17  * See file CREDITS for list of people who contributed to this
18  * project.
19  *
20  * This program is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU General Public License version
22  * 2 as published by the Free Software Foundation.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
32  * MA 02111-1307 USA
33  *
34  * Copyright 2010 Freescale Semiconductor
35  * The portions of this file whose copyright is held by Freescale and which
36  * are not considered a derived work of GPL v2-only code may be distributed
37  * and/or modified under the terms of the GNU General Public License as
38  * published by the Free Software Foundation; either version 2 of the
39  * License, or (at your option) any later version.
40  */
41
42 #include <common.h>
43 #include <command.h>
44 #include <watchdog.h>
45 #include <malloc.h>
46 #include <div64.h>
47
48 #include <asm/errno.h>
49 #include <linux/mtd/mtd.h>
50 #include <nand.h>
51 #include <jffs2/jffs2.h>
52
53 typedef struct erase_info erase_info_t;
54 typedef struct mtd_info   mtd_info_t;
55
56 /* support only for native endian JFFS2 */
57 #define cpu_to_je16(x) (x)
58 #define cpu_to_je32(x) (x)
59
60 /**
61  * nand_erase_opts: - erase NAND flash with support for various options
62  *                    (jffs2 formating)
63  *
64  * @param meminfo       NAND device to erase
65  * @param opts          options,  @see struct nand_erase_options
66  * @return              0 in case of success
67  *
68  * This code is ported from flash_eraseall.c from Linux mtd utils by
69  * Arcom Control System Ltd.
70  */
71 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
72 {
73         struct jffs2_unknown_node cleanmarker;
74         erase_info_t erase;
75         unsigned long erase_length, erased_length; /* in blocks */
76         int bbtest = 1;
77         int result;
78         int percent_complete = -1;
79         const char *mtd_device = meminfo->name;
80         struct mtd_oob_ops oob_opts;
81         struct nand_chip *chip = meminfo->priv;
82
83         if ((opts->offset & (meminfo->writesize - 1)) != 0) {
84                 printf("Attempt to erase non page aligned data\n");
85                 return -1;
86         }
87
88         memset(&erase, 0, sizeof(erase));
89         memset(&oob_opts, 0, sizeof(oob_opts));
90
91         erase.mtd = meminfo;
92         erase.len  = meminfo->erasesize;
93         erase.addr = opts->offset;
94         erase_length = lldiv(opts->length + meminfo->erasesize - 1,
95                              meminfo->erasesize);
96
97         cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
98         cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
99         cleanmarker.totlen = cpu_to_je32(8);
100
101         /* scrub option allows to erase badblock. To prevent internal
102          * check from erase() method, set block check method to dummy
103          * and disable bad block table while erasing.
104          */
105         if (opts->scrub) {
106                 erase.scrub = opts->scrub;
107                 /*
108                  * We don't need the bad block table anymore...
109                  * after scrub, there are no bad blocks left!
110                  */
111                 if (chip->bbt) {
112                         kfree(chip->bbt);
113                 }
114                 chip->bbt = NULL;
115         }
116
117         for (erased_length = 0;
118              erased_length < erase_length;
119              erase.addr += meminfo->erasesize) {
120
121                 WATCHDOG_RESET ();
122
123                 if (!opts->scrub && bbtest) {
124                         int ret = meminfo->block_isbad(meminfo, erase.addr);
125                         if (ret > 0) {
126                                 if (!opts->quiet)
127                                         printf("\rSkipping bad block at  "
128                                                "0x%08llx                 "
129                                                "                         \n",
130                                                erase.addr);
131
132                                 if (!opts->spread)
133                                         erased_length++;
134
135                                 continue;
136
137                         } else if (ret < 0) {
138                                 printf("\n%s: MTD get bad block failed: %d\n",
139                                        mtd_device,
140                                        ret);
141                                 return -1;
142                         }
143                 }
144
145                 erased_length++;
146
147                 result = meminfo->erase(meminfo, &erase);
148                 if (result != 0) {
149                         printf("\n%s: MTD Erase failure: %d\n",
150                                mtd_device, result);
151                         continue;
152                 }
153
154                 /* format for JFFS2 ? */
155                 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
156                         chip->ops.ooblen = 8;
157                         chip->ops.datbuf = NULL;
158                         chip->ops.oobbuf = (uint8_t *)&cleanmarker;
159                         chip->ops.ooboffs = 0;
160                         chip->ops.mode = MTD_OOB_AUTO;
161
162                         result = meminfo->write_oob(meminfo,
163                                                     erase.addr,
164                                                     &chip->ops);
165                         if (result != 0) {
166                                 printf("\n%s: MTD writeoob failure: %d\n",
167                                        mtd_device, result);
168                                 continue;
169                         }
170                 }
171
172                 if (!opts->quiet) {
173                         unsigned long long n = erased_length * 100ULL;
174                         int percent;
175
176                         do_div(n, erase_length);
177                         percent = (int)n;
178
179                         /* output progress message only at whole percent
180                          * steps to reduce the number of messages printed
181                          * on (slow) serial consoles
182                          */
183                         if (percent != percent_complete) {
184                                 percent_complete = percent;
185
186                                 printf("\rErasing at 0x%llx -- %3d%% complete.",
187                                        erase.addr, percent);
188
189                                 if (opts->jffs2 && result == 0)
190                                         printf(" Cleanmarker written at 0x%llx.",
191                                                erase.addr);
192                         }
193                 }
194         }
195         if (!opts->quiet)
196                 printf("\n");
197
198         if (opts->scrub)
199                 chip->scan_bbt(meminfo);
200
201         return 0;
202 }
203
204 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
205
206 /******************************************************************************
207  * Support for locking / unlocking operations of some NAND devices
208  *****************************************************************************/
209
210 /**
211  * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
212  *            state
213  *
214  * @param mtd           nand mtd instance
215  * @param tight         bring device in lock tight mode
216  *
217  * @return              0 on success, -1 in case of error
218  *
219  * The lock / lock-tight command only applies to the whole chip. To get some
220  * parts of the chip lock and others unlocked use the following sequence:
221  *
222  * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
223  * - Call nand_unlock() once for each consecutive area to be unlocked
224  * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
225  *
226  *   If the device is in lock-tight state software can't change the
227  *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
228  *   calls will fail. It is only posible to leave lock-tight state by
229  *   an hardware signal (low pulse on _WP pin) or by power down.
230  */
231 int nand_lock(struct mtd_info *mtd, int tight)
232 {
233         int ret = 0;
234         int status;
235         struct nand_chip *chip = mtd->priv;
236
237         /* select the NAND device */
238         chip->select_chip(mtd, 0);
239
240         chip->cmdfunc(mtd,
241                       (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
242                       -1, -1);
243
244         /* call wait ready function */
245         status = chip->waitfunc(mtd, chip);
246
247         /* see if device thinks it succeeded */
248         if (status & 0x01) {
249                 ret = -1;
250         }
251
252         /* de-select the NAND device */
253         chip->select_chip(mtd, -1);
254         return ret;
255 }
256
257 /**
258  * nand_get_lock_status: - query current lock state from one page of NAND
259  *                         flash
260  *
261  * @param mtd           nand mtd instance
262  * @param offset        page address to query (muss be page aligned!)
263  *
264  * @return              -1 in case of error
265  *                      >0 lock status:
266  *                        bitfield with the following combinations:
267  *                        NAND_LOCK_STATUS_TIGHT: page in tight state
268  *                        NAND_LOCK_STATUS_LOCK:  page locked
269  *                        NAND_LOCK_STATUS_UNLOCK: page unlocked
270  *
271  */
272 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
273 {
274         int ret = 0;
275         int chipnr;
276         int page;
277         struct nand_chip *chip = mtd->priv;
278
279         /* select the NAND device */
280         chipnr = (int)(offset >> chip->chip_shift);
281         chip->select_chip(mtd, chipnr);
282
283
284         if ((offset & (mtd->writesize - 1)) != 0) {
285                 printf ("nand_get_lock_status: "
286                         "Start address must be beginning of "
287                         "nand page!\n");
288                 ret = -1;
289                 goto out;
290         }
291
292         /* check the Lock Status */
293         page = (int)(offset >> chip->page_shift);
294         chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
295
296         ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
297                                           | NAND_LOCK_STATUS_LOCK
298                                           | NAND_LOCK_STATUS_UNLOCK);
299
300  out:
301         /* de-select the NAND device */
302         chip->select_chip(mtd, -1);
303         return ret;
304 }
305
306 /**
307  * nand_unlock: - Unlock area of NAND pages
308  *                only one consecutive area can be unlocked at one time!
309  *
310  * @param mtd           nand mtd instance
311  * @param start         start byte address
312  * @param length        number of bytes to unlock (must be a multiple of
313  *                      page size nand->writesize)
314  * @param allexcept     if set, unlock everything not selected
315  *
316  * @return              0 on success, -1 in case of error
317  */
318 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
319         int allexcept)
320 {
321         int ret = 0;
322         int chipnr;
323         int status;
324         int page;
325         struct nand_chip *chip = mtd->priv;
326
327         debug("nand_unlock%s: start: %08llx, length: %d!\n",
328                 allexcept ? " (allexcept)" : "", start, length);
329
330         /* select the NAND device */
331         chipnr = (int)(start >> chip->chip_shift);
332         chip->select_chip(mtd, chipnr);
333
334         /* check the WP bit */
335         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
336         if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
337                 printf ("nand_unlock: Device is write protected!\n");
338                 ret = -1;
339                 goto out;
340         }
341
342         if ((start & (mtd->erasesize - 1)) != 0) {
343                 printf ("nand_unlock: Start address must be beginning of "
344                         "nand block!\n");
345                 ret = -1;
346                 goto out;
347         }
348
349         if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
350                 printf ("nand_unlock: Length must be a multiple of nand block "
351                         "size %08x!\n", mtd->erasesize);
352                 ret = -1;
353                 goto out;
354         }
355
356         /*
357          * Set length so that the last address is set to the
358          * starting address of the last block
359          */
360         length -= mtd->erasesize;
361
362         /* submit address of first page to unlock */
363         page = (int)(start >> chip->page_shift);
364         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
365
366         /* submit ADDRESS of LAST page to unlock */
367         page += (int)(length >> chip->page_shift);
368
369         /*
370          * Page addresses for unlocking are supposed to be block-aligned.
371          * At least some NAND chips use the low bit to indicate that the
372          * page range should be inverted.
373          */
374         if (allexcept)
375                 page |= 1;
376
377         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
378
379         /* call wait ready function */
380         status = chip->waitfunc(mtd, chip);
381         /* see if device thinks it succeeded */
382         if (status & 0x01) {
383                 /* there was an error */
384                 ret = -1;
385                 goto out;
386         }
387
388  out:
389         /* de-select the NAND device */
390         chip->select_chip(mtd, -1);
391         return ret;
392 }
393 #endif
394
395 /**
396  * check_skip_len
397  *
398  * Check if there are any bad blocks, and whether length including bad
399  * blocks fits into device
400  *
401  * @param nand NAND device
402  * @param offset offset in flash
403  * @param length image length
404  * @return 0 if the image fits and there are no bad blocks
405  *         1 if the image fits, but there are bad blocks
406  *        -1 if the image does not fit
407  */
408 static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
409 {
410         size_t len_excl_bad = 0;
411         int ret = 0;
412
413         while (len_excl_bad < length) {
414                 size_t block_len, block_off;
415                 loff_t block_start;
416
417                 if (offset >= nand->size)
418                         return -1;
419
420                 block_start = offset & ~(loff_t)(nand->erasesize - 1);
421                 block_off = offset & (nand->erasesize - 1);
422                 block_len = nand->erasesize - block_off;
423
424                 if (!nand_block_isbad(nand, block_start))
425                         len_excl_bad += block_len;
426                 else
427                         ret = 1;
428
429                 offset += block_len;
430         }
431
432         return ret;
433 }
434
435 #ifdef CONFIG_CMD_NAND_TRIMFFS
436 static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
437                         const size_t *len)
438 {
439         size_t i, l = *len;
440
441         for (i = l - 1; i >= 0; i--)
442                 if (buf[i] != 0xFF)
443                         break;
444
445         /* The resulting length must be aligned to the minimum flash I/O size */
446         l = i + 1;
447         l = (l + nand->writesize - 1) / nand->writesize;
448         l *=  nand->writesize;
449
450         /*
451          * since the input length may be unaligned, prevent access past the end
452          * of the buffer
453          */
454         return min(l, *len);
455 }
456 #endif
457
458 /**
459  * nand_write_skip_bad:
460  *
461  * Write image to NAND flash.
462  * Blocks that are marked bad are skipped and the is written to the next
463  * block instead as long as the image is short enough to fit even after
464  * skipping the bad blocks.
465  *
466  * @param nand          NAND device
467  * @param offset        offset in flash
468  * @param length        buffer length
469  * @param buffer        buffer to read from
470  * @param flags         flags modifying the behaviour of the write to NAND
471  * @return              0 in case of success
472  */
473 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
474                         u_char *buffer, int flags)
475 {
476         int rval = 0, blocksize;
477         size_t left_to_write = *length;
478         u_char *p_buffer = buffer;
479         int need_skip;
480
481 #ifdef CONFIG_CMD_NAND_YAFFS
482         if (flags & WITH_YAFFS_OOB) {
483                 if (flags & ~WITH_YAFFS_OOB)
484                         return -EINVAL;
485
486                 int pages;
487                 pages = nand->erasesize / nand->writesize;
488                 blocksize = (pages * nand->oobsize) + nand->erasesize;
489                 if (*length % (nand->writesize + nand->oobsize)) {
490                         printf ("Attempt to write incomplete page"
491                                 " in yaffs mode\n");
492                         return -EINVAL;
493                 }
494         } else
495 #endif
496         {
497                 blocksize = nand->erasesize;
498         }
499
500         /*
501          * nand_write() handles unaligned, partial page writes.
502          *
503          * We allow length to be unaligned, for convenience in
504          * using the $filesize variable.
505          *
506          * However, starting at an unaligned offset makes the
507          * semantics of bad block skipping ambiguous (really,
508          * you should only start a block skipping access at a
509          * partition boundary).  So don't try to handle that.
510          */
511         if ((offset & (nand->writesize - 1)) != 0) {
512                 printf ("Attempt to write non page aligned data\n");
513                 *length = 0;
514                 return -EINVAL;
515         }
516
517         need_skip = check_skip_len(nand, offset, *length);
518         if (need_skip < 0) {
519                 printf ("Attempt to write outside the flash area\n");
520                 *length = 0;
521                 return -EINVAL;
522         }
523
524         if (!need_skip && !(flags & WITH_DROP_FFS)) {
525                 rval = nand_write (nand, offset, length, buffer);
526                 if (rval == 0)
527                         return 0;
528
529                 *length = 0;
530                 printf ("NAND write to offset %llx failed %d\n",
531                         offset, rval);
532                 return rval;
533         }
534
535         while (left_to_write > 0) {
536                 size_t block_offset = offset & (nand->erasesize - 1);
537                 size_t write_size, truncated_write_size;
538
539                 WATCHDOG_RESET ();
540
541                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
542                         printf ("Skip bad block 0x%08llx\n",
543                                 offset & ~(nand->erasesize - 1));
544                         offset += nand->erasesize - block_offset;
545                         continue;
546                 }
547
548                 if (left_to_write < (blocksize - block_offset))
549                         write_size = left_to_write;
550                 else
551                         write_size = blocksize - block_offset;
552
553 #ifdef CONFIG_CMD_NAND_YAFFS
554                 if (flags & WITH_YAFFS_OOB) {
555                         int page, pages;
556                         size_t pagesize = nand->writesize;
557                         size_t pagesize_oob = pagesize + nand->oobsize;
558                         struct mtd_oob_ops ops;
559
560                         ops.len = pagesize;
561                         ops.ooblen = nand->oobsize;
562                         ops.mode = MTD_OOB_AUTO;
563                         ops.ooboffs = 0;
564
565                         pages = write_size / pagesize_oob;
566                         for (page = 0; page < pages; page++) {
567                                 WATCHDOG_RESET();
568
569                                 ops.datbuf = p_buffer;
570                                 ops.oobbuf = ops.datbuf + pagesize;
571
572                                 rval = nand->write_oob(nand, offset, &ops);
573                                 if (rval != 0)
574                                         break;
575
576                                 offset += pagesize;
577                                 p_buffer += pagesize_oob;
578                         }
579                 }
580                 else
581 #endif
582                 {
583                         truncated_write_size = write_size;
584 #ifdef CONFIG_CMD_NAND_TRIMFFS
585                         if (flags & WITH_DROP_FFS)
586                                 truncated_write_size = drop_ffs(nand, p_buffer,
587                                                 &write_size);
588 #endif
589
590                         rval = nand_write(nand, offset, &truncated_write_size,
591                                         p_buffer);
592                         offset += write_size;
593                         p_buffer += write_size;
594                 }
595
596                 if (rval != 0) {
597                         printf ("NAND write to offset %llx failed %d\n",
598                                 offset, rval);
599                         *length -= left_to_write;
600                         return rval;
601                 }
602
603                 left_to_write -= write_size;
604         }
605
606         return 0;
607 }
608
609 /**
610  * nand_read_skip_bad:
611  *
612  * Read image from NAND flash.
613  * Blocks that are marked bad are skipped and the next block is readen
614  * instead as long as the image is short enough to fit even after skipping the
615  * bad blocks.
616  *
617  * @param nand NAND device
618  * @param offset offset in flash
619  * @param length buffer length, on return holds remaining bytes to read
620  * @param buffer buffer to write to
621  * @return 0 in case of success
622  */
623 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
624                        u_char *buffer)
625 {
626         int rval;
627         size_t left_to_read = *length;
628         u_char *p_buffer = buffer;
629         int need_skip;
630
631         if ((offset & (nand->writesize - 1)) != 0) {
632                 printf ("Attempt to read non page aligned data\n");
633                 *length = 0;
634                 return -EINVAL;
635         }
636
637         need_skip = check_skip_len(nand, offset, *length);
638         if (need_skip < 0) {
639                 printf ("Attempt to read outside the flash area\n");
640                 *length = 0;
641                 return -EINVAL;
642         }
643
644         if (!need_skip) {
645                 rval = nand_read (nand, offset, length, buffer);
646                 if (!rval || rval == -EUCLEAN)
647                         return 0;
648
649                 *length = 0;
650                 printf ("NAND read from offset %llx failed %d\n",
651                         offset, rval);
652                 return rval;
653         }
654
655         while (left_to_read > 0) {
656                 size_t block_offset = offset & (nand->erasesize - 1);
657                 size_t read_length;
658
659                 WATCHDOG_RESET ();
660
661                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
662                         printf ("Skipping bad block 0x%08llx\n",
663                                 offset & ~(nand->erasesize - 1));
664                         offset += nand->erasesize - block_offset;
665                         continue;
666                 }
667
668                 if (left_to_read < (nand->erasesize - block_offset))
669                         read_length = left_to_read;
670                 else
671                         read_length = nand->erasesize - block_offset;
672
673                 rval = nand_read (nand, offset, &read_length, p_buffer);
674                 if (rval && rval != -EUCLEAN) {
675                         printf ("NAND read from offset %llx failed %d\n",
676                                 offset, rval);
677                         *length -= left_to_read;
678                         return rval;
679                 }
680
681                 left_to_read -= read_length;
682                 offset       += read_length;
683                 p_buffer     += read_length;
684         }
685
686         return 0;
687 }