]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/nand_util.c
nand: Add support for unlock.invert
[u-boot] / drivers / mtd / nand / nand_util.c
1 /*
2  * drivers/mtd/nand/nand_util.c
3  *
4  * Copyright (C) 2006 by Weiss-Electronic GmbH.
5  * All rights reserved.
6  *
7  * @author:     Guido Classen <clagix@gmail.com>
8  * @descr:      NAND Flash support
9  * @references: borrowed heavily from Linux mtd-utils code:
10  *              flash_eraseall.c by Arcom Control System Ltd
11  *              nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12  *                             and Thomas Gleixner (tglx@linutronix.de)
13  *
14  * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
15  * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
16  *
17  * See file CREDITS for list of people who contributed to this
18  * project.
19  *
20  * This program is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU General Public License version
22  * 2 as published by the Free Software Foundation.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
32  * MA 02111-1307 USA
33  *
34  * Copyright 2010 Freescale Semiconductor
35  * The portions of this file whose copyright is held by Freescale and which
36  * are not considered a derived work of GPL v2-only code may be distributed
37  * and/or modified under the terms of the GNU General Public License as
38  * published by the Free Software Foundation; either version 2 of the
39  * License, or (at your option) any later version.
40  */
41
42 #include <common.h>
43 #include <command.h>
44 #include <watchdog.h>
45 #include <malloc.h>
46 #include <div64.h>
47
48 #include <asm/errno.h>
49 #include <linux/mtd/mtd.h>
50 #include <nand.h>
51 #include <jffs2/jffs2.h>
52
53 typedef struct erase_info erase_info_t;
54 typedef struct mtd_info   mtd_info_t;
55
56 /* support only for native endian JFFS2 */
57 #define cpu_to_je16(x) (x)
58 #define cpu_to_je32(x) (x)
59
60 /**
61  * nand_erase_opts: - erase NAND flash with support for various options
62  *                    (jffs2 formating)
63  *
64  * @param meminfo       NAND device to erase
65  * @param opts          options,  @see struct nand_erase_options
66  * @return              0 in case of success
67  *
68  * This code is ported from flash_eraseall.c from Linux mtd utils by
69  * Arcom Control System Ltd.
70  */
71 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
72 {
73         struct jffs2_unknown_node cleanmarker;
74         erase_info_t erase;
75         unsigned long erase_length, erased_length; /* in blocks */
76         int bbtest = 1;
77         int result;
78         int percent_complete = -1;
79         const char *mtd_device = meminfo->name;
80         struct mtd_oob_ops oob_opts;
81         struct nand_chip *chip = meminfo->priv;
82
83         if ((opts->offset & (meminfo->writesize - 1)) != 0) {
84                 printf("Attempt to erase non page aligned data\n");
85                 return -1;
86         }
87
88         memset(&erase, 0, sizeof(erase));
89         memset(&oob_opts, 0, sizeof(oob_opts));
90
91         erase.mtd = meminfo;
92         erase.len  = meminfo->erasesize;
93         erase.addr = opts->offset;
94         erase_length = lldiv(opts->length + meminfo->erasesize - 1,
95                              meminfo->erasesize);
96
97         cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
98         cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
99         cleanmarker.totlen = cpu_to_je32(8);
100
101         /* scrub option allows to erase badblock. To prevent internal
102          * check from erase() method, set block check method to dummy
103          * and disable bad block table while erasing.
104          */
105         if (opts->scrub) {
106                 erase.scrub = opts->scrub;
107                 /*
108                  * We don't need the bad block table anymore...
109                  * after scrub, there are no bad blocks left!
110                  */
111                 if (chip->bbt) {
112                         kfree(chip->bbt);
113                 }
114                 chip->bbt = NULL;
115         }
116
117         for (erased_length = 0;
118              erased_length < erase_length;
119              erase.addr += meminfo->erasesize) {
120
121                 WATCHDOG_RESET ();
122
123                 if (!opts->scrub && bbtest) {
124                         int ret = meminfo->block_isbad(meminfo, erase.addr);
125                         if (ret > 0) {
126                                 if (!opts->quiet)
127                                         printf("\rSkipping bad block at  "
128                                                "0x%08llx                 "
129                                                "                         \n",
130                                                erase.addr);
131
132                                 if (!opts->spread)
133                                         erased_length++;
134
135                                 continue;
136
137                         } else if (ret < 0) {
138                                 printf("\n%s: MTD get bad block failed: %d\n",
139                                        mtd_device,
140                                        ret);
141                                 return -1;
142                         }
143                 }
144
145                 erased_length++;
146
147                 result = meminfo->erase(meminfo, &erase);
148                 if (result != 0) {
149                         printf("\n%s: MTD Erase failure: %d\n",
150                                mtd_device, result);
151                         continue;
152                 }
153
154                 /* format for JFFS2 ? */
155                 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
156                         chip->ops.ooblen = 8;
157                         chip->ops.datbuf = NULL;
158                         chip->ops.oobbuf = (uint8_t *)&cleanmarker;
159                         chip->ops.ooboffs = 0;
160                         chip->ops.mode = MTD_OOB_AUTO;
161
162                         result = meminfo->write_oob(meminfo,
163                                                     erase.addr,
164                                                     &chip->ops);
165                         if (result != 0) {
166                                 printf("\n%s: MTD writeoob failure: %d\n",
167                                        mtd_device, result);
168                                 continue;
169                         }
170                 }
171
172                 if (!opts->quiet) {
173                         unsigned long long n = erased_length * 100ULL;
174                         int percent;
175
176                         do_div(n, erase_length);
177                         percent = (int)n;
178
179                         /* output progress message only at whole percent
180                          * steps to reduce the number of messages printed
181                          * on (slow) serial consoles
182                          */
183                         if (percent != percent_complete) {
184                                 percent_complete = percent;
185
186                                 printf("\rErasing at 0x%llx -- %3d%% complete.",
187                                        erase.addr, percent);
188
189                                 if (opts->jffs2 && result == 0)
190                                         printf(" Cleanmarker written at 0x%llx.",
191                                                erase.addr);
192                         }
193                 }
194         }
195         if (!opts->quiet)
196                 printf("\n");
197
198         if (opts->scrub)
199                 chip->scan_bbt(meminfo);
200
201         return 0;
202 }
203
204 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
205
206 /******************************************************************************
207  * Support for locking / unlocking operations of some NAND devices
208  *****************************************************************************/
209
210 #define NAND_CMD_LOCK           0x2a
211 #define NAND_CMD_LOCK_TIGHT     0x2c
212 #define NAND_CMD_UNLOCK1        0x23
213 #define NAND_CMD_UNLOCK2        0x24
214 #define NAND_CMD_LOCK_STATUS    0x7a
215
216 /**
217  * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
218  *            state
219  *
220  * @param mtd           nand mtd instance
221  * @param tight         bring device in lock tight mode
222  *
223  * @return              0 on success, -1 in case of error
224  *
225  * The lock / lock-tight command only applies to the whole chip. To get some
226  * parts of the chip lock and others unlocked use the following sequence:
227  *
228  * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
229  * - Call nand_unlock() once for each consecutive area to be unlocked
230  * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
231  *
232  *   If the device is in lock-tight state software can't change the
233  *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
234  *   calls will fail. It is only posible to leave lock-tight state by
235  *   an hardware signal (low pulse on _WP pin) or by power down.
236  */
237 int nand_lock(struct mtd_info *mtd, int tight)
238 {
239         int ret = 0;
240         int status;
241         struct nand_chip *chip = mtd->priv;
242
243         /* select the NAND device */
244         chip->select_chip(mtd, 0);
245
246         chip->cmdfunc(mtd,
247                       (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
248                       -1, -1);
249
250         /* call wait ready function */
251         status = chip->waitfunc(mtd, chip);
252
253         /* see if device thinks it succeeded */
254         if (status & 0x01) {
255                 ret = -1;
256         }
257
258         /* de-select the NAND device */
259         chip->select_chip(mtd, -1);
260         return ret;
261 }
262
263 /**
264  * nand_get_lock_status: - query current lock state from one page of NAND
265  *                         flash
266  *
267  * @param mtd           nand mtd instance
268  * @param offset        page address to query (muss be page aligned!)
269  *
270  * @return              -1 in case of error
271  *                      >0 lock status:
272  *                        bitfield with the following combinations:
273  *                        NAND_LOCK_STATUS_TIGHT: page in tight state
274  *                        NAND_LOCK_STATUS_LOCK:  page locked
275  *                        NAND_LOCK_STATUS_UNLOCK: page unlocked
276  *
277  */
278 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
279 {
280         int ret = 0;
281         int chipnr;
282         int page;
283         struct nand_chip *chip = mtd->priv;
284
285         /* select the NAND device */
286         chipnr = (int)(offset >> chip->chip_shift);
287         chip->select_chip(mtd, chipnr);
288
289
290         if ((offset & (mtd->writesize - 1)) != 0) {
291                 printf ("nand_get_lock_status: "
292                         "Start address must be beginning of "
293                         "nand page!\n");
294                 ret = -1;
295                 goto out;
296         }
297
298         /* check the Lock Status */
299         page = (int)(offset >> chip->page_shift);
300         chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
301
302         ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
303                                           | NAND_LOCK_STATUS_LOCK
304                                           | NAND_LOCK_STATUS_UNLOCK);
305
306  out:
307         /* de-select the NAND device */
308         chip->select_chip(mtd, -1);
309         return ret;
310 }
311
312 /**
313  * nand_unlock: - Unlock area of NAND pages
314  *                only one consecutive area can be unlocked at one time!
315  *
316  * @param mtd           nand mtd instance
317  * @param start         start byte address
318  * @param length        number of bytes to unlock (must be a multiple of
319  *                      page size nand->writesize)
320  * @param allexcept     if set, unlock everything not selected
321  *
322  * @return              0 on success, -1 in case of error
323  */
324 int nand_unlock(struct mtd_info *mtd, ulong start, ulong length, int allexcept)
325 {
326         int ret = 0;
327         int chipnr;
328         int status;
329         int page;
330         struct nand_chip *chip = mtd->priv;
331
332         debug("nand_unlock%s: start: %08x, length: %d!\n",
333                 allexcept ? " (allexcept)" : "", start, length);
334
335         /* select the NAND device */
336         chipnr = (int)(start >> chip->chip_shift);
337         chip->select_chip(mtd, chipnr);
338
339         /* check the WP bit */
340         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
341         if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
342                 printf ("nand_unlock: Device is write protected!\n");
343                 ret = -1;
344                 goto out;
345         }
346
347         if ((start & (mtd->erasesize - 1)) != 0) {
348                 printf ("nand_unlock: Start address must be beginning of "
349                         "nand block!\n");
350                 ret = -1;
351                 goto out;
352         }
353
354         if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
355                 printf ("nand_unlock: Length must be a multiple of nand block "
356                         "size %08x!\n", mtd->erasesize);
357                 ret = -1;
358                 goto out;
359         }
360
361         /*
362          * Set length so that the last address is set to the
363          * starting address of the last block
364          */
365         length -= mtd->erasesize;
366
367         /* submit address of first page to unlock */
368         page = (int)(start >> chip->page_shift);
369         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
370
371         /* submit ADDRESS of LAST page to unlock */
372         page += (int)(length >> chip->page_shift);
373
374         /*
375          * Page addresses for unlocking are supposed to be block-aligned.
376          * At least some NAND chips use the low bit to indicate that the
377          * page range should be inverted.
378          */
379         if (allexcept)
380                 page |= 1;
381
382         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
383
384         /* call wait ready function */
385         status = chip->waitfunc(mtd, chip);
386         /* see if device thinks it succeeded */
387         if (status & 0x01) {
388                 /* there was an error */
389                 ret = -1;
390                 goto out;
391         }
392
393  out:
394         /* de-select the NAND device */
395         chip->select_chip(mtd, -1);
396         return ret;
397 }
398 #endif
399
400 /**
401  * check_skip_len
402  *
403  * Check if there are any bad blocks, and whether length including bad
404  * blocks fits into device
405  *
406  * @param nand NAND device
407  * @param offset offset in flash
408  * @param length image length
409  * @return 0 if the image fits and there are no bad blocks
410  *         1 if the image fits, but there are bad blocks
411  *        -1 if the image does not fit
412  */
413 static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
414 {
415         size_t len_excl_bad = 0;
416         int ret = 0;
417
418         while (len_excl_bad < length) {
419                 size_t block_len, block_off;
420                 loff_t block_start;
421
422                 if (offset >= nand->size)
423                         return -1;
424
425                 block_start = offset & ~(loff_t)(nand->erasesize - 1);
426                 block_off = offset & (nand->erasesize - 1);
427                 block_len = nand->erasesize - block_off;
428
429                 if (!nand_block_isbad(nand, block_start))
430                         len_excl_bad += block_len;
431                 else
432                         ret = 1;
433
434                 offset += block_len;
435         }
436
437         return ret;
438 }
439
440 #ifdef CONFIG_CMD_NAND_TRIMFFS
441 static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
442                         const size_t *len)
443 {
444         size_t i, l = *len;
445
446         for (i = l - 1; i >= 0; i--)
447                 if (buf[i] != 0xFF)
448                         break;
449
450         /* The resulting length must be aligned to the minimum flash I/O size */
451         l = i + 1;
452         l = (l + nand->writesize - 1) / nand->writesize;
453         l *=  nand->writesize;
454
455         /*
456          * since the input length may be unaligned, prevent access past the end
457          * of the buffer
458          */
459         return min(l, *len);
460 }
461 #endif
462
463 /**
464  * nand_write_skip_bad:
465  *
466  * Write image to NAND flash.
467  * Blocks that are marked bad are skipped and the is written to the next
468  * block instead as long as the image is short enough to fit even after
469  * skipping the bad blocks.
470  *
471  * @param nand          NAND device
472  * @param offset        offset in flash
473  * @param length        buffer length
474  * @param buffer        buffer to read from
475  * @param flags         flags modifying the behaviour of the write to NAND
476  * @return              0 in case of success
477  */
478 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
479                         u_char *buffer, int flags)
480 {
481         int rval = 0, blocksize;
482         size_t left_to_write = *length;
483         u_char *p_buffer = buffer;
484         int need_skip;
485
486 #ifdef CONFIG_CMD_NAND_YAFFS
487         if (flags & WITH_YAFFS_OOB) {
488                 if (flags & ~WITH_YAFFS_OOB)
489                         return -EINVAL;
490
491                 int pages;
492                 pages = nand->erasesize / nand->writesize;
493                 blocksize = (pages * nand->oobsize) + nand->erasesize;
494                 if (*length % (nand->writesize + nand->oobsize)) {
495                         printf ("Attempt to write incomplete page"
496                                 " in yaffs mode\n");
497                         return -EINVAL;
498                 }
499         } else
500 #endif
501         {
502                 blocksize = nand->erasesize;
503         }
504
505         /*
506          * nand_write() handles unaligned, partial page writes.
507          *
508          * We allow length to be unaligned, for convenience in
509          * using the $filesize variable.
510          *
511          * However, starting at an unaligned offset makes the
512          * semantics of bad block skipping ambiguous (really,
513          * you should only start a block skipping access at a
514          * partition boundary).  So don't try to handle that.
515          */
516         if ((offset & (nand->writesize - 1)) != 0) {
517                 printf ("Attempt to write non page aligned data\n");
518                 *length = 0;
519                 return -EINVAL;
520         }
521
522         need_skip = check_skip_len(nand, offset, *length);
523         if (need_skip < 0) {
524                 printf ("Attempt to write outside the flash area\n");
525                 *length = 0;
526                 return -EINVAL;
527         }
528
529         if (!need_skip && !(flags & WITH_DROP_FFS)) {
530                 rval = nand_write (nand, offset, length, buffer);
531                 if (rval == 0)
532                         return 0;
533
534                 *length = 0;
535                 printf ("NAND write to offset %llx failed %d\n",
536                         offset, rval);
537                 return rval;
538         }
539
540         while (left_to_write > 0) {
541                 size_t block_offset = offset & (nand->erasesize - 1);
542                 size_t write_size, truncated_write_size;
543
544                 WATCHDOG_RESET ();
545
546                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
547                         printf ("Skip bad block 0x%08llx\n",
548                                 offset & ~(nand->erasesize - 1));
549                         offset += nand->erasesize - block_offset;
550                         continue;
551                 }
552
553                 if (left_to_write < (blocksize - block_offset))
554                         write_size = left_to_write;
555                 else
556                         write_size = blocksize - block_offset;
557
558 #ifdef CONFIG_CMD_NAND_YAFFS
559                 if (flags & WITH_YAFFS_OOB) {
560                         int page, pages;
561                         size_t pagesize = nand->writesize;
562                         size_t pagesize_oob = pagesize + nand->oobsize;
563                         struct mtd_oob_ops ops;
564
565                         ops.len = pagesize;
566                         ops.ooblen = nand->oobsize;
567                         ops.mode = MTD_OOB_AUTO;
568                         ops.ooboffs = 0;
569
570                         pages = write_size / pagesize_oob;
571                         for (page = 0; page < pages; page++) {
572                                 WATCHDOG_RESET();
573
574                                 ops.datbuf = p_buffer;
575                                 ops.oobbuf = ops.datbuf + pagesize;
576
577                                 rval = nand->write_oob(nand, offset, &ops);
578                                 if (rval != 0)
579                                         break;
580
581                                 offset += pagesize;
582                                 p_buffer += pagesize_oob;
583                         }
584                 }
585                 else
586 #endif
587                 {
588                         truncated_write_size = write_size;
589 #ifdef CONFIG_CMD_NAND_TRIMFFS
590                         if (flags & WITH_DROP_FFS)
591                                 truncated_write_size = drop_ffs(nand, p_buffer,
592                                                 &write_size);
593 #endif
594
595                         rval = nand_write(nand, offset, &truncated_write_size,
596                                         p_buffer);
597                         offset += write_size;
598                         p_buffer += write_size;
599                 }
600
601                 if (rval != 0) {
602                         printf ("NAND write to offset %llx failed %d\n",
603                                 offset, rval);
604                         *length -= left_to_write;
605                         return rval;
606                 }
607
608                 left_to_write -= write_size;
609         }
610
611         return 0;
612 }
613
614 /**
615  * nand_read_skip_bad:
616  *
617  * Read image from NAND flash.
618  * Blocks that are marked bad are skipped and the next block is readen
619  * instead as long as the image is short enough to fit even after skipping the
620  * bad blocks.
621  *
622  * @param nand NAND device
623  * @param offset offset in flash
624  * @param length buffer length, on return holds remaining bytes to read
625  * @param buffer buffer to write to
626  * @return 0 in case of success
627  */
628 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
629                        u_char *buffer)
630 {
631         int rval;
632         size_t left_to_read = *length;
633         u_char *p_buffer = buffer;
634         int need_skip;
635
636         if ((offset & (nand->writesize - 1)) != 0) {
637                 printf ("Attempt to read non page aligned data\n");
638                 *length = 0;
639                 return -EINVAL;
640         }
641
642         need_skip = check_skip_len(nand, offset, *length);
643         if (need_skip < 0) {
644                 printf ("Attempt to read outside the flash area\n");
645                 *length = 0;
646                 return -EINVAL;
647         }
648
649         if (!need_skip) {
650                 rval = nand_read (nand, offset, length, buffer);
651                 if (!rval || rval == -EUCLEAN)
652                         return 0;
653
654                 *length = 0;
655                 printf ("NAND read from offset %llx failed %d\n",
656                         offset, rval);
657                 return rval;
658         }
659
660         while (left_to_read > 0) {
661                 size_t block_offset = offset & (nand->erasesize - 1);
662                 size_t read_length;
663
664                 WATCHDOG_RESET ();
665
666                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
667                         printf ("Skipping bad block 0x%08llx\n",
668                                 offset & ~(nand->erasesize - 1));
669                         offset += nand->erasesize - block_offset;
670                         continue;
671                 }
672
673                 if (left_to_read < (nand->erasesize - block_offset))
674                         read_length = left_to_read;
675                 else
676                         read_length = nand->erasesize - block_offset;
677
678                 rval = nand_read (nand, offset, &read_length, p_buffer);
679                 if (rval && rval != -EUCLEAN) {
680                         printf ("NAND read from offset %llx failed %d\n",
681                                 offset, rval);
682                         *length -= left_to_read;
683                         return rval;
684                 }
685
686                 left_to_read -= read_length;
687                 offset       += read_length;
688                 p_buffer     += read_length;
689         }
690
691         return 0;
692 }