]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/omap_gpmc.c
SPDX: Convert all of our single license tags to Linux Kernel style
[u-boot] / drivers / mtd / nand / omap_gpmc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
4  * Rohit Choraria <rohitkc@ti.com>
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <linux/errno.h>
10 #include <asm/arch/mem.h>
11 #include <linux/mtd/omap_gpmc.h>
12 #include <linux/mtd/nand_ecc.h>
13 #include <linux/bch.h>
14 #include <linux/compiler.h>
15 #include <nand.h>
16 #include <linux/mtd/omap_elm.h>
17
18 #define BADBLOCK_MARKER_LENGTH  2
19 #define SECTOR_BYTES            512
20 #define ECCCLEAR                (0x1 << 8)
21 #define ECCRESULTREG1           (0x1 << 0)
22 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
23 #define BCH4_BIT_PAD            4
24
25 #ifdef CONFIG_BCH
26 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
27                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
28 #endif
29 static uint8_t cs_next;
30 static __maybe_unused struct nand_ecclayout omap_ecclayout;
31
32 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
33 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
34         { CONFIG_NAND_OMAP_GPMC_WSCFG };
35 #else
36 /* wscfg is preset to zero since its a static variable */
37 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
38 #endif
39
40 /*
41  * Driver configurations
42  */
43 struct omap_nand_info {
44         struct bch_control *control;
45         enum omap_ecc ecc_scheme;
46         uint8_t cs;
47         uint8_t ws;             /* wait status pin (0,1) */
48 };
49
50 /* We are wasting a bit of memory but al least we are safe */
51 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
52
53 /*
54  * omap_nand_hwcontrol - Set the address pointers corretly for the
55  *                      following address/data/command operation
56  */
57 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
58                                 uint32_t ctrl)
59 {
60         register struct nand_chip *this = mtd_to_nand(mtd);
61         struct omap_nand_info *info = nand_get_controller_data(this);
62         int cs = info->cs;
63
64         /*
65          * Point the IO_ADDR to DATA and ADDRESS registers instead
66          * of chip address
67          */
68         switch (ctrl) {
69         case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
70                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
71                 break;
72         case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
73                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
74                 break;
75         case NAND_CTRL_CHANGE | NAND_NCE:
76                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
77                 break;
78         }
79
80         if (cmd != NAND_CMD_NONE)
81                 writeb(cmd, this->IO_ADDR_W);
82 }
83
84 /* Check wait pin as dev ready indicator */
85 static int omap_dev_ready(struct mtd_info *mtd)
86 {
87         register struct nand_chip *this = mtd_to_nand(mtd);
88         struct omap_nand_info *info = nand_get_controller_data(this);
89         return gpmc_cfg->status & (1 << (8 + info->ws));
90 }
91
92 /*
93  * gen_true_ecc - This function will generate true ECC value, which
94  * can be used when correcting data read from NAND flash memory core
95  *
96  * @ecc_buf:    buffer to store ecc code
97  *
98  * @return:     re-formatted ECC value
99  */
100 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
101 {
102         return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
103                 ((ecc_buf[2] & 0x0F) << 8);
104 }
105
106 /*
107  * omap_correct_data - Compares the ecc read from nand spare area with ECC
108  * registers values and corrects one bit error if it has occurred
109  * Further details can be had from OMAP TRM and the following selected links:
110  * http://en.wikipedia.org/wiki/Hamming_code
111  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
112  *
113  * @mtd:                 MTD device structure
114  * @dat:                 page data
115  * @read_ecc:            ecc read from nand flash
116  * @calc_ecc:            ecc read from ECC registers
117  *
118  * @return 0 if data is OK or corrected, else returns -1
119  */
120 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
121                                 uint8_t *read_ecc, uint8_t *calc_ecc)
122 {
123         uint32_t orig_ecc, new_ecc, res, hm;
124         uint16_t parity_bits, byte;
125         uint8_t bit;
126
127         /* Regenerate the orginal ECC */
128         orig_ecc = gen_true_ecc(read_ecc);
129         new_ecc = gen_true_ecc(calc_ecc);
130         /* Get the XOR of real ecc */
131         res = orig_ecc ^ new_ecc;
132         if (res) {
133                 /* Get the hamming width */
134                 hm = hweight32(res);
135                 /* Single bit errors can be corrected! */
136                 if (hm == 12) {
137                         /* Correctable data! */
138                         parity_bits = res >> 16;
139                         bit = (parity_bits & 0x7);
140                         byte = (parity_bits >> 3) & 0x1FF;
141                         /* Flip the bit to correct */
142                         dat[byte] ^= (0x1 << bit);
143                 } else if (hm == 1) {
144                         printf("Error: Ecc is wrong\n");
145                         /* ECC itself is corrupted */
146                         return 2;
147                 } else {
148                         /*
149                          * hm distance != parity pairs OR one, could mean 2 bit
150                          * error OR potentially be on a blank page..
151                          * orig_ecc: contains spare area data from nand flash.
152                          * new_ecc: generated ecc while reading data area.
153                          * Note: if the ecc = 0, all data bits from which it was
154                          * generated are 0xFF.
155                          * The 3 byte(24 bits) ecc is generated per 512byte
156                          * chunk of a page. If orig_ecc(from spare area)
157                          * is 0xFF && new_ecc(computed now from data area)=0x0,
158                          * this means that data area is 0xFF and spare area is
159                          * 0xFF. A sure sign of a erased page!
160                          */
161                         if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
162                                 return 0;
163                         printf("Error: Bad compare! failed\n");
164                         /* detected 2 bit error */
165                         return -EBADMSG;
166                 }
167         }
168         return 0;
169 }
170
171 /*
172  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
173  * @mtd:        MTD device structure
174  * @mode:       Read/Write mode
175  */
176 __maybe_unused
177 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
178 {
179         struct nand_chip        *nand   = mtd_to_nand(mtd);
180         struct omap_nand_info   *info   = nand_get_controller_data(nand);
181         unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
182         unsigned int ecc_algo = 0;
183         unsigned int bch_type = 0;
184         unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
185         u32 ecc_size_config_val = 0;
186         u32 ecc_config_val = 0;
187         int cs = info->cs;
188
189         /* configure GPMC for specific ecc-scheme */
190         switch (info->ecc_scheme) {
191         case OMAP_ECC_HAM1_CODE_SW:
192                 return;
193         case OMAP_ECC_HAM1_CODE_HW:
194                 ecc_algo = 0x0;
195                 bch_type = 0x0;
196                 bch_wrapmode = 0x00;
197                 eccsize0 = 0xFF;
198                 eccsize1 = 0xFF;
199                 break;
200         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
201         case OMAP_ECC_BCH8_CODE_HW:
202                 ecc_algo = 0x1;
203                 bch_type = 0x1;
204                 if (mode == NAND_ECC_WRITE) {
205                         bch_wrapmode = 0x01;
206                         eccsize0 = 0;  /* extra bits in nibbles per sector */
207                         eccsize1 = 28; /* OOB bits in nibbles per sector */
208                 } else {
209                         bch_wrapmode = 0x01;
210                         eccsize0 = 26; /* ECC bits in nibbles per sector */
211                         eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
212                 }
213                 break;
214         case OMAP_ECC_BCH16_CODE_HW:
215                 ecc_algo = 0x1;
216                 bch_type = 0x2;
217                 if (mode == NAND_ECC_WRITE) {
218                         bch_wrapmode = 0x01;
219                         eccsize0 = 0;  /* extra bits in nibbles per sector */
220                         eccsize1 = 52; /* OOB bits in nibbles per sector */
221                 } else {
222                         bch_wrapmode = 0x01;
223                         eccsize0 = 52; /* ECC bits in nibbles per sector */
224                         eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
225                 }
226                 break;
227         default:
228                 return;
229         }
230         /* Clear ecc and enable bits */
231         writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
232         /* Configure ecc size for BCH */
233         ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
234         writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
235
236         /* Configure device details for BCH engine */
237         ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
238                         (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
239                         (bch_wrapmode << 8)     | /* wrap mode */
240                         (dev_width << 7)        | /* bus width */
241                         (0x0 << 4)              | /* number of sectors */
242                         (cs <<  1)              | /* ECC CS */
243                         (0x1));                   /* enable ECC */
244         writel(ecc_config_val, &gpmc_cfg->ecc_config);
245 }
246
247 /*
248  *  omap_calculate_ecc - Read ECC result
249  *  @mtd:       MTD structure
250  *  @dat:       unused
251  *  @ecc_code:  ecc_code buffer
252  *  Using noninverted ECC can be considered ugly since writing a blank
253  *  page ie. padding will clear the ECC bytes. This is no problem as
254  *  long nobody is trying to write data on the seemingly unused page.
255  *  Reading an erased page will produce an ECC mismatch between
256  *  generated and read ECC bytes that has to be dealt with separately.
257  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
258  *  is used, the result of read will be 0x0 while the ECC offsets of the
259  *  spare area will be 0xFF which will result in an ECC mismatch.
260  */
261 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
262                                 uint8_t *ecc_code)
263 {
264         struct nand_chip *chip = mtd_to_nand(mtd);
265         struct omap_nand_info *info = nand_get_controller_data(chip);
266         const uint32_t *ptr;
267         uint32_t val = 0;
268         int8_t i = 0, j;
269
270         switch (info->ecc_scheme) {
271         case OMAP_ECC_HAM1_CODE_HW:
272                 val = readl(&gpmc_cfg->ecc1_result);
273                 ecc_code[0] = val & 0xFF;
274                 ecc_code[1] = (val >> 16) & 0xFF;
275                 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
276                 break;
277 #ifdef CONFIG_BCH
278         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
279 #endif
280         case OMAP_ECC_BCH8_CODE_HW:
281                 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
282                 val = readl(ptr);
283                 ecc_code[i++] = (val >>  0) & 0xFF;
284                 ptr--;
285                 for (j = 0; j < 3; j++) {
286                         val = readl(ptr);
287                         ecc_code[i++] = (val >> 24) & 0xFF;
288                         ecc_code[i++] = (val >> 16) & 0xFF;
289                         ecc_code[i++] = (val >>  8) & 0xFF;
290                         ecc_code[i++] = (val >>  0) & 0xFF;
291                         ptr--;
292                 }
293                 break;
294         case OMAP_ECC_BCH16_CODE_HW:
295                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
296                 ecc_code[i++] = (val >>  8) & 0xFF;
297                 ecc_code[i++] = (val >>  0) & 0xFF;
298                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
299                 ecc_code[i++] = (val >> 24) & 0xFF;
300                 ecc_code[i++] = (val >> 16) & 0xFF;
301                 ecc_code[i++] = (val >>  8) & 0xFF;
302                 ecc_code[i++] = (val >>  0) & 0xFF;
303                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
304                 ecc_code[i++] = (val >> 24) & 0xFF;
305                 ecc_code[i++] = (val >> 16) & 0xFF;
306                 ecc_code[i++] = (val >>  8) & 0xFF;
307                 ecc_code[i++] = (val >>  0) & 0xFF;
308                 for (j = 3; j >= 0; j--) {
309                         val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
310                                                                         );
311                         ecc_code[i++] = (val >> 24) & 0xFF;
312                         ecc_code[i++] = (val >> 16) & 0xFF;
313                         ecc_code[i++] = (val >>  8) & 0xFF;
314                         ecc_code[i++] = (val >>  0) & 0xFF;
315                 }
316                 break;
317         default:
318                 return -EINVAL;
319         }
320         /* ECC scheme specific syndrome customizations */
321         switch (info->ecc_scheme) {
322         case OMAP_ECC_HAM1_CODE_HW:
323                 break;
324 #ifdef CONFIG_BCH
325         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
326
327                 for (i = 0; i < chip->ecc.bytes; i++)
328                         *(ecc_code + i) = *(ecc_code + i) ^
329                                                 bch8_polynomial[i];
330                 break;
331 #endif
332         case OMAP_ECC_BCH8_CODE_HW:
333                 ecc_code[chip->ecc.bytes - 1] = 0x00;
334                 break;
335         case OMAP_ECC_BCH16_CODE_HW:
336                 break;
337         default:
338                 return -EINVAL;
339         }
340         return 0;
341 }
342
343 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
344
345 #define PREFETCH_CONFIG1_CS_SHIFT       24
346 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
347 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
348 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
349 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
350 #define ENABLE_PREFETCH                 (1 << 7)
351
352 /**
353  * omap_prefetch_enable - configures and starts prefetch transfer
354  * @fifo_th: fifo threshold to be used for read/ write
355  * @count: number of bytes to be transferred
356  * @is_write: prefetch read(0) or write post(1) mode
357  * @cs: chip select to use
358  */
359 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
360 {
361         uint32_t val;
362
363         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
364                 return -EINVAL;
365
366         if (readl(&gpmc_cfg->prefetch_control))
367                 return -EBUSY;
368
369         /* Set the amount of bytes to be prefetched */
370         writel(count, &gpmc_cfg->prefetch_config2);
371
372         val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
373                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
374         writel(val, &gpmc_cfg->prefetch_config1);
375
376         /*  Start the prefetch engine */
377         writel(1, &gpmc_cfg->prefetch_control);
378
379         return 0;
380 }
381
382 /**
383  * omap_prefetch_reset - disables and stops the prefetch engine
384  */
385 static void omap_prefetch_reset(void)
386 {
387         writel(0, &gpmc_cfg->prefetch_control);
388         writel(0, &gpmc_cfg->prefetch_config1);
389 }
390
391 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
392 {
393         int ret;
394         uint32_t cnt;
395         struct omap_nand_info *info = nand_get_controller_data(chip);
396
397         ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
398         if (ret < 0)
399                 return ret;
400
401         do {
402                 int i;
403
404                 cnt = readl(&gpmc_cfg->prefetch_status);
405                 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
406
407                 for (i = 0; i < cnt / 4; i++) {
408                         *buf++ = readl(CONFIG_SYS_NAND_BASE);
409                         len -= 4;
410                 }
411         } while (len);
412
413         omap_prefetch_reset();
414
415         return 0;
416 }
417
418 static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
419 {
420         struct nand_chip *chip = mtd_to_nand(mtd);
421
422         if (chip->options & NAND_BUSWIDTH_16)
423                 nand_read_buf16(mtd, buf, len);
424         else
425                 nand_read_buf(mtd, buf, len);
426 }
427
428 static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
429 {
430         int ret;
431         uint32_t head, tail;
432         struct nand_chip *chip = mtd_to_nand(mtd);
433
434         /*
435          * If the destination buffer is unaligned, start with reading
436          * the overlap byte-wise.
437          */
438         head = ((uint32_t) buf) % 4;
439         if (head) {
440                 omap_nand_read(mtd, buf, head);
441                 buf += head;
442                 len -= head;
443         }
444
445         /*
446          * Only transfer multiples of 4 bytes in a pre-fetched fashion.
447          * If there's a residue, care for it byte-wise afterwards.
448          */
449         tail = len % 4;
450
451         ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
452         if (ret < 0) {
453                 /* fallback in case the prefetch engine is busy */
454                 omap_nand_read(mtd, buf, len);
455         } else if (tail) {
456                 buf += len - tail;
457                 omap_nand_read(mtd, buf, tail);
458         }
459 }
460 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
461
462 #ifdef CONFIG_NAND_OMAP_ELM
463 /*
464  * omap_reverse_list - re-orders list elements in reverse order [internal]
465  * @list:       pointer to start of list
466  * @length:     length of list
467 */
468 static void omap_reverse_list(u8 *list, unsigned int length)
469 {
470         unsigned int i, j;
471         unsigned int half_length = length / 2;
472         u8 tmp;
473         for (i = 0, j = length - 1; i < half_length; i++, j--) {
474                 tmp = list[i];
475                 list[i] = list[j];
476                 list[j] = tmp;
477         }
478 }
479
480 /*
481  * omap_correct_data_bch - Compares the ecc read from nand spare area
482  * with ECC registers values and corrects one bit error if it has occurred
483  *
484  * @mtd:        MTD device structure
485  * @dat:        page data
486  * @read_ecc:   ecc read from nand flash (ignored)
487  * @calc_ecc:   ecc read from ECC registers
488  *
489  * @return 0 if data is OK or corrected, else returns -1
490  */
491 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
492                                 uint8_t *read_ecc, uint8_t *calc_ecc)
493 {
494         struct nand_chip *chip = mtd_to_nand(mtd);
495         struct omap_nand_info *info = nand_get_controller_data(chip);
496         struct nand_ecc_ctrl *ecc = &chip->ecc;
497         uint32_t error_count = 0, error_max;
498         uint32_t error_loc[ELM_MAX_ERROR_COUNT];
499         enum bch_level bch_type;
500         uint32_t i, ecc_flag = 0;
501         uint8_t count;
502         uint32_t byte_pos, bit_pos;
503         int err = 0;
504
505         /* check calculated ecc */
506         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
507                 if (calc_ecc[i] != 0x00)
508                         ecc_flag = 1;
509         }
510         if (!ecc_flag)
511                 return 0;
512
513         /* check for whether its a erased-page */
514         ecc_flag = 0;
515         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
516                 if (read_ecc[i] != 0xff)
517                         ecc_flag = 1;
518         }
519         if (!ecc_flag)
520                 return 0;
521
522         /*
523          * while reading ECC result we read it in big endian.
524          * Hence while loading to ELM we have rotate to get the right endian.
525          */
526         switch (info->ecc_scheme) {
527         case OMAP_ECC_BCH8_CODE_HW:
528                 bch_type = BCH_8_BIT;
529                 omap_reverse_list(calc_ecc, ecc->bytes - 1);
530                 break;
531         case OMAP_ECC_BCH16_CODE_HW:
532                 bch_type = BCH_16_BIT;
533                 omap_reverse_list(calc_ecc, ecc->bytes);
534                 break;
535         default:
536                 return -EINVAL;
537         }
538         /* use elm module to check for errors */
539         elm_config(bch_type);
540         err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
541         if (err)
542                 return err;
543
544         /* correct bch error */
545         for (count = 0; count < error_count; count++) {
546                 switch (info->ecc_scheme) {
547                 case OMAP_ECC_BCH8_CODE_HW:
548                         /* 14th byte in ECC is reserved to match ROM layout */
549                         error_max = SECTOR_BYTES + (ecc->bytes - 1);
550                         break;
551                 case OMAP_ECC_BCH16_CODE_HW:
552                         error_max = SECTOR_BYTES + ecc->bytes;
553                         break;
554                 default:
555                         return -EINVAL;
556                 }
557                 byte_pos = error_max - (error_loc[count] / 8) - 1;
558                 bit_pos  = error_loc[count] % 8;
559                 if (byte_pos < SECTOR_BYTES) {
560                         dat[byte_pos] ^= 1 << bit_pos;
561                         debug("nand: bit-flip corrected @data=%d\n", byte_pos);
562                 } else if (byte_pos < error_max) {
563                         read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
564                         debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
565                                                                 SECTOR_BYTES);
566                 } else {
567                         err = -EBADMSG;
568                         printf("nand: error: invalid bit-flip location\n");
569                 }
570         }
571         return (err) ? err : error_count;
572 }
573
574 /**
575  * omap_read_page_bch - hardware ecc based page read function
576  * @mtd:        mtd info structure
577  * @chip:       nand chip info structure
578  * @buf:        buffer to store read data
579  * @oob_required: caller expects OOB data read to chip->oob_poi
580  * @page:       page number to read
581  *
582  */
583 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
584                                 uint8_t *buf, int oob_required, int page)
585 {
586         int i, eccsize = chip->ecc.size;
587         int eccbytes = chip->ecc.bytes;
588         int eccsteps = chip->ecc.steps;
589         uint8_t *p = buf;
590         uint8_t *ecc_calc = chip->buffers->ecccalc;
591         uint8_t *ecc_code = chip->buffers->ecccode;
592         uint32_t *eccpos = chip->ecc.layout->eccpos;
593         uint8_t *oob = chip->oob_poi;
594         uint32_t data_pos;
595         uint32_t oob_pos;
596
597         data_pos = 0;
598         /* oob area start */
599         oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
600         oob += chip->ecc.layout->eccpos[0];
601
602         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
603                                 oob += eccbytes) {
604                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
605                 /* read data */
606                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
607                 chip->read_buf(mtd, p, eccsize);
608
609                 /* read respective ecc from oob area */
610                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
611                 chip->read_buf(mtd, oob, eccbytes);
612                 /* read syndrome */
613                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
614
615                 data_pos += eccsize;
616                 oob_pos += eccbytes;
617         }
618
619         for (i = 0; i < chip->ecc.total; i++)
620                 ecc_code[i] = chip->oob_poi[eccpos[i]];
621
622         eccsteps = chip->ecc.steps;
623         p = buf;
624
625         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
626                 int stat;
627
628                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
629                 if (stat < 0)
630                         mtd->ecc_stats.failed++;
631                 else
632                         mtd->ecc_stats.corrected += stat;
633         }
634         return 0;
635 }
636 #endif /* CONFIG_NAND_OMAP_ELM */
637
638 /*
639  * OMAP3 BCH8 support (with BCH library)
640  */
641 #ifdef CONFIG_BCH
642 /**
643  * omap_correct_data_bch_sw - Decode received data and correct errors
644  * @mtd: MTD device structure
645  * @data: page data
646  * @read_ecc: ecc read from nand flash
647  * @calc_ecc: ecc read from HW ECC registers
648  */
649 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
650                                  u_char *read_ecc, u_char *calc_ecc)
651 {
652         int i, count;
653         /* cannot correct more than 8 errors */
654         unsigned int errloc[8];
655         struct nand_chip *chip = mtd_to_nand(mtd);
656         struct omap_nand_info *info = nand_get_controller_data(chip);
657
658         count = decode_bch(info->control, NULL, SECTOR_BYTES,
659                                 read_ecc, calc_ecc, NULL, errloc);
660         if (count > 0) {
661                 /* correct errors */
662                 for (i = 0; i < count; i++) {
663                         /* correct data only, not ecc bytes */
664                         if (errloc[i] < SECTOR_BYTES << 3)
665                                 data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
666                         debug("corrected bitflip %u\n", errloc[i]);
667 #ifdef DEBUG
668                         puts("read_ecc: ");
669                         /*
670                          * BCH8 have 13 bytes of ECC; BCH4 needs adoption
671                          * here!
672                          */
673                         for (i = 0; i < 13; i++)
674                                 printf("%02x ", read_ecc[i]);
675                         puts("\n");
676                         puts("calc_ecc: ");
677                         for (i = 0; i < 13; i++)
678                                 printf("%02x ", calc_ecc[i]);
679                         puts("\n");
680 #endif
681                 }
682         } else if (count < 0) {
683                 puts("ecc unrecoverable error\n");
684         }
685         return count;
686 }
687
688 /**
689  * omap_free_bch - Release BCH ecc resources
690  * @mtd: MTD device structure
691  */
692 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
693 {
694         struct nand_chip *chip = mtd_to_nand(mtd);
695         struct omap_nand_info *info = nand_get_controller_data(chip);
696
697         if (info->control) {
698                 free_bch(info->control);
699                 info->control = NULL;
700         }
701 }
702 #endif /* CONFIG_BCH */
703
704 /**
705  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
706  * @nand: NAND chip device structure
707  * @ecc_scheme: ecc scheme to configure
708  * @pagesize: number of main-area bytes per page of NAND device
709  * @oobsize: number of OOB/spare bytes per page of NAND device
710  */
711 static int omap_select_ecc_scheme(struct nand_chip *nand,
712         enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
713         struct omap_nand_info   *info           = nand_get_controller_data(nand);
714         struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
715         int eccsteps = pagesize / SECTOR_BYTES;
716         int i;
717
718         switch (ecc_scheme) {
719         case OMAP_ECC_HAM1_CODE_SW:
720                 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
721                 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
722                  * initialized in nand_scan_tail(), so just set ecc.mode */
723                 info->control           = NULL;
724                 nand->ecc.mode          = NAND_ECC_SOFT;
725                 nand->ecc.layout        = NULL;
726                 nand->ecc.size          = 0;
727                 break;
728
729         case OMAP_ECC_HAM1_CODE_HW:
730                 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
731                 /* check ecc-scheme requirements before updating ecc info */
732                 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
733                         printf("nand: error: insufficient OOB: require=%d\n", (
734                                 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
735                         return -EINVAL;
736                 }
737                 info->control           = NULL;
738                 /* populate ecc specific fields */
739                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
740                 nand->ecc.mode          = NAND_ECC_HW;
741                 nand->ecc.strength      = 1;
742                 nand->ecc.size          = SECTOR_BYTES;
743                 nand->ecc.bytes         = 3;
744                 nand->ecc.hwctl         = omap_enable_hwecc;
745                 nand->ecc.correct       = omap_correct_data;
746                 nand->ecc.calculate     = omap_calculate_ecc;
747                 /* define ecc-layout */
748                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
749                 for (i = 0; i < ecclayout->eccbytes; i++) {
750                         if (nand->options & NAND_BUSWIDTH_16)
751                                 ecclayout->eccpos[i] = i + 2;
752                         else
753                                 ecclayout->eccpos[i] = i + 1;
754                 }
755                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
756                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
757                                                 BADBLOCK_MARKER_LENGTH;
758                 break;
759
760         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
761 #ifdef CONFIG_BCH
762                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
763                 /* check ecc-scheme requirements before updating ecc info */
764                 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
765                         printf("nand: error: insufficient OOB: require=%d\n", (
766                                 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
767                         return -EINVAL;
768                 }
769                 /* check if BCH S/W library can be used for error detection */
770                 info->control = init_bch(13, 8, 0x201b);
771                 if (!info->control) {
772                         printf("nand: error: could not init_bch()\n");
773                         return -ENODEV;
774                 }
775                 /* populate ecc specific fields */
776                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
777                 nand->ecc.mode          = NAND_ECC_HW;
778                 nand->ecc.strength      = 8;
779                 nand->ecc.size          = SECTOR_BYTES;
780                 nand->ecc.bytes         = 13;
781                 nand->ecc.hwctl         = omap_enable_hwecc;
782                 nand->ecc.correct       = omap_correct_data_bch_sw;
783                 nand->ecc.calculate     = omap_calculate_ecc;
784                 /* define ecc-layout */
785                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
786                 ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
787                 for (i = 1; i < ecclayout->eccbytes; i++) {
788                         if (i % nand->ecc.bytes)
789                                 ecclayout->eccpos[i] =
790                                                 ecclayout->eccpos[i - 1] + 1;
791                         else
792                                 ecclayout->eccpos[i] =
793                                                 ecclayout->eccpos[i - 1] + 2;
794                 }
795                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
796                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
797                                                 BADBLOCK_MARKER_LENGTH;
798                 break;
799 #else
800                 printf("nand: error: CONFIG_BCH required for ECC\n");
801                 return -EINVAL;
802 #endif
803
804         case OMAP_ECC_BCH8_CODE_HW:
805 #ifdef CONFIG_NAND_OMAP_ELM
806                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
807                 /* check ecc-scheme requirements before updating ecc info */
808                 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
809                         printf("nand: error: insufficient OOB: require=%d\n", (
810                                 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
811                         return -EINVAL;
812                 }
813                 /* intialize ELM for ECC error detection */
814                 elm_init();
815                 info->control           = NULL;
816                 /* populate ecc specific fields */
817                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
818                 nand->ecc.mode          = NAND_ECC_HW;
819                 nand->ecc.strength      = 8;
820                 nand->ecc.size          = SECTOR_BYTES;
821                 nand->ecc.bytes         = 14;
822                 nand->ecc.hwctl         = omap_enable_hwecc;
823                 nand->ecc.correct       = omap_correct_data_bch;
824                 nand->ecc.calculate     = omap_calculate_ecc;
825                 nand->ecc.read_page     = omap_read_page_bch;
826                 /* define ecc-layout */
827                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
828                 for (i = 0; i < ecclayout->eccbytes; i++)
829                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
830                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
831                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
832                                                 BADBLOCK_MARKER_LENGTH;
833                 break;
834 #else
835                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
836                 return -EINVAL;
837 #endif
838
839         case OMAP_ECC_BCH16_CODE_HW:
840 #ifdef CONFIG_NAND_OMAP_ELM
841                 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
842                 /* check ecc-scheme requirements before updating ecc info */
843                 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
844                         printf("nand: error: insufficient OOB: require=%d\n", (
845                                 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
846                         return -EINVAL;
847                 }
848                 /* intialize ELM for ECC error detection */
849                 elm_init();
850                 /* populate ecc specific fields */
851                 nand->ecc.mode          = NAND_ECC_HW;
852                 nand->ecc.size          = SECTOR_BYTES;
853                 nand->ecc.bytes         = 26;
854                 nand->ecc.strength      = 16;
855                 nand->ecc.hwctl         = omap_enable_hwecc;
856                 nand->ecc.correct       = omap_correct_data_bch;
857                 nand->ecc.calculate     = omap_calculate_ecc;
858                 nand->ecc.read_page     = omap_read_page_bch;
859                 /* define ecc-layout */
860                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
861                 for (i = 0; i < ecclayout->eccbytes; i++)
862                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
863                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
864                 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
865                                                 BADBLOCK_MARKER_LENGTH;
866                 break;
867 #else
868                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
869                 return -EINVAL;
870 #endif
871         default:
872                 debug("nand: error: ecc scheme not enabled or supported\n");
873                 return -EINVAL;
874         }
875
876         /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
877         if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
878                 nand->ecc.layout = ecclayout;
879
880         info->ecc_scheme = ecc_scheme;
881         return 0;
882 }
883
884 #ifndef CONFIG_SPL_BUILD
885 /*
886  * omap_nand_switch_ecc - switch the ECC operation between different engines
887  * (h/w and s/w) and different algorithms (hamming and BCHx)
888  *
889  * @hardware            - true if one of the HW engines should be used
890  * @eccstrength         - the number of bits that could be corrected
891  *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
892  */
893 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
894 {
895         struct nand_chip *nand;
896         struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
897         int err = 0;
898
899         if (!mtd) {
900                 printf("nand: error: no NAND devices found\n");
901                 return -ENODEV;
902         }
903
904         nand = mtd_to_nand(mtd);
905         nand->options |= NAND_OWN_BUFFERS;
906         nand->options &= ~NAND_SUBPAGE_READ;
907         /* Setup the ecc configurations again */
908         if (hardware) {
909                 if (eccstrength == 1) {
910                         err = omap_select_ecc_scheme(nand,
911                                         OMAP_ECC_HAM1_CODE_HW,
912                                         mtd->writesize, mtd->oobsize);
913                 } else if (eccstrength == 8) {
914                         err = omap_select_ecc_scheme(nand,
915                                         OMAP_ECC_BCH8_CODE_HW,
916                                         mtd->writesize, mtd->oobsize);
917                 } else if (eccstrength == 16) {
918                         err = omap_select_ecc_scheme(nand,
919                                         OMAP_ECC_BCH16_CODE_HW,
920                                         mtd->writesize, mtd->oobsize);
921                 } else {
922                         printf("nand: error: unsupported ECC scheme\n");
923                         return -EINVAL;
924                 }
925         } else {
926                 if (eccstrength == 1) {
927                         err = omap_select_ecc_scheme(nand,
928                                         OMAP_ECC_HAM1_CODE_SW,
929                                         mtd->writesize, mtd->oobsize);
930                 } else if (eccstrength == 8) {
931                         err = omap_select_ecc_scheme(nand,
932                                         OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
933                                         mtd->writesize, mtd->oobsize);
934                 } else {
935                         printf("nand: error: unsupported ECC scheme\n");
936                         return -EINVAL;
937                 }
938         }
939
940         /* Update NAND handling after ECC mode switch */
941         if (!err)
942                 err = nand_scan_tail(mtd);
943         return err;
944 }
945 #endif /* CONFIG_SPL_BUILD */
946
947 /*
948  * Board-specific NAND initialization. The following members of the
949  * argument are board-specific:
950  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
951  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
952  * - cmd_ctrl: hardwarespecific function for accesing control-lines
953  * - waitfunc: hardwarespecific function for accesing device ready/busy line
954  * - ecc.hwctl: function to enable (reset) hardware ecc generator
955  * - ecc.mode: mode of ecc, see defines
956  * - chip_delay: chip dependent delay for transfering data from array to
957  *   read regs (tR)
958  * - options: various chip options. They can partly be set to inform
959  *   nand_scan about special functionality. See the defines for further
960  *   explanation
961  */
962 int board_nand_init(struct nand_chip *nand)
963 {
964         int32_t gpmc_config = 0;
965         int cs = cs_next++;
966         int err = 0;
967         /*
968          * xloader/Uboot's gpmc configuration would have configured GPMC for
969          * nand type of memory. The following logic scans and latches on to the
970          * first CS with NAND type memory.
971          * TBD: need to make this logic generic to handle multiple CS NAND
972          * devices.
973          */
974         while (cs < GPMC_MAX_CS) {
975                 /* Check if NAND type is set */
976                 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
977                         /* Found it!! */
978                         break;
979                 }
980                 cs++;
981         }
982         if (cs >= GPMC_MAX_CS) {
983                 printf("nand: error: Unable to find NAND settings in "
984                         "GPMC Configuration - quitting\n");
985                 return -ENODEV;
986         }
987
988         gpmc_config = readl(&gpmc_cfg->config);
989         /* Disable Write protect */
990         gpmc_config |= 0x10;
991         writel(gpmc_config, &gpmc_cfg->config);
992
993         nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
994         nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
995         omap_nand_info[cs].control = NULL;
996         omap_nand_info[cs].cs = cs;
997         omap_nand_info[cs].ws = wscfg[cs];
998         nand_set_controller_data(nand, &omap_nand_info[cs]);
999         nand->cmd_ctrl  = omap_nand_hwcontrol;
1000         nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
1001         nand->chip_delay = 100;
1002         nand->ecc.layout = &omap_ecclayout;
1003
1004         /* configure driver and controller based on NAND device bus-width */
1005         gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1006 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1007         nand->options |= NAND_BUSWIDTH_16;
1008         writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1009 #else
1010         nand->options &= ~NAND_BUSWIDTH_16;
1011         writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1012 #endif
1013         /* select ECC scheme */
1014 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1015         err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1016                         CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1017 #else
1018         /* pagesize and oobsize are not required to configure sw ecc-scheme */
1019         err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1020                         0, 0);
1021 #endif
1022         if (err)
1023                 return err;
1024
1025 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1026         nand->read_buf = omap_nand_read_prefetch;
1027 #else
1028         if (nand->options & NAND_BUSWIDTH_16)
1029                 nand->read_buf = nand_read_buf16;
1030         else
1031                 nand->read_buf = nand_read_buf;
1032 #endif
1033
1034         nand->dev_ready = omap_dev_ready;
1035
1036         return 0;
1037 }