]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/vf610_nfc.c
mtd: vf610_nfc: mark page as dirty on block erase
[u-boot] / drivers / mtd / nand / vf610_nfc.c
1 /*
2  * Copyright 2009-2014 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Ported to U-Boot by Stefan Agner
6  * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
7  * Jason ported to M54418TWR and MVFA5.
8  * Authors: Stefan Agner <stefan.agner@toradex.com>
9  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
10  *          Shaohui Xie <b21989@freescale.com>
11  *          Jason Jin <Jason.jin@freescale.com>
12  *
13  * Based on original driver mpc5121_nfc.c.
14  *
15  * This is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * Limitations:
21  * - Untested on MPC5125 and M54418.
22  * - DMA not used.
23  * - 2K pages or less.
24  * - Only 2K page w. 64+OOB and hardware ECC.
25  */
26
27 #include <common.h>
28 #include <malloc.h>
29
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33
34 #include <nand.h>
35 #include <errno.h>
36 #include <asm/io.h>
37
38 /* Register Offsets */
39 #define NFC_FLASH_CMD1                  0x3F00
40 #define NFC_FLASH_CMD2                  0x3F04
41 #define NFC_COL_ADDR                    0x3F08
42 #define NFC_ROW_ADDR                    0x3F0c
43 #define NFC_ROW_ADDR_INC                0x3F14
44 #define NFC_FLASH_STATUS1               0x3F18
45 #define NFC_FLASH_STATUS2               0x3F1c
46 #define NFC_CACHE_SWAP                  0x3F28
47 #define NFC_SECTOR_SIZE                 0x3F2c
48 #define NFC_FLASH_CONFIG                0x3F30
49 #define NFC_IRQ_STATUS                  0x3F38
50
51 /* Addresses for NFC MAIN RAM BUFFER areas */
52 #define NFC_MAIN_AREA(n)                ((n) *  0x1000)
53
54 #define PAGE_2K                         0x0800
55 #define OOB_64                          0x0040
56
57 /*
58  * NFC_CMD2[CODE] values. See section:
59  *  - 31.4.7 Flash Command Code Description, Vybrid manual
60  *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
61  *
62  * Briefly these are bitmasks of controller cycles.
63  */
64 #define READ_PAGE_CMD_CODE              0x7EE0
65 #define PROGRAM_PAGE_CMD_CODE           0x7FC0
66 #define ERASE_CMD_CODE                  0x4EC0
67 #define READ_ID_CMD_CODE                0x4804
68 #define RESET_CMD_CODE                  0x4040
69 #define STATUS_READ_CMD_CODE            0x4068
70
71 /* NFC ECC mode define */
72 #define ECC_BYPASS                      0
73 #define ECC_45_BYTE                     6
74
75 /*** Register Mask and bit definitions */
76
77 /* NFC_FLASH_CMD1 Field */
78 #define CMD_BYTE2_MASK                          0xFF000000
79 #define CMD_BYTE2_SHIFT                         24
80
81 /* NFC_FLASH_CM2 Field */
82 #define CMD_BYTE1_MASK                          0xFF000000
83 #define CMD_BYTE1_SHIFT                         24
84 #define CMD_CODE_MASK                           0x00FFFF00
85 #define CMD_CODE_SHIFT                          8
86 #define BUFNO_MASK                              0x00000006
87 #define BUFNO_SHIFT                             1
88 #define START_BIT                               (1<<0)
89
90 /* NFC_COL_ADDR Field */
91 #define COL_ADDR_MASK                           0x0000FFFF
92 #define COL_ADDR_SHIFT                          0
93
94 /* NFC_ROW_ADDR Field */
95 #define ROW_ADDR_MASK                           0x00FFFFFF
96 #define ROW_ADDR_SHIFT                          0
97 #define ROW_ADDR_CHIP_SEL_RB_MASK               0xF0000000
98 #define ROW_ADDR_CHIP_SEL_RB_SHIFT              28
99 #define ROW_ADDR_CHIP_SEL_MASK                  0x0F000000
100 #define ROW_ADDR_CHIP_SEL_SHIFT                 24
101
102 /* NFC_FLASH_STATUS2 Field */
103 #define STATUS_BYTE1_MASK                       0x000000FF
104
105 /* NFC_FLASH_CONFIG Field */
106 #define CONFIG_ECC_SRAM_ADDR_MASK               0x7FC00000
107 #define CONFIG_ECC_SRAM_ADDR_SHIFT              22
108 #define CONFIG_ECC_SRAM_REQ_BIT                 (1<<21)
109 #define CONFIG_DMA_REQ_BIT                      (1<<20)
110 #define CONFIG_ECC_MODE_MASK                    0x000E0000
111 #define CONFIG_ECC_MODE_SHIFT                   17
112 #define CONFIG_FAST_FLASH_BIT                   (1<<16)
113 #define CONFIG_16BIT                            (1<<7)
114 #define CONFIG_BOOT_MODE_BIT                    (1<<6)
115 #define CONFIG_ADDR_AUTO_INCR_BIT               (1<<5)
116 #define CONFIG_BUFNO_AUTO_INCR_BIT              (1<<4)
117 #define CONFIG_PAGE_CNT_MASK                    0xF
118 #define CONFIG_PAGE_CNT_SHIFT                   0
119
120 /* NFC_IRQ_STATUS Field */
121 #define IDLE_IRQ_BIT                            (1<<29)
122 #define IDLE_EN_BIT                             (1<<20)
123 #define CMD_DONE_CLEAR_BIT                      (1<<18)
124 #define IDLE_CLEAR_BIT                          (1<<17)
125
126 #define NFC_TIMEOUT     (1000)
127
128 /* ECC status placed at end of buffers. */
129 #define ECC_SRAM_ADDR   ((PAGE_2K+256-8) >> 3)
130 #define ECC_STATUS_MASK 0x80
131 #define ECC_ERR_COUNT   0x3F
132
133 /*
134  * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
135  * and +7 for big-endian SOC.
136  */
137 #ifdef CONFIG_VF610
138 #define ECC_OFFSET      4
139 #else
140 #define ECC_OFFSET      7
141 #endif
142
143 struct vf610_nfc {
144         struct mtd_info   *mtd;
145         struct nand_chip   chip;
146         void __iomem      *regs;
147         uint               column;
148         int                spareonly;
149         int                page;
150         /* Status and ID are in alternate locations. */
151         int                alt_buf;
152 #define ALT_BUF_ID   1
153 #define ALT_BUF_STAT 2
154         struct clk        *clk;
155 };
156
157 #define mtd_to_nfc(_mtd) \
158         (struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
159
160 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
161 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
162
163 static struct nand_bbt_descr bbt_main_descr = {
164         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
165                    NAND_BBT_2BIT | NAND_BBT_VERSION,
166         .offs = 11,
167         .len = 4,
168         .veroffs = 15,
169         .maxblocks = 4,
170         .pattern = bbt_pattern,
171 };
172
173 static struct nand_bbt_descr bbt_mirror_descr = {
174         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
175                    NAND_BBT_2BIT | NAND_BBT_VERSION,
176         .offs = 11,
177         .len = 4,
178         .veroffs = 15,
179         .maxblocks = 4,
180         .pattern = mirror_pattern,
181 };
182
183 static struct nand_ecclayout vf610_nfc_ecc45 = {
184         .eccbytes = 45,
185         .eccpos = {19, 20, 21, 22, 23,
186                    24, 25, 26, 27, 28, 29, 30, 31,
187                    32, 33, 34, 35, 36, 37, 38, 39,
188                    40, 41, 42, 43, 44, 45, 46, 47,
189                    48, 49, 50, 51, 52, 53, 54, 55,
190                    56, 57, 58, 59, 60, 61, 62, 63},
191         .oobfree = {
192                 {.offset = 8,
193                  .length = 11} }
194 };
195
196 static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
197 {
198         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
199
200         return readl(nfc->regs + reg);
201 }
202
203 static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
204 {
205         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
206
207         writel(val, nfc->regs + reg);
208 }
209
210 static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
211 {
212         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
213 }
214
215 static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
216 {
217         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
218 }
219
220 static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
221                                        u32 mask, u32 shift, u32 val)
222 {
223         vf610_nfc_write(mtd, reg,
224                         (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
225 }
226
227 static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
228 {
229         /*
230          * Use this accessor for the interal SRAM buffers. On ARM we can
231          * treat the SRAM buffer as if its memory, hence use memcpy
232          */
233         memcpy(dst, src, n);
234 }
235
236 /* Clear flags for upcoming command */
237 static inline void vf610_nfc_clear_status(void __iomem *regbase)
238 {
239         void __iomem *reg = regbase + NFC_IRQ_STATUS;
240         u32 tmp = __raw_readl(reg);
241         tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
242         __raw_writel(tmp, reg);
243 }
244
245 /* Wait for complete operation */
246 static inline void vf610_nfc_done(struct mtd_info *mtd)
247 {
248         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
249         uint start;
250
251         /*
252          * Barrier is needed after this write. This write need
253          * to be done before reading the next register the first
254          * time.
255          * vf610_nfc_set implicates such a barrier by using writel
256          * to write to the register.
257          */
258         vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
259
260         start = get_timer(0);
261
262         while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
263                 if (get_timer(start) > NFC_TIMEOUT) {
264                         printf("Timeout while waiting for !BUSY.\n");
265                         return;
266                 }
267         }
268         vf610_nfc_clear_status(nfc->regs);
269 }
270
271 static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
272 {
273         u32 flash_id;
274
275         if (col < 4) {
276                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
277                 return (flash_id >> (3-col)*8) & 0xff;
278         } else {
279                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
280                 return flash_id >> 24;
281         }
282 }
283
284 static u8 vf610_nfc_get_status(struct mtd_info *mtd)
285 {
286         return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
287 }
288
289 /* Single command */
290 static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
291                                    u32 cmd_code)
292 {
293         void __iomem *reg = regbase + NFC_FLASH_CMD2;
294         u32 tmp;
295         vf610_nfc_clear_status(regbase);
296
297         tmp = __raw_readl(reg);
298         tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
299         tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
300         tmp |= cmd_code << CMD_CODE_SHIFT;
301         __raw_writel(tmp, reg);
302 }
303
304 /* Two commands */
305 static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
306                               u32 cmd_byte2, u32 cmd_code)
307 {
308         void __iomem *reg = regbase + NFC_FLASH_CMD1;
309         u32 tmp;
310         vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
311
312         tmp = __raw_readl(reg);
313         tmp &= ~CMD_BYTE2_MASK;
314         tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
315         __raw_writel(tmp, reg);
316 }
317
318 static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
319 {
320         if (column != -1) {
321                 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
322                 if (nfc->chip.options | NAND_BUSWIDTH_16)
323                         column = column/2;
324                 vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
325                                     COL_ADDR_SHIFT, column);
326         }
327         if (page != -1)
328                 vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
329                                     ROW_ADDR_SHIFT, page);
330 }
331
332 /* Send command to NAND chip */
333 static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
334                               int column, int page)
335 {
336         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
337
338         nfc->column     = max(column, 0);
339         nfc->spareonly  = 0;
340         nfc->alt_buf    = 0;
341
342         switch (command) {
343         case NAND_CMD_PAGEPROG:
344                 nfc->page = -1;
345                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
346                                         command, PROGRAM_PAGE_CMD_CODE);
347                 vf610_nfc_addr_cycle(mtd, column, page);
348                 break;
349
350         case NAND_CMD_RESET:
351                 vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
352                 break;
353         /*
354          * NFC does not support sub-page reads and writes,
355          * so emulate them using full page transfers.
356          */
357         case NAND_CMD_READOOB:
358                 nfc->spareonly = 1;
359         case NAND_CMD_SEQIN: /* Pre-read for partial writes. */
360         case NAND_CMD_READ0:
361                 column = 0;
362                 /* Already read? */
363                 if (nfc->page == page)
364                         return;
365                 nfc->page = page;
366                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
367                                         NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
368                 vf610_nfc_addr_cycle(mtd, column, page);
369                 break;
370
371         case NAND_CMD_ERASE1:
372                 nfc->page = -1;
373                 vf610_nfc_send_commands(nfc->regs, command,
374                                         NAND_CMD_ERASE2, ERASE_CMD_CODE);
375                 vf610_nfc_addr_cycle(mtd, column, page);
376                 break;
377
378         case NAND_CMD_READID:
379                 nfc->alt_buf = ALT_BUF_ID;
380                 vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
381                 break;
382
383         case NAND_CMD_STATUS:
384                 nfc->alt_buf = ALT_BUF_STAT;
385                 vf610_nfc_send_command(nfc->regs, command,
386                                        STATUS_READ_CMD_CODE);
387                 break;
388         default:
389                 return;
390         }
391
392         vf610_nfc_done(mtd);
393 }
394
395 static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf,
396                                         int len)
397 {
398         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
399
400         len = min(mtd->oobsize, (uint)len);
401         if (len > 0)
402                 vf610_nfc_memcpy(buf, nfc->regs + mtd->writesize, len);
403 }
404
405 /* Read data from NFC buffers */
406 static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
407 {
408         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
409         uint c = nfc->column;
410         uint l;
411
412         /* Handle main area */
413         if (!nfc->spareonly) {
414                 l = min((uint)len, mtd->writesize - c);
415                 nfc->column += l;
416
417                 if (!nfc->alt_buf)
418                         vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c,
419                                          l);
420                 else
421                         if (nfc->alt_buf & ALT_BUF_ID)
422                                 *buf = vf610_nfc_get_id(mtd, c);
423                         else
424                                 *buf = vf610_nfc_get_status(mtd);
425
426                 buf += l;
427                 len -= l;
428         }
429
430         /* Handle spare area access */
431         if (len) {
432                 nfc->column += len;
433                 vf610_nfc_read_spare(mtd, buf, len);
434         }
435 }
436
437 /* Write data to NFC buffers */
438 static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
439                                 int len)
440 {
441         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
442         uint c = nfc->column;
443         uint l;
444
445         l = min((uint)len, mtd->writesize + mtd->oobsize - c);
446         nfc->column += l;
447         vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
448 }
449
450 /* Read byte from NFC buffers */
451 static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
452 {
453         u8 tmp;
454         vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
455         return tmp;
456 }
457
458 /* Read word from NFC buffers */
459 static u16 vf610_nfc_read_word(struct mtd_info *mtd)
460 {
461         u16 tmp;
462         vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
463         return tmp;
464 }
465
466 /* If not provided, upper layers apply a fixed delay. */
467 static int vf610_nfc_dev_ready(struct mtd_info *mtd)
468 {
469         /* NFC handles R/B internally; always ready.  */
470         return 1;
471 }
472
473 /*
474  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
475  */
476 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
477 {
478 #ifdef CONFIG_VF610
479         u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
480         tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
481         tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
482
483         if (chip == 0)
484                 tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
485         else if (chip == 1)
486                 tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;
487
488         vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
489 #endif
490 }
491
492 /* Count the number of 0's in buff upto max_bits */
493 static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
494 {
495         uint32_t *buff32 = (uint32_t *)buff;
496         int k, written_bits = 0;
497
498         for (k = 0; k < (size / 4); k++) {
499                 written_bits += hweight32(~buff32[k]);
500                 if (written_bits > max_bits)
501                         break;
502         }
503
504         return written_bits;
505 }
506
507 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
508 {
509         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
510         u8 ecc_status;
511         u8 ecc_count;
512         int flip;
513
514         ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
515         ecc_count = ecc_status & ECC_ERR_COUNT;
516         if (!(ecc_status & ECC_STATUS_MASK))
517                 return ecc_count;
518
519         /* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
520         flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);
521
522         /* ECC failed. */
523         if (flip > ecc_count) {
524                 nfc->page = -1;
525                 return -1;
526         }
527
528         /* Erased page. */
529         memset(dat, 0xff, nfc->chip.ecc.size);
530         return 0;
531 }
532
533
534 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
535                                 uint8_t *buf, int oob_required, int page)
536 {
537         int eccsize = chip->ecc.size;
538         int stat;
539         uint8_t *p = buf;
540
541
542         vf610_nfc_read_buf(mtd, p, eccsize);
543
544         if (oob_required)
545                 vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
546
547         stat = vf610_nfc_correct_data(mtd, p);
548
549         if (stat < 0)
550                 mtd->ecc_stats.failed++;
551         else
552                 mtd->ecc_stats.corrected += stat;
553
554         return 0;
555 }
556
557 /*
558  * ECC will be calculated automatically
559  */
560 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
561                                const uint8_t *buf, int oob_required)
562 {
563         vf610_nfc_write_buf(mtd, buf, mtd->writesize);
564         if (oob_required)
565                 vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
566
567         return 0;
568 }
569
570 struct vf610_nfc_config {
571         int hardware_ecc;
572         int width;
573         int flash_bbt;
574 };
575
576 static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
577 {
578         struct mtd_info *mtd = &nand_info[devnum];
579         struct nand_chip *chip;
580         struct vf610_nfc *nfc;
581         int err = 0;
582         int page_sz;
583         struct vf610_nfc_config cfg = {
584                 .hardware_ecc = 1,
585 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
586                 .width = 16,
587 #else
588                 .width = 8,
589 #endif
590                 .flash_bbt = 1,
591         };
592
593         nfc = malloc(sizeof(*nfc));
594         if (!nfc) {
595                 printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
596                 return -ENOMEM;
597         }
598
599         chip = &nfc->chip;
600         nfc->regs = addr;
601
602         mtd->priv = chip;
603         chip->priv = nfc;
604
605         if (cfg.width == 16) {
606                 chip->options |= NAND_BUSWIDTH_16;
607                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
608         } else {
609                 chip->options &= ~NAND_BUSWIDTH_16;
610                 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
611         }
612
613         /* Disable subpage writes as we do not provide ecc->hwctl */
614         chip->options |= NAND_NO_SUBPAGE_WRITE;
615
616         chip->dev_ready = vf610_nfc_dev_ready;
617         chip->cmdfunc = vf610_nfc_command;
618         chip->read_byte = vf610_nfc_read_byte;
619         chip->read_word = vf610_nfc_read_word;
620         chip->read_buf = vf610_nfc_read_buf;
621         chip->write_buf = vf610_nfc_write_buf;
622         chip->select_chip = vf610_nfc_select_chip;
623
624         /* Bad block options. */
625         if (cfg.flash_bbt)
626                 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;
627
628         /* Default to software ECC until flash ID. */
629         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
630                             CONFIG_ECC_MODE_MASK,
631                             CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
632
633         chip->bbt_td = &bbt_main_descr;
634         chip->bbt_md = &bbt_mirror_descr;
635
636         page_sz = PAGE_2K + OOB_64;
637         page_sz += cfg.width == 16 ? 1 : 0;
638         vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
639
640         /* Set configuration register. */
641         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
642         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
643         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
644         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
645         vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
646
647         /* Enable Idle IRQ */
648         vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);
649
650         /* PAGE_CNT = 1 */
651         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
652                             CONFIG_PAGE_CNT_SHIFT, 1);
653
654         /* Set ECC_STATUS offset */
655         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
656                             CONFIG_ECC_SRAM_ADDR_MASK,
657                             CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
658
659         /* first scan to find the device and get the page size */
660         if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
661                 err = -ENXIO;
662                 goto error;
663         }
664
665         chip->ecc.mode = NAND_ECC_SOFT; /* default */
666
667         page_sz = mtd->writesize + mtd->oobsize;
668
669         /* Single buffer only, max 256 OOB minus ECC status */
670         if (page_sz > PAGE_2K + 256 - 8) {
671                 dev_err(nfc->dev, "Unsupported flash size\n");
672                 err = -ENXIO;
673                 goto error;
674         }
675         page_sz += cfg.width == 16 ? 1 : 0;
676         vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);
677
678         if (cfg.hardware_ecc) {
679                 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
680                         dev_err(nfc->dev, "Unsupported flash with hwecc\n");
681                         err = -ENXIO;
682                         goto error;
683                 }
684
685                 chip->ecc.layout = &vf610_nfc_ecc45;
686
687                 /* propagate ecc.layout to mtd_info */
688                 mtd->ecclayout = chip->ecc.layout;
689                 chip->ecc.read_page = vf610_nfc_read_page;
690                 chip->ecc.write_page = vf610_nfc_write_page;
691                 chip->ecc.mode = NAND_ECC_HW;
692
693                 chip->ecc.bytes = 45;
694                 chip->ecc.size = PAGE_2K;
695                 chip->ecc.strength = 24;
696
697                 /* set ECC mode to 45 bytes OOB with 24 bits correction */
698                 vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
699                                     CONFIG_ECC_MODE_MASK,
700                                     CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
701
702                 /* Enable ECC_STATUS */
703                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
704         }
705
706         /* second phase scan */
707         err = nand_scan_tail(mtd);
708         if (err)
709                 return err;
710
711         err = nand_register(devnum);
712         if (err)
713                 return err;
714
715         return 0;
716
717 error:
718         return err;
719 }
720
721 void board_nand_init(void)
722 {
723         int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
724         if (err)
725                 printf("VF610 NAND init failed (err %d)\n", err);
726 }