]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/vf610_nfc.c
mtd: vf610_nfc: remove caching of page in buffer
[u-boot] / drivers / mtd / nand / vf610_nfc.c
1 /*
2  * Copyright 2009-2014 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Ported to U-Boot by Stefan Agner
6  * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
7  * Jason ported to M54418TWR and MVFA5.
8  * Authors: Stefan Agner <stefan.agner@toradex.com>
9  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
10  *          Shaohui Xie <b21989@freescale.com>
11  *          Jason Jin <Jason.jin@freescale.com>
12  *
13  * Based on original driver mpc5121_nfc.c.
14  *
15  * This is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * Limitations:
21  * - Untested on MPC5125 and M54418.
22  * - DMA not used.
23  * - 2K pages or less.
24  * - Only 2K page w. 64+OOB and hardware ECC.
25  */
26
27 #include <common.h>
28 #include <malloc.h>
29
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33
34 #include <nand.h>
35 #include <errno.h>
36 #include <asm/io.h>
37
38 /* Register Offsets */
39 #define NFC_FLASH_CMD1                  0x3F00
40 #define NFC_FLASH_CMD2                  0x3F04
41 #define NFC_COL_ADDR                    0x3F08
42 #define NFC_ROW_ADDR                    0x3F0c
43 #define NFC_ROW_ADDR_INC                0x3F14
44 #define NFC_FLASH_STATUS1               0x3F18
45 #define NFC_FLASH_STATUS2               0x3F1c
46 #define NFC_CACHE_SWAP                  0x3F28
47 #define NFC_SECTOR_SIZE                 0x3F2c
48 #define NFC_FLASH_CONFIG                0x3F30
49 #define NFC_IRQ_STATUS                  0x3F38
50
51 /* Addresses for NFC MAIN RAM BUFFER areas */
52 #define NFC_MAIN_AREA(n)                ((n) *  0x1000)
53
54 #define PAGE_2K                         0x0800
55 #define OOB_64                          0x0040
56
57 /*
58  * NFC_CMD2[CODE] values. See section:
59  *  - 31.4.7 Flash Command Code Description, Vybrid manual
60  *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
61  *
62  * Briefly these are bitmasks of controller cycles.
63  */
64 #define READ_PAGE_CMD_CODE              0x7EE0
65 #define PROGRAM_PAGE_CMD_CODE           0x7FC0
66 #define ERASE_CMD_CODE                  0x4EC0
67 #define READ_ID_CMD_CODE                0x4804
68 #define RESET_CMD_CODE                  0x4040
69 #define STATUS_READ_CMD_CODE            0x4068
70
71 /* NFC ECC mode define */
72 #define ECC_BYPASS                      0
73 #define ECC_45_BYTE                     6
74
75 /*** Register Mask and bit definitions */
76
77 /* NFC_FLASH_CMD1 Field */
78 #define CMD_BYTE2_MASK                          0xFF000000
79 #define CMD_BYTE2_SHIFT                         24
80
81 /* NFC_FLASH_CM2 Field */
82 #define CMD_BYTE1_MASK                          0xFF000000
83 #define CMD_BYTE1_SHIFT                         24
84 #define CMD_CODE_MASK                           0x00FFFF00
85 #define CMD_CODE_SHIFT                          8
86 #define BUFNO_MASK                              0x00000006
87 #define BUFNO_SHIFT                             1
88 #define START_BIT                               (1<<0)
89
90 /* NFC_COL_ADDR Field */
91 #define COL_ADDR_MASK                           0x0000FFFF
92 #define COL_ADDR_SHIFT                          0
93
94 /* NFC_ROW_ADDR Field */
95 #define ROW_ADDR_MASK                           0x00FFFFFF
96 #define ROW_ADDR_SHIFT                          0
97 #define ROW_ADDR_CHIP_SEL_RB_MASK               0xF0000000
98 #define ROW_ADDR_CHIP_SEL_RB_SHIFT              28
99 #define ROW_ADDR_CHIP_SEL_MASK                  0x0F000000
100 #define ROW_ADDR_CHIP_SEL_SHIFT                 24
101
102 /* NFC_FLASH_STATUS2 Field */
103 #define STATUS_BYTE1_MASK                       0x000000FF
104
105 /* NFC_FLASH_CONFIG Field */
106 #define CONFIG_ECC_SRAM_ADDR_MASK               0x7FC00000
107 #define CONFIG_ECC_SRAM_ADDR_SHIFT              22
108 #define CONFIG_ECC_SRAM_REQ_BIT                 (1<<21)
109 #define CONFIG_DMA_REQ_BIT                      (1<<20)
110 #define CONFIG_ECC_MODE_MASK                    0x000E0000
111 #define CONFIG_ECC_MODE_SHIFT                   17
112 #define CONFIG_FAST_FLASH_BIT                   (1<<16)
113 #define CONFIG_16BIT                            (1<<7)
114 #define CONFIG_BOOT_MODE_BIT                    (1<<6)
115 #define CONFIG_ADDR_AUTO_INCR_BIT               (1<<5)
116 #define CONFIG_BUFNO_AUTO_INCR_BIT              (1<<4)
117 #define CONFIG_PAGE_CNT_MASK                    0xF
118 #define CONFIG_PAGE_CNT_SHIFT                   0
119
120 /* NFC_IRQ_STATUS Field */
121 #define IDLE_IRQ_BIT                            (1<<29)
122 #define IDLE_EN_BIT                             (1<<20)
123 #define CMD_DONE_CLEAR_BIT                      (1<<18)
124 #define IDLE_CLEAR_BIT                          (1<<17)
125
126 #define NFC_TIMEOUT     (1000)
127
128 /* ECC status placed at end of buffers. */
129 #define ECC_SRAM_ADDR   ((PAGE_2K+256-8) >> 3)
130 #define ECC_STATUS_MASK 0x80
131 #define ECC_ERR_COUNT   0x3F
132
133 /*
134  * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
135  * and +7 for big-endian SOC.
136  */
137 #ifdef CONFIG_VF610
138 #define ECC_OFFSET      4
139 #else
140 #define ECC_OFFSET      7
141 #endif
142
143 struct vf610_nfc {
144         struct mtd_info   *mtd;
145         struct nand_chip   chip;
146         void __iomem      *regs;
147         uint               column;
148         int                spareonly;
149         int                page_sz;
150         /* Status and ID are in alternate locations. */
151         int                alt_buf;
152 #define ALT_BUF_ID   1
153 #define ALT_BUF_STAT 2
154         struct clk        *clk;
155 };
156
157 #define mtd_to_nfc(_mtd) \
158         (struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
159
160 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
161 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
162
163 static struct nand_bbt_descr bbt_main_descr = {
164         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
165                    NAND_BBT_2BIT | NAND_BBT_VERSION,
166         .offs = 11,
167         .len = 4,
168         .veroffs = 15,
169         .maxblocks = 4,
170         .pattern = bbt_pattern,
171 };
172
173 static struct nand_bbt_descr bbt_mirror_descr = {
174         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
175                    NAND_BBT_2BIT | NAND_BBT_VERSION,
176         .offs = 11,
177         .len = 4,
178         .veroffs = 15,
179         .maxblocks = 4,
180         .pattern = mirror_pattern,
181 };
182
183 static struct nand_ecclayout vf610_nfc_ecc45 = {
184         .eccbytes = 45,
185         .eccpos = {19, 20, 21, 22, 23,
186                    24, 25, 26, 27, 28, 29, 30, 31,
187                    32, 33, 34, 35, 36, 37, 38, 39,
188                    40, 41, 42, 43, 44, 45, 46, 47,
189                    48, 49, 50, 51, 52, 53, 54, 55,
190                    56, 57, 58, 59, 60, 61, 62, 63},
191         .oobfree = {
192                 {.offset = 8,
193                  .length = 11} }
194 };
195
196 static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
197 {
198         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
199
200         return readl(nfc->regs + reg);
201 }
202
203 static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
204 {
205         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
206
207         writel(val, nfc->regs + reg);
208 }
209
210 static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
211 {
212         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
213 }
214
215 static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
216 {
217         vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
218 }
219
220 static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
221                                        u32 mask, u32 shift, u32 val)
222 {
223         vf610_nfc_write(mtd, reg,
224                         (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
225 }
226
227 static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
228 {
229         /*
230          * Use this accessor for the interal SRAM buffers. On ARM we can
231          * treat the SRAM buffer as if its memory, hence use memcpy
232          */
233         memcpy(dst, src, n);
234 }
235
236 /* Clear flags for upcoming command */
237 static inline void vf610_nfc_clear_status(void __iomem *regbase)
238 {
239         void __iomem *reg = regbase + NFC_IRQ_STATUS;
240         u32 tmp = __raw_readl(reg);
241         tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
242         __raw_writel(tmp, reg);
243 }
244
245 /* Wait for complete operation */
246 static inline void vf610_nfc_done(struct mtd_info *mtd)
247 {
248         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
249         uint start;
250
251         /*
252          * Barrier is needed after this write. This write need
253          * to be done before reading the next register the first
254          * time.
255          * vf610_nfc_set implicates such a barrier by using writel
256          * to write to the register.
257          */
258         vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
259
260         start = get_timer(0);
261
262         while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
263                 if (get_timer(start) > NFC_TIMEOUT) {
264                         printf("Timeout while waiting for !BUSY.\n");
265                         return;
266                 }
267         }
268         vf610_nfc_clear_status(nfc->regs);
269 }
270
271 static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
272 {
273         u32 flash_id;
274
275         if (col < 4) {
276                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
277                 return (flash_id >> (3-col)*8) & 0xff;
278         } else {
279                 flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
280                 return flash_id >> 24;
281         }
282 }
283
284 static u8 vf610_nfc_get_status(struct mtd_info *mtd)
285 {
286         return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
287 }
288
289 /* Single command */
290 static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
291                                    u32 cmd_code)
292 {
293         void __iomem *reg = regbase + NFC_FLASH_CMD2;
294         u32 tmp;
295         vf610_nfc_clear_status(regbase);
296
297         tmp = __raw_readl(reg);
298         tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
299         tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
300         tmp |= cmd_code << CMD_CODE_SHIFT;
301         __raw_writel(tmp, reg);
302 }
303
304 /* Two commands */
305 static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
306                               u32 cmd_byte2, u32 cmd_code)
307 {
308         void __iomem *reg = regbase + NFC_FLASH_CMD1;
309         u32 tmp;
310         vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
311
312         tmp = __raw_readl(reg);
313         tmp &= ~CMD_BYTE2_MASK;
314         tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
315         __raw_writel(tmp, reg);
316 }
317
318 static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
319 {
320         if (column != -1) {
321                 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
322                 if (nfc->chip.options | NAND_BUSWIDTH_16)
323                         column = column/2;
324                 vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
325                                     COL_ADDR_SHIFT, column);
326         }
327         if (page != -1)
328                 vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
329                                     ROW_ADDR_SHIFT, page);
330 }
331
332 static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
333 {
334         __raw_writel(size, regbase + NFC_SECTOR_SIZE);
335 }
336
337 /* Send command to NAND chip */
338 static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
339                               int column, int page)
340 {
341         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
342
343         nfc->column     = max(column, 0);
344         nfc->spareonly  = 0;
345         nfc->alt_buf    = 0;
346
347         switch (command) {
348         case NAND_CMD_PAGEPROG:
349                 vf610_nfc_transfer_size(nfc->regs, nfc->page_sz);
350                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
351                                         command, PROGRAM_PAGE_CMD_CODE);
352                 vf610_nfc_addr_cycle(mtd, column, page);
353                 break;
354
355         case NAND_CMD_RESET:
356                 vf610_nfc_transfer_size(nfc->regs, 0);
357                 vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
358                 break;
359         /*
360          * NFC does not support sub-page reads and writes,
361          * so emulate them using full page transfers.
362          */
363         case NAND_CMD_READOOB:
364                 nfc->spareonly = 1;
365         case NAND_CMD_SEQIN: /* Pre-read for partial writes. */
366         case NAND_CMD_READ0:
367                 column = 0;
368                 vf610_nfc_transfer_size(nfc->regs, nfc->page_sz);
369                 vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
370                                         NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
371                 vf610_nfc_addr_cycle(mtd, column, page);
372                 break;
373
374         case NAND_CMD_ERASE1:
375                 vf610_nfc_transfer_size(nfc->regs, 0);
376                 vf610_nfc_send_commands(nfc->regs, command,
377                                         NAND_CMD_ERASE2, ERASE_CMD_CODE);
378                 vf610_nfc_addr_cycle(mtd, column, page);
379                 break;
380
381         case NAND_CMD_READID:
382                 nfc->alt_buf = ALT_BUF_ID;
383                 vf610_nfc_transfer_size(nfc->regs, 0);
384                 vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
385                 break;
386
387         case NAND_CMD_STATUS:
388                 nfc->alt_buf = ALT_BUF_STAT;
389                 vf610_nfc_transfer_size(nfc->regs, 0);
390                 vf610_nfc_send_command(nfc->regs, command,
391                                        STATUS_READ_CMD_CODE);
392                 break;
393         default:
394                 return;
395         }
396
397         vf610_nfc_done(mtd);
398 }
399
400 static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf,
401                                         int len)
402 {
403         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
404
405         len = min(mtd->oobsize, (uint)len);
406         if (len > 0)
407                 vf610_nfc_memcpy(buf, nfc->regs + mtd->writesize, len);
408 }
409
410 /* Read data from NFC buffers */
411 static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
412 {
413         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
414         uint c = nfc->column;
415         uint l;
416
417         /* Handle main area */
418         if (!nfc->spareonly) {
419                 l = min((uint)len, mtd->writesize - c);
420                 nfc->column += l;
421
422                 if (!nfc->alt_buf)
423                         vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c,
424                                          l);
425                 else
426                         if (nfc->alt_buf & ALT_BUF_ID)
427                                 *buf = vf610_nfc_get_id(mtd, c);
428                         else
429                                 *buf = vf610_nfc_get_status(mtd);
430
431                 buf += l;
432                 len -= l;
433         }
434
435         /* Handle spare area access */
436         if (len) {
437                 nfc->column += len;
438                 vf610_nfc_read_spare(mtd, buf, len);
439         }
440 }
441
442 /* Write data to NFC buffers */
443 static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
444                                 int len)
445 {
446         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
447         uint c = nfc->column;
448         uint l;
449
450         l = min((uint)len, mtd->writesize + mtd->oobsize - c);
451         nfc->column += l;
452         vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
453 }
454
455 /* Read byte from NFC buffers */
456 static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
457 {
458         u8 tmp;
459         vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
460         return tmp;
461 }
462
463 /* Read word from NFC buffers */
464 static u16 vf610_nfc_read_word(struct mtd_info *mtd)
465 {
466         u16 tmp;
467         vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
468         return tmp;
469 }
470
471 /* If not provided, upper layers apply a fixed delay. */
472 static int vf610_nfc_dev_ready(struct mtd_info *mtd)
473 {
474         /* NFC handles R/B internally; always ready.  */
475         return 1;
476 }
477
478 /*
479  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
480  */
481 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
482 {
483 #ifdef CONFIG_VF610
484         u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
485         tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
486         tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
487
488         if (chip == 0)
489                 tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
490         else if (chip == 1)
491                 tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;
492
493         vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
494 #endif
495 }
496
497 /* Count the number of 0's in buff upto max_bits */
498 static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
499 {
500         uint32_t *buff32 = (uint32_t *)buff;
501         int k, written_bits = 0;
502
503         for (k = 0; k < (size / 4); k++) {
504                 written_bits += hweight32(~buff32[k]);
505                 if (written_bits > max_bits)
506                         break;
507         }
508
509         return written_bits;
510 }
511
512 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
513 {
514         struct vf610_nfc *nfc = mtd_to_nfc(mtd);
515         u8 ecc_status;
516         u8 ecc_count;
517         int flip;
518
519         ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
520         ecc_count = ecc_status & ECC_ERR_COUNT;
521         if (!(ecc_status & ECC_STATUS_MASK))
522                 return ecc_count;
523
524         /* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
525         flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);
526
527         /* ECC failed. */
528         if (flip > ecc_count)
529                 return -1;
530
531         /* Erased page. */
532         memset(dat, 0xff, nfc->chip.ecc.size);
533         return 0;
534 }
535
536
537 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
538                                 uint8_t *buf, int oob_required, int page)
539 {
540         int eccsize = chip->ecc.size;
541         int stat;
542         uint8_t *p = buf;
543
544
545         vf610_nfc_read_buf(mtd, p, eccsize);
546
547         if (oob_required)
548                 vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
549
550         stat = vf610_nfc_correct_data(mtd, p);
551
552         if (stat < 0)
553                 mtd->ecc_stats.failed++;
554         else
555                 mtd->ecc_stats.corrected += stat;
556
557         return 0;
558 }
559
560 /*
561  * ECC will be calculated automatically
562  */
563 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
564                                const uint8_t *buf, int oob_required)
565 {
566         vf610_nfc_write_buf(mtd, buf, mtd->writesize);
567         if (oob_required)
568                 vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
569
570         return 0;
571 }
572
573 struct vf610_nfc_config {
574         int hardware_ecc;
575         int width;
576         int flash_bbt;
577 };
578
579 static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
580 {
581         struct mtd_info *mtd = &nand_info[devnum];
582         struct nand_chip *chip;
583         struct vf610_nfc *nfc;
584         int err = 0;
585         struct vf610_nfc_config cfg = {
586                 .hardware_ecc = 1,
587 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
588                 .width = 16,
589 #else
590                 .width = 8,
591 #endif
592                 .flash_bbt = 1,
593         };
594
595         nfc = malloc(sizeof(*nfc));
596         if (!nfc) {
597                 printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
598                 return -ENOMEM;
599         }
600
601         chip = &nfc->chip;
602         nfc->regs = addr;
603
604         mtd->priv = chip;
605         chip->priv = nfc;
606
607         if (cfg.width == 16) {
608                 chip->options |= NAND_BUSWIDTH_16;
609                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
610         } else {
611                 chip->options &= ~NAND_BUSWIDTH_16;
612                 vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
613         }
614
615         /* Disable subpage writes as we do not provide ecc->hwctl */
616         chip->options |= NAND_NO_SUBPAGE_WRITE;
617
618         chip->dev_ready = vf610_nfc_dev_ready;
619         chip->cmdfunc = vf610_nfc_command;
620         chip->read_byte = vf610_nfc_read_byte;
621         chip->read_word = vf610_nfc_read_word;
622         chip->read_buf = vf610_nfc_read_buf;
623         chip->write_buf = vf610_nfc_write_buf;
624         chip->select_chip = vf610_nfc_select_chip;
625
626         /* Bad block options. */
627         if (cfg.flash_bbt)
628                 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;
629
630         /* Default to software ECC until flash ID. */
631         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
632                             CONFIG_ECC_MODE_MASK,
633                             CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
634
635         chip->bbt_td = &bbt_main_descr;
636         chip->bbt_md = &bbt_mirror_descr;
637
638         nfc->page_sz = PAGE_2K + OOB_64;
639         nfc->page_sz += cfg.width == 16 ? 1 : 0;
640
641         /* Set configuration register. */
642         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
643         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
644         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
645         vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
646         vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
647
648         /* Enable Idle IRQ */
649         vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);
650
651         /* PAGE_CNT = 1 */
652         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
653                             CONFIG_PAGE_CNT_SHIFT, 1);
654
655         /* Set ECC_STATUS offset */
656         vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
657                             CONFIG_ECC_SRAM_ADDR_MASK,
658                             CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
659
660         /* first scan to find the device and get the page size */
661         if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
662                 err = -ENXIO;
663                 goto error;
664         }
665
666         chip->ecc.mode = NAND_ECC_SOFT; /* default */
667
668         nfc->page_sz = mtd->writesize + mtd->oobsize;
669
670         /* Single buffer only, max 256 OOB minus ECC status */
671         if (nfc->page_sz > PAGE_2K + 256 - 8) {
672                 dev_err(nfc->dev, "Unsupported flash size\n");
673                 err = -ENXIO;
674                 goto error;
675         }
676         nfc->page_sz += cfg.width == 16 ? 1 : 0;
677
678         if (cfg.hardware_ecc) {
679                 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
680                         dev_err(nfc->dev, "Unsupported flash with hwecc\n");
681                         err = -ENXIO;
682                         goto error;
683                 }
684
685                 chip->ecc.layout = &vf610_nfc_ecc45;
686
687                 /* propagate ecc.layout to mtd_info */
688                 mtd->ecclayout = chip->ecc.layout;
689                 chip->ecc.read_page = vf610_nfc_read_page;
690                 chip->ecc.write_page = vf610_nfc_write_page;
691                 chip->ecc.mode = NAND_ECC_HW;
692
693                 chip->ecc.bytes = 45;
694                 chip->ecc.size = PAGE_2K;
695                 chip->ecc.strength = 24;
696
697                 /* set ECC mode to 45 bytes OOB with 24 bits correction */
698                 vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
699                                     CONFIG_ECC_MODE_MASK,
700                                     CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
701
702                 /* Enable ECC_STATUS */
703                 vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
704         }
705
706         /* second phase scan */
707         err = nand_scan_tail(mtd);
708         if (err)
709                 return err;
710
711         err = nand_register(devnum);
712         if (err)
713                 return err;
714
715         return 0;
716
717 error:
718         return err;
719 }
720
721 void board_nand_init(void)
722 {
723         int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
724         if (err)
725                 printf("VF610 NAND init failed (err %d)\n", err);
726 }