]> git.sur5r.net Git - u-boot/blob - drivers/mtd/onenand/onenand_base.c
mtd: replace MTDDEBUG() with pr_debug()
[u-boot] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <watchdog.h>
24 #include <linux/compat.h>
25 #include <linux/mtd/mtd.h>
26 #include "linux/mtd/flashchip.h"
27 #include <linux/mtd/onenand.h>
28
29 #include <asm/io.h>
30 #include <linux/errno.h>
31 #include <malloc.h>
32
33 /* It should access 16-bit instead of 8-bit */
34 static void *memcpy_16(void *dst, const void *src, unsigned int len)
35 {
36         void *ret = dst;
37         short *d = dst;
38         const short *s = src;
39
40         len >>= 1;
41         while (len-- > 0)
42                 *d++ = *s++;
43         return ret;
44 }
45
46 /**
47  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
48  *  For now, we expose only 64 out of 80 ecc bytes
49  */
50 static struct nand_ecclayout onenand_oob_128 = {
51         .eccbytes       = 64,
52         .eccpos         = {
53                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
54                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
55                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
56                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
57                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
58                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
59                 102, 103, 104, 105
60                 },
61         .oobfree        = {
62                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
63                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
64         }
65 };
66
67 /**
68  * onenand_oob_64 - oob info for large (2KB) page
69  */
70 static struct nand_ecclayout onenand_oob_64 = {
71         .eccbytes       = 20,
72         .eccpos         = {
73                 8, 9, 10, 11, 12,
74                 24, 25, 26, 27, 28,
75                 40, 41, 42, 43, 44,
76                 56, 57, 58, 59, 60,
77                 },
78         .oobfree        = {
79                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
80                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
81         }
82 };
83
84 /**
85  * onenand_oob_32 - oob info for middle (1KB) page
86  */
87 static struct nand_ecclayout onenand_oob_32 = {
88         .eccbytes       = 10,
89         .eccpos         = {
90                 8, 9, 10, 11, 12,
91                 24, 25, 26, 27, 28,
92                 },
93         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
94 };
95
96 /*
97  * Warning! This array is used with the memcpy_16() function, thus
98  * it must be aligned to 2 bytes. GCC can make this array unaligned
99  * as the array is made of unsigned char, which memcpy16() doesn't
100  * like and will cause unaligned access.
101  */
102 static const unsigned char __aligned(2) ffchars[] = {
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
111         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
112         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
113         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
114         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
115         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
116         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
117         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
118         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
119 };
120
121 /**
122  * onenand_readw - [OneNAND Interface] Read OneNAND register
123  * @param addr          address to read
124  *
125  * Read OneNAND register
126  */
127 static unsigned short onenand_readw(void __iomem * addr)
128 {
129         return readw(addr);
130 }
131
132 /**
133  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
134  * @param value         value to write
135  * @param addr          address to write
136  *
137  * Write OneNAND register with value
138  */
139 static void onenand_writew(unsigned short value, void __iomem * addr)
140 {
141         writew(value, addr);
142 }
143
144 /**
145  * onenand_block_address - [DEFAULT] Get block address
146  * @param device        the device id
147  * @param block         the block
148  * @return              translated block address if DDP, otherwise same
149  *
150  * Setup Start Address 1 Register (F100h)
151  */
152 static int onenand_block_address(struct onenand_chip *this, int block)
153 {
154         /* Device Flash Core select, NAND Flash Block Address */
155         if (block & this->density_mask)
156                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
157
158         return block;
159 }
160
161 /**
162  * onenand_bufferram_address - [DEFAULT] Get bufferram address
163  * @param device        the device id
164  * @param block         the block
165  * @return              set DBS value if DDP, otherwise 0
166  *
167  * Setup Start Address 2 Register (F101h) for DDP
168  */
169 static int onenand_bufferram_address(struct onenand_chip *this, int block)
170 {
171         /* Device BufferRAM Select */
172         if (block & this->density_mask)
173                 return ONENAND_DDP_CHIP1;
174
175         return ONENAND_DDP_CHIP0;
176 }
177
178 /**
179  * onenand_page_address - [DEFAULT] Get page address
180  * @param page          the page address
181  * @param sector        the sector address
182  * @return              combined page and sector address
183  *
184  * Setup Start Address 8 Register (F107h)
185  */
186 static int onenand_page_address(int page, int sector)
187 {
188         /* Flash Page Address, Flash Sector Address */
189         int fpa, fsa;
190
191         fpa = page & ONENAND_FPA_MASK;
192         fsa = sector & ONENAND_FSA_MASK;
193
194         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
195 }
196
197 /**
198  * onenand_buffer_address - [DEFAULT] Get buffer address
199  * @param dataram1      DataRAM index
200  * @param sectors       the sector address
201  * @param count         the number of sectors
202  * @return              the start buffer value
203  *
204  * Setup Start Buffer Register (F200h)
205  */
206 static int onenand_buffer_address(int dataram1, int sectors, int count)
207 {
208         int bsa, bsc;
209
210         /* BufferRAM Sector Address */
211         bsa = sectors & ONENAND_BSA_MASK;
212
213         if (dataram1)
214                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
215         else
216                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
217
218         /* BufferRAM Sector Count */
219         bsc = count & ONENAND_BSC_MASK;
220
221         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
222 }
223
224 /**
225  * flexonenand_block - Return block number for flash address
226  * @param this          - OneNAND device structure
227  * @param addr          - Address for which block number is needed
228  */
229 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
230 {
231         unsigned int boundary, blk, die = 0;
232
233         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
234                 die = 1;
235                 addr -= this->diesize[0];
236         }
237
238         boundary = this->boundary[die];
239
240         blk = addr >> (this->erase_shift - 1);
241         if (blk > boundary)
242                 blk = (blk + boundary + 1) >> 1;
243
244         blk += die ? this->density_mask : 0;
245         return blk;
246 }
247
248 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
249 {
250         if (!FLEXONENAND(this))
251                 return addr >> this->erase_shift;
252         return flexonenand_block(this, addr);
253 }
254
255 /**
256  * flexonenand_addr - Return address of the block
257  * @this:               OneNAND device structure
258  * @block:              Block number on Flex-OneNAND
259  *
260  * Return address of the block
261  */
262 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
263 {
264         loff_t ofs = 0;
265         int die = 0, boundary;
266
267         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
268                 block -= this->density_mask;
269                 die = 1;
270                 ofs = this->diesize[0];
271         }
272
273         boundary = this->boundary[die];
274         ofs += (loff_t) block << (this->erase_shift - 1);
275         if (block > (boundary + 1))
276                 ofs += (loff_t) (block - boundary - 1)
277                         << (this->erase_shift - 1);
278         return ofs;
279 }
280
281 loff_t onenand_addr(struct onenand_chip *this, int block)
282 {
283         if (!FLEXONENAND(this))
284                 return (loff_t) block << this->erase_shift;
285         return flexonenand_addr(this, block);
286 }
287
288 /**
289  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
290  * @param mtd           MTD device structure
291  * @param addr          address whose erase region needs to be identified
292  */
293 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
294 {
295         int i;
296
297         for (i = 0; i < mtd->numeraseregions; i++)
298                 if (addr < mtd->eraseregions[i].offset)
299                         break;
300         return i - 1;
301 }
302
303 /**
304  * onenand_get_density - [DEFAULT] Get OneNAND density
305  * @param dev_id        OneNAND device ID
306  *
307  * Get OneNAND density from device ID
308  */
309 static inline int onenand_get_density(int dev_id)
310 {
311         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
312         return (density & ONENAND_DEVICE_DENSITY_MASK);
313 }
314
315 /**
316  * onenand_command - [DEFAULT] Send command to OneNAND device
317  * @param mtd           MTD device structure
318  * @param cmd           the command to be sent
319  * @param addr          offset to read from or write to
320  * @param len           number of bytes to read or write
321  *
322  * Send command to OneNAND device. This function is used for middle/large page
323  * devices (1KB/2KB Bytes per page)
324  */
325 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
326                            size_t len)
327 {
328         struct onenand_chip *this = mtd->priv;
329         int value;
330         int block, page;
331
332         /* Now we use page size operation */
333         int sectors = 0, count = 0;
334
335         /* Address translation */
336         switch (cmd) {
337         case ONENAND_CMD_UNLOCK:
338         case ONENAND_CMD_LOCK:
339         case ONENAND_CMD_LOCK_TIGHT:
340         case ONENAND_CMD_UNLOCK_ALL:
341                 block = -1;
342                 page = -1;
343                 break;
344
345         case FLEXONENAND_CMD_PI_ACCESS:
346                 /* addr contains die index */
347                 block = addr * this->density_mask;
348                 page = -1;
349                 break;
350
351         case ONENAND_CMD_ERASE:
352         case ONENAND_CMD_BUFFERRAM:
353                 block = onenand_block(this, addr);
354                 page = -1;
355                 break;
356
357         case FLEXONENAND_CMD_READ_PI:
358                 cmd = ONENAND_CMD_READ;
359                 block = addr * this->density_mask;
360                 page = 0;
361                 break;
362
363         default:
364                 block = onenand_block(this, addr);
365                 page = (int) (addr
366                         - onenand_addr(this, block)) >> this->page_shift;
367                 page &= this->page_mask;
368                 break;
369         }
370
371         /* NOTE: The setting order of the registers is very important! */
372         if (cmd == ONENAND_CMD_BUFFERRAM) {
373                 /* Select DataRAM for DDP */
374                 value = onenand_bufferram_address(this, block);
375                 this->write_word(value,
376                                  this->base + ONENAND_REG_START_ADDRESS2);
377
378                 if (ONENAND_IS_4KB_PAGE(this))
379                         ONENAND_SET_BUFFERRAM0(this);
380                 else
381                         /* Switch to the next data buffer */
382                         ONENAND_SET_NEXT_BUFFERRAM(this);
383
384                 return 0;
385         }
386
387         if (block != -1) {
388                 /* Write 'DFS, FBA' of Flash */
389                 value = onenand_block_address(this, block);
390                 this->write_word(value,
391                                  this->base + ONENAND_REG_START_ADDRESS1);
392
393                 /* Select DataRAM for DDP */
394                 value = onenand_bufferram_address(this, block);
395                 this->write_word(value,
396                                  this->base + ONENAND_REG_START_ADDRESS2);
397         }
398
399         if (page != -1) {
400                 int dataram;
401
402                 switch (cmd) {
403                 case FLEXONENAND_CMD_RECOVER_LSB:
404                 case ONENAND_CMD_READ:
405                 case ONENAND_CMD_READOOB:
406                         if (ONENAND_IS_4KB_PAGE(this))
407                                 dataram = ONENAND_SET_BUFFERRAM0(this);
408                         else
409                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
410
411                         break;
412
413                 default:
414                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
415                         break;
416                 }
417
418                 /* Write 'FPA, FSA' of Flash */
419                 value = onenand_page_address(page, sectors);
420                 this->write_word(value,
421                                  this->base + ONENAND_REG_START_ADDRESS8);
422
423                 /* Write 'BSA, BSC' of DataRAM */
424                 value = onenand_buffer_address(dataram, sectors, count);
425                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
426         }
427
428         /* Interrupt clear */
429         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
430         /* Write command */
431         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
432
433         return 0;
434 }
435
436 /**
437  * onenand_read_ecc - return ecc status
438  * @param this          onenand chip structure
439  */
440 static int onenand_read_ecc(struct onenand_chip *this)
441 {
442         int ecc, i;
443
444         if (!FLEXONENAND(this))
445                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
446
447         for (i = 0; i < 4; i++) {
448                 ecc = this->read_word(this->base
449                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
450                 if (likely(!ecc))
451                         continue;
452                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
453                         return ONENAND_ECC_2BIT_ALL;
454         }
455
456         return 0;
457 }
458
459 /**
460  * onenand_wait - [DEFAULT] wait until the command is done
461  * @param mtd           MTD device structure
462  * @param state         state to select the max. timeout value
463  *
464  * Wait for command done. This applies to all OneNAND command
465  * Read can take up to 30us, erase up to 2ms and program up to 350us
466  * according to general OneNAND specs
467  */
468 static int onenand_wait(struct mtd_info *mtd, int state)
469 {
470         struct onenand_chip *this = mtd->priv;
471         unsigned int interrupt = 0;
472         unsigned int ctrl;
473
474         /* Wait at most 20ms ... */
475         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
476         u32 time_start = get_timer(0);
477         do {
478                 WATCHDOG_RESET();
479                 if (get_timer(time_start) > timeo)
480                         return -EIO;
481                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
482         } while ((interrupt & ONENAND_INT_MASTER) == 0);
483
484         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
485
486         if (interrupt & ONENAND_INT_READ) {
487                 int ecc = onenand_read_ecc(this);
488                 if (ecc & ONENAND_ECC_2BIT_ALL) {
489                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
490                         return -EBADMSG;
491                 }
492         }
493
494         if (ctrl & ONENAND_CTRL_ERROR) {
495                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
496                 if (ctrl & ONENAND_CTRL_LOCK)
497                         printk("onenand_wait: it's locked error = 0x%04x\n",
498                                 ctrl);
499
500                 return -EIO;
501         }
502
503
504         return 0;
505 }
506
507 /**
508  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
509  * @param mtd           MTD data structure
510  * @param area          BufferRAM area
511  * @return              offset given area
512  *
513  * Return BufferRAM offset given area
514  */
515 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
516 {
517         struct onenand_chip *this = mtd->priv;
518
519         if (ONENAND_CURRENT_BUFFERRAM(this)) {
520                 if (area == ONENAND_DATARAM)
521                         return mtd->writesize;
522                 if (area == ONENAND_SPARERAM)
523                         return mtd->oobsize;
524         }
525
526         return 0;
527 }
528
529 /**
530  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
531  * @param mtd           MTD data structure
532  * @param area          BufferRAM area
533  * @param buffer        the databuffer to put/get data
534  * @param offset        offset to read from or write to
535  * @param count         number of bytes to read/write
536  *
537  * Read the BufferRAM area
538  */
539 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
540                                   unsigned char *buffer, int offset,
541                                   size_t count)
542 {
543         struct onenand_chip *this = mtd->priv;
544         void __iomem *bufferram;
545
546         bufferram = this->base + area;
547         bufferram += onenand_bufferram_offset(mtd, area);
548
549         memcpy_16(buffer, bufferram + offset, count);
550
551         return 0;
552 }
553
554 /**
555  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
556  * @param mtd           MTD data structure
557  * @param area          BufferRAM area
558  * @param buffer        the databuffer to put/get data
559  * @param offset        offset to read from or write to
560  * @param count         number of bytes to read/write
561  *
562  * Read the BufferRAM area with Sync. Burst Mode
563  */
564 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
565                                        unsigned char *buffer, int offset,
566                                        size_t count)
567 {
568         struct onenand_chip *this = mtd->priv;
569         void __iomem *bufferram;
570
571         bufferram = this->base + area;
572         bufferram += onenand_bufferram_offset(mtd, area);
573
574         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
575
576         memcpy_16(buffer, bufferram + offset, count);
577
578         this->mmcontrol(mtd, 0);
579
580         return 0;
581 }
582
583 /**
584  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
585  * @param mtd           MTD data structure
586  * @param area          BufferRAM area
587  * @param buffer        the databuffer to put/get data
588  * @param offset        offset to read from or write to
589  * @param count         number of bytes to read/write
590  *
591  * Write the BufferRAM area
592  */
593 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
594                                    const unsigned char *buffer, int offset,
595                                    size_t count)
596 {
597         struct onenand_chip *this = mtd->priv;
598         void __iomem *bufferram;
599
600         bufferram = this->base + area;
601         bufferram += onenand_bufferram_offset(mtd, area);
602
603         memcpy_16(bufferram + offset, buffer, count);
604
605         return 0;
606 }
607
608 /**
609  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
610  * @param mtd           MTD data structure
611  * @param addr          address to check
612  * @return              blockpage address
613  *
614  * Get blockpage address at 2x program mode
615  */
616 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
617 {
618         struct onenand_chip *this = mtd->priv;
619         int blockpage, block, page;
620
621         /* Calculate the even block number */
622         block = (int) (addr >> this->erase_shift) & ~1;
623         /* Is it the odd plane? */
624         if (addr & this->writesize)
625                 block++;
626         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
627         blockpage = (block << 7) | page;
628
629         return blockpage;
630 }
631
632 /**
633  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
634  * @param mtd           MTD data structure
635  * @param addr          address to check
636  * @return              1 if there are valid data, otherwise 0
637  *
638  * Check bufferram if there is data we required
639  */
640 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
641 {
642         struct onenand_chip *this = mtd->priv;
643         int blockpage, found = 0;
644         unsigned int i;
645
646         if (ONENAND_IS_2PLANE(this))
647                 blockpage = onenand_get_2x_blockpage(mtd, addr);
648         else
649                 blockpage = (int) (addr >> this->page_shift);
650
651         /* Is there valid data? */
652         i = ONENAND_CURRENT_BUFFERRAM(this);
653         if (this->bufferram[i].blockpage == blockpage)
654                 found = 1;
655         else {
656                 /* Check another BufferRAM */
657                 i = ONENAND_NEXT_BUFFERRAM(this);
658                 if (this->bufferram[i].blockpage == blockpage) {
659                         ONENAND_SET_NEXT_BUFFERRAM(this);
660                         found = 1;
661                 }
662         }
663
664         if (found && ONENAND_IS_DDP(this)) {
665                 /* Select DataRAM for DDP */
666                 int block = onenand_block(this, addr);
667                 int value = onenand_bufferram_address(this, block);
668                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
669         }
670
671         return found;
672 }
673
674 /**
675  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
676  * @param mtd           MTD data structure
677  * @param addr          address to update
678  * @param valid         valid flag
679  *
680  * Update BufferRAM information
681  */
682 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
683                                     int valid)
684 {
685         struct onenand_chip *this = mtd->priv;
686         int blockpage;
687         unsigned int i;
688
689         if (ONENAND_IS_2PLANE(this))
690                 blockpage = onenand_get_2x_blockpage(mtd, addr);
691         else
692                 blockpage = (int)(addr >> this->page_shift);
693
694         /* Invalidate another BufferRAM */
695         i = ONENAND_NEXT_BUFFERRAM(this);
696         if (this->bufferram[i].blockpage == blockpage)
697                 this->bufferram[i].blockpage = -1;
698
699         /* Update BufferRAM */
700         i = ONENAND_CURRENT_BUFFERRAM(this);
701         if (valid)
702                 this->bufferram[i].blockpage = blockpage;
703         else
704                 this->bufferram[i].blockpage = -1;
705
706         return 0;
707 }
708
709 /**
710  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
711  * @param mtd           MTD data structure
712  * @param addr          start address to invalidate
713  * @param len           length to invalidate
714  *
715  * Invalidate BufferRAM information
716  */
717 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
718                                          unsigned int len)
719 {
720         struct onenand_chip *this = mtd->priv;
721         int i;
722         loff_t end_addr = addr + len;
723
724         /* Invalidate BufferRAM */
725         for (i = 0; i < MAX_BUFFERRAM; i++) {
726                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
727
728                 if (buf_addr >= addr && buf_addr < end_addr)
729                         this->bufferram[i].blockpage = -1;
730         }
731 }
732
733 /**
734  * onenand_get_device - [GENERIC] Get chip for selected access
735  * @param mtd           MTD device structure
736  * @param new_state     the state which is requested
737  *
738  * Get the device and lock it for exclusive access
739  */
740 static void onenand_get_device(struct mtd_info *mtd, int new_state)
741 {
742         /* Do nothing */
743 }
744
745 /**
746  * onenand_release_device - [GENERIC] release chip
747  * @param mtd           MTD device structure
748  *
749  * Deselect, release chip lock and wake up anyone waiting on the device
750  */
751 static void onenand_release_device(struct mtd_info *mtd)
752 {
753         /* Do nothing */
754 }
755
756 /**
757  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
758  * @param mtd           MTD device structure
759  * @param buf           destination address
760  * @param column        oob offset to read from
761  * @param thislen       oob length to read
762  */
763 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
764                                         int column, int thislen)
765 {
766         struct onenand_chip *this = mtd->priv;
767         struct nand_oobfree *free;
768         int readcol = column;
769         int readend = column + thislen;
770         int lastgap = 0;
771         unsigned int i;
772         uint8_t *oob_buf = this->oob_buf;
773
774         free = this->ecclayout->oobfree;
775         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
776              i++, free++) {
777                 if (readcol >= lastgap)
778                         readcol += free->offset - lastgap;
779                 if (readend >= lastgap)
780                         readend += free->offset - lastgap;
781                 lastgap = free->offset + free->length;
782         }
783         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
784         free = this->ecclayout->oobfree;
785         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
786              i++, free++) {
787                 int free_end = free->offset + free->length;
788                 if (free->offset < readend && free_end > readcol) {
789                         int st = max_t(int,free->offset,readcol);
790                         int ed = min_t(int,free_end,readend);
791                         int n = ed - st;
792                         memcpy(buf, oob_buf + st, n);
793                         buf += n;
794                 } else if (column == 0)
795                         break;
796         }
797         return 0;
798 }
799
800 /**
801  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
802  * @param mtd           MTD device structure
803  * @param addr          address to recover
804  * @param status        return value from onenand_wait
805  *
806  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
807  * lower page address and MSB page has higher page address in paired pages.
808  * If power off occurs during MSB page program, the paired LSB page data can
809  * become corrupt. LSB page recovery read is a way to read LSB page though page
810  * data are corrupted. When uncorrectable error occurs as a result of LSB page
811  * read after power up, issue LSB page recovery read.
812  */
813 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
814 {
815         struct onenand_chip *this = mtd->priv;
816         int i;
817
818         /* Recovery is only for Flex-OneNAND */
819         if (!FLEXONENAND(this))
820                 return status;
821
822         /* check if we failed due to uncorrectable error */
823         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
824                 return status;
825
826         /* check if address lies in MLC region */
827         i = flexonenand_region(mtd, addr);
828         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
829                 return status;
830
831         printk("onenand_recover_lsb:"
832                 "Attempting to recover from uncorrectable read\n");
833
834         /* Issue the LSB page recovery command */
835         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
836         return this->wait(mtd, FL_READING);
837 }
838
839 /**
840  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
841  * @param mtd           MTD device structure
842  * @param from          offset to read from
843  * @param ops           oob operation description structure
844  *
845  * OneNAND read main and/or out-of-band data
846  */
847 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
848                 struct mtd_oob_ops *ops)
849 {
850         struct onenand_chip *this = mtd->priv;
851         struct mtd_ecc_stats stats;
852         size_t len = ops->len;
853         size_t ooblen = ops->ooblen;
854         u_char *buf = ops->datbuf;
855         u_char *oobbuf = ops->oobbuf;
856         int read = 0, column, thislen;
857         int oobread = 0, oobcolumn, thisooblen, oobsize;
858         int ret = 0, boundary = 0;
859         int writesize = this->writesize;
860
861         pr_debug("onenand_read_ops_nolock: from = 0x%08x, len = %i\n",
862                  (unsigned int) from, (int) len);
863
864         if (ops->mode == MTD_OPS_AUTO_OOB)
865                 oobsize = this->ecclayout->oobavail;
866         else
867                 oobsize = mtd->oobsize;
868
869         oobcolumn = from & (mtd->oobsize - 1);
870
871         /* Do not allow reads past end of device */
872         if ((from + len) > mtd->size) {
873                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
874                 ops->retlen = 0;
875                 ops->oobretlen = 0;
876                 return -EINVAL;
877         }
878
879         stats = mtd->ecc_stats;
880
881         /* Read-while-load method */
882         /* Note: We can't use this feature in MLC */
883
884         /* Do first load to bufferRAM */
885         if (read < len) {
886                 if (!onenand_check_bufferram(mtd, from)) {
887                         this->main_buf = buf;
888                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
889                         ret = this->wait(mtd, FL_READING);
890                         if (unlikely(ret))
891                                 ret = onenand_recover_lsb(mtd, from, ret);
892                         onenand_update_bufferram(mtd, from, !ret);
893                         if (ret == -EBADMSG)
894                                 ret = 0;
895                 }
896         }
897
898         thislen = min_t(int, writesize, len - read);
899         column = from & (writesize - 1);
900         if (column + thislen > writesize)
901                 thislen = writesize - column;
902
903         while (!ret) {
904                 /* If there is more to load then start next load */
905                 from += thislen;
906                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
907                         this->main_buf = buf + thislen;
908                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
909                         /*
910                          * Chip boundary handling in DDP
911                          * Now we issued chip 1 read and pointed chip 1
912                          * bufferam so we have to point chip 0 bufferam.
913                          */
914                         if (ONENAND_IS_DDP(this) &&
915                                         unlikely(from == (this->chipsize >> 1))) {
916                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
917                                 boundary = 1;
918                         } else
919                                 boundary = 0;
920                         ONENAND_SET_PREV_BUFFERRAM(this);
921                 }
922
923                 /* While load is going, read from last bufferRAM */
924                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
925
926                 /* Read oob area if needed */
927                 if (oobbuf) {
928                         thisooblen = oobsize - oobcolumn;
929                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
930
931                         if (ops->mode == MTD_OPS_AUTO_OOB)
932                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
933                         else
934                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
935                         oobread += thisooblen;
936                         oobbuf += thisooblen;
937                         oobcolumn = 0;
938                 }
939
940                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
941                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
942                         ret = this->wait(mtd, FL_READING);
943                         if (unlikely(ret))
944                                 ret = onenand_recover_lsb(mtd, from, ret);
945                         onenand_update_bufferram(mtd, from, !ret);
946                         if (mtd_is_eccerr(ret))
947                                 ret = 0;
948                 }
949
950                 /* See if we are done */
951                 read += thislen;
952                 if (read == len)
953                         break;
954                 /* Set up for next read from bufferRAM */
955                 if (unlikely(boundary))
956                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
957                 if (!ONENAND_IS_4KB_PAGE(this))
958                         ONENAND_SET_NEXT_BUFFERRAM(this);
959                 buf += thislen;
960                 thislen = min_t(int, writesize, len - read);
961                 column = 0;
962
963                 if (!ONENAND_IS_4KB_PAGE(this)) {
964                         /* Now wait for load */
965                         ret = this->wait(mtd, FL_READING);
966                         onenand_update_bufferram(mtd, from, !ret);
967                         if (mtd_is_eccerr(ret))
968                                 ret = 0;
969                 }
970         }
971
972         /*
973          * Return success, if no ECC failures, else -EBADMSG
974          * fs driver will take care of that, because
975          * retlen == desired len and result == -EBADMSG
976          */
977         ops->retlen = read;
978         ops->oobretlen = oobread;
979
980         if (ret)
981                 return ret;
982
983         if (mtd->ecc_stats.failed - stats.failed)
984                 return -EBADMSG;
985
986         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
987         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
988 }
989
990 /**
991  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
992  * @param mtd           MTD device structure
993  * @param from          offset to read from
994  * @param ops           oob operation description structure
995  *
996  * OneNAND read out-of-band data from the spare area
997  */
998 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
999                 struct mtd_oob_ops *ops)
1000 {
1001         struct onenand_chip *this = mtd->priv;
1002         struct mtd_ecc_stats stats;
1003         int read = 0, thislen, column, oobsize;
1004         size_t len = ops->ooblen;
1005         unsigned int mode = ops->mode;
1006         u_char *buf = ops->oobbuf;
1007         int ret = 0, readcmd;
1008
1009         from += ops->ooboffs;
1010
1011         pr_debug("onenand_read_oob_nolock: from = 0x%08x, len = %i\n",
1012                  (unsigned int) from, (int) len);
1013
1014         /* Initialize return length value */
1015         ops->oobretlen = 0;
1016
1017         if (mode == MTD_OPS_AUTO_OOB)
1018                 oobsize = this->ecclayout->oobavail;
1019         else
1020                 oobsize = mtd->oobsize;
1021
1022         column = from & (mtd->oobsize - 1);
1023
1024         if (unlikely(column >= oobsize)) {
1025                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1026                 return -EINVAL;
1027         }
1028
1029         /* Do not allow reads past end of device */
1030         if (unlikely(from >= mtd->size ||
1031                 column + len > ((mtd->size >> this->page_shift) -
1032                                 (from >> this->page_shift)) * oobsize)) {
1033                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1034                 return -EINVAL;
1035         }
1036
1037         stats = mtd->ecc_stats;
1038
1039         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1040                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1041
1042         while (read < len) {
1043                 thislen = oobsize - column;
1044                 thislen = min_t(int, thislen, len);
1045
1046                 this->spare_buf = buf;
1047                 this->command(mtd, readcmd, from, mtd->oobsize);
1048
1049                 onenand_update_bufferram(mtd, from, 0);
1050
1051                 ret = this->wait(mtd, FL_READING);
1052                 if (unlikely(ret))
1053                         ret = onenand_recover_lsb(mtd, from, ret);
1054
1055                 if (ret && ret != -EBADMSG) {
1056                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1057                         break;
1058                 }
1059
1060                 if (mode == MTD_OPS_AUTO_OOB)
1061                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1062                 else
1063                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1064
1065                 read += thislen;
1066
1067                 if (read == len)
1068                         break;
1069
1070                 buf += thislen;
1071
1072                 /* Read more? */
1073                 if (read < len) {
1074                         /* Page size */
1075                         from += mtd->writesize;
1076                         column = 0;
1077                 }
1078         }
1079
1080         ops->oobretlen = read;
1081
1082         if (ret)
1083                 return ret;
1084
1085         if (mtd->ecc_stats.failed - stats.failed)
1086                 return -EBADMSG;
1087
1088         return 0;
1089 }
1090
1091 /**
1092  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1093  * @param mtd           MTD device structure
1094  * @param from          offset to read from
1095  * @param len           number of bytes to read
1096  * @param retlen        pointer to variable to store the number of read bytes
1097  * @param buf           the databuffer to put data
1098  *
1099  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1100 */
1101 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1102                  size_t * retlen, u_char * buf)
1103 {
1104         struct mtd_oob_ops ops = {
1105                 .len    = len,
1106                 .ooblen = 0,
1107                 .datbuf = buf,
1108                 .oobbuf = NULL,
1109         };
1110         int ret;
1111
1112         onenand_get_device(mtd, FL_READING);
1113         ret = onenand_read_ops_nolock(mtd, from, &ops);
1114         onenand_release_device(mtd);
1115
1116         *retlen = ops.retlen;
1117         return ret;
1118 }
1119
1120 /**
1121  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1122  * @param mtd           MTD device structure
1123  * @param from          offset to read from
1124  * @param ops           oob operations description structure
1125  *
1126  * OneNAND main and/or out-of-band
1127  */
1128 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1129                         struct mtd_oob_ops *ops)
1130 {
1131         int ret;
1132
1133         switch (ops->mode) {
1134         case MTD_OPS_PLACE_OOB:
1135         case MTD_OPS_AUTO_OOB:
1136                 break;
1137         case MTD_OPS_RAW:
1138                 /* Not implemented yet */
1139         default:
1140                 return -EINVAL;
1141         }
1142
1143         onenand_get_device(mtd, FL_READING);
1144         if (ops->datbuf)
1145                 ret = onenand_read_ops_nolock(mtd, from, ops);
1146         else
1147                 ret = onenand_read_oob_nolock(mtd, from, ops);
1148         onenand_release_device(mtd);
1149
1150         return ret;
1151 }
1152
1153 /**
1154  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1155  * @param mtd           MTD device structure
1156  * @param state         state to select the max. timeout value
1157  *
1158  * Wait for command done.
1159  */
1160 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1161 {
1162         struct onenand_chip *this = mtd->priv;
1163         unsigned int interrupt;
1164         unsigned int ctrl;
1165
1166         /* Wait at most 20ms ... */
1167         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
1168         u32 time_start = get_timer(0);
1169         do {
1170                 WATCHDOG_RESET();
1171                 if (get_timer(time_start) > timeo)
1172                         return ONENAND_BBT_READ_FATAL_ERROR;
1173                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1174         } while ((interrupt & ONENAND_INT_MASTER) == 0);
1175
1176         /* To get correct interrupt status in timeout case */
1177         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1178         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1179
1180         if (interrupt & ONENAND_INT_READ) {
1181                 int ecc = onenand_read_ecc(this);
1182                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1183                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1184                                 ", controller = 0x%04x\n", ecc, ctrl);
1185                         return ONENAND_BBT_READ_ERROR;
1186                 }
1187         } else {
1188                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1189                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1190                 return ONENAND_BBT_READ_FATAL_ERROR;
1191         }
1192
1193         /* Initial bad block case: 0x2400 or 0x0400 */
1194         if (ctrl & ONENAND_CTRL_ERROR) {
1195                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1196                 return ONENAND_BBT_READ_ERROR;
1197         }
1198
1199         return 0;
1200 }
1201
1202 /**
1203  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1204  * @param mtd           MTD device structure
1205  * @param from          offset to read from
1206  * @param ops           oob operation description structure
1207  *
1208  * OneNAND read out-of-band data from the spare area for bbt scan
1209  */
1210 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1211                 struct mtd_oob_ops *ops)
1212 {
1213         struct onenand_chip *this = mtd->priv;
1214         int read = 0, thislen, column;
1215         int ret = 0, readcmd;
1216         size_t len = ops->ooblen;
1217         u_char *buf = ops->oobbuf;
1218
1219         pr_debug("onenand_bbt_read_oob: from = 0x%08x, len = %zi\n",
1220                  (unsigned int) from, len);
1221
1222         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1223                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1224
1225         /* Initialize return value */
1226         ops->oobretlen = 0;
1227
1228         /* Do not allow reads past end of device */
1229         if (unlikely((from + len) > mtd->size)) {
1230                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1231                 return ONENAND_BBT_READ_FATAL_ERROR;
1232         }
1233
1234         /* Grab the lock and see if the device is available */
1235         onenand_get_device(mtd, FL_READING);
1236
1237         column = from & (mtd->oobsize - 1);
1238
1239         while (read < len) {
1240
1241                 thislen = mtd->oobsize - column;
1242                 thislen = min_t(int, thislen, len);
1243
1244                 this->spare_buf = buf;
1245                 this->command(mtd, readcmd, from, mtd->oobsize);
1246
1247                 onenand_update_bufferram(mtd, from, 0);
1248
1249                 ret = this->bbt_wait(mtd, FL_READING);
1250                 if (unlikely(ret))
1251                         ret = onenand_recover_lsb(mtd, from, ret);
1252
1253                 if (ret)
1254                         break;
1255
1256                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1257                 read += thislen;
1258                 if (read == len)
1259                         break;
1260
1261                 buf += thislen;
1262
1263                 /* Read more? */
1264                 if (read < len) {
1265                         /* Update Page size */
1266                         from += this->writesize;
1267                         column = 0;
1268                 }
1269         }
1270
1271         /* Deselect and wake up anyone waiting on the device */
1272         onenand_release_device(mtd);
1273
1274         ops->oobretlen = read;
1275         return ret;
1276 }
1277
1278
1279 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1280 /**
1281  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1282  * @param mtd           MTD device structure
1283  * @param buf           the databuffer to verify
1284  * @param to            offset to read from
1285  */
1286 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1287 {
1288         struct onenand_chip *this = mtd->priv;
1289         u_char *oob_buf = this->oob_buf;
1290         int status, i, readcmd;
1291
1292         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1293                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1294
1295         this->command(mtd, readcmd, to, mtd->oobsize);
1296         onenand_update_bufferram(mtd, to, 0);
1297         status = this->wait(mtd, FL_READING);
1298         if (status)
1299                 return status;
1300
1301         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1302         for (i = 0; i < mtd->oobsize; i++)
1303                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1304                         return -EBADMSG;
1305
1306         return 0;
1307 }
1308
1309 /**
1310  * onenand_verify - [GENERIC] verify the chip contents after a write
1311  * @param mtd          MTD device structure
1312  * @param buf          the databuffer to verify
1313  * @param addr         offset to read from
1314  * @param len          number of bytes to read and compare
1315  */
1316 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1317 {
1318         struct onenand_chip *this = mtd->priv;
1319         void __iomem *dataram;
1320         int ret = 0;
1321         int thislen, column;
1322
1323         while (len != 0) {
1324                 thislen = min_t(int, this->writesize, len);
1325                 column = addr & (this->writesize - 1);
1326                 if (column + thislen > this->writesize)
1327                         thislen = this->writesize - column;
1328
1329                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1330
1331                 onenand_update_bufferram(mtd, addr, 0);
1332
1333                 ret = this->wait(mtd, FL_READING);
1334                 if (ret)
1335                         return ret;
1336
1337                 onenand_update_bufferram(mtd, addr, 1);
1338
1339                 dataram = this->base + ONENAND_DATARAM;
1340                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1341
1342                 if (memcmp(buf, dataram + column, thislen))
1343                         return -EBADMSG;
1344
1345                 len -= thislen;
1346                 buf += thislen;
1347                 addr += thislen;
1348         }
1349
1350         return 0;
1351 }
1352 #else
1353 #define onenand_verify(...)             (0)
1354 #define onenand_verify_oob(...)         (0)
1355 #endif
1356
1357 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1358
1359 /**
1360  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1361  * @param mtd           MTD device structure
1362  * @param oob_buf       oob buffer
1363  * @param buf           source address
1364  * @param column        oob offset to write to
1365  * @param thislen       oob length to write
1366  */
1367 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1368                 const u_char *buf, int column, int thislen)
1369 {
1370         struct onenand_chip *this = mtd->priv;
1371         struct nand_oobfree *free;
1372         int writecol = column;
1373         int writeend = column + thislen;
1374         int lastgap = 0;
1375         unsigned int i;
1376
1377         free = this->ecclayout->oobfree;
1378         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1379              i++, free++) {
1380                 if (writecol >= lastgap)
1381                         writecol += free->offset - lastgap;
1382                 if (writeend >= lastgap)
1383                         writeend += free->offset - lastgap;
1384                 lastgap = free->offset + free->length;
1385         }
1386         free = this->ecclayout->oobfree;
1387         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1388              i++, free++) {
1389                 int free_end = free->offset + free->length;
1390                 if (free->offset < writeend && free_end > writecol) {
1391                         int st = max_t(int,free->offset,writecol);
1392                         int ed = min_t(int,free_end,writeend);
1393                         int n = ed - st;
1394                         memcpy(oob_buf + st, buf, n);
1395                         buf += n;
1396                 } else if (column == 0)
1397                         break;
1398         }
1399         return 0;
1400 }
1401
1402 /**
1403  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1404  * @param mtd           MTD device structure
1405  * @param to            offset to write to
1406  * @param ops           oob operation description structure
1407  *
1408  * Write main and/or oob with ECC
1409  */
1410 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1411                 struct mtd_oob_ops *ops)
1412 {
1413         struct onenand_chip *this = mtd->priv;
1414         int written = 0, column, thislen, subpage;
1415         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1416         size_t len = ops->len;
1417         size_t ooblen = ops->ooblen;
1418         const u_char *buf = ops->datbuf;
1419         const u_char *oob = ops->oobbuf;
1420         u_char *oobbuf;
1421         int ret = 0;
1422
1423         pr_debug("onenand_write_ops_nolock: to = 0x%08x, len = %i\n",
1424                  (unsigned int) to, (int) len);
1425
1426         /* Initialize retlen, in case of early exit */
1427         ops->retlen = 0;
1428         ops->oobretlen = 0;
1429
1430         /* Reject writes, which are not page aligned */
1431         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1432                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1433                 return -EINVAL;
1434         }
1435
1436         if (ops->mode == MTD_OPS_AUTO_OOB)
1437                 oobsize = this->ecclayout->oobavail;
1438         else
1439                 oobsize = mtd->oobsize;
1440
1441         oobcolumn = to & (mtd->oobsize - 1);
1442
1443         column = to & (mtd->writesize - 1);
1444
1445         /* Loop until all data write */
1446         while (written < len) {
1447                 u_char *wbuf = (u_char *) buf;
1448
1449                 thislen = min_t(int, mtd->writesize - column, len - written);
1450                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1451
1452                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1453
1454                 /* Partial page write */
1455                 subpage = thislen < mtd->writesize;
1456                 if (subpage) {
1457                         memset(this->page_buf, 0xff, mtd->writesize);
1458                         memcpy(this->page_buf + column, buf, thislen);
1459                         wbuf = this->page_buf;
1460                 }
1461
1462                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1463
1464                 if (oob) {
1465                         oobbuf = this->oob_buf;
1466
1467                         /* We send data to spare ram with oobsize
1468                          *                          * to prevent byte access */
1469                         memset(oobbuf, 0xff, mtd->oobsize);
1470                         if (ops->mode == MTD_OPS_AUTO_OOB)
1471                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1472                         else
1473                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1474
1475                         oobwritten += thisooblen;
1476                         oob += thisooblen;
1477                         oobcolumn = 0;
1478                 } else
1479                         oobbuf = (u_char *) ffchars;
1480
1481                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1482
1483                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1484
1485                 ret = this->wait(mtd, FL_WRITING);
1486
1487                 /* In partial page write we don't update bufferram */
1488                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1489                 if (ONENAND_IS_2PLANE(this)) {
1490                         ONENAND_SET_BUFFERRAM1(this);
1491                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1492                 }
1493
1494                 if (ret) {
1495                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1496                         break;
1497                 }
1498
1499                 /* Only check verify write turn on */
1500                 ret = onenand_verify(mtd, buf, to, thislen);
1501                 if (ret) {
1502                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1503                         break;
1504                 }
1505
1506                 written += thislen;
1507
1508                 if (written == len)
1509                         break;
1510
1511                 column = 0;
1512                 to += thislen;
1513                 buf += thislen;
1514         }
1515
1516         ops->retlen = written;
1517
1518         return ret;
1519 }
1520
1521 /**
1522  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1523  * @param mtd           MTD device structure
1524  * @param to            offset to write to
1525  * @param len           number of bytes to write
1526  * @param retlen        pointer to variable to store the number of written bytes
1527  * @param buf           the data to write
1528  * @param mode          operation mode
1529  *
1530  * OneNAND write out-of-band
1531  */
1532 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1533                 struct mtd_oob_ops *ops)
1534 {
1535         struct onenand_chip *this = mtd->priv;
1536         int column, ret = 0, oobsize;
1537         int written = 0, oobcmd;
1538         u_char *oobbuf;
1539         size_t len = ops->ooblen;
1540         const u_char *buf = ops->oobbuf;
1541         unsigned int mode = ops->mode;
1542
1543         to += ops->ooboffs;
1544
1545         pr_debug("onenand_write_oob_nolock: to = 0x%08x, len = %i\n",
1546                  (unsigned int) to, (int) len);
1547
1548         /* Initialize retlen, in case of early exit */
1549         ops->oobretlen = 0;
1550
1551         if (mode == MTD_OPS_AUTO_OOB)
1552                 oobsize = this->ecclayout->oobavail;
1553         else
1554                 oobsize = mtd->oobsize;
1555
1556         column = to & (mtd->oobsize - 1);
1557
1558         if (unlikely(column >= oobsize)) {
1559                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1560                 return -EINVAL;
1561         }
1562
1563         /* For compatibility with NAND: Do not allow write past end of page */
1564         if (unlikely(column + len > oobsize)) {
1565                 printk(KERN_ERR "onenand_write_oob_nolock: "
1566                                 "Attempt to write past end of page\n");
1567                 return -EINVAL;
1568         }
1569
1570         /* Do not allow reads past end of device */
1571         if (unlikely(to >= mtd->size ||
1572                                 column + len > ((mtd->size >> this->page_shift) -
1573                                         (to >> this->page_shift)) * oobsize)) {
1574                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1575                 return -EINVAL;
1576         }
1577
1578         oobbuf = this->oob_buf;
1579
1580         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1581                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1582
1583         /* Loop until all data write */
1584         while (written < len) {
1585                 int thislen = min_t(int, oobsize, len - written);
1586
1587                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1588
1589                 /* We send data to spare ram with oobsize
1590                  * to prevent byte access */
1591                 memset(oobbuf, 0xff, mtd->oobsize);
1592                 if (mode == MTD_OPS_AUTO_OOB)
1593                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1594                 else
1595                         memcpy(oobbuf + column, buf, thislen);
1596                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1597
1598                 if (ONENAND_IS_4KB_PAGE(this)) {
1599                         /* Set main area of DataRAM to 0xff*/
1600                         memset(this->page_buf, 0xff, mtd->writesize);
1601                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1602                                 this->page_buf, 0, mtd->writesize);
1603                 }
1604
1605                 this->command(mtd, oobcmd, to, mtd->oobsize);
1606
1607                 onenand_update_bufferram(mtd, to, 0);
1608                 if (ONENAND_IS_2PLANE(this)) {
1609                         ONENAND_SET_BUFFERRAM1(this);
1610                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1611                 }
1612
1613                 ret = this->wait(mtd, FL_WRITING);
1614                 if (ret) {
1615                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1616                         break;
1617                 }
1618
1619                 ret = onenand_verify_oob(mtd, oobbuf, to);
1620                 if (ret) {
1621                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1622                         break;
1623                 }
1624
1625                 written += thislen;
1626                 if (written == len)
1627                         break;
1628
1629                 to += mtd->writesize;
1630                 buf += thislen;
1631                 column = 0;
1632         }
1633
1634         ops->oobretlen = written;
1635
1636         return ret;
1637 }
1638
1639 /**
1640  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1641  * @param mtd           MTD device structure
1642  * @param to            offset to write to
1643  * @param len           number of bytes to write
1644  * @param retlen        pointer to variable to store the number of written bytes
1645  * @param buf           the data to write
1646  *
1647  * Write with ECC
1648  */
1649 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1650                   size_t * retlen, const u_char * buf)
1651 {
1652         struct mtd_oob_ops ops = {
1653                 .len    = len,
1654                 .ooblen = 0,
1655                 .datbuf = (u_char *) buf,
1656                 .oobbuf = NULL,
1657         };
1658         int ret;
1659
1660         onenand_get_device(mtd, FL_WRITING);
1661         ret = onenand_write_ops_nolock(mtd, to, &ops);
1662         onenand_release_device(mtd);
1663
1664         *retlen = ops.retlen;
1665         return ret;
1666 }
1667
1668 /**
1669  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1670  * @param mtd           MTD device structure
1671  * @param to            offset to write to
1672  * @param ops           oob operation description structure
1673  *
1674  * OneNAND write main and/or out-of-band
1675  */
1676 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1677                         struct mtd_oob_ops *ops)
1678 {
1679         int ret;
1680
1681         switch (ops->mode) {
1682         case MTD_OPS_PLACE_OOB:
1683         case MTD_OPS_AUTO_OOB:
1684                 break;
1685         case MTD_OPS_RAW:
1686                 /* Not implemented yet */
1687         default:
1688                 return -EINVAL;
1689         }
1690
1691         onenand_get_device(mtd, FL_WRITING);
1692         if (ops->datbuf)
1693                 ret = onenand_write_ops_nolock(mtd, to, ops);
1694         else
1695                 ret = onenand_write_oob_nolock(mtd, to, ops);
1696         onenand_release_device(mtd);
1697
1698         return ret;
1699
1700 }
1701
1702 /**
1703  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1704  * @param mtd           MTD device structure
1705  * @param ofs           offset from device start
1706  * @param allowbbt      1, if its allowed to access the bbt area
1707  *
1708  * Check, if the block is bad, Either by reading the bad block table or
1709  * calling of the scan function.
1710  */
1711 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1712 {
1713         struct onenand_chip *this = mtd->priv;
1714         struct bbm_info *bbm = this->bbm;
1715
1716         /* Return info from the table */
1717         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1718 }
1719
1720
1721 /**
1722  * onenand_erase - [MTD Interface] erase block(s)
1723  * @param mtd           MTD device structure
1724  * @param instr         erase instruction
1725  *
1726  * Erase one ore more blocks
1727  */
1728 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1729 {
1730         struct onenand_chip *this = mtd->priv;
1731         unsigned int block_size;
1732         loff_t addr = instr->addr;
1733         unsigned int len = instr->len;
1734         int ret = 0, i;
1735         struct mtd_erase_region_info *region = NULL;
1736         unsigned int region_end = 0;
1737
1738         pr_debug("onenand_erase: start = 0x%08x, len = %i\n",
1739                         (unsigned int) addr, len);
1740
1741         if (FLEXONENAND(this)) {
1742                 /* Find the eraseregion of this address */
1743                 i = flexonenand_region(mtd, addr);
1744                 region = &mtd->eraseregions[i];
1745
1746                 block_size = region->erasesize;
1747                 region_end = region->offset
1748                         + region->erasesize * region->numblocks;
1749
1750                 /* Start address within region must align on block boundary.
1751                  * Erase region's start offset is always block start address.
1752                  */
1753                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1754                         pr_debug("onenand_erase:" " Unaligned address\n");
1755                         return -EINVAL;
1756                 }
1757         } else {
1758                 block_size = 1 << this->erase_shift;
1759
1760                 /* Start address must align on block boundary */
1761                 if (unlikely(addr & (block_size - 1))) {
1762                         pr_debug("onenand_erase:" "Unaligned address\n");
1763                         return -EINVAL;
1764                 }
1765         }
1766
1767         /* Length must align on block boundary */
1768         if (unlikely(len & (block_size - 1))) {
1769                 pr_debug("onenand_erase: Length not block aligned\n");
1770                 return -EINVAL;
1771         }
1772
1773         /* Grab the lock and see if the device is available */
1774         onenand_get_device(mtd, FL_ERASING);
1775
1776         /* Loop throught the pages */
1777         instr->state = MTD_ERASING;
1778
1779         while (len) {
1780
1781                 /* Check if we have a bad block, we do not erase bad blocks */
1782                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1783                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1784                                 " a bad block at addr 0x%08x\n",
1785                                 (unsigned int) addr);
1786                         instr->state = MTD_ERASE_FAILED;
1787                         goto erase_exit;
1788                 }
1789
1790                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1791
1792                 onenand_invalidate_bufferram(mtd, addr, block_size);
1793
1794                 ret = this->wait(mtd, FL_ERASING);
1795                 /* Check, if it is write protected */
1796                 if (ret) {
1797                         if (ret == -EPERM)
1798                                 pr_debug("onenand_erase: "
1799                                          "Device is write protected!!!\n");
1800                         else
1801                                 pr_debug("onenand_erase: "
1802                                          "Failed erase, block %d\n",
1803                                          onenand_block(this, addr));
1804                         instr->state = MTD_ERASE_FAILED;
1805                         instr->fail_addr = addr;
1806
1807                         goto erase_exit;
1808                 }
1809
1810                 len -= block_size;
1811                 addr += block_size;
1812
1813                 if (addr == region_end) {
1814                         if (!len)
1815                                 break;
1816                         region++;
1817
1818                         block_size = region->erasesize;
1819                         region_end = region->offset
1820                                 + region->erasesize * region->numblocks;
1821
1822                         if (len & (block_size - 1)) {
1823                                 /* This has been checked at MTD
1824                                  * partitioning level. */
1825                                 printk("onenand_erase: Unaligned address\n");
1826                                 goto erase_exit;
1827                         }
1828                 }
1829         }
1830
1831         instr->state = MTD_ERASE_DONE;
1832
1833 erase_exit:
1834
1835         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1836         /* Do call back function */
1837         if (!ret)
1838                 mtd_erase_callback(instr);
1839
1840         /* Deselect and wake up anyone waiting on the device */
1841         onenand_release_device(mtd);
1842
1843         return ret;
1844 }
1845
1846 /**
1847  * onenand_sync - [MTD Interface] sync
1848  * @param mtd           MTD device structure
1849  *
1850  * Sync is actually a wait for chip ready function
1851  */
1852 void onenand_sync(struct mtd_info *mtd)
1853 {
1854         pr_debug("onenand_sync: called\n");
1855
1856         /* Grab the lock and see if the device is available */
1857         onenand_get_device(mtd, FL_SYNCING);
1858
1859         /* Release it and go back */
1860         onenand_release_device(mtd);
1861 }
1862
1863 /**
1864  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1865  * @param mtd           MTD device structure
1866  * @param ofs           offset relative to mtd start
1867  *
1868  * Check whether the block is bad
1869  */
1870 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1871 {
1872         int ret;
1873
1874         /* Check for invalid offset */
1875         if (ofs > mtd->size)
1876                 return -EINVAL;
1877
1878         onenand_get_device(mtd, FL_READING);
1879         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1880         onenand_release_device(mtd);
1881         return ret;
1882 }
1883
1884 /**
1885  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1886  * @param mtd           MTD device structure
1887  * @param ofs           offset from device start
1888  *
1889  * This is the default implementation, which can be overridden by
1890  * a hardware specific driver.
1891  */
1892 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1893 {
1894         struct onenand_chip *this = mtd->priv;
1895         struct bbm_info *bbm = this->bbm;
1896         u_char buf[2] = {0, 0};
1897         struct mtd_oob_ops ops = {
1898                 .mode = MTD_OPS_PLACE_OOB,
1899                 .ooblen = 2,
1900                 .oobbuf = buf,
1901                 .ooboffs = 0,
1902         };
1903         int block;
1904
1905         /* Get block number */
1906         block = onenand_block(this, ofs);
1907         if (bbm->bbt)
1908                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1909
1910         /* We write two bytes, so we dont have to mess with 16 bit access */
1911         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1912         return onenand_write_oob_nolock(mtd, ofs, &ops);
1913 }
1914
1915 /**
1916  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1917  * @param mtd           MTD device structure
1918  * @param ofs           offset relative to mtd start
1919  *
1920  * Mark the block as bad
1921  */
1922 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1923 {
1924         struct onenand_chip *this = mtd->priv;
1925         int ret;
1926
1927         ret = onenand_block_isbad(mtd, ofs);
1928         if (ret) {
1929                 /* If it was bad already, return success and do nothing */
1930                 if (ret > 0)
1931                         return 0;
1932                 return ret;
1933         }
1934
1935         onenand_get_device(mtd, FL_WRITING);
1936         ret = this->block_markbad(mtd, ofs);
1937         onenand_release_device(mtd);
1938
1939         return ret;
1940 }
1941
1942 /**
1943  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1944  * @param mtd           MTD device structure
1945  * @param ofs           offset relative to mtd start
1946  * @param len           number of bytes to lock or unlock
1947  * @param cmd           lock or unlock command
1948  *
1949  * Lock or unlock one or more blocks
1950  */
1951 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1952 {
1953         struct onenand_chip *this = mtd->priv;
1954         int start, end, block, value, status;
1955
1956         start = onenand_block(this, ofs);
1957         end = onenand_block(this, ofs + len);
1958
1959         /* Continuous lock scheme */
1960         if (this->options & ONENAND_HAS_CONT_LOCK) {
1961                 /* Set start block address */
1962                 this->write_word(start,
1963                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1964                 /* Set end block address */
1965                 this->write_word(end - 1,
1966                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1967                 /* Write unlock command */
1968                 this->command(mtd, cmd, 0, 0);
1969
1970                 /* There's no return value */
1971                 this->wait(mtd, FL_UNLOCKING);
1972
1973                 /* Sanity check */
1974                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1975                        & ONENAND_CTRL_ONGO)
1976                         continue;
1977
1978                 /* Check lock status */
1979                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1980                 if (!(status & ONENAND_WP_US))
1981                         printk(KERN_ERR "wp status = 0x%x\n", status);
1982
1983                 return 0;
1984         }
1985
1986         /* Block lock scheme */
1987         for (block = start; block < end; block++) {
1988                 /* Set block address */
1989                 value = onenand_block_address(this, block);
1990                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1991                 /* Select DataRAM for DDP */
1992                 value = onenand_bufferram_address(this, block);
1993                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1994
1995                 /* Set start block address */
1996                 this->write_word(block,
1997                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1998                 /* Write unlock command */
1999                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
2000
2001                 /* There's no return value */
2002                 this->wait(mtd, FL_UNLOCKING);
2003
2004                 /* Sanity check */
2005                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2006                        & ONENAND_CTRL_ONGO)
2007                         continue;
2008
2009                 /* Check lock status */
2010                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2011                 if (!(status & ONENAND_WP_US))
2012                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2013                                block, status);
2014         }
2015
2016         return 0;
2017 }
2018
2019 #ifdef ONENAND_LINUX
2020 /**
2021  * onenand_lock - [MTD Interface] Lock block(s)
2022  * @param mtd           MTD device structure
2023  * @param ofs           offset relative to mtd start
2024  * @param len           number of bytes to unlock
2025  *
2026  * Lock one or more blocks
2027  */
2028 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2029 {
2030         int ret;
2031
2032         onenand_get_device(mtd, FL_LOCKING);
2033         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2034         onenand_release_device(mtd);
2035         return ret;
2036 }
2037
2038 /**
2039  * onenand_unlock - [MTD Interface] Unlock block(s)
2040  * @param mtd           MTD device structure
2041  * @param ofs           offset relative to mtd start
2042  * @param len           number of bytes to unlock
2043  *
2044  * Unlock one or more blocks
2045  */
2046 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2047 {
2048         int ret;
2049
2050         onenand_get_device(mtd, FL_LOCKING);
2051         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2052         onenand_release_device(mtd);
2053         return ret;
2054 }
2055 #endif
2056
2057 /**
2058  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2059  * @param this          onenand chip data structure
2060  *
2061  * Check lock status
2062  */
2063 static int onenand_check_lock_status(struct onenand_chip *this)
2064 {
2065         unsigned int value, block, status;
2066         unsigned int end;
2067
2068         end = this->chipsize >> this->erase_shift;
2069         for (block = 0; block < end; block++) {
2070                 /* Set block address */
2071                 value = onenand_block_address(this, block);
2072                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2073                 /* Select DataRAM for DDP */
2074                 value = onenand_bufferram_address(this, block);
2075                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2076                 /* Set start block address */
2077                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2078
2079                 /* Check lock status */
2080                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2081                 if (!(status & ONENAND_WP_US)) {
2082                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2083                         return 0;
2084                 }
2085         }
2086
2087         return 1;
2088 }
2089
2090 /**
2091  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2092  * @param mtd           MTD device structure
2093  *
2094  * Unlock all blocks
2095  */
2096 static void onenand_unlock_all(struct mtd_info *mtd)
2097 {
2098         struct onenand_chip *this = mtd->priv;
2099         loff_t ofs = 0;
2100         size_t len = mtd->size;
2101
2102         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2103                 /* Set start block address */
2104                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2105                 /* Write unlock command */
2106                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2107
2108                 /* There's no return value */
2109                 this->wait(mtd, FL_LOCKING);
2110
2111                 /* Sanity check */
2112                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2113                                 & ONENAND_CTRL_ONGO)
2114                         continue;
2115
2116                 /* Check lock status */
2117                 if (onenand_check_lock_status(this))
2118                         return;
2119
2120                 /* Workaround for all block unlock in DDP */
2121                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2122                         /* All blocks on another chip */
2123                         ofs = this->chipsize >> 1;
2124                         len = this->chipsize >> 1;
2125                 }
2126         }
2127
2128         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2129 }
2130
2131
2132 /**
2133  * onenand_check_features - Check and set OneNAND features
2134  * @param mtd           MTD data structure
2135  *
2136  * Check and set OneNAND features
2137  * - lock scheme
2138  * - two plane
2139  */
2140 static void onenand_check_features(struct mtd_info *mtd)
2141 {
2142         struct onenand_chip *this = mtd->priv;
2143         unsigned int density, process;
2144
2145         /* Lock scheme depends on density and process */
2146         density = onenand_get_density(this->device_id);
2147         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2148
2149         /* Lock scheme */
2150         switch (density) {
2151         case ONENAND_DEVICE_DENSITY_4Gb:
2152                 if (ONENAND_IS_DDP(this))
2153                         this->options |= ONENAND_HAS_2PLANE;
2154                 else
2155                         this->options |= ONENAND_HAS_4KB_PAGE;
2156
2157         case ONENAND_DEVICE_DENSITY_2Gb:
2158                 /* 2Gb DDP don't have 2 plane */
2159                 if (!ONENAND_IS_DDP(this))
2160                         this->options |= ONENAND_HAS_2PLANE;
2161                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2162
2163         case ONENAND_DEVICE_DENSITY_1Gb:
2164                 /* A-Die has all block unlock */
2165                 if (process)
2166                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2167                 break;
2168
2169         default:
2170                 /* Some OneNAND has continuous lock scheme */
2171                 if (!process)
2172                         this->options |= ONENAND_HAS_CONT_LOCK;
2173                 break;
2174         }
2175
2176         if (ONENAND_IS_MLC(this))
2177                 this->options |= ONENAND_HAS_4KB_PAGE;
2178
2179         if (ONENAND_IS_4KB_PAGE(this))
2180                 this->options &= ~ONENAND_HAS_2PLANE;
2181
2182         if (FLEXONENAND(this)) {
2183                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2184                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2185         }
2186
2187         if (this->options & ONENAND_HAS_CONT_LOCK)
2188                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2189         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2190                 printk(KERN_DEBUG "Chip support all block unlock\n");
2191         if (this->options & ONENAND_HAS_2PLANE)
2192                 printk(KERN_DEBUG "Chip has 2 plane\n");
2193         if (this->options & ONENAND_HAS_4KB_PAGE)
2194                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2195
2196 }
2197
2198 /**
2199  * onenand_print_device_info - Print device ID
2200  * @param device        device ID
2201  *
2202  * Print device ID
2203  */
2204 char *onenand_print_device_info(int device, int version)
2205 {
2206         int vcc, demuxed, ddp, density, flexonenand;
2207         char *dev_info = malloc(80);
2208         char *p = dev_info;
2209
2210         vcc = device & ONENAND_DEVICE_VCC_MASK;
2211         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2212         ddp = device & ONENAND_DEVICE_IS_DDP;
2213         density = onenand_get_density(device);
2214         flexonenand = device & DEVICE_IS_FLEXONENAND;
2215         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2216                demuxed ? "" : "Muxed ",
2217                flexonenand ? "Flex-" : "",
2218                ddp ? "(DDP)" : "",
2219                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2220
2221         sprintf(p, "\nOneNAND version = 0x%04x", version);
2222         printk("%s\n", dev_info);
2223
2224         return dev_info;
2225 }
2226
2227 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2228         {ONENAND_MFR_NUMONYX, "Numonyx"},
2229         {ONENAND_MFR_SAMSUNG, "Samsung"},
2230 };
2231
2232 /**
2233  * onenand_check_maf - Check manufacturer ID
2234  * @param manuf         manufacturer ID
2235  *
2236  * Check manufacturer ID
2237  */
2238 static int onenand_check_maf(int manuf)
2239 {
2240         int size = ARRAY_SIZE(onenand_manuf_ids);
2241         int i;
2242 #ifdef ONENAND_DEBUG
2243         char *name;
2244 #endif
2245
2246         for (i = 0; i < size; i++)
2247                 if (manuf == onenand_manuf_ids[i].id)
2248                         break;
2249
2250 #ifdef ONENAND_DEBUG
2251         if (i < size)
2252                 name = onenand_manuf_ids[i].name;
2253         else
2254                 name = "Unknown";
2255
2256         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2257 #endif
2258
2259         return i == size;
2260 }
2261
2262 /**
2263 * flexonenand_get_boundary      - Reads the SLC boundary
2264 * @param onenand_info           - onenand info structure
2265 *
2266 * Fill up boundary[] field in onenand_chip
2267 **/
2268 static int flexonenand_get_boundary(struct mtd_info *mtd)
2269 {
2270         struct onenand_chip *this = mtd->priv;
2271         unsigned int die, bdry;
2272         int syscfg, locked;
2273
2274         /* Disable ECC */
2275         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2276         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2277
2278         for (die = 0; die < this->dies; die++) {
2279                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2280                 this->wait(mtd, FL_SYNCING);
2281
2282                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2283                 this->wait(mtd, FL_READING);
2284
2285                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2286                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2287                         locked = 0;
2288                 else
2289                         locked = 1;
2290                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2291
2292                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2293                 this->wait(mtd, FL_RESETING);
2294
2295                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2296                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2297         }
2298
2299         /* Enable ECC */
2300         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2301         return 0;
2302 }
2303
2304 /**
2305  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2306  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2307  *                        mtd->eraseregions
2308  * @param mtd           - MTD device structure
2309  */
2310 static void flexonenand_get_size(struct mtd_info *mtd)
2311 {
2312         struct onenand_chip *this = mtd->priv;
2313         int die, i, eraseshift, density;
2314         int blksperdie, maxbdry;
2315         loff_t ofs;
2316
2317         density = onenand_get_density(this->device_id);
2318         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2319         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2320         maxbdry = blksperdie - 1;
2321         eraseshift = this->erase_shift - 1;
2322
2323         mtd->numeraseregions = this->dies << 1;
2324
2325         /* This fills up the device boundary */
2326         flexonenand_get_boundary(mtd);
2327         die = 0;
2328         ofs = 0;
2329         i = -1;
2330         for (; die < this->dies; die++) {
2331                 if (!die || this->boundary[die-1] != maxbdry) {
2332                         i++;
2333                         mtd->eraseregions[i].offset = ofs;
2334                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2335                         mtd->eraseregions[i].numblocks =
2336                                                         this->boundary[die] + 1;
2337                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2338                         eraseshift++;
2339                 } else {
2340                         mtd->numeraseregions -= 1;
2341                         mtd->eraseregions[i].numblocks +=
2342                                                         this->boundary[die] + 1;
2343                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2344                 }
2345                 if (this->boundary[die] != maxbdry) {
2346                         i++;
2347                         mtd->eraseregions[i].offset = ofs;
2348                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2349                         mtd->eraseregions[i].numblocks = maxbdry ^
2350                                                          this->boundary[die];
2351                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2352                         eraseshift--;
2353                 } else
2354                         mtd->numeraseregions -= 1;
2355         }
2356
2357         /* Expose MLC erase size except when all blocks are SLC */
2358         mtd->erasesize = 1 << this->erase_shift;
2359         if (mtd->numeraseregions == 1)
2360                 mtd->erasesize >>= 1;
2361
2362         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2363         for (i = 0; i < mtd->numeraseregions; i++)
2364                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2365                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2366                         mtd->eraseregions[i].erasesize,
2367                         mtd->eraseregions[i].numblocks);
2368
2369         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2370                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2371                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2372                                                  << (this->erase_shift - 1);
2373                 mtd->size += this->diesize[die];
2374         }
2375 }
2376
2377 /**
2378  * flexonenand_check_blocks_erased - Check if blocks are erased
2379  * @param mtd_info      - mtd info structure
2380  * @param start         - first erase block to check
2381  * @param end           - last erase block to check
2382  *
2383  * Converting an unerased block from MLC to SLC
2384  * causes byte values to change. Since both data and its ECC
2385  * have changed, reads on the block give uncorrectable error.
2386  * This might lead to the block being detected as bad.
2387  *
2388  * Avoid this by ensuring that the block to be converted is
2389  * erased.
2390  */
2391 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2392                                         int start, int end)
2393 {
2394         struct onenand_chip *this = mtd->priv;
2395         int i, ret;
2396         int block;
2397         struct mtd_oob_ops ops = {
2398                 .mode = MTD_OPS_PLACE_OOB,
2399                 .ooboffs = 0,
2400                 .ooblen = mtd->oobsize,
2401                 .datbuf = NULL,
2402                 .oobbuf = this->oob_buf,
2403         };
2404         loff_t addr;
2405
2406         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2407
2408         for (block = start; block <= end; block++) {
2409                 addr = flexonenand_addr(this, block);
2410                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2411                         continue;
2412
2413                 /*
2414                  * Since main area write results in ECC write to spare,
2415                  * it is sufficient to check only ECC bytes for change.
2416                  */
2417                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2418                 if (ret)
2419                         return ret;
2420
2421                 for (i = 0; i < mtd->oobsize; i++)
2422                         if (this->oob_buf[i] != 0xff)
2423                                 break;
2424
2425                 if (i != mtd->oobsize) {
2426                         printk(KERN_WARNING "Block %d not erased.\n", block);
2427                         return 1;
2428                 }
2429         }
2430
2431         return 0;
2432 }
2433
2434 /**
2435  * flexonenand_set_boundary     - Writes the SLC boundary
2436  * @param mtd                   - mtd info structure
2437  */
2438 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2439                                     int boundary, int lock)
2440 {
2441         struct onenand_chip *this = mtd->priv;
2442         int ret, density, blksperdie, old, new, thisboundary;
2443         loff_t addr;
2444
2445         if (die >= this->dies)
2446                 return -EINVAL;
2447
2448         if (boundary == this->boundary[die])
2449                 return 0;
2450
2451         density = onenand_get_density(this->device_id);
2452         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2453         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2454
2455         if (boundary >= blksperdie) {
2456                 printk("flexonenand_set_boundary:"
2457                         "Invalid boundary value. "
2458                         "Boundary not changed.\n");
2459                 return -EINVAL;
2460         }
2461
2462         /* Check if converting blocks are erased */
2463         old = this->boundary[die] + (die * this->density_mask);
2464         new = boundary + (die * this->density_mask);
2465         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2466                                                 + 1, max(old, new));
2467         if (ret) {
2468                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2469                 return ret;
2470         }
2471
2472         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2473         this->wait(mtd, FL_SYNCING);
2474
2475         /* Check is boundary is locked */
2476         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2477         ret = this->wait(mtd, FL_READING);
2478
2479         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2480         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2481                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2482                 goto out;
2483         }
2484
2485         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2486                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2487
2488         boundary &= FLEXONENAND_PI_MASK;
2489         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2490
2491         addr = die ? this->diesize[0] : 0;
2492         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2493         ret = this->wait(mtd, FL_ERASING);
2494         if (ret) {
2495                 printk("flexonenand_set_boundary:"
2496                         "Failed PI erase for Die %d\n", die);
2497                 goto out;
2498         }
2499
2500         this->write_word(boundary, this->base + ONENAND_DATARAM);
2501         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2502         ret = this->wait(mtd, FL_WRITING);
2503         if (ret) {
2504                 printk("flexonenand_set_boundary:"
2505                         "Failed PI write for Die %d\n", die);
2506                 goto out;
2507         }
2508
2509         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2510         ret = this->wait(mtd, FL_WRITING);
2511 out:
2512         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2513         this->wait(mtd, FL_RESETING);
2514         if (!ret)
2515                 /* Recalculate device size on boundary change*/
2516                 flexonenand_get_size(mtd);
2517
2518         return ret;
2519 }
2520
2521 /**
2522  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2523  * @param mtd           MTD device structure
2524  *
2525  * OneNAND detection method:
2526  *   Compare the the values from command with ones from register
2527  */
2528 static int onenand_chip_probe(struct mtd_info *mtd)
2529 {
2530         struct onenand_chip *this = mtd->priv;
2531         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2532         int syscfg;
2533
2534         /* Save system configuration 1 */
2535         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2536
2537         /* Clear Sync. Burst Read mode to read BootRAM */
2538         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2539                          this->base + ONENAND_REG_SYS_CFG1);
2540
2541         /* Send the command for reading device ID from BootRAM */
2542         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2543
2544         /* Read manufacturer and device IDs from BootRAM */
2545         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2546         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2547
2548         /* Reset OneNAND to read default register values */
2549         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2550
2551         /* Wait reset */
2552         if (this->wait(mtd, FL_RESETING))
2553                 return -ENXIO;
2554
2555         /* Restore system configuration 1 */
2556         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2557
2558         /* Check manufacturer ID */
2559         if (onenand_check_maf(bram_maf_id))
2560                 return -ENXIO;
2561
2562         /* Read manufacturer and device IDs from Register */
2563         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2564         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2565
2566         /* Check OneNAND device */
2567         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2568                 return -ENXIO;
2569
2570         return 0;
2571 }
2572
2573 /**
2574  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2575  * @param mtd           MTD device structure
2576  *
2577  * OneNAND detection method:
2578  *   Compare the the values from command with ones from register
2579  */
2580 int onenand_probe(struct mtd_info *mtd)
2581 {
2582         struct onenand_chip *this = mtd->priv;
2583         int dev_id, ver_id;
2584         int density;
2585         int ret;
2586
2587         ret = this->chip_probe(mtd);
2588         if (ret)
2589                 return ret;
2590
2591         /* Read device IDs from Register */
2592         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2593         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2594         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2595
2596         /* Flash device information */
2597         mtd->name = onenand_print_device_info(dev_id, ver_id);
2598         this->device_id = dev_id;
2599         this->version_id = ver_id;
2600
2601         /* Check OneNAND features */
2602         onenand_check_features(mtd);
2603
2604         density = onenand_get_density(dev_id);
2605         if (FLEXONENAND(this)) {
2606                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2607                 /* Maximum possible erase regions */
2608                 mtd->numeraseregions = this->dies << 1;
2609                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2610                                         * (this->dies << 1));
2611                 if (!mtd->eraseregions)
2612                         return -ENOMEM;
2613         }
2614
2615         /*
2616          * For Flex-OneNAND, chipsize represents maximum possible device size.
2617          * mtd->size represents the actual device size.
2618          */
2619         this->chipsize = (16 << density) << 20;
2620
2621         /* OneNAND page size & block size */
2622         /* The data buffer size is equal to page size */
2623         mtd->writesize =
2624             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2625         /* We use the full BufferRAM */
2626         if (ONENAND_IS_4KB_PAGE(this))
2627                 mtd->writesize <<= 1;
2628
2629         mtd->oobsize = mtd->writesize >> 5;
2630         /* Pagers per block is always 64 in OneNAND */
2631         mtd->erasesize = mtd->writesize << 6;
2632         /*
2633          * Flex-OneNAND SLC area has 64 pages per block.
2634          * Flex-OneNAND MLC area has 128 pages per block.
2635          * Expose MLC erase size to find erase_shift and page_mask.
2636          */
2637         if (FLEXONENAND(this))
2638                 mtd->erasesize <<= 1;
2639
2640         this->erase_shift = ffs(mtd->erasesize) - 1;
2641         this->page_shift = ffs(mtd->writesize) - 1;
2642         this->ppb_shift = (this->erase_shift - this->page_shift);
2643         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2644         /* Set density mask. it is used for DDP */
2645         if (ONENAND_IS_DDP(this))
2646                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2647         /* It's real page size */
2648         this->writesize = mtd->writesize;
2649
2650         /* REVIST: Multichip handling */
2651
2652         if (FLEXONENAND(this))
2653                 flexonenand_get_size(mtd);
2654         else
2655                 mtd->size = this->chipsize;
2656
2657         mtd->flags = MTD_CAP_NANDFLASH;
2658         mtd->_erase = onenand_erase;
2659         mtd->_read = onenand_read;
2660         mtd->_write = onenand_write;
2661         mtd->_read_oob = onenand_read_oob;
2662         mtd->_write_oob = onenand_write_oob;
2663         mtd->_sync = onenand_sync;
2664         mtd->_block_isbad = onenand_block_isbad;
2665         mtd->_block_markbad = onenand_block_markbad;
2666         mtd->writebufsize = mtd->writesize;
2667
2668         return 0;
2669 }
2670
2671 /**
2672  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2673  * @param mtd           MTD device structure
2674  * @param maxchips      Number of chips to scan for
2675  *
2676  * This fills out all the not initialized function pointers
2677  * with the defaults.
2678  * The flash ID is read and the mtd/chip structures are
2679  * filled with the appropriate values.
2680  */
2681 int onenand_scan(struct mtd_info *mtd, int maxchips)
2682 {
2683         int i;
2684         struct onenand_chip *this = mtd->priv;
2685
2686         if (!this->read_word)
2687                 this->read_word = onenand_readw;
2688         if (!this->write_word)
2689                 this->write_word = onenand_writew;
2690
2691         if (!this->command)
2692                 this->command = onenand_command;
2693         if (!this->wait)
2694                 this->wait = onenand_wait;
2695         if (!this->bbt_wait)
2696                 this->bbt_wait = onenand_bbt_wait;
2697
2698         if (!this->read_bufferram)
2699                 this->read_bufferram = onenand_read_bufferram;
2700         if (!this->write_bufferram)
2701                 this->write_bufferram = onenand_write_bufferram;
2702
2703         if (!this->chip_probe)
2704                 this->chip_probe = onenand_chip_probe;
2705
2706         if (!this->block_markbad)
2707                 this->block_markbad = onenand_default_block_markbad;
2708         if (!this->scan_bbt)
2709                 this->scan_bbt = onenand_default_bbt;
2710
2711         if (onenand_probe(mtd))
2712                 return -ENXIO;
2713
2714         /* Set Sync. Burst Read after probing */
2715         if (this->mmcontrol) {
2716                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2717                 this->read_bufferram = onenand_sync_read_bufferram;
2718         }
2719
2720         /* Allocate buffers, if necessary */
2721         if (!this->page_buf) {
2722                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2723                 if (!this->page_buf) {
2724                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2725                         return -ENOMEM;
2726                 }
2727                 this->options |= ONENAND_PAGEBUF_ALLOC;
2728         }
2729         if (!this->oob_buf) {
2730                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2731                 if (!this->oob_buf) {
2732                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2733                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2734                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2735                                 kfree(this->page_buf);
2736                         }
2737                         return -ENOMEM;
2738                 }
2739                 this->options |= ONENAND_OOBBUF_ALLOC;
2740         }
2741
2742         this->state = FL_READY;
2743
2744         /*
2745          * Allow subpage writes up to oobsize.
2746          */
2747         switch (mtd->oobsize) {
2748         case 128:
2749                 this->ecclayout = &onenand_oob_128;
2750                 mtd->subpage_sft = 0;
2751                 break;
2752
2753         case 64:
2754                 this->ecclayout = &onenand_oob_64;
2755                 mtd->subpage_sft = 2;
2756                 break;
2757
2758         case 32:
2759                 this->ecclayout = &onenand_oob_32;
2760                 mtd->subpage_sft = 1;
2761                 break;
2762
2763         default:
2764                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2765                         mtd->oobsize);
2766                 mtd->subpage_sft = 0;
2767                 /* To prevent kernel oops */
2768                 this->ecclayout = &onenand_oob_32;
2769                 break;
2770         }
2771
2772         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2773
2774         /*
2775          * The number of bytes available for a client to place data into
2776          * the out of band area
2777          */
2778         this->ecclayout->oobavail = 0;
2779
2780         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2781             this->ecclayout->oobfree[i].length; i++)
2782                 this->ecclayout->oobavail +=
2783                         this->ecclayout->oobfree[i].length;
2784         mtd->oobavail = this->ecclayout->oobavail;
2785
2786         mtd->ecclayout = this->ecclayout;
2787
2788         /* Unlock whole block */
2789         onenand_unlock_all(mtd);
2790
2791         return this->scan_bbt(mtd);
2792 }
2793
2794 /**
2795  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2796  * @param mtd           MTD device structure
2797  */
2798 void onenand_release(struct mtd_info *mtd)
2799 {
2800 }