]> git.sur5r.net Git - u-boot/blob - drivers/mtd/ubi/wl.c
SPDX: Convert all of our single license tags to Linux Kernel style
[u-boot] / drivers / mtd / ubi / wl.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87
88 #ifndef __UBOOT__
89 #include <linux/slab.h>
90 #include <linux/crc32.h>
91 #include <linux/freezer.h>
92 #include <linux/kthread.h>
93 #else
94 #include <ubi_uboot.h>
95 #endif
96
97 #include "ubi.h"
98 #include "wl.h"
99
100 /* Number of physical eraseblocks reserved for wear-leveling purposes */
101 #define WL_RESERVED_PEBS 1
102
103 /*
104  * Maximum difference between two erase counters. If this threshold is
105  * exceeded, the WL sub-system starts moving data from used physical
106  * eraseblocks with low erase counter to free physical eraseblocks with high
107  * erase counter.
108  */
109 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
110
111 /*
112  * When a physical eraseblock is moved, the WL sub-system has to pick the target
113  * physical eraseblock to move to. The simplest way would be just to pick the
114  * one with the highest erase counter. But in certain workloads this could lead
115  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
116  * situation when the picked physical eraseblock is constantly erased after the
117  * data is written to it. So, we have a constant which limits the highest erase
118  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
119  * does not pick eraseblocks with erase counter greater than the lowest erase
120  * counter plus %WL_FREE_MAX_DIFF.
121  */
122 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
123
124 /*
125  * Maximum number of consecutive background thread failures which is enough to
126  * switch to read-only mode.
127  */
128 #define WL_MAX_FAILURES 32
129
130 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
131 static int self_check_in_wl_tree(const struct ubi_device *ubi,
132                                  struct ubi_wl_entry *e, struct rb_root *root);
133 static int self_check_in_pq(const struct ubi_device *ubi,
134                             struct ubi_wl_entry *e);
135
136 /**
137  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
138  * @e: the wear-leveling entry to add
139  * @root: the root of the tree
140  *
141  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
142  * the @ubi->used and @ubi->free RB-trees.
143  */
144 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
145 {
146         struct rb_node **p, *parent = NULL;
147
148         p = &root->rb_node;
149         while (*p) {
150                 struct ubi_wl_entry *e1;
151
152                 parent = *p;
153                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
154
155                 if (e->ec < e1->ec)
156                         p = &(*p)->rb_left;
157                 else if (e->ec > e1->ec)
158                         p = &(*p)->rb_right;
159                 else {
160                         ubi_assert(e->pnum != e1->pnum);
161                         if (e->pnum < e1->pnum)
162                                 p = &(*p)->rb_left;
163                         else
164                                 p = &(*p)->rb_right;
165                 }
166         }
167
168         rb_link_node(&e->u.rb, parent, p);
169         rb_insert_color(&e->u.rb, root);
170 }
171
172 /**
173  * wl_tree_destroy - destroy a wear-leveling entry.
174  * @ubi: UBI device description object
175  * @e: the wear-leveling entry to add
176  *
177  * This function destroys a wear leveling entry and removes
178  * the reference from the lookup table.
179  */
180 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
181 {
182         ubi->lookuptbl[e->pnum] = NULL;
183         kmem_cache_free(ubi_wl_entry_slab, e);
184 }
185
186 /**
187  * do_work - do one pending work.
188  * @ubi: UBI device description object
189  *
190  * This function returns zero in case of success and a negative error code in
191  * case of failure.
192  */
193 static int do_work(struct ubi_device *ubi)
194 {
195         int err;
196         struct ubi_work *wrk;
197
198         cond_resched();
199
200         /*
201          * @ubi->work_sem is used to synchronize with the workers. Workers take
202          * it in read mode, so many of them may be doing works at a time. But
203          * the queue flush code has to be sure the whole queue of works is
204          * done, and it takes the mutex in write mode.
205          */
206         down_read(&ubi->work_sem);
207         spin_lock(&ubi->wl_lock);
208         if (list_empty(&ubi->works)) {
209                 spin_unlock(&ubi->wl_lock);
210                 up_read(&ubi->work_sem);
211                 return 0;
212         }
213
214         wrk = list_entry(ubi->works.next, struct ubi_work, list);
215         list_del(&wrk->list);
216         ubi->works_count -= 1;
217         ubi_assert(ubi->works_count >= 0);
218         spin_unlock(&ubi->wl_lock);
219
220         /*
221          * Call the worker function. Do not touch the work structure
222          * after this call as it will have been freed or reused by that
223          * time by the worker function.
224          */
225         err = wrk->func(ubi, wrk, 0);
226         if (err)
227                 ubi_err(ubi, "work failed with error code %d", err);
228         up_read(&ubi->work_sem);
229
230         return err;
231 }
232
233 /**
234  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
235  * @e: the wear-leveling entry to check
236  * @root: the root of the tree
237  *
238  * This function returns non-zero if @e is in the @root RB-tree and zero if it
239  * is not.
240  */
241 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
242 {
243         struct rb_node *p;
244
245         p = root->rb_node;
246         while (p) {
247                 struct ubi_wl_entry *e1;
248
249                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
250
251                 if (e->pnum == e1->pnum) {
252                         ubi_assert(e == e1);
253                         return 1;
254                 }
255
256                 if (e->ec < e1->ec)
257                         p = p->rb_left;
258                 else if (e->ec > e1->ec)
259                         p = p->rb_right;
260                 else {
261                         ubi_assert(e->pnum != e1->pnum);
262                         if (e->pnum < e1->pnum)
263                                 p = p->rb_left;
264                         else
265                                 p = p->rb_right;
266                 }
267         }
268
269         return 0;
270 }
271
272 /**
273  * prot_queue_add - add physical eraseblock to the protection queue.
274  * @ubi: UBI device description object
275  * @e: the physical eraseblock to add
276  *
277  * This function adds @e to the tail of the protection queue @ubi->pq, where
278  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
279  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
280  * be locked.
281  */
282 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
283 {
284         int pq_tail = ubi->pq_head - 1;
285
286         if (pq_tail < 0)
287                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
288         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
289         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
290         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
291 }
292
293 /**
294  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
295  * @ubi: UBI device description object
296  * @root: the RB-tree where to look for
297  * @diff: maximum possible difference from the smallest erase counter
298  *
299  * This function looks for a wear leveling entry with erase counter closest to
300  * min + @diff, where min is the smallest erase counter.
301  */
302 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
303                                           struct rb_root *root, int diff)
304 {
305         struct rb_node *p;
306         struct ubi_wl_entry *e, *prev_e = NULL;
307         int max;
308
309         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
310         max = e->ec + diff;
311
312         p = root->rb_node;
313         while (p) {
314                 struct ubi_wl_entry *e1;
315
316                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
317                 if (e1->ec >= max)
318                         p = p->rb_left;
319                 else {
320                         p = p->rb_right;
321                         prev_e = e;
322                         e = e1;
323                 }
324         }
325
326         /* If no fastmap has been written and this WL entry can be used
327          * as anchor PEB, hold it back and return the second best WL entry
328          * such that fastmap can use the anchor PEB later. */
329         if (prev_e && !ubi->fm_disabled &&
330             !ubi->fm && e->pnum < UBI_FM_MAX_START)
331                 return prev_e;
332
333         return e;
334 }
335
336 /**
337  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
338  * @ubi: UBI device description object
339  * @root: the RB-tree where to look for
340  *
341  * This function looks for a wear leveling entry with medium erase counter,
342  * but not greater or equivalent than the lowest erase counter plus
343  * %WL_FREE_MAX_DIFF/2.
344  */
345 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
346                                                struct rb_root *root)
347 {
348         struct ubi_wl_entry *e, *first, *last;
349
350         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
351         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
352
353         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
354                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
355
356                 /* If no fastmap has been written and this WL entry can be used
357                  * as anchor PEB, hold it back and return the second best
358                  * WL entry such that fastmap can use the anchor PEB later. */
359                 e = may_reserve_for_fm(ubi, e, root);
360         } else
361                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
362
363         return e;
364 }
365
366 /**
367  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
368  * refill_wl_user_pool().
369  * @ubi: UBI device description object
370  *
371  * This function returns a a wear leveling entry in case of success and
372  * NULL in case of failure.
373  */
374 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
375 {
376         struct ubi_wl_entry *e;
377
378         e = find_mean_wl_entry(ubi, &ubi->free);
379         if (!e) {
380                 ubi_err(ubi, "no free eraseblocks");
381                 return NULL;
382         }
383
384         self_check_in_wl_tree(ubi, e, &ubi->free);
385
386         /*
387          * Move the physical eraseblock to the protection queue where it will
388          * be protected from being moved for some time.
389          */
390         rb_erase(&e->u.rb, &ubi->free);
391         ubi->free_count--;
392         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
393
394         return e;
395 }
396
397 /**
398  * prot_queue_del - remove a physical eraseblock from the protection queue.
399  * @ubi: UBI device description object
400  * @pnum: the physical eraseblock to remove
401  *
402  * This function deletes PEB @pnum from the protection queue and returns zero
403  * in case of success and %-ENODEV if the PEB was not found.
404  */
405 static int prot_queue_del(struct ubi_device *ubi, int pnum)
406 {
407         struct ubi_wl_entry *e;
408
409         e = ubi->lookuptbl[pnum];
410         if (!e)
411                 return -ENODEV;
412
413         if (self_check_in_pq(ubi, e))
414                 return -ENODEV;
415
416         list_del(&e->u.list);
417         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
418         return 0;
419 }
420
421 /**
422  * sync_erase - synchronously erase a physical eraseblock.
423  * @ubi: UBI device description object
424  * @e: the the physical eraseblock to erase
425  * @torture: if the physical eraseblock has to be tortured
426  *
427  * This function returns zero in case of success and a negative error code in
428  * case of failure.
429  */
430 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
431                       int torture)
432 {
433         int err;
434         struct ubi_ec_hdr *ec_hdr;
435         unsigned long long ec = e->ec;
436
437         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
438
439         err = self_check_ec(ubi, e->pnum, e->ec);
440         if (err)
441                 return -EINVAL;
442
443         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
444         if (!ec_hdr)
445                 return -ENOMEM;
446
447         err = ubi_io_sync_erase(ubi, e->pnum, torture);
448         if (err < 0)
449                 goto out_free;
450
451         ec += err;
452         if (ec > UBI_MAX_ERASECOUNTER) {
453                 /*
454                  * Erase counter overflow. Upgrade UBI and use 64-bit
455                  * erase counters internally.
456                  */
457                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
458                         e->pnum, ec);
459                 err = -EINVAL;
460                 goto out_free;
461         }
462
463         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
464
465         ec_hdr->ec = cpu_to_be64(ec);
466
467         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
468         if (err)
469                 goto out_free;
470
471         e->ec = ec;
472         spin_lock(&ubi->wl_lock);
473         if (e->ec > ubi->max_ec)
474                 ubi->max_ec = e->ec;
475         spin_unlock(&ubi->wl_lock);
476
477 out_free:
478         kfree(ec_hdr);
479         return err;
480 }
481
482 /**
483  * serve_prot_queue - check if it is time to stop protecting PEBs.
484  * @ubi: UBI device description object
485  *
486  * This function is called after each erase operation and removes PEBs from the
487  * tail of the protection queue. These PEBs have been protected for long enough
488  * and should be moved to the used tree.
489  */
490 static void serve_prot_queue(struct ubi_device *ubi)
491 {
492         struct ubi_wl_entry *e, *tmp;
493         int count;
494
495         /*
496          * There may be several protected physical eraseblock to remove,
497          * process them all.
498          */
499 repeat:
500         count = 0;
501         spin_lock(&ubi->wl_lock);
502         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
503                 dbg_wl("PEB %d EC %d protection over, move to used tree",
504                         e->pnum, e->ec);
505
506                 list_del(&e->u.list);
507                 wl_tree_add(e, &ubi->used);
508                 if (count++ > 32) {
509                         /*
510                          * Let's be nice and avoid holding the spinlock for
511                          * too long.
512                          */
513                         spin_unlock(&ubi->wl_lock);
514                         cond_resched();
515                         goto repeat;
516                 }
517         }
518
519         ubi->pq_head += 1;
520         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
521                 ubi->pq_head = 0;
522         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
523         spin_unlock(&ubi->wl_lock);
524 }
525
526 #ifdef __UBOOT__
527 void ubi_do_worker(struct ubi_device *ubi)
528 {
529         int err;
530
531         if (list_empty(&ubi->works) || ubi->ro_mode ||
532             !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi))
533                 return;
534
535         spin_lock(&ubi->wl_lock);
536         while (!list_empty(&ubi->works)) {
537                 /*
538                  * call do_work, which executes exactly one work form the queue,
539                  * including removeing it from the work queue.
540                  */
541                 spin_unlock(&ubi->wl_lock);
542                 err = do_work(ubi);
543                 spin_lock(&ubi->wl_lock);
544                 if (err) {
545                         ubi_err(ubi, "%s: work failed with error code %d",
546                                 ubi->bgt_name, err);
547                 }
548         }
549         spin_unlock(&ubi->wl_lock);
550 }
551 #endif
552
553 /**
554  * __schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list. Can only be used if ubi->work_sem is already held in read mode!
560  */
561 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563         spin_lock(&ubi->wl_lock);
564         list_add_tail(&wrk->list, &ubi->works);
565         ubi_assert(ubi->works_count >= 0);
566         ubi->works_count += 1;
567 #ifndef __UBOOT__
568         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
569                 wake_up_process(ubi->bgt_thread);
570 #endif
571         spin_unlock(&ubi->wl_lock);
572 }
573
574 /**
575  * schedule_ubi_work - schedule a work.
576  * @ubi: UBI device description object
577  * @wrk: the work to schedule
578  *
579  * This function adds a work defined by @wrk to the tail of the pending works
580  * list.
581  */
582 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
583 {
584         down_read(&ubi->work_sem);
585         __schedule_ubi_work(ubi, wrk);
586         up_read(&ubi->work_sem);
587 }
588
589 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
590                         int shutdown);
591
592 /**
593  * schedule_erase - schedule an erase work.
594  * @ubi: UBI device description object
595  * @e: the WL entry of the physical eraseblock to erase
596  * @vol_id: the volume ID that last used this PEB
597  * @lnum: the last used logical eraseblock number for the PEB
598  * @torture: if the physical eraseblock has to be tortured
599  *
600  * This function returns zero in case of success and a %-ENOMEM in case of
601  * failure.
602  */
603 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
604                           int vol_id, int lnum, int torture)
605 {
606         struct ubi_work *wl_wrk;
607
608         ubi_assert(e);
609
610         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
611                e->pnum, e->ec, torture);
612
613         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
614         if (!wl_wrk)
615                 return -ENOMEM;
616
617         wl_wrk->func = &erase_worker;
618         wl_wrk->e = e;
619         wl_wrk->vol_id = vol_id;
620         wl_wrk->lnum = lnum;
621         wl_wrk->torture = torture;
622
623         schedule_ubi_work(ubi, wl_wrk);
624
625 #ifdef __UBOOT__
626         ubi_do_worker(ubi);
627 #endif
628         return 0;
629 }
630
631 /**
632  * do_sync_erase - run the erase worker synchronously.
633  * @ubi: UBI device description object
634  * @e: the WL entry of the physical eraseblock to erase
635  * @vol_id: the volume ID that last used this PEB
636  * @lnum: the last used logical eraseblock number for the PEB
637  * @torture: if the physical eraseblock has to be tortured
638  *
639  */
640 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
641                          int vol_id, int lnum, int torture)
642 {
643         struct ubi_work *wl_wrk;
644
645         dbg_wl("sync erase of PEB %i", e->pnum);
646
647         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
648         if (!wl_wrk)
649                 return -ENOMEM;
650
651         wl_wrk->e = e;
652         wl_wrk->vol_id = vol_id;
653         wl_wrk->lnum = lnum;
654         wl_wrk->torture = torture;
655
656         return erase_worker(ubi, wl_wrk, 0);
657 }
658
659 /**
660  * wear_leveling_worker - wear-leveling worker function.
661  * @ubi: UBI device description object
662  * @wrk: the work object
663  * @shutdown: non-zero if the worker has to free memory and exit
664  * because the WL-subsystem is shutting down
665  *
666  * This function copies a more worn out physical eraseblock to a less worn out
667  * one. Returns zero in case of success and a negative error code in case of
668  * failure.
669  */
670 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
671                                 int shutdown)
672 {
673         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
674         int vol_id = -1, lnum = -1;
675 #ifdef CONFIG_MTD_UBI_FASTMAP
676         int anchor = wrk->anchor;
677 #endif
678         struct ubi_wl_entry *e1, *e2;
679         struct ubi_vid_hdr *vid_hdr;
680
681         kfree(wrk);
682         if (shutdown)
683                 return 0;
684
685         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
686         if (!vid_hdr)
687                 return -ENOMEM;
688
689         mutex_lock(&ubi->move_mutex);
690         spin_lock(&ubi->wl_lock);
691         ubi_assert(!ubi->move_from && !ubi->move_to);
692         ubi_assert(!ubi->move_to_put);
693
694         if (!ubi->free.rb_node ||
695             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
696                 /*
697                  * No free physical eraseblocks? Well, they must be waiting in
698                  * the queue to be erased. Cancel movement - it will be
699                  * triggered again when a free physical eraseblock appears.
700                  *
701                  * No used physical eraseblocks? They must be temporarily
702                  * protected from being moved. They will be moved to the
703                  * @ubi->used tree later and the wear-leveling will be
704                  * triggered again.
705                  */
706                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
707                        !ubi->free.rb_node, !ubi->used.rb_node);
708                 goto out_cancel;
709         }
710
711 #ifdef CONFIG_MTD_UBI_FASTMAP
712         /* Check whether we need to produce an anchor PEB */
713         if (!anchor)
714                 anchor = !anchor_pebs_avalible(&ubi->free);
715
716         if (anchor) {
717                 e1 = find_anchor_wl_entry(&ubi->used);
718                 if (!e1)
719                         goto out_cancel;
720                 e2 = get_peb_for_wl(ubi);
721                 if (!e2)
722                         goto out_cancel;
723
724                 self_check_in_wl_tree(ubi, e1, &ubi->used);
725                 rb_erase(&e1->u.rb, &ubi->used);
726                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
727         } else if (!ubi->scrub.rb_node) {
728 #else
729         if (!ubi->scrub.rb_node) {
730 #endif
731                 /*
732                  * Now pick the least worn-out used physical eraseblock and a
733                  * highly worn-out free physical eraseblock. If the erase
734                  * counters differ much enough, start wear-leveling.
735                  */
736                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
737                 e2 = get_peb_for_wl(ubi);
738                 if (!e2)
739                         goto out_cancel;
740
741                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
742                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
743                                e1->ec, e2->ec);
744
745                         /* Give the unused PEB back */
746                         wl_tree_add(e2, &ubi->free);
747                         ubi->free_count++;
748                         goto out_cancel;
749                 }
750                 self_check_in_wl_tree(ubi, e1, &ubi->used);
751                 rb_erase(&e1->u.rb, &ubi->used);
752                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
753                        e1->pnum, e1->ec, e2->pnum, e2->ec);
754         } else {
755                 /* Perform scrubbing */
756                 scrubbing = 1;
757                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
758                 e2 = get_peb_for_wl(ubi);
759                 if (!e2)
760                         goto out_cancel;
761
762                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
763                 rb_erase(&e1->u.rb, &ubi->scrub);
764                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
765         }
766
767         ubi->move_from = e1;
768         ubi->move_to = e2;
769         spin_unlock(&ubi->wl_lock);
770
771         /*
772          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
773          * We so far do not know which logical eraseblock our physical
774          * eraseblock (@e1) belongs to. We have to read the volume identifier
775          * header first.
776          *
777          * Note, we are protected from this PEB being unmapped and erased. The
778          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
779          * which is being moved was unmapped.
780          */
781
782         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
783         if (err && err != UBI_IO_BITFLIPS) {
784                 if (err == UBI_IO_FF) {
785                         /*
786                          * We are trying to move PEB without a VID header. UBI
787                          * always write VID headers shortly after the PEB was
788                          * given, so we have a situation when it has not yet
789                          * had a chance to write it, because it was preempted.
790                          * So add this PEB to the protection queue so far,
791                          * because presumably more data will be written there
792                          * (including the missing VID header), and then we'll
793                          * move it.
794                          */
795                         dbg_wl("PEB %d has no VID header", e1->pnum);
796                         protect = 1;
797                         goto out_not_moved;
798                 } else if (err == UBI_IO_FF_BITFLIPS) {
799                         /*
800                          * The same situation as %UBI_IO_FF, but bit-flips were
801                          * detected. It is better to schedule this PEB for
802                          * scrubbing.
803                          */
804                         dbg_wl("PEB %d has no VID header but has bit-flips",
805                                e1->pnum);
806                         scrubbing = 1;
807                         goto out_not_moved;
808                 }
809
810                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
811                         err, e1->pnum);
812                 goto out_error;
813         }
814
815         vol_id = be32_to_cpu(vid_hdr->vol_id);
816         lnum = be32_to_cpu(vid_hdr->lnum);
817
818         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
819         if (err) {
820                 if (err == MOVE_CANCEL_RACE) {
821                         /*
822                          * The LEB has not been moved because the volume is
823                          * being deleted or the PEB has been put meanwhile. We
824                          * should prevent this PEB from being selected for
825                          * wear-leveling movement again, so put it to the
826                          * protection queue.
827                          */
828                         protect = 1;
829                         goto out_not_moved;
830                 }
831                 if (err == MOVE_RETRY) {
832                         scrubbing = 1;
833                         goto out_not_moved;
834                 }
835                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
836                     err == MOVE_TARGET_RD_ERR) {
837                         /*
838                          * Target PEB had bit-flips or write error - torture it.
839                          */
840                         torture = 1;
841                         goto out_not_moved;
842                 }
843
844                 if (err == MOVE_SOURCE_RD_ERR) {
845                         /*
846                          * An error happened while reading the source PEB. Do
847                          * not switch to R/O mode in this case, and give the
848                          * upper layers a possibility to recover from this,
849                          * e.g. by unmapping corresponding LEB. Instead, just
850                          * put this PEB to the @ubi->erroneous list to prevent
851                          * UBI from trying to move it over and over again.
852                          */
853                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
854                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
855                                         ubi->erroneous_peb_count);
856                                 goto out_error;
857                         }
858                         erroneous = 1;
859                         goto out_not_moved;
860                 }
861
862                 if (err < 0)
863                         goto out_error;
864
865                 ubi_assert(0);
866         }
867
868         /* The PEB has been successfully moved */
869         if (scrubbing)
870                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
871                         e1->pnum, vol_id, lnum, e2->pnum);
872         ubi_free_vid_hdr(ubi, vid_hdr);
873
874         spin_lock(&ubi->wl_lock);
875         if (!ubi->move_to_put) {
876                 wl_tree_add(e2, &ubi->used);
877                 e2 = NULL;
878         }
879         ubi->move_from = ubi->move_to = NULL;
880         ubi->move_to_put = ubi->wl_scheduled = 0;
881         spin_unlock(&ubi->wl_lock);
882
883         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
884         if (err) {
885                 if (e2)
886                         wl_entry_destroy(ubi, e2);
887                 goto out_ro;
888         }
889
890         if (e2) {
891                 /*
892                  * Well, the target PEB was put meanwhile, schedule it for
893                  * erasure.
894                  */
895                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
896                        e2->pnum, vol_id, lnum);
897                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
898                 if (err)
899                         goto out_ro;
900         }
901
902         dbg_wl("done");
903         mutex_unlock(&ubi->move_mutex);
904         return 0;
905
906         /*
907          * For some reasons the LEB was not moved, might be an error, might be
908          * something else. @e1 was not changed, so return it back. @e2 might
909          * have been changed, schedule it for erasure.
910          */
911 out_not_moved:
912         if (vol_id != -1)
913                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
914                        e1->pnum, vol_id, lnum, e2->pnum, err);
915         else
916                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
917                        e1->pnum, e2->pnum, err);
918         spin_lock(&ubi->wl_lock);
919         if (protect)
920                 prot_queue_add(ubi, e1);
921         else if (erroneous) {
922                 wl_tree_add(e1, &ubi->erroneous);
923                 ubi->erroneous_peb_count += 1;
924         } else if (scrubbing)
925                 wl_tree_add(e1, &ubi->scrub);
926         else
927                 wl_tree_add(e1, &ubi->used);
928         ubi_assert(!ubi->move_to_put);
929         ubi->move_from = ubi->move_to = NULL;
930         ubi->wl_scheduled = 0;
931         spin_unlock(&ubi->wl_lock);
932
933         ubi_free_vid_hdr(ubi, vid_hdr);
934         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
935         if (err)
936                 goto out_ro;
937
938         mutex_unlock(&ubi->move_mutex);
939         return 0;
940
941 out_error:
942         if (vol_id != -1)
943                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
944                         err, e1->pnum, e2->pnum);
945         else
946                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
947                         err, e1->pnum, vol_id, lnum, e2->pnum);
948         spin_lock(&ubi->wl_lock);
949         ubi->move_from = ubi->move_to = NULL;
950         ubi->move_to_put = ubi->wl_scheduled = 0;
951         spin_unlock(&ubi->wl_lock);
952
953         ubi_free_vid_hdr(ubi, vid_hdr);
954         wl_entry_destroy(ubi, e1);
955         wl_entry_destroy(ubi, e2);
956
957 out_ro:
958         ubi_ro_mode(ubi);
959         mutex_unlock(&ubi->move_mutex);
960         ubi_assert(err != 0);
961         return err < 0 ? err : -EIO;
962
963 out_cancel:
964         ubi->wl_scheduled = 0;
965         spin_unlock(&ubi->wl_lock);
966         mutex_unlock(&ubi->move_mutex);
967         ubi_free_vid_hdr(ubi, vid_hdr);
968         return 0;
969 }
970
971 /**
972  * ensure_wear_leveling - schedule wear-leveling if it is needed.
973  * @ubi: UBI device description object
974  * @nested: set to non-zero if this function is called from UBI worker
975  *
976  * This function checks if it is time to start wear-leveling and schedules it
977  * if yes. This function returns zero in case of success and a negative error
978  * code in case of failure.
979  */
980 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
981 {
982         int err = 0;
983         struct ubi_wl_entry *e1;
984         struct ubi_wl_entry *e2;
985         struct ubi_work *wrk;
986
987         spin_lock(&ubi->wl_lock);
988         if (ubi->wl_scheduled)
989                 /* Wear-leveling is already in the work queue */
990                 goto out_unlock;
991
992         /*
993          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
994          * the WL worker has to be scheduled anyway.
995          */
996         if (!ubi->scrub.rb_node) {
997                 if (!ubi->used.rb_node || !ubi->free.rb_node)
998                         /* No physical eraseblocks - no deal */
999                         goto out_unlock;
1000
1001                 /*
1002                  * We schedule wear-leveling only if the difference between the
1003                  * lowest erase counter of used physical eraseblocks and a high
1004                  * erase counter of free physical eraseblocks is greater than
1005                  * %UBI_WL_THRESHOLD.
1006                  */
1007                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1008                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1009
1010                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1011                         goto out_unlock;
1012                 dbg_wl("schedule wear-leveling");
1013         } else
1014                 dbg_wl("schedule scrubbing");
1015
1016         ubi->wl_scheduled = 1;
1017         spin_unlock(&ubi->wl_lock);
1018
1019         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1020         if (!wrk) {
1021                 err = -ENOMEM;
1022                 goto out_cancel;
1023         }
1024
1025         wrk->anchor = 0;
1026         wrk->func = &wear_leveling_worker;
1027         if (nested)
1028                 __schedule_ubi_work(ubi, wrk);
1029 #ifndef __UBOOT__
1030         else
1031                 schedule_ubi_work(ubi, wrk);
1032 #else
1033         else {
1034                 schedule_ubi_work(ubi, wrk);
1035                 ubi_do_worker(ubi);
1036         }
1037 #endif
1038         return err;
1039
1040 out_cancel:
1041         spin_lock(&ubi->wl_lock);
1042         ubi->wl_scheduled = 0;
1043 out_unlock:
1044         spin_unlock(&ubi->wl_lock);
1045         return err;
1046 }
1047
1048 /**
1049  * erase_worker - physical eraseblock erase worker function.
1050  * @ubi: UBI device description object
1051  * @wl_wrk: the work object
1052  * @shutdown: non-zero if the worker has to free memory and exit
1053  * because the WL sub-system is shutting down
1054  *
1055  * This function erases a physical eraseblock and perform torture testing if
1056  * needed. It also takes care about marking the physical eraseblock bad if
1057  * needed. Returns zero in case of success and a negative error code in case of
1058  * failure.
1059  */
1060 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1061                         int shutdown)
1062 {
1063         struct ubi_wl_entry *e = wl_wrk->e;
1064         int pnum = e->pnum;
1065         int vol_id = wl_wrk->vol_id;
1066         int lnum = wl_wrk->lnum;
1067         int err, available_consumed = 0;
1068
1069         if (shutdown) {
1070                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1071                 kfree(wl_wrk);
1072                 wl_entry_destroy(ubi, e);
1073                 return 0;
1074         }
1075
1076         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078
1079         err = sync_erase(ubi, e, wl_wrk->torture);
1080         if (!err) {
1081                 /* Fine, we've erased it successfully */
1082                 kfree(wl_wrk);
1083
1084                 spin_lock(&ubi->wl_lock);
1085                 wl_tree_add(e, &ubi->free);
1086                 ubi->free_count++;
1087                 spin_unlock(&ubi->wl_lock);
1088
1089                 /*
1090                  * One more erase operation has happened, take care about
1091                  * protected physical eraseblocks.
1092                  */
1093                 serve_prot_queue(ubi);
1094
1095                 /* And take care about wear-leveling */
1096                 err = ensure_wear_leveling(ubi, 1);
1097                 return err;
1098         }
1099
1100         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1101         kfree(wl_wrk);
1102
1103         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1104             err == -EBUSY) {
1105                 int err1;
1106
1107                 /* Re-schedule the LEB for erasure */
1108                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1109                 if (err1) {
1110                         err = err1;
1111                         goto out_ro;
1112                 }
1113                 return err;
1114         }
1115
1116         wl_entry_destroy(ubi, e);
1117         if (err != -EIO)
1118                 /*
1119                  * If this is not %-EIO, we have no idea what to do. Scheduling
1120                  * this physical eraseblock for erasure again would cause
1121                  * errors again and again. Well, lets switch to R/O mode.
1122                  */
1123                 goto out_ro;
1124
1125         /* It is %-EIO, the PEB went bad */
1126
1127         if (!ubi->bad_allowed) {
1128                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1129                 goto out_ro;
1130         }
1131
1132         spin_lock(&ubi->volumes_lock);
1133         if (ubi->beb_rsvd_pebs == 0) {
1134                 if (ubi->avail_pebs == 0) {
1135                         spin_unlock(&ubi->volumes_lock);
1136                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1137                         goto out_ro;
1138                 }
1139                 ubi->avail_pebs -= 1;
1140                 available_consumed = 1;
1141         }
1142         spin_unlock(&ubi->volumes_lock);
1143
1144         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1145         err = ubi_io_mark_bad(ubi, pnum);
1146         if (err)
1147                 goto out_ro;
1148
1149         spin_lock(&ubi->volumes_lock);
1150         if (ubi->beb_rsvd_pebs > 0) {
1151                 if (available_consumed) {
1152                         /*
1153                          * The amount of reserved PEBs increased since we last
1154                          * checked.
1155                          */
1156                         ubi->avail_pebs += 1;
1157                         available_consumed = 0;
1158                 }
1159                 ubi->beb_rsvd_pebs -= 1;
1160         }
1161         ubi->bad_peb_count += 1;
1162         ubi->good_peb_count -= 1;
1163         ubi_calculate_reserved(ubi);
1164         if (available_consumed)
1165                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1166         else if (ubi->beb_rsvd_pebs)
1167                 ubi_msg(ubi, "%d PEBs left in the reserve",
1168                         ubi->beb_rsvd_pebs);
1169         else
1170                 ubi_warn(ubi, "last PEB from the reserve was used");
1171         spin_unlock(&ubi->volumes_lock);
1172
1173         return err;
1174
1175 out_ro:
1176         if (available_consumed) {
1177                 spin_lock(&ubi->volumes_lock);
1178                 ubi->avail_pebs += 1;
1179                 spin_unlock(&ubi->volumes_lock);
1180         }
1181         ubi_ro_mode(ubi);
1182         return err;
1183 }
1184
1185 /**
1186  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1187  * @ubi: UBI device description object
1188  * @vol_id: the volume ID that last used this PEB
1189  * @lnum: the last used logical eraseblock number for the PEB
1190  * @pnum: physical eraseblock to return
1191  * @torture: if this physical eraseblock has to be tortured
1192  *
1193  * This function is called to return physical eraseblock @pnum to the pool of
1194  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1195  * occurred to this @pnum and it has to be tested. This function returns zero
1196  * in case of success, and a negative error code in case of failure.
1197  */
1198 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1199                    int pnum, int torture)
1200 {
1201         int err;
1202         struct ubi_wl_entry *e;
1203
1204         dbg_wl("PEB %d", pnum);
1205         ubi_assert(pnum >= 0);
1206         ubi_assert(pnum < ubi->peb_count);
1207
1208         down_read(&ubi->fm_protect);
1209
1210 retry:
1211         spin_lock(&ubi->wl_lock);
1212         e = ubi->lookuptbl[pnum];
1213         if (e == ubi->move_from) {
1214                 /*
1215                  * User is putting the physical eraseblock which was selected to
1216                  * be moved. It will be scheduled for erasure in the
1217                  * wear-leveling worker.
1218                  */
1219                 dbg_wl("PEB %d is being moved, wait", pnum);
1220                 spin_unlock(&ubi->wl_lock);
1221
1222                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1223                 mutex_lock(&ubi->move_mutex);
1224                 mutex_unlock(&ubi->move_mutex);
1225                 goto retry;
1226         } else if (e == ubi->move_to) {
1227                 /*
1228                  * User is putting the physical eraseblock which was selected
1229                  * as the target the data is moved to. It may happen if the EBA
1230                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1231                  * but the WL sub-system has not put the PEB to the "used" tree
1232                  * yet, but it is about to do this. So we just set a flag which
1233                  * will tell the WL worker that the PEB is not needed anymore
1234                  * and should be scheduled for erasure.
1235                  */
1236                 dbg_wl("PEB %d is the target of data moving", pnum);
1237                 ubi_assert(!ubi->move_to_put);
1238                 ubi->move_to_put = 1;
1239                 spin_unlock(&ubi->wl_lock);
1240                 up_read(&ubi->fm_protect);
1241                 return 0;
1242         } else {
1243                 if (in_wl_tree(e, &ubi->used)) {
1244                         self_check_in_wl_tree(ubi, e, &ubi->used);
1245                         rb_erase(&e->u.rb, &ubi->used);
1246                 } else if (in_wl_tree(e, &ubi->scrub)) {
1247                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1248                         rb_erase(&e->u.rb, &ubi->scrub);
1249                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1250                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1251                         rb_erase(&e->u.rb, &ubi->erroneous);
1252                         ubi->erroneous_peb_count -= 1;
1253                         ubi_assert(ubi->erroneous_peb_count >= 0);
1254                         /* Erroneous PEBs should be tortured */
1255                         torture = 1;
1256                 } else {
1257                         err = prot_queue_del(ubi, e->pnum);
1258                         if (err) {
1259                                 ubi_err(ubi, "PEB %d not found", pnum);
1260                                 ubi_ro_mode(ubi);
1261                                 spin_unlock(&ubi->wl_lock);
1262                                 up_read(&ubi->fm_protect);
1263                                 return err;
1264                         }
1265                 }
1266         }
1267         spin_unlock(&ubi->wl_lock);
1268
1269         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1270         if (err) {
1271                 spin_lock(&ubi->wl_lock);
1272                 wl_tree_add(e, &ubi->used);
1273                 spin_unlock(&ubi->wl_lock);
1274         }
1275
1276         up_read(&ubi->fm_protect);
1277         return err;
1278 }
1279
1280 /**
1281  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1282  * @ubi: UBI device description object
1283  * @pnum: the physical eraseblock to schedule
1284  *
1285  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1286  * needs scrubbing. This function schedules a physical eraseblock for
1287  * scrubbing which is done in background. This function returns zero in case of
1288  * success and a negative error code in case of failure.
1289  */
1290 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1291 {
1292         struct ubi_wl_entry *e;
1293
1294         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1295
1296 retry:
1297         spin_lock(&ubi->wl_lock);
1298         e = ubi->lookuptbl[pnum];
1299         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1300                                    in_wl_tree(e, &ubi->erroneous)) {
1301                 spin_unlock(&ubi->wl_lock);
1302                 return 0;
1303         }
1304
1305         if (e == ubi->move_to) {
1306                 /*
1307                  * This physical eraseblock was used to move data to. The data
1308                  * was moved but the PEB was not yet inserted to the proper
1309                  * tree. We should just wait a little and let the WL worker
1310                  * proceed.
1311                  */
1312                 spin_unlock(&ubi->wl_lock);
1313                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1314                 yield();
1315                 goto retry;
1316         }
1317
1318         if (in_wl_tree(e, &ubi->used)) {
1319                 self_check_in_wl_tree(ubi, e, &ubi->used);
1320                 rb_erase(&e->u.rb, &ubi->used);
1321         } else {
1322                 int err;
1323
1324                 err = prot_queue_del(ubi, e->pnum);
1325                 if (err) {
1326                         ubi_err(ubi, "PEB %d not found", pnum);
1327                         ubi_ro_mode(ubi);
1328                         spin_unlock(&ubi->wl_lock);
1329                         return err;
1330                 }
1331         }
1332
1333         wl_tree_add(e, &ubi->scrub);
1334         spin_unlock(&ubi->wl_lock);
1335
1336         /*
1337          * Technically scrubbing is the same as wear-leveling, so it is done
1338          * by the WL worker.
1339          */
1340         return ensure_wear_leveling(ubi, 0);
1341 }
1342
1343 /**
1344  * ubi_wl_flush - flush all pending works.
1345  * @ubi: UBI device description object
1346  * @vol_id: the volume id to flush for
1347  * @lnum: the logical eraseblock number to flush for
1348  *
1349  * This function executes all pending works for a particular volume id /
1350  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1351  * acts as a wildcard for all of the corresponding volume numbers or logical
1352  * eraseblock numbers. It returns zero in case of success and a negative error
1353  * code in case of failure.
1354  */
1355 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1356 {
1357         int err = 0;
1358         int found = 1;
1359
1360         /*
1361          * Erase while the pending works queue is not empty, but not more than
1362          * the number of currently pending works.
1363          */
1364         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1365                vol_id, lnum, ubi->works_count);
1366
1367         while (found) {
1368                 struct ubi_work *wrk, *tmp;
1369                 found = 0;
1370
1371                 down_read(&ubi->work_sem);
1372                 spin_lock(&ubi->wl_lock);
1373                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1374                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1375                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1376                                 list_del(&wrk->list);
1377                                 ubi->works_count -= 1;
1378                                 ubi_assert(ubi->works_count >= 0);
1379                                 spin_unlock(&ubi->wl_lock);
1380
1381                                 err = wrk->func(ubi, wrk, 0);
1382                                 if (err) {
1383                                         up_read(&ubi->work_sem);
1384                                         return err;
1385                                 }
1386
1387                                 spin_lock(&ubi->wl_lock);
1388                                 found = 1;
1389                                 break;
1390                         }
1391                 }
1392                 spin_unlock(&ubi->wl_lock);
1393                 up_read(&ubi->work_sem);
1394         }
1395
1396         /*
1397          * Make sure all the works which have been done in parallel are
1398          * finished.
1399          */
1400         down_write(&ubi->work_sem);
1401         up_write(&ubi->work_sem);
1402
1403         return err;
1404 }
1405
1406 /**
1407  * tree_destroy - destroy an RB-tree.
1408  * @ubi: UBI device description object
1409  * @root: the root of the tree to destroy
1410  */
1411 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1412 {
1413         struct rb_node *rb;
1414         struct ubi_wl_entry *e;
1415
1416         rb = root->rb_node;
1417         while (rb) {
1418                 if (rb->rb_left)
1419                         rb = rb->rb_left;
1420                 else if (rb->rb_right)
1421                         rb = rb->rb_right;
1422                 else {
1423                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1424
1425                         rb = rb_parent(rb);
1426                         if (rb) {
1427                                 if (rb->rb_left == &e->u.rb)
1428                                         rb->rb_left = NULL;
1429                                 else
1430                                         rb->rb_right = NULL;
1431                         }
1432
1433                         wl_entry_destroy(ubi, e);
1434                 }
1435         }
1436 }
1437
1438 /**
1439  * ubi_thread - UBI background thread.
1440  * @u: the UBI device description object pointer
1441  */
1442 int ubi_thread(void *u)
1443 {
1444         int failures = 0;
1445         struct ubi_device *ubi = u;
1446
1447         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1448                 ubi->bgt_name, task_pid_nr(current));
1449
1450         set_freezable();
1451         for (;;) {
1452                 int err;
1453
1454                 if (kthread_should_stop())
1455                         break;
1456
1457                 if (try_to_freeze())
1458                         continue;
1459
1460                 spin_lock(&ubi->wl_lock);
1461                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1462                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1463                         set_current_state(TASK_INTERRUPTIBLE);
1464                         spin_unlock(&ubi->wl_lock);
1465                         schedule();
1466                         continue;
1467                 }
1468                 spin_unlock(&ubi->wl_lock);
1469
1470                 err = do_work(ubi);
1471                 if (err) {
1472                         ubi_err(ubi, "%s: work failed with error code %d",
1473                                 ubi->bgt_name, err);
1474                         if (failures++ > WL_MAX_FAILURES) {
1475                                 /*
1476                                  * Too many failures, disable the thread and
1477                                  * switch to read-only mode.
1478                                  */
1479                                 ubi_msg(ubi, "%s: %d consecutive failures",
1480                                         ubi->bgt_name, WL_MAX_FAILURES);
1481                                 ubi_ro_mode(ubi);
1482                                 ubi->thread_enabled = 0;
1483                                 continue;
1484                         }
1485                 } else
1486                         failures = 0;
1487
1488                 cond_resched();
1489         }
1490
1491         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1492         return 0;
1493 }
1494
1495 /**
1496  * shutdown_work - shutdown all pending works.
1497  * @ubi: UBI device description object
1498  */
1499 static void shutdown_work(struct ubi_device *ubi)
1500 {
1501 #ifdef CONFIG_MTD_UBI_FASTMAP
1502 #ifndef __UBOOT__
1503         flush_work(&ubi->fm_work);
1504 #else
1505         /* in U-Boot, we have all work done */
1506 #endif
1507 #endif
1508         while (!list_empty(&ubi->works)) {
1509                 struct ubi_work *wrk;
1510
1511                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1512                 list_del(&wrk->list);
1513                 wrk->func(ubi, wrk, 1);
1514                 ubi->works_count -= 1;
1515                 ubi_assert(ubi->works_count >= 0);
1516         }
1517 }
1518
1519 /**
1520  * ubi_wl_init - initialize the WL sub-system using attaching information.
1521  * @ubi: UBI device description object
1522  * @ai: attaching information
1523  *
1524  * This function returns zero in case of success, and a negative error code in
1525  * case of failure.
1526  */
1527 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1528 {
1529         int err, i, reserved_pebs, found_pebs = 0;
1530         struct rb_node *rb1, *rb2;
1531         struct ubi_ainf_volume *av;
1532         struct ubi_ainf_peb *aeb, *tmp;
1533         struct ubi_wl_entry *e;
1534
1535         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1536         spin_lock_init(&ubi->wl_lock);
1537         mutex_init(&ubi->move_mutex);
1538         init_rwsem(&ubi->work_sem);
1539         ubi->max_ec = ai->max_ec;
1540         INIT_LIST_HEAD(&ubi->works);
1541
1542         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1543
1544         err = -ENOMEM;
1545         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1546         if (!ubi->lookuptbl)
1547                 return err;
1548
1549         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1550                 INIT_LIST_HEAD(&ubi->pq[i]);
1551         ubi->pq_head = 0;
1552
1553         ubi->free_count = 0;
1554         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1555                 cond_resched();
1556
1557                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1558                 if (!e)
1559                         goto out_free;
1560
1561                 e->pnum = aeb->pnum;
1562                 e->ec = aeb->ec;
1563                 ubi->lookuptbl[e->pnum] = e;
1564                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1565                         wl_entry_destroy(ubi, e);
1566                         goto out_free;
1567                 }
1568
1569                 found_pebs++;
1570         }
1571
1572         list_for_each_entry(aeb, &ai->free, u.list) {
1573                 cond_resched();
1574
1575                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1576                 if (!e)
1577                         goto out_free;
1578
1579                 e->pnum = aeb->pnum;
1580                 e->ec = aeb->ec;
1581                 ubi_assert(e->ec >= 0);
1582
1583                 wl_tree_add(e, &ubi->free);
1584                 ubi->free_count++;
1585
1586                 ubi->lookuptbl[e->pnum] = e;
1587
1588                 found_pebs++;
1589         }
1590
1591         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1592                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1593                         cond_resched();
1594
1595                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1596                         if (!e)
1597                                 goto out_free;
1598
1599                         e->pnum = aeb->pnum;
1600                         e->ec = aeb->ec;
1601                         ubi->lookuptbl[e->pnum] = e;
1602
1603                         if (!aeb->scrub) {
1604                                 dbg_wl("add PEB %d EC %d to the used tree",
1605                                        e->pnum, e->ec);
1606                                 wl_tree_add(e, &ubi->used);
1607                         } else {
1608                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1609                                        e->pnum, e->ec);
1610                                 wl_tree_add(e, &ubi->scrub);
1611                         }
1612
1613                         found_pebs++;
1614                 }
1615         }
1616
1617         dbg_wl("found %i PEBs", found_pebs);
1618
1619         if (ubi->fm) {
1620                 ubi_assert(ubi->good_peb_count ==
1621                            found_pebs + ubi->fm->used_blocks);
1622
1623                 for (i = 0; i < ubi->fm->used_blocks; i++) {
1624                         e = ubi->fm->e[i];
1625                         ubi->lookuptbl[e->pnum] = e;
1626                 }
1627         }
1628         else
1629                 ubi_assert(ubi->good_peb_count == found_pebs);
1630
1631         reserved_pebs = WL_RESERVED_PEBS;
1632         ubi_fastmap_init(ubi, &reserved_pebs);
1633
1634         if (ubi->avail_pebs < reserved_pebs) {
1635                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1636                         ubi->avail_pebs, reserved_pebs);
1637                 if (ubi->corr_peb_count)
1638                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1639                                 ubi->corr_peb_count);
1640                 goto out_free;
1641         }
1642         ubi->avail_pebs -= reserved_pebs;
1643         ubi->rsvd_pebs += reserved_pebs;
1644
1645         /* Schedule wear-leveling if needed */
1646         err = ensure_wear_leveling(ubi, 0);
1647         if (err)
1648                 goto out_free;
1649
1650         return 0;
1651
1652 out_free:
1653         shutdown_work(ubi);
1654         tree_destroy(ubi, &ubi->used);
1655         tree_destroy(ubi, &ubi->free);
1656         tree_destroy(ubi, &ubi->scrub);
1657         kfree(ubi->lookuptbl);
1658         return err;
1659 }
1660
1661 /**
1662  * protection_queue_destroy - destroy the protection queue.
1663  * @ubi: UBI device description object
1664  */
1665 static void protection_queue_destroy(struct ubi_device *ubi)
1666 {
1667         int i;
1668         struct ubi_wl_entry *e, *tmp;
1669
1670         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1671                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1672                         list_del(&e->u.list);
1673                         wl_entry_destroy(ubi, e);
1674                 }
1675         }
1676 }
1677
1678 /**
1679  * ubi_wl_close - close the wear-leveling sub-system.
1680  * @ubi: UBI device description object
1681  */
1682 void ubi_wl_close(struct ubi_device *ubi)
1683 {
1684         dbg_wl("close the WL sub-system");
1685         ubi_fastmap_close(ubi);
1686         shutdown_work(ubi);
1687         protection_queue_destroy(ubi);
1688         tree_destroy(ubi, &ubi->used);
1689         tree_destroy(ubi, &ubi->erroneous);
1690         tree_destroy(ubi, &ubi->free);
1691         tree_destroy(ubi, &ubi->scrub);
1692         kfree(ubi->lookuptbl);
1693 }
1694
1695 /**
1696  * self_check_ec - make sure that the erase counter of a PEB is correct.
1697  * @ubi: UBI device description object
1698  * @pnum: the physical eraseblock number to check
1699  * @ec: the erase counter to check
1700  *
1701  * This function returns zero if the erase counter of physical eraseblock @pnum
1702  * is equivalent to @ec, and a negative error code if not or if an error
1703  * occurred.
1704  */
1705 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1706 {
1707         int err;
1708         long long read_ec;
1709         struct ubi_ec_hdr *ec_hdr;
1710
1711         if (!ubi_dbg_chk_gen(ubi))
1712                 return 0;
1713
1714         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1715         if (!ec_hdr)
1716                 return -ENOMEM;
1717
1718         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1719         if (err && err != UBI_IO_BITFLIPS) {
1720                 /* The header does not have to exist */
1721                 err = 0;
1722                 goto out_free;
1723         }
1724
1725         read_ec = be64_to_cpu(ec_hdr->ec);
1726         if (ec != read_ec && read_ec - ec > 1) {
1727                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1728                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1729                 dump_stack();
1730                 err = 1;
1731         } else
1732                 err = 0;
1733
1734 out_free:
1735         kfree(ec_hdr);
1736         return err;
1737 }
1738
1739 /**
1740  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1741  * @ubi: UBI device description object
1742  * @e: the wear-leveling entry to check
1743  * @root: the root of the tree
1744  *
1745  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1746  * is not.
1747  */
1748 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1749                                  struct ubi_wl_entry *e, struct rb_root *root)
1750 {
1751         if (!ubi_dbg_chk_gen(ubi))
1752                 return 0;
1753
1754         if (in_wl_tree(e, root))
1755                 return 0;
1756
1757         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1758                 e->pnum, e->ec, root);
1759         dump_stack();
1760         return -EINVAL;
1761 }
1762
1763 /**
1764  * self_check_in_pq - check if wear-leveling entry is in the protection
1765  *                        queue.
1766  * @ubi: UBI device description object
1767  * @e: the wear-leveling entry to check
1768  *
1769  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1770  */
1771 static int self_check_in_pq(const struct ubi_device *ubi,
1772                             struct ubi_wl_entry *e)
1773 {
1774         struct ubi_wl_entry *p;
1775         int i;
1776
1777         if (!ubi_dbg_chk_gen(ubi))
1778                 return 0;
1779
1780         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1781                 list_for_each_entry(p, &ubi->pq[i], u.list)
1782                         if (p == e)
1783                                 return 0;
1784
1785         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1786                 e->pnum, e->ec);
1787         dump_stack();
1788         return -EINVAL;
1789 }
1790 #ifndef CONFIG_MTD_UBI_FASTMAP
1791 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1792 {
1793         struct ubi_wl_entry *e;
1794
1795         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1796         self_check_in_wl_tree(ubi, e, &ubi->free);
1797         ubi->free_count--;
1798         ubi_assert(ubi->free_count >= 0);
1799         rb_erase(&e->u.rb, &ubi->free);
1800
1801         return e;
1802 }
1803
1804 /**
1805  * produce_free_peb - produce a free physical eraseblock.
1806  * @ubi: UBI device description object
1807  *
1808  * This function tries to make a free PEB by means of synchronous execution of
1809  * pending works. This may be needed if, for example the background thread is
1810  * disabled. Returns zero in case of success and a negative error code in case
1811  * of failure.
1812  */
1813 static int produce_free_peb(struct ubi_device *ubi)
1814 {
1815         int err;
1816
1817         while (!ubi->free.rb_node && ubi->works_count) {
1818                 spin_unlock(&ubi->wl_lock);
1819
1820                 dbg_wl("do one work synchronously");
1821                 err = do_work(ubi);
1822
1823                 spin_lock(&ubi->wl_lock);
1824                 if (err)
1825                         return err;
1826         }
1827
1828         return 0;
1829 }
1830
1831 /**
1832  * ubi_wl_get_peb - get a physical eraseblock.
1833  * @ubi: UBI device description object
1834  *
1835  * This function returns a physical eraseblock in case of success and a
1836  * negative error code in case of failure.
1837  * Returns with ubi->fm_eba_sem held in read mode!
1838  */
1839 int ubi_wl_get_peb(struct ubi_device *ubi)
1840 {
1841         int err;
1842         struct ubi_wl_entry *e;
1843
1844 retry:
1845         down_read(&ubi->fm_eba_sem);
1846         spin_lock(&ubi->wl_lock);
1847         if (!ubi->free.rb_node) {
1848                 if (ubi->works_count == 0) {
1849                         ubi_err(ubi, "no free eraseblocks");
1850                         ubi_assert(list_empty(&ubi->works));
1851                         spin_unlock(&ubi->wl_lock);
1852                         return -ENOSPC;
1853                 }
1854
1855                 err = produce_free_peb(ubi);
1856                 if (err < 0) {
1857                         spin_unlock(&ubi->wl_lock);
1858                         return err;
1859                 }
1860                 spin_unlock(&ubi->wl_lock);
1861                 up_read(&ubi->fm_eba_sem);
1862                 goto retry;
1863
1864         }
1865         e = wl_get_wle(ubi);
1866         prot_queue_add(ubi, e);
1867         spin_unlock(&ubi->wl_lock);
1868
1869         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1870                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1871         if (err) {
1872                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1873                 return err;
1874         }
1875
1876         return e->pnum;
1877 }
1878 #else
1879 #include "fastmap-wl.c"
1880 #endif