]> git.sur5r.net Git - u-boot/blob - drivers/mtd/ubi/wl.c
mmc: Fix uninitialised priv member
[u-boot] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8
9 /*
10  * UBI wear-leveling sub-system.
11  *
12  * This sub-system is responsible for wear-leveling. It works in terms of
13  * physical eraseblocks and erase counters and knows nothing about logical
14  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15  * eraseblocks are of two types - used and free. Used physical eraseblocks are
16  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only %0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL sub-system by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL sub-system.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32  * bad.
33  *
34  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35  * in a physical eraseblock, it has to be moved. Technically this is the same
36  * as moving it for wear-leveling reasons.
37  *
38  * As it was said, for the UBI sub-system all physical eraseblocks are either
39  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41  * RB-trees, as well as (temporarily) in the @wl->pq queue.
42  *
43  * When the WL sub-system returns a physical eraseblock, the physical
44  * eraseblock is protected from being moved for some "time". For this reason,
45  * the physical eraseblock is not directly moved from the @wl->free tree to the
46  * @wl->used tree. There is a protection queue in between where this
47  * physical eraseblock is temporarily stored (@wl->pq).
48  *
49  * All this protection stuff is needed because:
50  *  o we don't want to move physical eraseblocks just after we have given them
51  *    to the user; instead, we first want to let users fill them up with data;
52  *
53  *  o there is a chance that the user will put the physical eraseblock very
54  *    soon, so it makes sense not to move it for some time, but wait.
55  *
56  * Physical eraseblocks stay protected only for limited time. But the "time" is
57  * measured in erase cycles in this case. This is implemented with help of the
58  * protection queue. Eraseblocks are put to the tail of this queue when they
59  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60  * head of the queue on each erase operation (for any eraseblock). So the
61  * length of the queue defines how may (global) erase cycles PEBs are protected.
62  *
63  * To put it differently, each physical eraseblock has 2 main states: free and
64  * used. The former state corresponds to the @wl->free tree. The latter state
65  * is split up on several sub-states:
66  * o the WL movement is allowed (@wl->used tree);
67  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68  *   erroneous - e.g., there was a read error;
69  * o the WL movement is temporarily prohibited (@wl->pq queue);
70  * o scrubbing is needed (@wl->scrub tree).
71  *
72  * Depending on the sub-state, wear-leveling entries of the used physical
73  * eraseblocks may be kept in one of those structures.
74  *
75  * Note, in this implementation, we keep a small in-RAM object for each physical
76  * eraseblock. This is surely not a scalable solution. But it appears to be good
77  * enough for moderately large flashes and it is simple. In future, one may
78  * re-work this sub-system and make it more scalable.
79  *
80  * At the moment this sub-system does not utilize the sequence number, which
81  * was introduced relatively recently. But it would be wise to do this because
82  * the sequence number of a logical eraseblock characterizes how old is it. For
83  * example, when we move a PEB with low erase counter, and we need to pick the
84  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85  * pick target PEB with an average EC if our PEB is not very "old". This is a
86  * room for future re-works of the WL sub-system.
87  */
88
89 #ifndef __UBOOT__
90 #include <linux/slab.h>
91 #include <linux/crc32.h>
92 #include <linux/freezer.h>
93 #include <linux/kthread.h>
94 #else
95 #include <ubi_uboot.h>
96 #endif
97
98 #include "ubi.h"
99 #include "wl.h"
100
101 /* Number of physical eraseblocks reserved for wear-leveling purposes */
102 #define WL_RESERVED_PEBS 1
103
104 /*
105  * Maximum difference between two erase counters. If this threshold is
106  * exceeded, the WL sub-system starts moving data from used physical
107  * eraseblocks with low erase counter to free physical eraseblocks with high
108  * erase counter.
109  */
110 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
111
112 /*
113  * When a physical eraseblock is moved, the WL sub-system has to pick the target
114  * physical eraseblock to move to. The simplest way would be just to pick the
115  * one with the highest erase counter. But in certain workloads this could lead
116  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
117  * situation when the picked physical eraseblock is constantly erased after the
118  * data is written to it. So, we have a constant which limits the highest erase
119  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
120  * does not pick eraseblocks with erase counter greater than the lowest erase
121  * counter plus %WL_FREE_MAX_DIFF.
122  */
123 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
124
125 /*
126  * Maximum number of consecutive background thread failures which is enough to
127  * switch to read-only mode.
128  */
129 #define WL_MAX_FAILURES 32
130
131 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
132 static int self_check_in_wl_tree(const struct ubi_device *ubi,
133                                  struct ubi_wl_entry *e, struct rb_root *root);
134 static int self_check_in_pq(const struct ubi_device *ubi,
135                             struct ubi_wl_entry *e);
136
137 /**
138  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
139  * @e: the wear-leveling entry to add
140  * @root: the root of the tree
141  *
142  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
143  * the @ubi->used and @ubi->free RB-trees.
144  */
145 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
146 {
147         struct rb_node **p, *parent = NULL;
148
149         p = &root->rb_node;
150         while (*p) {
151                 struct ubi_wl_entry *e1;
152
153                 parent = *p;
154                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
155
156                 if (e->ec < e1->ec)
157                         p = &(*p)->rb_left;
158                 else if (e->ec > e1->ec)
159                         p = &(*p)->rb_right;
160                 else {
161                         ubi_assert(e->pnum != e1->pnum);
162                         if (e->pnum < e1->pnum)
163                                 p = &(*p)->rb_left;
164                         else
165                                 p = &(*p)->rb_right;
166                 }
167         }
168
169         rb_link_node(&e->u.rb, parent, p);
170         rb_insert_color(&e->u.rb, root);
171 }
172
173 /**
174  * wl_tree_destroy - destroy a wear-leveling entry.
175  * @ubi: UBI device description object
176  * @e: the wear-leveling entry to add
177  *
178  * This function destroys a wear leveling entry and removes
179  * the reference from the lookup table.
180  */
181 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
182 {
183         ubi->lookuptbl[e->pnum] = NULL;
184         kmem_cache_free(ubi_wl_entry_slab, e);
185 }
186
187 /**
188  * do_work - do one pending work.
189  * @ubi: UBI device description object
190  *
191  * This function returns zero in case of success and a negative error code in
192  * case of failure.
193  */
194 #ifndef __UBOOT__
195 static int do_work(struct ubi_device *ubi)
196 #else
197 int do_work(struct ubi_device *ubi)
198 #endif
199 {
200         int err;
201         struct ubi_work *wrk;
202
203         cond_resched();
204
205         /*
206          * @ubi->work_sem is used to synchronize with the workers. Workers take
207          * it in read mode, so many of them may be doing works at a time. But
208          * the queue flush code has to be sure the whole queue of works is
209          * done, and it takes the mutex in write mode.
210          */
211         down_read(&ubi->work_sem);
212         spin_lock(&ubi->wl_lock);
213         if (list_empty(&ubi->works)) {
214                 spin_unlock(&ubi->wl_lock);
215                 up_read(&ubi->work_sem);
216                 return 0;
217         }
218
219         wrk = list_entry(ubi->works.next, struct ubi_work, list);
220         list_del(&wrk->list);
221         ubi->works_count -= 1;
222         ubi_assert(ubi->works_count >= 0);
223         spin_unlock(&ubi->wl_lock);
224
225         /*
226          * Call the worker function. Do not touch the work structure
227          * after this call as it will have been freed or reused by that
228          * time by the worker function.
229          */
230         err = wrk->func(ubi, wrk, 0);
231         if (err)
232                 ubi_err(ubi, "work failed with error code %d", err);
233         up_read(&ubi->work_sem);
234
235         return err;
236 }
237
238 /**
239  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
240  * @e: the wear-leveling entry to check
241  * @root: the root of the tree
242  *
243  * This function returns non-zero if @e is in the @root RB-tree and zero if it
244  * is not.
245  */
246 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
247 {
248         struct rb_node *p;
249
250         p = root->rb_node;
251         while (p) {
252                 struct ubi_wl_entry *e1;
253
254                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
255
256                 if (e->pnum == e1->pnum) {
257                         ubi_assert(e == e1);
258                         return 1;
259                 }
260
261                 if (e->ec < e1->ec)
262                         p = p->rb_left;
263                 else if (e->ec > e1->ec)
264                         p = p->rb_right;
265                 else {
266                         ubi_assert(e->pnum != e1->pnum);
267                         if (e->pnum < e1->pnum)
268                                 p = p->rb_left;
269                         else
270                                 p = p->rb_right;
271                 }
272         }
273
274         return 0;
275 }
276
277 /**
278  * prot_queue_add - add physical eraseblock to the protection queue.
279  * @ubi: UBI device description object
280  * @e: the physical eraseblock to add
281  *
282  * This function adds @e to the tail of the protection queue @ubi->pq, where
283  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
284  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
285  * be locked.
286  */
287 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
288 {
289         int pq_tail = ubi->pq_head - 1;
290
291         if (pq_tail < 0)
292                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
293         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
294         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
295         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
296 }
297
298 /**
299  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
300  * @ubi: UBI device description object
301  * @root: the RB-tree where to look for
302  * @diff: maximum possible difference from the smallest erase counter
303  *
304  * This function looks for a wear leveling entry with erase counter closest to
305  * min + @diff, where min is the smallest erase counter.
306  */
307 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
308                                           struct rb_root *root, int diff)
309 {
310         struct rb_node *p;
311         struct ubi_wl_entry *e, *prev_e = NULL;
312         int max;
313
314         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
315         max = e->ec + diff;
316
317         p = root->rb_node;
318         while (p) {
319                 struct ubi_wl_entry *e1;
320
321                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
322                 if (e1->ec >= max)
323                         p = p->rb_left;
324                 else {
325                         p = p->rb_right;
326                         prev_e = e;
327                         e = e1;
328                 }
329         }
330
331         /* If no fastmap has been written and this WL entry can be used
332          * as anchor PEB, hold it back and return the second best WL entry
333          * such that fastmap can use the anchor PEB later. */
334         if (prev_e && !ubi->fm_disabled &&
335             !ubi->fm && e->pnum < UBI_FM_MAX_START)
336                 return prev_e;
337
338         return e;
339 }
340
341 /**
342  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
343  * @ubi: UBI device description object
344  * @root: the RB-tree where to look for
345  *
346  * This function looks for a wear leveling entry with medium erase counter,
347  * but not greater or equivalent than the lowest erase counter plus
348  * %WL_FREE_MAX_DIFF/2.
349  */
350 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
351                                                struct rb_root *root)
352 {
353         struct ubi_wl_entry *e, *first, *last;
354
355         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
356         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
357
358         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
359                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
360
361                 /* If no fastmap has been written and this WL entry can be used
362                  * as anchor PEB, hold it back and return the second best
363                  * WL entry such that fastmap can use the anchor PEB later. */
364                 e = may_reserve_for_fm(ubi, e, root);
365         } else
366                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
367
368         return e;
369 }
370
371 /**
372  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
373  * refill_wl_user_pool().
374  * @ubi: UBI device description object
375  *
376  * This function returns a a wear leveling entry in case of success and
377  * NULL in case of failure.
378  */
379 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
380 {
381         struct ubi_wl_entry *e;
382
383         e = find_mean_wl_entry(ubi, &ubi->free);
384         if (!e) {
385                 ubi_err(ubi, "no free eraseblocks");
386                 return NULL;
387         }
388
389         self_check_in_wl_tree(ubi, e, &ubi->free);
390
391         /*
392          * Move the physical eraseblock to the protection queue where it will
393          * be protected from being moved for some time.
394          */
395         rb_erase(&e->u.rb, &ubi->free);
396         ubi->free_count--;
397         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
398
399         return e;
400 }
401
402 /**
403  * prot_queue_del - remove a physical eraseblock from the protection queue.
404  * @ubi: UBI device description object
405  * @pnum: the physical eraseblock to remove
406  *
407  * This function deletes PEB @pnum from the protection queue and returns zero
408  * in case of success and %-ENODEV if the PEB was not found.
409  */
410 static int prot_queue_del(struct ubi_device *ubi, int pnum)
411 {
412         struct ubi_wl_entry *e;
413
414         e = ubi->lookuptbl[pnum];
415         if (!e)
416                 return -ENODEV;
417
418         if (self_check_in_pq(ubi, e))
419                 return -ENODEV;
420
421         list_del(&e->u.list);
422         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
423         return 0;
424 }
425
426 /**
427  * sync_erase - synchronously erase a physical eraseblock.
428  * @ubi: UBI device description object
429  * @e: the the physical eraseblock to erase
430  * @torture: if the physical eraseblock has to be tortured
431  *
432  * This function returns zero in case of success and a negative error code in
433  * case of failure.
434  */
435 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
436                       int torture)
437 {
438         int err;
439         struct ubi_ec_hdr *ec_hdr;
440         unsigned long long ec = e->ec;
441
442         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
443
444         err = self_check_ec(ubi, e->pnum, e->ec);
445         if (err)
446                 return -EINVAL;
447
448         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
449         if (!ec_hdr)
450                 return -ENOMEM;
451
452         err = ubi_io_sync_erase(ubi, e->pnum, torture);
453         if (err < 0)
454                 goto out_free;
455
456         ec += err;
457         if (ec > UBI_MAX_ERASECOUNTER) {
458                 /*
459                  * Erase counter overflow. Upgrade UBI and use 64-bit
460                  * erase counters internally.
461                  */
462                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
463                         e->pnum, ec);
464                 err = -EINVAL;
465                 goto out_free;
466         }
467
468         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
469
470         ec_hdr->ec = cpu_to_be64(ec);
471
472         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
473         if (err)
474                 goto out_free;
475
476         e->ec = ec;
477         spin_lock(&ubi->wl_lock);
478         if (e->ec > ubi->max_ec)
479                 ubi->max_ec = e->ec;
480         spin_unlock(&ubi->wl_lock);
481
482 out_free:
483         kfree(ec_hdr);
484         return err;
485 }
486
487 /**
488  * serve_prot_queue - check if it is time to stop protecting PEBs.
489  * @ubi: UBI device description object
490  *
491  * This function is called after each erase operation and removes PEBs from the
492  * tail of the protection queue. These PEBs have been protected for long enough
493  * and should be moved to the used tree.
494  */
495 static void serve_prot_queue(struct ubi_device *ubi)
496 {
497         struct ubi_wl_entry *e, *tmp;
498         int count;
499
500         /*
501          * There may be several protected physical eraseblock to remove,
502          * process them all.
503          */
504 repeat:
505         count = 0;
506         spin_lock(&ubi->wl_lock);
507         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
508                 dbg_wl("PEB %d EC %d protection over, move to used tree",
509                         e->pnum, e->ec);
510
511                 list_del(&e->u.list);
512                 wl_tree_add(e, &ubi->used);
513                 if (count++ > 32) {
514                         /*
515                          * Let's be nice and avoid holding the spinlock for
516                          * too long.
517                          */
518                         spin_unlock(&ubi->wl_lock);
519                         cond_resched();
520                         goto repeat;
521                 }
522         }
523
524         ubi->pq_head += 1;
525         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
526                 ubi->pq_head = 0;
527         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
528         spin_unlock(&ubi->wl_lock);
529 }
530
531 /**
532  * __schedule_ubi_work - schedule a work.
533  * @ubi: UBI device description object
534  * @wrk: the work to schedule
535  *
536  * This function adds a work defined by @wrk to the tail of the pending works
537  * list. Can only be used if ubi->work_sem is already held in read mode!
538  */
539 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
540 {
541         spin_lock(&ubi->wl_lock);
542         list_add_tail(&wrk->list, &ubi->works);
543         ubi_assert(ubi->works_count >= 0);
544         ubi->works_count += 1;
545 #ifndef __UBOOT__
546         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
547                 wake_up_process(ubi->bgt_thread);
548 #else
549         int err;
550         /*
551          * U-Boot special: We have no bgt_thread in U-Boot!
552          * So just call do_work() here directly.
553          */
554         err = do_work(ubi);
555         if (err) {
556                 ubi_err(ubi, "%s: work failed with error code %d",
557                         ubi->bgt_name, err);
558         }
559 #endif
560         spin_unlock(&ubi->wl_lock);
561 }
562
563 /**
564  * schedule_ubi_work - schedule a work.
565  * @ubi: UBI device description object
566  * @wrk: the work to schedule
567  *
568  * This function adds a work defined by @wrk to the tail of the pending works
569  * list.
570  */
571 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
572 {
573         down_read(&ubi->work_sem);
574         __schedule_ubi_work(ubi, wrk);
575         up_read(&ubi->work_sem);
576 }
577
578 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
579                         int shutdown);
580
581 /**
582  * schedule_erase - schedule an erase work.
583  * @ubi: UBI device description object
584  * @e: the WL entry of the physical eraseblock to erase
585  * @vol_id: the volume ID that last used this PEB
586  * @lnum: the last used logical eraseblock number for the PEB
587  * @torture: if the physical eraseblock has to be tortured
588  *
589  * This function returns zero in case of success and a %-ENOMEM in case of
590  * failure.
591  */
592 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
593                           int vol_id, int lnum, int torture)
594 {
595         struct ubi_work *wl_wrk;
596
597         ubi_assert(e);
598
599         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
600                e->pnum, e->ec, torture);
601
602         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
603         if (!wl_wrk)
604                 return -ENOMEM;
605
606         wl_wrk->func = &erase_worker;
607         wl_wrk->e = e;
608         wl_wrk->vol_id = vol_id;
609         wl_wrk->lnum = lnum;
610         wl_wrk->torture = torture;
611
612         schedule_ubi_work(ubi, wl_wrk);
613         return 0;
614 }
615
616 /**
617  * do_sync_erase - run the erase worker synchronously.
618  * @ubi: UBI device description object
619  * @e: the WL entry of the physical eraseblock to erase
620  * @vol_id: the volume ID that last used this PEB
621  * @lnum: the last used logical eraseblock number for the PEB
622  * @torture: if the physical eraseblock has to be tortured
623  *
624  */
625 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
626                          int vol_id, int lnum, int torture)
627 {
628         struct ubi_work *wl_wrk;
629
630         dbg_wl("sync erase of PEB %i", e->pnum);
631
632         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
633         if (!wl_wrk)
634                 return -ENOMEM;
635
636         wl_wrk->e = e;
637         wl_wrk->vol_id = vol_id;
638         wl_wrk->lnum = lnum;
639         wl_wrk->torture = torture;
640
641         return erase_worker(ubi, wl_wrk, 0);
642 }
643
644 /**
645  * wear_leveling_worker - wear-leveling worker function.
646  * @ubi: UBI device description object
647  * @wrk: the work object
648  * @shutdown: non-zero if the worker has to free memory and exit
649  * because the WL-subsystem is shutting down
650  *
651  * This function copies a more worn out physical eraseblock to a less worn out
652  * one. Returns zero in case of success and a negative error code in case of
653  * failure.
654  */
655 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
656                                 int shutdown)
657 {
658         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
659         int vol_id = -1, lnum = -1;
660 #ifdef CONFIG_MTD_UBI_FASTMAP
661         int anchor = wrk->anchor;
662 #endif
663         struct ubi_wl_entry *e1, *e2;
664         struct ubi_vid_hdr *vid_hdr;
665
666         kfree(wrk);
667         if (shutdown)
668                 return 0;
669
670         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
671         if (!vid_hdr)
672                 return -ENOMEM;
673
674         mutex_lock(&ubi->move_mutex);
675         spin_lock(&ubi->wl_lock);
676         ubi_assert(!ubi->move_from && !ubi->move_to);
677         ubi_assert(!ubi->move_to_put);
678
679         if (!ubi->free.rb_node ||
680             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
681                 /*
682                  * No free physical eraseblocks? Well, they must be waiting in
683                  * the queue to be erased. Cancel movement - it will be
684                  * triggered again when a free physical eraseblock appears.
685                  *
686                  * No used physical eraseblocks? They must be temporarily
687                  * protected from being moved. They will be moved to the
688                  * @ubi->used tree later and the wear-leveling will be
689                  * triggered again.
690                  */
691                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
692                        !ubi->free.rb_node, !ubi->used.rb_node);
693                 goto out_cancel;
694         }
695
696 #ifdef CONFIG_MTD_UBI_FASTMAP
697         /* Check whether we need to produce an anchor PEB */
698         if (!anchor)
699                 anchor = !anchor_pebs_avalible(&ubi->free);
700
701         if (anchor) {
702                 e1 = find_anchor_wl_entry(&ubi->used);
703                 if (!e1)
704                         goto out_cancel;
705                 e2 = get_peb_for_wl(ubi);
706                 if (!e2)
707                         goto out_cancel;
708
709                 self_check_in_wl_tree(ubi, e1, &ubi->used);
710                 rb_erase(&e1->u.rb, &ubi->used);
711                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
712         } else if (!ubi->scrub.rb_node) {
713 #else
714         if (!ubi->scrub.rb_node) {
715 #endif
716                 /*
717                  * Now pick the least worn-out used physical eraseblock and a
718                  * highly worn-out free physical eraseblock. If the erase
719                  * counters differ much enough, start wear-leveling.
720                  */
721                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
722                 e2 = get_peb_for_wl(ubi);
723                 if (!e2)
724                         goto out_cancel;
725
726                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
727                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
728                                e1->ec, e2->ec);
729
730                         /* Give the unused PEB back */
731                         wl_tree_add(e2, &ubi->free);
732                         ubi->free_count++;
733                         goto out_cancel;
734                 }
735                 self_check_in_wl_tree(ubi, e1, &ubi->used);
736                 rb_erase(&e1->u.rb, &ubi->used);
737                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
738                        e1->pnum, e1->ec, e2->pnum, e2->ec);
739         } else {
740                 /* Perform scrubbing */
741                 scrubbing = 1;
742                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
743                 e2 = get_peb_for_wl(ubi);
744                 if (!e2)
745                         goto out_cancel;
746
747                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
748                 rb_erase(&e1->u.rb, &ubi->scrub);
749                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
750         }
751
752         ubi->move_from = e1;
753         ubi->move_to = e2;
754         spin_unlock(&ubi->wl_lock);
755
756         /*
757          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
758          * We so far do not know which logical eraseblock our physical
759          * eraseblock (@e1) belongs to. We have to read the volume identifier
760          * header first.
761          *
762          * Note, we are protected from this PEB being unmapped and erased. The
763          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
764          * which is being moved was unmapped.
765          */
766
767         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
768         if (err && err != UBI_IO_BITFLIPS) {
769                 if (err == UBI_IO_FF) {
770                         /*
771                          * We are trying to move PEB without a VID header. UBI
772                          * always write VID headers shortly after the PEB was
773                          * given, so we have a situation when it has not yet
774                          * had a chance to write it, because it was preempted.
775                          * So add this PEB to the protection queue so far,
776                          * because presumably more data will be written there
777                          * (including the missing VID header), and then we'll
778                          * move it.
779                          */
780                         dbg_wl("PEB %d has no VID header", e1->pnum);
781                         protect = 1;
782                         goto out_not_moved;
783                 } else if (err == UBI_IO_FF_BITFLIPS) {
784                         /*
785                          * The same situation as %UBI_IO_FF, but bit-flips were
786                          * detected. It is better to schedule this PEB for
787                          * scrubbing.
788                          */
789                         dbg_wl("PEB %d has no VID header but has bit-flips",
790                                e1->pnum);
791                         scrubbing = 1;
792                         goto out_not_moved;
793                 }
794
795                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
796                         err, e1->pnum);
797                 goto out_error;
798         }
799
800         vol_id = be32_to_cpu(vid_hdr->vol_id);
801         lnum = be32_to_cpu(vid_hdr->lnum);
802
803         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
804         if (err) {
805                 if (err == MOVE_CANCEL_RACE) {
806                         /*
807                          * The LEB has not been moved because the volume is
808                          * being deleted or the PEB has been put meanwhile. We
809                          * should prevent this PEB from being selected for
810                          * wear-leveling movement again, so put it to the
811                          * protection queue.
812                          */
813                         protect = 1;
814                         goto out_not_moved;
815                 }
816                 if (err == MOVE_RETRY) {
817                         scrubbing = 1;
818                         goto out_not_moved;
819                 }
820                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
821                     err == MOVE_TARGET_RD_ERR) {
822                         /*
823                          * Target PEB had bit-flips or write error - torture it.
824                          */
825                         torture = 1;
826                         goto out_not_moved;
827                 }
828
829                 if (err == MOVE_SOURCE_RD_ERR) {
830                         /*
831                          * An error happened while reading the source PEB. Do
832                          * not switch to R/O mode in this case, and give the
833                          * upper layers a possibility to recover from this,
834                          * e.g. by unmapping corresponding LEB. Instead, just
835                          * put this PEB to the @ubi->erroneous list to prevent
836                          * UBI from trying to move it over and over again.
837                          */
838                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
839                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
840                                         ubi->erroneous_peb_count);
841                                 goto out_error;
842                         }
843                         erroneous = 1;
844                         goto out_not_moved;
845                 }
846
847                 if (err < 0)
848                         goto out_error;
849
850                 ubi_assert(0);
851         }
852
853         /* The PEB has been successfully moved */
854         if (scrubbing)
855                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
856                         e1->pnum, vol_id, lnum, e2->pnum);
857         ubi_free_vid_hdr(ubi, vid_hdr);
858
859         spin_lock(&ubi->wl_lock);
860         if (!ubi->move_to_put) {
861                 wl_tree_add(e2, &ubi->used);
862                 e2 = NULL;
863         }
864         ubi->move_from = ubi->move_to = NULL;
865         ubi->move_to_put = ubi->wl_scheduled = 0;
866         spin_unlock(&ubi->wl_lock);
867
868         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
869         if (err) {
870                 if (e2)
871                         wl_entry_destroy(ubi, e2);
872                 goto out_ro;
873         }
874
875         if (e2) {
876                 /*
877                  * Well, the target PEB was put meanwhile, schedule it for
878                  * erasure.
879                  */
880                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
881                        e2->pnum, vol_id, lnum);
882                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
883                 if (err)
884                         goto out_ro;
885         }
886
887         dbg_wl("done");
888         mutex_unlock(&ubi->move_mutex);
889         return 0;
890
891         /*
892          * For some reasons the LEB was not moved, might be an error, might be
893          * something else. @e1 was not changed, so return it back. @e2 might
894          * have been changed, schedule it for erasure.
895          */
896 out_not_moved:
897         if (vol_id != -1)
898                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
899                        e1->pnum, vol_id, lnum, e2->pnum, err);
900         else
901                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
902                        e1->pnum, e2->pnum, err);
903         spin_lock(&ubi->wl_lock);
904         if (protect)
905                 prot_queue_add(ubi, e1);
906         else if (erroneous) {
907                 wl_tree_add(e1, &ubi->erroneous);
908                 ubi->erroneous_peb_count += 1;
909         } else if (scrubbing)
910                 wl_tree_add(e1, &ubi->scrub);
911         else
912                 wl_tree_add(e1, &ubi->used);
913         ubi_assert(!ubi->move_to_put);
914         ubi->move_from = ubi->move_to = NULL;
915         ubi->wl_scheduled = 0;
916         spin_unlock(&ubi->wl_lock);
917
918         ubi_free_vid_hdr(ubi, vid_hdr);
919         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
920         if (err)
921                 goto out_ro;
922
923         mutex_unlock(&ubi->move_mutex);
924         return 0;
925
926 out_error:
927         if (vol_id != -1)
928                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
929                         err, e1->pnum, e2->pnum);
930         else
931                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
932                         err, e1->pnum, vol_id, lnum, e2->pnum);
933         spin_lock(&ubi->wl_lock);
934         ubi->move_from = ubi->move_to = NULL;
935         ubi->move_to_put = ubi->wl_scheduled = 0;
936         spin_unlock(&ubi->wl_lock);
937
938         ubi_free_vid_hdr(ubi, vid_hdr);
939         wl_entry_destroy(ubi, e1);
940         wl_entry_destroy(ubi, e2);
941
942 out_ro:
943         ubi_ro_mode(ubi);
944         mutex_unlock(&ubi->move_mutex);
945         ubi_assert(err != 0);
946         return err < 0 ? err : -EIO;
947
948 out_cancel:
949         ubi->wl_scheduled = 0;
950         spin_unlock(&ubi->wl_lock);
951         mutex_unlock(&ubi->move_mutex);
952         ubi_free_vid_hdr(ubi, vid_hdr);
953         return 0;
954 }
955
956 /**
957  * ensure_wear_leveling - schedule wear-leveling if it is needed.
958  * @ubi: UBI device description object
959  * @nested: set to non-zero if this function is called from UBI worker
960  *
961  * This function checks if it is time to start wear-leveling and schedules it
962  * if yes. This function returns zero in case of success and a negative error
963  * code in case of failure.
964  */
965 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
966 {
967         int err = 0;
968         struct ubi_wl_entry *e1;
969         struct ubi_wl_entry *e2;
970         struct ubi_work *wrk;
971
972         spin_lock(&ubi->wl_lock);
973         if (ubi->wl_scheduled)
974                 /* Wear-leveling is already in the work queue */
975                 goto out_unlock;
976
977         /*
978          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
979          * the WL worker has to be scheduled anyway.
980          */
981         if (!ubi->scrub.rb_node) {
982                 if (!ubi->used.rb_node || !ubi->free.rb_node)
983                         /* No physical eraseblocks - no deal */
984                         goto out_unlock;
985
986                 /*
987                  * We schedule wear-leveling only if the difference between the
988                  * lowest erase counter of used physical eraseblocks and a high
989                  * erase counter of free physical eraseblocks is greater than
990                  * %UBI_WL_THRESHOLD.
991                  */
992                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
993                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
994
995                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
996                         goto out_unlock;
997                 dbg_wl("schedule wear-leveling");
998         } else
999                 dbg_wl("schedule scrubbing");
1000
1001         ubi->wl_scheduled = 1;
1002         spin_unlock(&ubi->wl_lock);
1003
1004         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1005         if (!wrk) {
1006                 err = -ENOMEM;
1007                 goto out_cancel;
1008         }
1009
1010         wrk->anchor = 0;
1011         wrk->func = &wear_leveling_worker;
1012         if (nested)
1013                 __schedule_ubi_work(ubi, wrk);
1014         else
1015                 schedule_ubi_work(ubi, wrk);
1016         return err;
1017
1018 out_cancel:
1019         spin_lock(&ubi->wl_lock);
1020         ubi->wl_scheduled = 0;
1021 out_unlock:
1022         spin_unlock(&ubi->wl_lock);
1023         return err;
1024 }
1025
1026 /**
1027  * erase_worker - physical eraseblock erase worker function.
1028  * @ubi: UBI device description object
1029  * @wl_wrk: the work object
1030  * @shutdown: non-zero if the worker has to free memory and exit
1031  * because the WL sub-system is shutting down
1032  *
1033  * This function erases a physical eraseblock and perform torture testing if
1034  * needed. It also takes care about marking the physical eraseblock bad if
1035  * needed. Returns zero in case of success and a negative error code in case of
1036  * failure.
1037  */
1038 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1039                         int shutdown)
1040 {
1041         struct ubi_wl_entry *e = wl_wrk->e;
1042         int pnum = e->pnum;
1043         int vol_id = wl_wrk->vol_id;
1044         int lnum = wl_wrk->lnum;
1045         int err, available_consumed = 0;
1046
1047         if (shutdown) {
1048                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1049                 kfree(wl_wrk);
1050                 wl_entry_destroy(ubi, e);
1051                 return 0;
1052         }
1053
1054         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1055                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1056
1057         err = sync_erase(ubi, e, wl_wrk->torture);
1058         if (!err) {
1059                 /* Fine, we've erased it successfully */
1060                 kfree(wl_wrk);
1061
1062                 spin_lock(&ubi->wl_lock);
1063                 wl_tree_add(e, &ubi->free);
1064                 ubi->free_count++;
1065                 spin_unlock(&ubi->wl_lock);
1066
1067                 /*
1068                  * One more erase operation has happened, take care about
1069                  * protected physical eraseblocks.
1070                  */
1071                 serve_prot_queue(ubi);
1072
1073                 /* And take care about wear-leveling */
1074                 err = ensure_wear_leveling(ubi, 1);
1075                 return err;
1076         }
1077
1078         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1079         kfree(wl_wrk);
1080
1081         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1082             err == -EBUSY) {
1083                 int err1;
1084
1085                 /* Re-schedule the LEB for erasure */
1086                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1087                 if (err1) {
1088                         err = err1;
1089                         goto out_ro;
1090                 }
1091                 return err;
1092         }
1093
1094         wl_entry_destroy(ubi, e);
1095         if (err != -EIO)
1096                 /*
1097                  * If this is not %-EIO, we have no idea what to do. Scheduling
1098                  * this physical eraseblock for erasure again would cause
1099                  * errors again and again. Well, lets switch to R/O mode.
1100                  */
1101                 goto out_ro;
1102
1103         /* It is %-EIO, the PEB went bad */
1104
1105         if (!ubi->bad_allowed) {
1106                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1107                 goto out_ro;
1108         }
1109
1110         spin_lock(&ubi->volumes_lock);
1111         if (ubi->beb_rsvd_pebs == 0) {
1112                 if (ubi->avail_pebs == 0) {
1113                         spin_unlock(&ubi->volumes_lock);
1114                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1115                         goto out_ro;
1116                 }
1117                 ubi->avail_pebs -= 1;
1118                 available_consumed = 1;
1119         }
1120         spin_unlock(&ubi->volumes_lock);
1121
1122         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1123         err = ubi_io_mark_bad(ubi, pnum);
1124         if (err)
1125                 goto out_ro;
1126
1127         spin_lock(&ubi->volumes_lock);
1128         if (ubi->beb_rsvd_pebs > 0) {
1129                 if (available_consumed) {
1130                         /*
1131                          * The amount of reserved PEBs increased since we last
1132                          * checked.
1133                          */
1134                         ubi->avail_pebs += 1;
1135                         available_consumed = 0;
1136                 }
1137                 ubi->beb_rsvd_pebs -= 1;
1138         }
1139         ubi->bad_peb_count += 1;
1140         ubi->good_peb_count -= 1;
1141         ubi_calculate_reserved(ubi);
1142         if (available_consumed)
1143                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1144         else if (ubi->beb_rsvd_pebs)
1145                 ubi_msg(ubi, "%d PEBs left in the reserve",
1146                         ubi->beb_rsvd_pebs);
1147         else
1148                 ubi_warn(ubi, "last PEB from the reserve was used");
1149         spin_unlock(&ubi->volumes_lock);
1150
1151         return err;
1152
1153 out_ro:
1154         if (available_consumed) {
1155                 spin_lock(&ubi->volumes_lock);
1156                 ubi->avail_pebs += 1;
1157                 spin_unlock(&ubi->volumes_lock);
1158         }
1159         ubi_ro_mode(ubi);
1160         return err;
1161 }
1162
1163 /**
1164  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1165  * @ubi: UBI device description object
1166  * @vol_id: the volume ID that last used this PEB
1167  * @lnum: the last used logical eraseblock number for the PEB
1168  * @pnum: physical eraseblock to return
1169  * @torture: if this physical eraseblock has to be tortured
1170  *
1171  * This function is called to return physical eraseblock @pnum to the pool of
1172  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1173  * occurred to this @pnum and it has to be tested. This function returns zero
1174  * in case of success, and a negative error code in case of failure.
1175  */
1176 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1177                    int pnum, int torture)
1178 {
1179         int err;
1180         struct ubi_wl_entry *e;
1181
1182         dbg_wl("PEB %d", pnum);
1183         ubi_assert(pnum >= 0);
1184         ubi_assert(pnum < ubi->peb_count);
1185
1186         down_read(&ubi->fm_protect);
1187
1188 retry:
1189         spin_lock(&ubi->wl_lock);
1190         e = ubi->lookuptbl[pnum];
1191         if (e == ubi->move_from) {
1192                 /*
1193                  * User is putting the physical eraseblock which was selected to
1194                  * be moved. It will be scheduled for erasure in the
1195                  * wear-leveling worker.
1196                  */
1197                 dbg_wl("PEB %d is being moved, wait", pnum);
1198                 spin_unlock(&ubi->wl_lock);
1199
1200                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1201                 mutex_lock(&ubi->move_mutex);
1202                 mutex_unlock(&ubi->move_mutex);
1203                 goto retry;
1204         } else if (e == ubi->move_to) {
1205                 /*
1206                  * User is putting the physical eraseblock which was selected
1207                  * as the target the data is moved to. It may happen if the EBA
1208                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1209                  * but the WL sub-system has not put the PEB to the "used" tree
1210                  * yet, but it is about to do this. So we just set a flag which
1211                  * will tell the WL worker that the PEB is not needed anymore
1212                  * and should be scheduled for erasure.
1213                  */
1214                 dbg_wl("PEB %d is the target of data moving", pnum);
1215                 ubi_assert(!ubi->move_to_put);
1216                 ubi->move_to_put = 1;
1217                 spin_unlock(&ubi->wl_lock);
1218                 up_read(&ubi->fm_protect);
1219                 return 0;
1220         } else {
1221                 if (in_wl_tree(e, &ubi->used)) {
1222                         self_check_in_wl_tree(ubi, e, &ubi->used);
1223                         rb_erase(&e->u.rb, &ubi->used);
1224                 } else if (in_wl_tree(e, &ubi->scrub)) {
1225                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1226                         rb_erase(&e->u.rb, &ubi->scrub);
1227                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1228                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1229                         rb_erase(&e->u.rb, &ubi->erroneous);
1230                         ubi->erroneous_peb_count -= 1;
1231                         ubi_assert(ubi->erroneous_peb_count >= 0);
1232                         /* Erroneous PEBs should be tortured */
1233                         torture = 1;
1234                 } else {
1235                         err = prot_queue_del(ubi, e->pnum);
1236                         if (err) {
1237                                 ubi_err(ubi, "PEB %d not found", pnum);
1238                                 ubi_ro_mode(ubi);
1239                                 spin_unlock(&ubi->wl_lock);
1240                                 up_read(&ubi->fm_protect);
1241                                 return err;
1242                         }
1243                 }
1244         }
1245         spin_unlock(&ubi->wl_lock);
1246
1247         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1248         if (err) {
1249                 spin_lock(&ubi->wl_lock);
1250                 wl_tree_add(e, &ubi->used);
1251                 spin_unlock(&ubi->wl_lock);
1252         }
1253
1254         up_read(&ubi->fm_protect);
1255         return err;
1256 }
1257
1258 /**
1259  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1260  * @ubi: UBI device description object
1261  * @pnum: the physical eraseblock to schedule
1262  *
1263  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1264  * needs scrubbing. This function schedules a physical eraseblock for
1265  * scrubbing which is done in background. This function returns zero in case of
1266  * success and a negative error code in case of failure.
1267  */
1268 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1269 {
1270         struct ubi_wl_entry *e;
1271
1272         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1273
1274 retry:
1275         spin_lock(&ubi->wl_lock);
1276         e = ubi->lookuptbl[pnum];
1277         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1278                                    in_wl_tree(e, &ubi->erroneous)) {
1279                 spin_unlock(&ubi->wl_lock);
1280                 return 0;
1281         }
1282
1283         if (e == ubi->move_to) {
1284                 /*
1285                  * This physical eraseblock was used to move data to. The data
1286                  * was moved but the PEB was not yet inserted to the proper
1287                  * tree. We should just wait a little and let the WL worker
1288                  * proceed.
1289                  */
1290                 spin_unlock(&ubi->wl_lock);
1291                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1292                 yield();
1293                 goto retry;
1294         }
1295
1296         if (in_wl_tree(e, &ubi->used)) {
1297                 self_check_in_wl_tree(ubi, e, &ubi->used);
1298                 rb_erase(&e->u.rb, &ubi->used);
1299         } else {
1300                 int err;
1301
1302                 err = prot_queue_del(ubi, e->pnum);
1303                 if (err) {
1304                         ubi_err(ubi, "PEB %d not found", pnum);
1305                         ubi_ro_mode(ubi);
1306                         spin_unlock(&ubi->wl_lock);
1307                         return err;
1308                 }
1309         }
1310
1311         wl_tree_add(e, &ubi->scrub);
1312         spin_unlock(&ubi->wl_lock);
1313
1314         /*
1315          * Technically scrubbing is the same as wear-leveling, so it is done
1316          * by the WL worker.
1317          */
1318         return ensure_wear_leveling(ubi, 0);
1319 }
1320
1321 /**
1322  * ubi_wl_flush - flush all pending works.
1323  * @ubi: UBI device description object
1324  * @vol_id: the volume id to flush for
1325  * @lnum: the logical eraseblock number to flush for
1326  *
1327  * This function executes all pending works for a particular volume id /
1328  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1329  * acts as a wildcard for all of the corresponding volume numbers or logical
1330  * eraseblock numbers. It returns zero in case of success and a negative error
1331  * code in case of failure.
1332  */
1333 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1334 {
1335         int err = 0;
1336         int found = 1;
1337
1338         /*
1339          * Erase while the pending works queue is not empty, but not more than
1340          * the number of currently pending works.
1341          */
1342         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1343                vol_id, lnum, ubi->works_count);
1344
1345         while (found) {
1346                 struct ubi_work *wrk, *tmp;
1347                 found = 0;
1348
1349                 down_read(&ubi->work_sem);
1350                 spin_lock(&ubi->wl_lock);
1351                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1352                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1353                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1354                                 list_del(&wrk->list);
1355                                 ubi->works_count -= 1;
1356                                 ubi_assert(ubi->works_count >= 0);
1357                                 spin_unlock(&ubi->wl_lock);
1358
1359                                 err = wrk->func(ubi, wrk, 0);
1360                                 if (err) {
1361                                         up_read(&ubi->work_sem);
1362                                         return err;
1363                                 }
1364
1365                                 spin_lock(&ubi->wl_lock);
1366                                 found = 1;
1367                                 break;
1368                         }
1369                 }
1370                 spin_unlock(&ubi->wl_lock);
1371                 up_read(&ubi->work_sem);
1372         }
1373
1374         /*
1375          * Make sure all the works which have been done in parallel are
1376          * finished.
1377          */
1378         down_write(&ubi->work_sem);
1379         up_write(&ubi->work_sem);
1380
1381         return err;
1382 }
1383
1384 /**
1385  * tree_destroy - destroy an RB-tree.
1386  * @ubi: UBI device description object
1387  * @root: the root of the tree to destroy
1388  */
1389 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1390 {
1391         struct rb_node *rb;
1392         struct ubi_wl_entry *e;
1393
1394         rb = root->rb_node;
1395         while (rb) {
1396                 if (rb->rb_left)
1397                         rb = rb->rb_left;
1398                 else if (rb->rb_right)
1399                         rb = rb->rb_right;
1400                 else {
1401                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1402
1403                         rb = rb_parent(rb);
1404                         if (rb) {
1405                                 if (rb->rb_left == &e->u.rb)
1406                                         rb->rb_left = NULL;
1407                                 else
1408                                         rb->rb_right = NULL;
1409                         }
1410
1411                         wl_entry_destroy(ubi, e);
1412                 }
1413         }
1414 }
1415
1416 /**
1417  * ubi_thread - UBI background thread.
1418  * @u: the UBI device description object pointer
1419  */
1420 int ubi_thread(void *u)
1421 {
1422         int failures = 0;
1423         struct ubi_device *ubi = u;
1424
1425         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1426                 ubi->bgt_name, task_pid_nr(current));
1427
1428         set_freezable();
1429         for (;;) {
1430                 int err;
1431
1432                 if (kthread_should_stop())
1433                         break;
1434
1435                 if (try_to_freeze())
1436                         continue;
1437
1438                 spin_lock(&ubi->wl_lock);
1439                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1440                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1441                         set_current_state(TASK_INTERRUPTIBLE);
1442                         spin_unlock(&ubi->wl_lock);
1443                         schedule();
1444                         continue;
1445                 }
1446                 spin_unlock(&ubi->wl_lock);
1447
1448                 err = do_work(ubi);
1449                 if (err) {
1450                         ubi_err(ubi, "%s: work failed with error code %d",
1451                                 ubi->bgt_name, err);
1452                         if (failures++ > WL_MAX_FAILURES) {
1453                                 /*
1454                                  * Too many failures, disable the thread and
1455                                  * switch to read-only mode.
1456                                  */
1457                                 ubi_msg(ubi, "%s: %d consecutive failures",
1458                                         ubi->bgt_name, WL_MAX_FAILURES);
1459                                 ubi_ro_mode(ubi);
1460                                 ubi->thread_enabled = 0;
1461                                 continue;
1462                         }
1463                 } else
1464                         failures = 0;
1465
1466                 cond_resched();
1467         }
1468
1469         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1470         return 0;
1471 }
1472
1473 /**
1474  * shutdown_work - shutdown all pending works.
1475  * @ubi: UBI device description object
1476  */
1477 static void shutdown_work(struct ubi_device *ubi)
1478 {
1479 #ifdef CONFIG_MTD_UBI_FASTMAP
1480 #ifndef __UBOOT__
1481         flush_work(&ubi->fm_work);
1482 #else
1483         /* in U-Boot, we have all work done */
1484 #endif
1485 #endif
1486         while (!list_empty(&ubi->works)) {
1487                 struct ubi_work *wrk;
1488
1489                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1490                 list_del(&wrk->list);
1491                 wrk->func(ubi, wrk, 1);
1492                 ubi->works_count -= 1;
1493                 ubi_assert(ubi->works_count >= 0);
1494         }
1495 }
1496
1497 /**
1498  * ubi_wl_init - initialize the WL sub-system using attaching information.
1499  * @ubi: UBI device description object
1500  * @ai: attaching information
1501  *
1502  * This function returns zero in case of success, and a negative error code in
1503  * case of failure.
1504  */
1505 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1506 {
1507         int err, i, reserved_pebs, found_pebs = 0;
1508         struct rb_node *rb1, *rb2;
1509         struct ubi_ainf_volume *av;
1510         struct ubi_ainf_peb *aeb, *tmp;
1511         struct ubi_wl_entry *e;
1512
1513         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1514         spin_lock_init(&ubi->wl_lock);
1515         mutex_init(&ubi->move_mutex);
1516         init_rwsem(&ubi->work_sem);
1517         ubi->max_ec = ai->max_ec;
1518         INIT_LIST_HEAD(&ubi->works);
1519
1520         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1521
1522         err = -ENOMEM;
1523         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1524         if (!ubi->lookuptbl)
1525                 return err;
1526
1527         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1528                 INIT_LIST_HEAD(&ubi->pq[i]);
1529         ubi->pq_head = 0;
1530
1531         ubi->free_count = 0;
1532         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1533                 cond_resched();
1534
1535                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1536                 if (!e)
1537                         goto out_free;
1538
1539                 e->pnum = aeb->pnum;
1540                 e->ec = aeb->ec;
1541                 ubi->lookuptbl[e->pnum] = e;
1542                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1543                         wl_entry_destroy(ubi, e);
1544                         goto out_free;
1545                 }
1546
1547                 found_pebs++;
1548         }
1549
1550         list_for_each_entry(aeb, &ai->free, u.list) {
1551                 cond_resched();
1552
1553                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1554                 if (!e)
1555                         goto out_free;
1556
1557                 e->pnum = aeb->pnum;
1558                 e->ec = aeb->ec;
1559                 ubi_assert(e->ec >= 0);
1560
1561                 wl_tree_add(e, &ubi->free);
1562                 ubi->free_count++;
1563
1564                 ubi->lookuptbl[e->pnum] = e;
1565
1566                 found_pebs++;
1567         }
1568
1569         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1570                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1571                         cond_resched();
1572
1573                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1574                         if (!e)
1575                                 goto out_free;
1576
1577                         e->pnum = aeb->pnum;
1578                         e->ec = aeb->ec;
1579                         ubi->lookuptbl[e->pnum] = e;
1580
1581                         if (!aeb->scrub) {
1582                                 dbg_wl("add PEB %d EC %d to the used tree",
1583                                        e->pnum, e->ec);
1584                                 wl_tree_add(e, &ubi->used);
1585                         } else {
1586                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1587                                        e->pnum, e->ec);
1588                                 wl_tree_add(e, &ubi->scrub);
1589                         }
1590
1591                         found_pebs++;
1592                 }
1593         }
1594
1595         dbg_wl("found %i PEBs", found_pebs);
1596
1597         if (ubi->fm) {
1598                 ubi_assert(ubi->good_peb_count ==
1599                            found_pebs + ubi->fm->used_blocks);
1600
1601                 for (i = 0; i < ubi->fm->used_blocks; i++) {
1602                         e = ubi->fm->e[i];
1603                         ubi->lookuptbl[e->pnum] = e;
1604                 }
1605         }
1606         else
1607                 ubi_assert(ubi->good_peb_count == found_pebs);
1608
1609         reserved_pebs = WL_RESERVED_PEBS;
1610         ubi_fastmap_init(ubi, &reserved_pebs);
1611
1612         if (ubi->avail_pebs < reserved_pebs) {
1613                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1614                         ubi->avail_pebs, reserved_pebs);
1615                 if (ubi->corr_peb_count)
1616                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1617                                 ubi->corr_peb_count);
1618                 goto out_free;
1619         }
1620         ubi->avail_pebs -= reserved_pebs;
1621         ubi->rsvd_pebs += reserved_pebs;
1622
1623         /* Schedule wear-leveling if needed */
1624         err = ensure_wear_leveling(ubi, 0);
1625         if (err)
1626                 goto out_free;
1627
1628         return 0;
1629
1630 out_free:
1631         shutdown_work(ubi);
1632         tree_destroy(ubi, &ubi->used);
1633         tree_destroy(ubi, &ubi->free);
1634         tree_destroy(ubi, &ubi->scrub);
1635         kfree(ubi->lookuptbl);
1636         return err;
1637 }
1638
1639 /**
1640  * protection_queue_destroy - destroy the protection queue.
1641  * @ubi: UBI device description object
1642  */
1643 static void protection_queue_destroy(struct ubi_device *ubi)
1644 {
1645         int i;
1646         struct ubi_wl_entry *e, *tmp;
1647
1648         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1649                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1650                         list_del(&e->u.list);
1651                         wl_entry_destroy(ubi, e);
1652                 }
1653         }
1654 }
1655
1656 /**
1657  * ubi_wl_close - close the wear-leveling sub-system.
1658  * @ubi: UBI device description object
1659  */
1660 void ubi_wl_close(struct ubi_device *ubi)
1661 {
1662         dbg_wl("close the WL sub-system");
1663         ubi_fastmap_close(ubi);
1664         shutdown_work(ubi);
1665         protection_queue_destroy(ubi);
1666         tree_destroy(ubi, &ubi->used);
1667         tree_destroy(ubi, &ubi->erroneous);
1668         tree_destroy(ubi, &ubi->free);
1669         tree_destroy(ubi, &ubi->scrub);
1670         kfree(ubi->lookuptbl);
1671 }
1672
1673 /**
1674  * self_check_ec - make sure that the erase counter of a PEB is correct.
1675  * @ubi: UBI device description object
1676  * @pnum: the physical eraseblock number to check
1677  * @ec: the erase counter to check
1678  *
1679  * This function returns zero if the erase counter of physical eraseblock @pnum
1680  * is equivalent to @ec, and a negative error code if not or if an error
1681  * occurred.
1682  */
1683 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1684 {
1685         int err;
1686         long long read_ec;
1687         struct ubi_ec_hdr *ec_hdr;
1688
1689         if (!ubi_dbg_chk_gen(ubi))
1690                 return 0;
1691
1692         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1693         if (!ec_hdr)
1694                 return -ENOMEM;
1695
1696         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1697         if (err && err != UBI_IO_BITFLIPS) {
1698                 /* The header does not have to exist */
1699                 err = 0;
1700                 goto out_free;
1701         }
1702
1703         read_ec = be64_to_cpu(ec_hdr->ec);
1704         if (ec != read_ec && read_ec - ec > 1) {
1705                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1706                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1707                 dump_stack();
1708                 err = 1;
1709         } else
1710                 err = 0;
1711
1712 out_free:
1713         kfree(ec_hdr);
1714         return err;
1715 }
1716
1717 /**
1718  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1719  * @ubi: UBI device description object
1720  * @e: the wear-leveling entry to check
1721  * @root: the root of the tree
1722  *
1723  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1724  * is not.
1725  */
1726 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1727                                  struct ubi_wl_entry *e, struct rb_root *root)
1728 {
1729         if (!ubi_dbg_chk_gen(ubi))
1730                 return 0;
1731
1732         if (in_wl_tree(e, root))
1733                 return 0;
1734
1735         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1736                 e->pnum, e->ec, root);
1737         dump_stack();
1738         return -EINVAL;
1739 }
1740
1741 /**
1742  * self_check_in_pq - check if wear-leveling entry is in the protection
1743  *                        queue.
1744  * @ubi: UBI device description object
1745  * @e: the wear-leveling entry to check
1746  *
1747  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1748  */
1749 static int self_check_in_pq(const struct ubi_device *ubi,
1750                             struct ubi_wl_entry *e)
1751 {
1752         struct ubi_wl_entry *p;
1753         int i;
1754
1755         if (!ubi_dbg_chk_gen(ubi))
1756                 return 0;
1757
1758         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1759                 list_for_each_entry(p, &ubi->pq[i], u.list)
1760                         if (p == e)
1761                                 return 0;
1762
1763         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1764                 e->pnum, e->ec);
1765         dump_stack();
1766         return -EINVAL;
1767 }
1768 #ifndef CONFIG_MTD_UBI_FASTMAP
1769 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1770 {
1771         struct ubi_wl_entry *e;
1772
1773         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1774         self_check_in_wl_tree(ubi, e, &ubi->free);
1775         ubi->free_count--;
1776         ubi_assert(ubi->free_count >= 0);
1777         rb_erase(&e->u.rb, &ubi->free);
1778
1779         return e;
1780 }
1781
1782 /**
1783  * produce_free_peb - produce a free physical eraseblock.
1784  * @ubi: UBI device description object
1785  *
1786  * This function tries to make a free PEB by means of synchronous execution of
1787  * pending works. This may be needed if, for example the background thread is
1788  * disabled. Returns zero in case of success and a negative error code in case
1789  * of failure.
1790  */
1791 static int produce_free_peb(struct ubi_device *ubi)
1792 {
1793         int err;
1794
1795         while (!ubi->free.rb_node && ubi->works_count) {
1796                 spin_unlock(&ubi->wl_lock);
1797
1798                 dbg_wl("do one work synchronously");
1799                 err = do_work(ubi);
1800
1801                 spin_lock(&ubi->wl_lock);
1802                 if (err)
1803                         return err;
1804         }
1805
1806         return 0;
1807 }
1808
1809 /**
1810  * ubi_wl_get_peb - get a physical eraseblock.
1811  * @ubi: UBI device description object
1812  *
1813  * This function returns a physical eraseblock in case of success and a
1814  * negative error code in case of failure.
1815  * Returns with ubi->fm_eba_sem held in read mode!
1816  */
1817 int ubi_wl_get_peb(struct ubi_device *ubi)
1818 {
1819         int err;
1820         struct ubi_wl_entry *e;
1821
1822 retry:
1823         down_read(&ubi->fm_eba_sem);
1824         spin_lock(&ubi->wl_lock);
1825         if (!ubi->free.rb_node) {
1826                 if (ubi->works_count == 0) {
1827                         ubi_err(ubi, "no free eraseblocks");
1828                         ubi_assert(list_empty(&ubi->works));
1829                         spin_unlock(&ubi->wl_lock);
1830                         return -ENOSPC;
1831                 }
1832
1833                 err = produce_free_peb(ubi);
1834                 if (err < 0) {
1835                         spin_unlock(&ubi->wl_lock);
1836                         return err;
1837                 }
1838                 spin_unlock(&ubi->wl_lock);
1839                 up_read(&ubi->fm_eba_sem);
1840                 goto retry;
1841
1842         }
1843         e = wl_get_wle(ubi);
1844         prot_queue_add(ubi, e);
1845         spin_unlock(&ubi->wl_lock);
1846
1847         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1848                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1849         if (err) {
1850                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1851                 return err;
1852         }
1853
1854         return e->pnum;
1855 }
1856 #else
1857 #include "fastmap-wl.c"
1858 #endif