]> git.sur5r.net Git - u-boot/blob - drivers/net/e1000.c
arm: imx6ul: Add Engicam GEAM6UL Starter Kit initial support
[u-boot] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12  * SPDX-License-Identifier:     GPL-2.0+
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <memalign.h>
36 #include <pci.h>
37 #include "e1000.h"
38
39 #define TOUT_LOOP   100000
40
41 #ifdef CONFIG_DM_ETH
42 #define virt_to_bus(devno, v)   dm_pci_virt_to_mem(devno, (void *) (v))
43 #define bus_to_phys(devno, a)   dm_pci_mem_to_phys(devno, a)
44 #else
45 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
46 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
47 #endif
48
49 #define E1000_DEFAULT_PCI_PBA   0x00000030
50 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
51
52 /* NIC specific static variables go here */
53
54 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
55 #define E1000_BUFFER_ALIGN      128
56
57 /*
58  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
59  * Concurrent receiving on multiple active Ethernet devices will not work.
60  * Normally U-Boot does not support this anyway. To fix it in this driver,
61  * move these buffers and the tx/rx pointers to struct e1000_hw.
62  */
63 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
64 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
65 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
66
67 static int tx_tail;
68 static int rx_tail, rx_last;
69 #ifdef CONFIG_DM_ETH
70 static int num_cards;   /* Number of E1000 devices seen so far */
71 #endif
72
73 static struct pci_device_id e1000_supported[] = {
74         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
75         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
76         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
77         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
78         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
79         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
80         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
81         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
82         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
83         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
84         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
85         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
86         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
87         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
88         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
89         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
90         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
91         /* E1000 PCIe card */
92         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
93         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
94         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
95         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
96         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
97         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
98         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
99         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
100         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
101         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
102         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
103         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
104         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
105         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
106         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
107         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
108         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
109         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
110         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
111         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
112         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
113         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
114         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
115         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
116         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
117         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
118         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
119         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
120         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
121         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
122
123         {}
124 };
125
126 /* Function forward declarations */
127 static int e1000_setup_link(struct e1000_hw *hw);
128 static int e1000_setup_fiber_link(struct e1000_hw *hw);
129 static int e1000_setup_copper_link(struct e1000_hw *hw);
130 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
131 static void e1000_config_collision_dist(struct e1000_hw *hw);
132 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
133 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
134 static int e1000_check_for_link(struct e1000_hw *hw);
135 static int e1000_wait_autoneg(struct e1000_hw *hw);
136 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
137                                        uint16_t * duplex);
138 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
139                               uint16_t * phy_data);
140 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
141                                uint16_t phy_data);
142 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
143 static int e1000_phy_reset(struct e1000_hw *hw);
144 static int e1000_detect_gig_phy(struct e1000_hw *hw);
145 static void e1000_set_media_type(struct e1000_hw *hw);
146
147 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
148 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
149 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
150
151 #ifndef CONFIG_E1000_NO_NVM
152 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
153 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
154                 uint16_t words,
155                 uint16_t *data);
156 /******************************************************************************
157  * Raises the EEPROM's clock input.
158  *
159  * hw - Struct containing variables accessed by shared code
160  * eecd - EECD's current value
161  *****************************************************************************/
162 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
163 {
164         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
165          * wait 50 microseconds.
166          */
167         *eecd = *eecd | E1000_EECD_SK;
168         E1000_WRITE_REG(hw, EECD, *eecd);
169         E1000_WRITE_FLUSH(hw);
170         udelay(50);
171 }
172
173 /******************************************************************************
174  * Lowers the EEPROM's clock input.
175  *
176  * hw - Struct containing variables accessed by shared code
177  * eecd - EECD's current value
178  *****************************************************************************/
179 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
180 {
181         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
182          * wait 50 microseconds.
183          */
184         *eecd = *eecd & ~E1000_EECD_SK;
185         E1000_WRITE_REG(hw, EECD, *eecd);
186         E1000_WRITE_FLUSH(hw);
187         udelay(50);
188 }
189
190 /******************************************************************************
191  * Shift data bits out to the EEPROM.
192  *
193  * hw - Struct containing variables accessed by shared code
194  * data - data to send to the EEPROM
195  * count - number of bits to shift out
196  *****************************************************************************/
197 static void
198 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
199 {
200         uint32_t eecd;
201         uint32_t mask;
202
203         /* We need to shift "count" bits out to the EEPROM. So, value in the
204          * "data" parameter will be shifted out to the EEPROM one bit at a time.
205          * In order to do this, "data" must be broken down into bits.
206          */
207         mask = 0x01 << (count - 1);
208         eecd = E1000_READ_REG(hw, EECD);
209         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
210         do {
211                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
212                  * and then raising and then lowering the clock (the SK bit controls
213                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
214                  * by setting "DI" to "0" and then raising and then lowering the clock.
215                  */
216                 eecd &= ~E1000_EECD_DI;
217
218                 if (data & mask)
219                         eecd |= E1000_EECD_DI;
220
221                 E1000_WRITE_REG(hw, EECD, eecd);
222                 E1000_WRITE_FLUSH(hw);
223
224                 udelay(50);
225
226                 e1000_raise_ee_clk(hw, &eecd);
227                 e1000_lower_ee_clk(hw, &eecd);
228
229                 mask = mask >> 1;
230
231         } while (mask);
232
233         /* We leave the "DI" bit set to "0" when we leave this routine. */
234         eecd &= ~E1000_EECD_DI;
235         E1000_WRITE_REG(hw, EECD, eecd);
236 }
237
238 /******************************************************************************
239  * Shift data bits in from the EEPROM
240  *
241  * hw - Struct containing variables accessed by shared code
242  *****************************************************************************/
243 static uint16_t
244 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
245 {
246         uint32_t eecd;
247         uint32_t i;
248         uint16_t data;
249
250         /* In order to read a register from the EEPROM, we need to shift 'count'
251          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
252          * input to the EEPROM (setting the SK bit), and then reading the
253          * value of the "DO" bit.  During this "shifting in" process the
254          * "DI" bit should always be clear.
255          */
256
257         eecd = E1000_READ_REG(hw, EECD);
258
259         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
260         data = 0;
261
262         for (i = 0; i < count; i++) {
263                 data = data << 1;
264                 e1000_raise_ee_clk(hw, &eecd);
265
266                 eecd = E1000_READ_REG(hw, EECD);
267
268                 eecd &= ~(E1000_EECD_DI);
269                 if (eecd & E1000_EECD_DO)
270                         data |= 1;
271
272                 e1000_lower_ee_clk(hw, &eecd);
273         }
274
275         return data;
276 }
277
278 /******************************************************************************
279  * Returns EEPROM to a "standby" state
280  *
281  * hw - Struct containing variables accessed by shared code
282  *****************************************************************************/
283 void e1000_standby_eeprom(struct e1000_hw *hw)
284 {
285         struct e1000_eeprom_info *eeprom = &hw->eeprom;
286         uint32_t eecd;
287
288         eecd = E1000_READ_REG(hw, EECD);
289
290         if (eeprom->type == e1000_eeprom_microwire) {
291                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
292                 E1000_WRITE_REG(hw, EECD, eecd);
293                 E1000_WRITE_FLUSH(hw);
294                 udelay(eeprom->delay_usec);
295
296                 /* Clock high */
297                 eecd |= E1000_EECD_SK;
298                 E1000_WRITE_REG(hw, EECD, eecd);
299                 E1000_WRITE_FLUSH(hw);
300                 udelay(eeprom->delay_usec);
301
302                 /* Select EEPROM */
303                 eecd |= E1000_EECD_CS;
304                 E1000_WRITE_REG(hw, EECD, eecd);
305                 E1000_WRITE_FLUSH(hw);
306                 udelay(eeprom->delay_usec);
307
308                 /* Clock low */
309                 eecd &= ~E1000_EECD_SK;
310                 E1000_WRITE_REG(hw, EECD, eecd);
311                 E1000_WRITE_FLUSH(hw);
312                 udelay(eeprom->delay_usec);
313         } else if (eeprom->type == e1000_eeprom_spi) {
314                 /* Toggle CS to flush commands */
315                 eecd |= E1000_EECD_CS;
316                 E1000_WRITE_REG(hw, EECD, eecd);
317                 E1000_WRITE_FLUSH(hw);
318                 udelay(eeprom->delay_usec);
319                 eecd &= ~E1000_EECD_CS;
320                 E1000_WRITE_REG(hw, EECD, eecd);
321                 E1000_WRITE_FLUSH(hw);
322                 udelay(eeprom->delay_usec);
323         }
324 }
325
326 /***************************************************************************
327 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
328 *
329 * hw - Struct containing variables accessed by shared code
330 ****************************************************************************/
331 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
332 {
333         uint32_t eecd = 0;
334
335         DEBUGFUNC();
336
337         if (hw->mac_type == e1000_ich8lan)
338                 return false;
339
340         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
341                 eecd = E1000_READ_REG(hw, EECD);
342
343                 /* Isolate bits 15 & 16 */
344                 eecd = ((eecd >> 15) & 0x03);
345
346                 /* If both bits are set, device is Flash type */
347                 if (eecd == 0x03)
348                         return false;
349         }
350         return true;
351 }
352
353 /******************************************************************************
354  * Prepares EEPROM for access
355  *
356  * hw - Struct containing variables accessed by shared code
357  *
358  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
359  * function should be called before issuing a command to the EEPROM.
360  *****************************************************************************/
361 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
362 {
363         struct e1000_eeprom_info *eeprom = &hw->eeprom;
364         uint32_t eecd, i = 0;
365
366         DEBUGFUNC();
367
368         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
369                 return -E1000_ERR_SWFW_SYNC;
370         eecd = E1000_READ_REG(hw, EECD);
371
372         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
373                 /* Request EEPROM Access */
374                 if (hw->mac_type > e1000_82544) {
375                         eecd |= E1000_EECD_REQ;
376                         E1000_WRITE_REG(hw, EECD, eecd);
377                         eecd = E1000_READ_REG(hw, EECD);
378                         while ((!(eecd & E1000_EECD_GNT)) &&
379                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
380                                 i++;
381                                 udelay(5);
382                                 eecd = E1000_READ_REG(hw, EECD);
383                         }
384                         if (!(eecd & E1000_EECD_GNT)) {
385                                 eecd &= ~E1000_EECD_REQ;
386                                 E1000_WRITE_REG(hw, EECD, eecd);
387                                 DEBUGOUT("Could not acquire EEPROM grant\n");
388                                 return -E1000_ERR_EEPROM;
389                         }
390                 }
391         }
392
393         /* Setup EEPROM for Read/Write */
394
395         if (eeprom->type == e1000_eeprom_microwire) {
396                 /* Clear SK and DI */
397                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
398                 E1000_WRITE_REG(hw, EECD, eecd);
399
400                 /* Set CS */
401                 eecd |= E1000_EECD_CS;
402                 E1000_WRITE_REG(hw, EECD, eecd);
403         } else if (eeprom->type == e1000_eeprom_spi) {
404                 /* Clear SK and CS */
405                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
406                 E1000_WRITE_REG(hw, EECD, eecd);
407                 udelay(1);
408         }
409
410         return E1000_SUCCESS;
411 }
412
413 /******************************************************************************
414  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
415  * is configured.  Additionally, if this is ICH8, the flash controller GbE
416  * registers must be mapped, or this will crash.
417  *
418  * hw - Struct containing variables accessed by shared code
419  *****************************************************************************/
420 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
421 {
422         struct e1000_eeprom_info *eeprom = &hw->eeprom;
423         uint32_t eecd;
424         int32_t ret_val = E1000_SUCCESS;
425         uint16_t eeprom_size;
426
427         if (hw->mac_type == e1000_igb)
428                 eecd = E1000_READ_REG(hw, I210_EECD);
429         else
430                 eecd = E1000_READ_REG(hw, EECD);
431
432         DEBUGFUNC();
433
434         switch (hw->mac_type) {
435         case e1000_82542_rev2_0:
436         case e1000_82542_rev2_1:
437         case e1000_82543:
438         case e1000_82544:
439                 eeprom->type = e1000_eeprom_microwire;
440                 eeprom->word_size = 64;
441                 eeprom->opcode_bits = 3;
442                 eeprom->address_bits = 6;
443                 eeprom->delay_usec = 50;
444                 eeprom->use_eerd = false;
445                 eeprom->use_eewr = false;
446         break;
447         case e1000_82540:
448         case e1000_82545:
449         case e1000_82545_rev_3:
450         case e1000_82546:
451         case e1000_82546_rev_3:
452                 eeprom->type = e1000_eeprom_microwire;
453                 eeprom->opcode_bits = 3;
454                 eeprom->delay_usec = 50;
455                 if (eecd & E1000_EECD_SIZE) {
456                         eeprom->word_size = 256;
457                         eeprom->address_bits = 8;
458                 } else {
459                         eeprom->word_size = 64;
460                         eeprom->address_bits = 6;
461                 }
462                 eeprom->use_eerd = false;
463                 eeprom->use_eewr = false;
464                 break;
465         case e1000_82541:
466         case e1000_82541_rev_2:
467         case e1000_82547:
468         case e1000_82547_rev_2:
469                 if (eecd & E1000_EECD_TYPE) {
470                         eeprom->type = e1000_eeprom_spi;
471                         eeprom->opcode_bits = 8;
472                         eeprom->delay_usec = 1;
473                         if (eecd & E1000_EECD_ADDR_BITS) {
474                                 eeprom->page_size = 32;
475                                 eeprom->address_bits = 16;
476                         } else {
477                                 eeprom->page_size = 8;
478                                 eeprom->address_bits = 8;
479                         }
480                 } else {
481                         eeprom->type = e1000_eeprom_microwire;
482                         eeprom->opcode_bits = 3;
483                         eeprom->delay_usec = 50;
484                         if (eecd & E1000_EECD_ADDR_BITS) {
485                                 eeprom->word_size = 256;
486                                 eeprom->address_bits = 8;
487                         } else {
488                                 eeprom->word_size = 64;
489                                 eeprom->address_bits = 6;
490                         }
491                 }
492                 eeprom->use_eerd = false;
493                 eeprom->use_eewr = false;
494                 break;
495         case e1000_82571:
496         case e1000_82572:
497                 eeprom->type = e1000_eeprom_spi;
498                 eeprom->opcode_bits = 8;
499                 eeprom->delay_usec = 1;
500                 if (eecd & E1000_EECD_ADDR_BITS) {
501                         eeprom->page_size = 32;
502                         eeprom->address_bits = 16;
503                 } else {
504                         eeprom->page_size = 8;
505                         eeprom->address_bits = 8;
506                 }
507                 eeprom->use_eerd = false;
508                 eeprom->use_eewr = false;
509                 break;
510         case e1000_82573:
511         case e1000_82574:
512                 eeprom->type = e1000_eeprom_spi;
513                 eeprom->opcode_bits = 8;
514                 eeprom->delay_usec = 1;
515                 if (eecd & E1000_EECD_ADDR_BITS) {
516                         eeprom->page_size = 32;
517                         eeprom->address_bits = 16;
518                 } else {
519                         eeprom->page_size = 8;
520                         eeprom->address_bits = 8;
521                 }
522                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
523                         eeprom->use_eerd = true;
524                         eeprom->use_eewr = true;
525
526                         eeprom->type = e1000_eeprom_flash;
527                         eeprom->word_size = 2048;
528
529                 /* Ensure that the Autonomous FLASH update bit is cleared due to
530                  * Flash update issue on parts which use a FLASH for NVM. */
531                         eecd &= ~E1000_EECD_AUPDEN;
532                         E1000_WRITE_REG(hw, EECD, eecd);
533                 }
534                 break;
535         case e1000_80003es2lan:
536                 eeprom->type = e1000_eeprom_spi;
537                 eeprom->opcode_bits = 8;
538                 eeprom->delay_usec = 1;
539                 if (eecd & E1000_EECD_ADDR_BITS) {
540                         eeprom->page_size = 32;
541                         eeprom->address_bits = 16;
542                 } else {
543                         eeprom->page_size = 8;
544                         eeprom->address_bits = 8;
545                 }
546                 eeprom->use_eerd = true;
547                 eeprom->use_eewr = false;
548                 break;
549         case e1000_igb:
550                 /* i210 has 4k of iNVM mapped as EEPROM */
551                 eeprom->type = e1000_eeprom_invm;
552                 eeprom->opcode_bits = 8;
553                 eeprom->delay_usec = 1;
554                 eeprom->page_size = 32;
555                 eeprom->address_bits = 16;
556                 eeprom->use_eerd = true;
557                 eeprom->use_eewr = false;
558                 break;
559         default:
560                 break;
561         }
562
563         if (eeprom->type == e1000_eeprom_spi ||
564             eeprom->type == e1000_eeprom_invm) {
565                 /* eeprom_size will be an enum [0..8] that maps
566                  * to eeprom sizes 128B to
567                  * 32KB (incremented by powers of 2).
568                  */
569                 if (hw->mac_type <= e1000_82547_rev_2) {
570                         /* Set to default value for initial eeprom read. */
571                         eeprom->word_size = 64;
572                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
573                                         &eeprom_size);
574                         if (ret_val)
575                                 return ret_val;
576                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
577                                 >> EEPROM_SIZE_SHIFT;
578                         /* 256B eeprom size was not supported in earlier
579                          * hardware, so we bump eeprom_size up one to
580                          * ensure that "1" (which maps to 256B) is never
581                          * the result used in the shifting logic below. */
582                         if (eeprom_size)
583                                 eeprom_size++;
584                 } else {
585                         eeprom_size = (uint16_t)((eecd &
586                                 E1000_EECD_SIZE_EX_MASK) >>
587                                 E1000_EECD_SIZE_EX_SHIFT);
588                 }
589
590                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
591         }
592         return ret_val;
593 }
594
595 /******************************************************************************
596  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
597  *
598  * hw - Struct containing variables accessed by shared code
599  *****************************************************************************/
600 static int32_t
601 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
602 {
603         uint32_t attempts = 100000;
604         uint32_t i, reg = 0;
605         int32_t done = E1000_ERR_EEPROM;
606
607         for (i = 0; i < attempts; i++) {
608                 if (eerd == E1000_EEPROM_POLL_READ) {
609                         if (hw->mac_type == e1000_igb)
610                                 reg = E1000_READ_REG(hw, I210_EERD);
611                         else
612                                 reg = E1000_READ_REG(hw, EERD);
613                 } else {
614                         if (hw->mac_type == e1000_igb)
615                                 reg = E1000_READ_REG(hw, I210_EEWR);
616                         else
617                                 reg = E1000_READ_REG(hw, EEWR);
618                 }
619
620                 if (reg & E1000_EEPROM_RW_REG_DONE) {
621                         done = E1000_SUCCESS;
622                         break;
623                 }
624                 udelay(5);
625         }
626
627         return done;
628 }
629
630 /******************************************************************************
631  * Reads a 16 bit word from the EEPROM using the EERD register.
632  *
633  * hw - Struct containing variables accessed by shared code
634  * offset - offset of  word in the EEPROM to read
635  * data - word read from the EEPROM
636  * words - number of words to read
637  *****************************************************************************/
638 static int32_t
639 e1000_read_eeprom_eerd(struct e1000_hw *hw,
640                         uint16_t offset,
641                         uint16_t words,
642                         uint16_t *data)
643 {
644         uint32_t i, eerd = 0;
645         int32_t error = 0;
646
647         for (i = 0; i < words; i++) {
648                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
649                         E1000_EEPROM_RW_REG_START;
650
651                 if (hw->mac_type == e1000_igb)
652                         E1000_WRITE_REG(hw, I210_EERD, eerd);
653                 else
654                         E1000_WRITE_REG(hw, EERD, eerd);
655
656                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
657
658                 if (error)
659                         break;
660
661                 if (hw->mac_type == e1000_igb) {
662                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
663                                 E1000_EEPROM_RW_REG_DATA);
664                 } else {
665                         data[i] = (E1000_READ_REG(hw, EERD) >>
666                                 E1000_EEPROM_RW_REG_DATA);
667                 }
668
669         }
670
671         return error;
672 }
673
674 void e1000_release_eeprom(struct e1000_hw *hw)
675 {
676         uint32_t eecd;
677
678         DEBUGFUNC();
679
680         eecd = E1000_READ_REG(hw, EECD);
681
682         if (hw->eeprom.type == e1000_eeprom_spi) {
683                 eecd |= E1000_EECD_CS;  /* Pull CS high */
684                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
685
686                 E1000_WRITE_REG(hw, EECD, eecd);
687
688                 udelay(hw->eeprom.delay_usec);
689         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
690                 /* cleanup eeprom */
691
692                 /* CS on Microwire is active-high */
693                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
694
695                 E1000_WRITE_REG(hw, EECD, eecd);
696
697                 /* Rising edge of clock */
698                 eecd |= E1000_EECD_SK;
699                 E1000_WRITE_REG(hw, EECD, eecd);
700                 E1000_WRITE_FLUSH(hw);
701                 udelay(hw->eeprom.delay_usec);
702
703                 /* Falling edge of clock */
704                 eecd &= ~E1000_EECD_SK;
705                 E1000_WRITE_REG(hw, EECD, eecd);
706                 E1000_WRITE_FLUSH(hw);
707                 udelay(hw->eeprom.delay_usec);
708         }
709
710         /* Stop requesting EEPROM access */
711         if (hw->mac_type > e1000_82544) {
712                 eecd &= ~E1000_EECD_REQ;
713                 E1000_WRITE_REG(hw, EECD, eecd);
714         }
715
716         e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
717 }
718
719 /******************************************************************************
720  * Reads a 16 bit word from the EEPROM.
721  *
722  * hw - Struct containing variables accessed by shared code
723  *****************************************************************************/
724 static int32_t
725 e1000_spi_eeprom_ready(struct e1000_hw *hw)
726 {
727         uint16_t retry_count = 0;
728         uint8_t spi_stat_reg;
729
730         DEBUGFUNC();
731
732         /* Read "Status Register" repeatedly until the LSB is cleared.  The
733          * EEPROM will signal that the command has been completed by clearing
734          * bit 0 of the internal status register.  If it's not cleared within
735          * 5 milliseconds, then error out.
736          */
737         retry_count = 0;
738         do {
739                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
740                         hw->eeprom.opcode_bits);
741                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
742                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
743                         break;
744
745                 udelay(5);
746                 retry_count += 5;
747
748                 e1000_standby_eeprom(hw);
749         } while (retry_count < EEPROM_MAX_RETRY_SPI);
750
751         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
752          * only 0-5mSec on 5V devices)
753          */
754         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
755                 DEBUGOUT("SPI EEPROM Status error\n");
756                 return -E1000_ERR_EEPROM;
757         }
758
759         return E1000_SUCCESS;
760 }
761
762 /******************************************************************************
763  * Reads a 16 bit word from the EEPROM.
764  *
765  * hw - Struct containing variables accessed by shared code
766  * offset - offset of  word in the EEPROM to read
767  * data - word read from the EEPROM
768  *****************************************************************************/
769 static int32_t
770 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
771                 uint16_t words, uint16_t *data)
772 {
773         struct e1000_eeprom_info *eeprom = &hw->eeprom;
774         uint32_t i = 0;
775
776         DEBUGFUNC();
777
778         /* If eeprom is not yet detected, do so now */
779         if (eeprom->word_size == 0)
780                 e1000_init_eeprom_params(hw);
781
782         /* A check for invalid values:  offset too large, too many words,
783          * and not enough words.
784          */
785         if ((offset >= eeprom->word_size) ||
786                 (words > eeprom->word_size - offset) ||
787                 (words == 0)) {
788                 DEBUGOUT("\"words\" parameter out of bounds."
789                         "Words = %d, size = %d\n", offset, eeprom->word_size);
790                 return -E1000_ERR_EEPROM;
791         }
792
793         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
794          * directly. In this case, we need to acquire the EEPROM so that
795          * FW or other port software does not interrupt.
796          */
797         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
798                 hw->eeprom.use_eerd == false) {
799
800                 /* Prepare the EEPROM for bit-bang reading */
801                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
802                         return -E1000_ERR_EEPROM;
803         }
804
805         /* Eerd register EEPROM access requires no eeprom aquire/release */
806         if (eeprom->use_eerd == true)
807                 return e1000_read_eeprom_eerd(hw, offset, words, data);
808
809         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
810          * acquired the EEPROM at this point, so any returns should relase it */
811         if (eeprom->type == e1000_eeprom_spi) {
812                 uint16_t word_in;
813                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
814
815                 if (e1000_spi_eeprom_ready(hw)) {
816                         e1000_release_eeprom(hw);
817                         return -E1000_ERR_EEPROM;
818                 }
819
820                 e1000_standby_eeprom(hw);
821
822                 /* Some SPI eeproms use the 8th address bit embedded in
823                  * the opcode */
824                 if ((eeprom->address_bits == 8) && (offset >= 128))
825                         read_opcode |= EEPROM_A8_OPCODE_SPI;
826
827                 /* Send the READ command (opcode + addr)  */
828                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
829                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
830                                 eeprom->address_bits);
831
832                 /* Read the data.  The address of the eeprom internally
833                  * increments with each byte (spi) being read, saving on the
834                  * overhead of eeprom setup and tear-down.  The address
835                  * counter will roll over if reading beyond the size of
836                  * the eeprom, thus allowing the entire memory to be read
837                  * starting from any offset. */
838                 for (i = 0; i < words; i++) {
839                         word_in = e1000_shift_in_ee_bits(hw, 16);
840                         data[i] = (word_in >> 8) | (word_in << 8);
841                 }
842         } else if (eeprom->type == e1000_eeprom_microwire) {
843                 for (i = 0; i < words; i++) {
844                         /* Send the READ command (opcode + addr)  */
845                         e1000_shift_out_ee_bits(hw,
846                                 EEPROM_READ_OPCODE_MICROWIRE,
847                                 eeprom->opcode_bits);
848                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
849                                 eeprom->address_bits);
850
851                         /* Read the data.  For microwire, each word requires
852                          * the overhead of eeprom setup and tear-down. */
853                         data[i] = e1000_shift_in_ee_bits(hw, 16);
854                         e1000_standby_eeprom(hw);
855                 }
856         }
857
858         /* End this read operation */
859         e1000_release_eeprom(hw);
860
861         return E1000_SUCCESS;
862 }
863
864 /******************************************************************************
865  * Verifies that the EEPROM has a valid checksum
866  *
867  * hw - Struct containing variables accessed by shared code
868  *
869  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
870  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
871  * valid.
872  *****************************************************************************/
873 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
874 {
875         uint16_t i, checksum, checksum_reg, *buf;
876
877         DEBUGFUNC();
878
879         /* Allocate a temporary buffer */
880         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
881         if (!buf) {
882                 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
883                 return -E1000_ERR_EEPROM;
884         }
885
886         /* Read the EEPROM */
887         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
888                 E1000_ERR(hw, "Unable to read EEPROM!\n");
889                 return -E1000_ERR_EEPROM;
890         }
891
892         /* Compute the checksum */
893         checksum = 0;
894         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
895                 checksum += buf[i];
896         checksum = ((uint16_t)EEPROM_SUM) - checksum;
897         checksum_reg = buf[i];
898
899         /* Verify it! */
900         if (checksum == checksum_reg)
901                 return 0;
902
903         /* Hrm, verification failed, print an error */
904         E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
905         E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
906                   checksum_reg, checksum);
907
908         return -E1000_ERR_EEPROM;
909 }
910 #endif /* CONFIG_E1000_NO_NVM */
911
912 /*****************************************************************************
913  * Set PHY to class A mode
914  * Assumes the following operations will follow to enable the new class mode.
915  *  1. Do a PHY soft reset
916  *  2. Restart auto-negotiation or force link.
917  *
918  * hw - Struct containing variables accessed by shared code
919  ****************************************************************************/
920 static int32_t
921 e1000_set_phy_mode(struct e1000_hw *hw)
922 {
923 #ifndef CONFIG_E1000_NO_NVM
924         int32_t ret_val;
925         uint16_t eeprom_data;
926
927         DEBUGFUNC();
928
929         if ((hw->mac_type == e1000_82545_rev_3) &&
930                 (hw->media_type == e1000_media_type_copper)) {
931                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
932                                 1, &eeprom_data);
933                 if (ret_val)
934                         return ret_val;
935
936                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
937                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
938                         ret_val = e1000_write_phy_reg(hw,
939                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
940                         if (ret_val)
941                                 return ret_val;
942                         ret_val = e1000_write_phy_reg(hw,
943                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
944                         if (ret_val)
945                                 return ret_val;
946
947                         hw->phy_reset_disable = false;
948                 }
949         }
950 #endif
951         return E1000_SUCCESS;
952 }
953
954 #ifndef CONFIG_E1000_NO_NVM
955 /***************************************************************************
956  *
957  * Obtaining software semaphore bit (SMBI) before resetting PHY.
958  *
959  * hw: Struct containing variables accessed by shared code
960  *
961  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
962  *            E1000_SUCCESS at any other case.
963  *
964  ***************************************************************************/
965 static int32_t
966 e1000_get_software_semaphore(struct e1000_hw *hw)
967 {
968          int32_t timeout = hw->eeprom.word_size + 1;
969          uint32_t swsm;
970
971         DEBUGFUNC();
972
973         if (hw->mac_type != e1000_80003es2lan)
974                 return E1000_SUCCESS;
975
976         while (timeout) {
977                 swsm = E1000_READ_REG(hw, SWSM);
978                 /* If SMBI bit cleared, it is now set and we hold
979                  * the semaphore */
980                 if (!(swsm & E1000_SWSM_SMBI))
981                         break;
982                 mdelay(1);
983                 timeout--;
984         }
985
986         if (!timeout) {
987                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
988                 return -E1000_ERR_RESET;
989         }
990
991         return E1000_SUCCESS;
992 }
993 #endif
994
995 /***************************************************************************
996  * This function clears HW semaphore bits.
997  *
998  * hw: Struct containing variables accessed by shared code
999  *
1000  * returns: - None.
1001  *
1002  ***************************************************************************/
1003 static void
1004 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1005 {
1006 #ifndef CONFIG_E1000_NO_NVM
1007          uint32_t swsm;
1008
1009         DEBUGFUNC();
1010
1011         if (!hw->eeprom_semaphore_present)
1012                 return;
1013
1014         swsm = E1000_READ_REG(hw, SWSM);
1015         if (hw->mac_type == e1000_80003es2lan) {
1016                 /* Release both semaphores. */
1017                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1018         } else
1019                 swsm &= ~(E1000_SWSM_SWESMBI);
1020         E1000_WRITE_REG(hw, SWSM, swsm);
1021 #endif
1022 }
1023
1024 /***************************************************************************
1025  *
1026  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1027  * adapter or Eeprom access.
1028  *
1029  * hw: Struct containing variables accessed by shared code
1030  *
1031  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1032  *            E1000_SUCCESS at any other case.
1033  *
1034  ***************************************************************************/
1035 static int32_t
1036 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1037 {
1038 #ifndef CONFIG_E1000_NO_NVM
1039         int32_t timeout;
1040         uint32_t swsm;
1041
1042         DEBUGFUNC();
1043
1044         if (!hw->eeprom_semaphore_present)
1045                 return E1000_SUCCESS;
1046
1047         if (hw->mac_type == e1000_80003es2lan) {
1048                 /* Get the SW semaphore. */
1049                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1050                         return -E1000_ERR_EEPROM;
1051         }
1052
1053         /* Get the FW semaphore. */
1054         timeout = hw->eeprom.word_size + 1;
1055         while (timeout) {
1056                 swsm = E1000_READ_REG(hw, SWSM);
1057                 swsm |= E1000_SWSM_SWESMBI;
1058                 E1000_WRITE_REG(hw, SWSM, swsm);
1059                 /* if we managed to set the bit we got the semaphore. */
1060                 swsm = E1000_READ_REG(hw, SWSM);
1061                 if (swsm & E1000_SWSM_SWESMBI)
1062                         break;
1063
1064                 udelay(50);
1065                 timeout--;
1066         }
1067
1068         if (!timeout) {
1069                 /* Release semaphores */
1070                 e1000_put_hw_eeprom_semaphore(hw);
1071                 DEBUGOUT("Driver can't access the Eeprom - "
1072                                 "SWESMBI bit is set.\n");
1073                 return -E1000_ERR_EEPROM;
1074         }
1075 #endif
1076         return E1000_SUCCESS;
1077 }
1078
1079 /* Take ownership of the PHY */
1080 static int32_t
1081 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1082 {
1083         uint32_t swfw_sync = 0;
1084         uint32_t swmask = mask;
1085         uint32_t fwmask = mask << 16;
1086         int32_t timeout = 200;
1087
1088         DEBUGFUNC();
1089         while (timeout) {
1090                 if (e1000_get_hw_eeprom_semaphore(hw))
1091                         return -E1000_ERR_SWFW_SYNC;
1092
1093                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1094                 if (!(swfw_sync & (fwmask | swmask)))
1095                         break;
1096
1097                 /* firmware currently using resource (fwmask) */
1098                 /* or other software thread currently using resource (swmask) */
1099                 e1000_put_hw_eeprom_semaphore(hw);
1100                 mdelay(5);
1101                 timeout--;
1102         }
1103
1104         if (!timeout) {
1105                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1106                 return -E1000_ERR_SWFW_SYNC;
1107         }
1108
1109         swfw_sync |= swmask;
1110         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1111
1112         e1000_put_hw_eeprom_semaphore(hw);
1113         return E1000_SUCCESS;
1114 }
1115
1116 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1117 {
1118         uint32_t swfw_sync = 0;
1119
1120         DEBUGFUNC();
1121         while (e1000_get_hw_eeprom_semaphore(hw))
1122                 ; /* Empty */
1123
1124         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1125         swfw_sync &= ~mask;
1126         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1127
1128         e1000_put_hw_eeprom_semaphore(hw);
1129 }
1130
1131 static bool e1000_is_second_port(struct e1000_hw *hw)
1132 {
1133         switch (hw->mac_type) {
1134         case e1000_80003es2lan:
1135         case e1000_82546:
1136         case e1000_82571:
1137                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1138                         return true;
1139                 /* Fallthrough */
1140         default:
1141                 return false;
1142         }
1143 }
1144
1145 #ifndef CONFIG_E1000_NO_NVM
1146 /******************************************************************************
1147  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1148  * second function of dual function devices
1149  *
1150  * nic - Struct containing variables accessed by shared code
1151  *****************************************************************************/
1152 static int
1153 e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1154 {
1155         uint16_t offset;
1156         uint16_t eeprom_data;
1157         uint32_t reg_data = 0;
1158         int i;
1159
1160         DEBUGFUNC();
1161
1162         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1163                 offset = i >> 1;
1164                 if (hw->mac_type == e1000_igb) {
1165                         /* i210 preloads MAC address into RAL/RAH registers */
1166                         if (offset == 0)
1167                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1168                         else if (offset == 1)
1169                                 reg_data >>= 16;
1170                         else if (offset == 2)
1171                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1172                         eeprom_data = reg_data & 0xffff;
1173                 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1174                         DEBUGOUT("EEPROM Read Error\n");
1175                         return -E1000_ERR_EEPROM;
1176                 }
1177                 enetaddr[i] = eeprom_data & 0xff;
1178                 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1179         }
1180
1181         /* Invert the last bit if this is the second device */
1182         if (e1000_is_second_port(hw))
1183                 enetaddr[5] ^= 1;
1184
1185         return 0;
1186 }
1187 #endif
1188
1189 /******************************************************************************
1190  * Initializes receive address filters.
1191  *
1192  * hw - Struct containing variables accessed by shared code
1193  *
1194  * Places the MAC address in receive address register 0 and clears the rest
1195  * of the receive addresss registers. Clears the multicast table. Assumes
1196  * the receiver is in reset when the routine is called.
1197  *****************************************************************************/
1198 static void
1199 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1200 {
1201         uint32_t i;
1202         uint32_t addr_low;
1203         uint32_t addr_high;
1204
1205         DEBUGFUNC();
1206
1207         /* Setup the receive address. */
1208         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1209         addr_low = (enetaddr[0] |
1210                     (enetaddr[1] << 8) |
1211                     (enetaddr[2] << 16) | (enetaddr[3] << 24));
1212
1213         addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1214
1215         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1216         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1217
1218         /* Zero out the other 15 receive addresses. */
1219         DEBUGOUT("Clearing RAR[1-15]\n");
1220         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1221                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1222                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1223         }
1224 }
1225
1226 /******************************************************************************
1227  * Clears the VLAN filer table
1228  *
1229  * hw - Struct containing variables accessed by shared code
1230  *****************************************************************************/
1231 static void
1232 e1000_clear_vfta(struct e1000_hw *hw)
1233 {
1234         uint32_t offset;
1235
1236         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1237                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1238 }
1239
1240 /******************************************************************************
1241  * Set the mac type member in the hw struct.
1242  *
1243  * hw - Struct containing variables accessed by shared code
1244  *****************************************************************************/
1245 int32_t
1246 e1000_set_mac_type(struct e1000_hw *hw)
1247 {
1248         DEBUGFUNC();
1249
1250         switch (hw->device_id) {
1251         case E1000_DEV_ID_82542:
1252                 switch (hw->revision_id) {
1253                 case E1000_82542_2_0_REV_ID:
1254                         hw->mac_type = e1000_82542_rev2_0;
1255                         break;
1256                 case E1000_82542_2_1_REV_ID:
1257                         hw->mac_type = e1000_82542_rev2_1;
1258                         break;
1259                 default:
1260                         /* Invalid 82542 revision ID */
1261                         return -E1000_ERR_MAC_TYPE;
1262                 }
1263                 break;
1264         case E1000_DEV_ID_82543GC_FIBER:
1265         case E1000_DEV_ID_82543GC_COPPER:
1266                 hw->mac_type = e1000_82543;
1267                 break;
1268         case E1000_DEV_ID_82544EI_COPPER:
1269         case E1000_DEV_ID_82544EI_FIBER:
1270         case E1000_DEV_ID_82544GC_COPPER:
1271         case E1000_DEV_ID_82544GC_LOM:
1272                 hw->mac_type = e1000_82544;
1273                 break;
1274         case E1000_DEV_ID_82540EM:
1275         case E1000_DEV_ID_82540EM_LOM:
1276         case E1000_DEV_ID_82540EP:
1277         case E1000_DEV_ID_82540EP_LOM:
1278         case E1000_DEV_ID_82540EP_LP:
1279                 hw->mac_type = e1000_82540;
1280                 break;
1281         case E1000_DEV_ID_82545EM_COPPER:
1282         case E1000_DEV_ID_82545EM_FIBER:
1283                 hw->mac_type = e1000_82545;
1284                 break;
1285         case E1000_DEV_ID_82545GM_COPPER:
1286         case E1000_DEV_ID_82545GM_FIBER:
1287         case E1000_DEV_ID_82545GM_SERDES:
1288                 hw->mac_type = e1000_82545_rev_3;
1289                 break;
1290         case E1000_DEV_ID_82546EB_COPPER:
1291         case E1000_DEV_ID_82546EB_FIBER:
1292         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1293                 hw->mac_type = e1000_82546;
1294                 break;
1295         case E1000_DEV_ID_82546GB_COPPER:
1296         case E1000_DEV_ID_82546GB_FIBER:
1297         case E1000_DEV_ID_82546GB_SERDES:
1298         case E1000_DEV_ID_82546GB_PCIE:
1299         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1300         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1301                 hw->mac_type = e1000_82546_rev_3;
1302                 break;
1303         case E1000_DEV_ID_82541EI:
1304         case E1000_DEV_ID_82541EI_MOBILE:
1305         case E1000_DEV_ID_82541ER_LOM:
1306                 hw->mac_type = e1000_82541;
1307                 break;
1308         case E1000_DEV_ID_82541ER:
1309         case E1000_DEV_ID_82541GI:
1310         case E1000_DEV_ID_82541GI_LF:
1311         case E1000_DEV_ID_82541GI_MOBILE:
1312                 hw->mac_type = e1000_82541_rev_2;
1313                 break;
1314         case E1000_DEV_ID_82547EI:
1315         case E1000_DEV_ID_82547EI_MOBILE:
1316                 hw->mac_type = e1000_82547;
1317                 break;
1318         case E1000_DEV_ID_82547GI:
1319                 hw->mac_type = e1000_82547_rev_2;
1320                 break;
1321         case E1000_DEV_ID_82571EB_COPPER:
1322         case E1000_DEV_ID_82571EB_FIBER:
1323         case E1000_DEV_ID_82571EB_SERDES:
1324         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1325         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1326         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1327         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1328         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1329         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1330                 hw->mac_type = e1000_82571;
1331                 break;
1332         case E1000_DEV_ID_82572EI_COPPER:
1333         case E1000_DEV_ID_82572EI_FIBER:
1334         case E1000_DEV_ID_82572EI_SERDES:
1335         case E1000_DEV_ID_82572EI:
1336                 hw->mac_type = e1000_82572;
1337                 break;
1338         case E1000_DEV_ID_82573E:
1339         case E1000_DEV_ID_82573E_IAMT:
1340         case E1000_DEV_ID_82573L:
1341                 hw->mac_type = e1000_82573;
1342                 break;
1343         case E1000_DEV_ID_82574L:
1344                 hw->mac_type = e1000_82574;
1345                 break;
1346         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1347         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1348         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1349         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1350                 hw->mac_type = e1000_80003es2lan;
1351                 break;
1352         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1353         case E1000_DEV_ID_ICH8_IGP_AMT:
1354         case E1000_DEV_ID_ICH8_IGP_C:
1355         case E1000_DEV_ID_ICH8_IFE:
1356         case E1000_DEV_ID_ICH8_IFE_GT:
1357         case E1000_DEV_ID_ICH8_IFE_G:
1358         case E1000_DEV_ID_ICH8_IGP_M:
1359                 hw->mac_type = e1000_ich8lan;
1360                 break;
1361         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1362         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1363         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1364         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1365         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1366         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1367         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1368         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1369                 hw->mac_type = e1000_igb;
1370                 break;
1371         default:
1372                 /* Should never have loaded on this device */
1373                 return -E1000_ERR_MAC_TYPE;
1374         }
1375         return E1000_SUCCESS;
1376 }
1377
1378 /******************************************************************************
1379  * Reset the transmit and receive units; mask and clear all interrupts.
1380  *
1381  * hw - Struct containing variables accessed by shared code
1382  *****************************************************************************/
1383 void
1384 e1000_reset_hw(struct e1000_hw *hw)
1385 {
1386         uint32_t ctrl;
1387         uint32_t ctrl_ext;
1388         uint32_t manc;
1389         uint32_t pba = 0;
1390         uint32_t reg;
1391
1392         DEBUGFUNC();
1393
1394         /* get the correct pba value for both PCI and PCIe*/
1395         if (hw->mac_type <  e1000_82571)
1396                 pba = E1000_DEFAULT_PCI_PBA;
1397         else
1398                 pba = E1000_DEFAULT_PCIE_PBA;
1399
1400         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1401         if (hw->mac_type == e1000_82542_rev2_0) {
1402                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1403 #ifdef CONFIG_DM_ETH
1404                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1405                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1406 #else
1407                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1408                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1409 #endif
1410         }
1411
1412         /* Clear interrupt mask to stop board from generating interrupts */
1413         DEBUGOUT("Masking off all interrupts\n");
1414         if (hw->mac_type == e1000_igb)
1415                 E1000_WRITE_REG(hw, I210_IAM, 0);
1416         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1417
1418         /* Disable the Transmit and Receive units.  Then delay to allow
1419          * any pending transactions to complete before we hit the MAC with
1420          * the global reset.
1421          */
1422         E1000_WRITE_REG(hw, RCTL, 0);
1423         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1424         E1000_WRITE_FLUSH(hw);
1425
1426         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1427         hw->tbi_compatibility_on = false;
1428
1429         /* Delay to allow any outstanding PCI transactions to complete before
1430          * resetting the device
1431          */
1432         mdelay(10);
1433
1434         /* Issue a global reset to the MAC.  This will reset the chip's
1435          * transmit, receive, DMA, and link units.  It will not effect
1436          * the current PCI configuration.  The global reset bit is self-
1437          * clearing, and should clear within a microsecond.
1438          */
1439         DEBUGOUT("Issuing a global reset to MAC\n");
1440         ctrl = E1000_READ_REG(hw, CTRL);
1441
1442         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1443
1444         /* Force a reload from the EEPROM if necessary */
1445         if (hw->mac_type == e1000_igb) {
1446                 mdelay(20);
1447                 reg = E1000_READ_REG(hw, STATUS);
1448                 if (reg & E1000_STATUS_PF_RST_DONE)
1449                         DEBUGOUT("PF OK\n");
1450                 reg = E1000_READ_REG(hw, I210_EECD);
1451                 if (reg & E1000_EECD_AUTO_RD)
1452                         DEBUGOUT("EEC OK\n");
1453         } else if (hw->mac_type < e1000_82540) {
1454                 /* Wait for reset to complete */
1455                 udelay(10);
1456                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1457                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1458                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1459                 E1000_WRITE_FLUSH(hw);
1460                 /* Wait for EEPROM reload */
1461                 mdelay(2);
1462         } else {
1463                 /* Wait for EEPROM reload (it happens automatically) */
1464                 mdelay(4);
1465                 /* Dissable HW ARPs on ASF enabled adapters */
1466                 manc = E1000_READ_REG(hw, MANC);
1467                 manc &= ~(E1000_MANC_ARP_EN);
1468                 E1000_WRITE_REG(hw, MANC, manc);
1469         }
1470
1471         /* Clear interrupt mask to stop board from generating interrupts */
1472         DEBUGOUT("Masking off all interrupts\n");
1473         if (hw->mac_type == e1000_igb)
1474                 E1000_WRITE_REG(hw, I210_IAM, 0);
1475         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1476
1477         /* Clear any pending interrupt events. */
1478         E1000_READ_REG(hw, ICR);
1479
1480         /* If MWI was previously enabled, reenable it. */
1481         if (hw->mac_type == e1000_82542_rev2_0) {
1482 #ifdef CONFIG_DM_ETH
1483                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1484 #else
1485                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1486 #endif
1487         }
1488         if (hw->mac_type != e1000_igb)
1489                 E1000_WRITE_REG(hw, PBA, pba);
1490 }
1491
1492 /******************************************************************************
1493  *
1494  * Initialize a number of hardware-dependent bits
1495  *
1496  * hw: Struct containing variables accessed by shared code
1497  *
1498  * This function contains hardware limitation workarounds for PCI-E adapters
1499  *
1500  *****************************************************************************/
1501 static void
1502 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1503 {
1504         if ((hw->mac_type >= e1000_82571) &&
1505                         (!hw->initialize_hw_bits_disable)) {
1506                 /* Settings common to all PCI-express silicon */
1507                 uint32_t reg_ctrl, reg_ctrl_ext;
1508                 uint32_t reg_tarc0, reg_tarc1;
1509                 uint32_t reg_tctl;
1510                 uint32_t reg_txdctl, reg_txdctl1;
1511
1512                 /* link autonegotiation/sync workarounds */
1513                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1514                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1515
1516                 /* Enable not-done TX descriptor counting */
1517                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1518                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1519                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1520
1521                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1522                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1523                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1524
1525
1526                 switch (hw->mac_type) {
1527                 case e1000_igb:                 /* IGB is cool */
1528                         return;
1529                 case e1000_82571:
1530                 case e1000_82572:
1531                         /* Clear PHY TX compatible mode bits */
1532                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1533                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1534
1535                         /* link autonegotiation/sync workarounds */
1536                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1537
1538                         /* TX ring control fixes */
1539                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1540
1541                         /* Multiple read bit is reversed polarity */
1542                         reg_tctl = E1000_READ_REG(hw, TCTL);
1543                         if (reg_tctl & E1000_TCTL_MULR)
1544                                 reg_tarc1 &= ~(1 << 28);
1545                         else
1546                                 reg_tarc1 |= (1 << 28);
1547
1548                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1549                         break;
1550                 case e1000_82573:
1551                 case e1000_82574:
1552                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1553                         reg_ctrl_ext &= ~(1 << 23);
1554                         reg_ctrl_ext |= (1 << 22);
1555
1556                         /* TX byte count fix */
1557                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1558                         reg_ctrl &= ~(1 << 29);
1559
1560                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1561                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1562                         break;
1563                 case e1000_80003es2lan:
1564         /* improve small packet performace for fiber/serdes */
1565                         if ((hw->media_type == e1000_media_type_fiber)
1566                         || (hw->media_type ==
1567                                 e1000_media_type_internal_serdes)) {
1568                                 reg_tarc0 &= ~(1 << 20);
1569                         }
1570
1571                 /* Multiple read bit is reversed polarity */
1572                         reg_tctl = E1000_READ_REG(hw, TCTL);
1573                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1574                         if (reg_tctl & E1000_TCTL_MULR)
1575                                 reg_tarc1 &= ~(1 << 28);
1576                         else
1577                                 reg_tarc1 |= (1 << 28);
1578
1579                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1580                         break;
1581                 case e1000_ich8lan:
1582                         /* Reduce concurrent DMA requests to 3 from 4 */
1583                         if ((hw->revision_id < 3) ||
1584                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1585                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1586                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1587
1588                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1589                         reg_ctrl_ext |= (1 << 22);
1590                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1591
1592                         /* workaround TX hang with TSO=on */
1593                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1594
1595                         /* Multiple read bit is reversed polarity */
1596                         reg_tctl = E1000_READ_REG(hw, TCTL);
1597                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1598                         if (reg_tctl & E1000_TCTL_MULR)
1599                                 reg_tarc1 &= ~(1 << 28);
1600                         else
1601                                 reg_tarc1 |= (1 << 28);
1602
1603                         /* workaround TX hang with TSO=on */
1604                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1605
1606                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1607                         break;
1608                 default:
1609                         break;
1610                 }
1611
1612                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1613         }
1614 }
1615
1616 /******************************************************************************
1617  * Performs basic configuration of the adapter.
1618  *
1619  * hw - Struct containing variables accessed by shared code
1620  *
1621  * Assumes that the controller has previously been reset and is in a
1622  * post-reset uninitialized state. Initializes the receive address registers,
1623  * multicast table, and VLAN filter table. Calls routines to setup link
1624  * configuration and flow control settings. Clears all on-chip counters. Leaves
1625  * the transmit and receive units disabled and uninitialized.
1626  *****************************************************************************/
1627 static int
1628 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1629 {
1630         uint32_t ctrl;
1631         uint32_t i;
1632         int32_t ret_val;
1633         uint16_t pcix_cmd_word;
1634         uint16_t pcix_stat_hi_word;
1635         uint16_t cmd_mmrbc;
1636         uint16_t stat_mmrbc;
1637         uint32_t mta_size;
1638         uint32_t reg_data;
1639         uint32_t ctrl_ext;
1640         DEBUGFUNC();
1641         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1642         if ((hw->mac_type == e1000_ich8lan) &&
1643                 ((hw->revision_id < 3) ||
1644                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1645                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1646                         reg_data = E1000_READ_REG(hw, STATUS);
1647                         reg_data &= ~0x80000000;
1648                         E1000_WRITE_REG(hw, STATUS, reg_data);
1649         }
1650         /* Do not need initialize Identification LED */
1651
1652         /* Set the media type and TBI compatibility */
1653         e1000_set_media_type(hw);
1654
1655         /* Must be called after e1000_set_media_type
1656          * because media_type is used */
1657         e1000_initialize_hardware_bits(hw);
1658
1659         /* Disabling VLAN filtering. */
1660         DEBUGOUT("Initializing the IEEE VLAN\n");
1661         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1662         if (hw->mac_type != e1000_ich8lan) {
1663                 if (hw->mac_type < e1000_82545_rev_3)
1664                         E1000_WRITE_REG(hw, VET, 0);
1665                 e1000_clear_vfta(hw);
1666         }
1667
1668         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1669         if (hw->mac_type == e1000_82542_rev2_0) {
1670                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1671 #ifdef CONFIG_DM_ETH
1672                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1673                                       hw->
1674                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1675 #else
1676                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1677                                       hw->
1678                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1679 #endif
1680                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1681                 E1000_WRITE_FLUSH(hw);
1682                 mdelay(5);
1683         }
1684
1685         /* Setup the receive address. This involves initializing all of the Receive
1686          * Address Registers (RARs 0 - 15).
1687          */
1688         e1000_init_rx_addrs(hw, enetaddr);
1689
1690         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1691         if (hw->mac_type == e1000_82542_rev2_0) {
1692                 E1000_WRITE_REG(hw, RCTL, 0);
1693                 E1000_WRITE_FLUSH(hw);
1694                 mdelay(1);
1695 #ifdef CONFIG_DM_ETH
1696                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1697 #else
1698                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1699 #endif
1700         }
1701
1702         /* Zero out the Multicast HASH table */
1703         DEBUGOUT("Zeroing the MTA\n");
1704         mta_size = E1000_MC_TBL_SIZE;
1705         if (hw->mac_type == e1000_ich8lan)
1706                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1707         for (i = 0; i < mta_size; i++) {
1708                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1709                 /* use write flush to prevent Memory Write Block (MWB) from
1710                  * occuring when accessing our register space */
1711                 E1000_WRITE_FLUSH(hw);
1712         }
1713
1714         switch (hw->mac_type) {
1715         case e1000_82545_rev_3:
1716         case e1000_82546_rev_3:
1717         case e1000_igb:
1718                 break;
1719         default:
1720         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1721         if (hw->bus_type == e1000_bus_type_pcix) {
1722 #ifdef CONFIG_DM_ETH
1723                 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1724                                      &pcix_cmd_word);
1725                 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1726                                      &pcix_stat_hi_word);
1727 #else
1728                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1729                                      &pcix_cmd_word);
1730                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1731                                      &pcix_stat_hi_word);
1732 #endif
1733                 cmd_mmrbc =
1734                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1735                     PCIX_COMMAND_MMRBC_SHIFT;
1736                 stat_mmrbc =
1737                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1738                     PCIX_STATUS_HI_MMRBC_SHIFT;
1739                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1740                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1741                 if (cmd_mmrbc > stat_mmrbc) {
1742                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1743                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1744 #ifdef CONFIG_DM_ETH
1745                         dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1746                                               pcix_cmd_word);
1747 #else
1748                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1749                                               pcix_cmd_word);
1750 #endif
1751                 }
1752         }
1753                 break;
1754         }
1755
1756         /* More time needed for PHY to initialize */
1757         if (hw->mac_type == e1000_ich8lan)
1758                 mdelay(15);
1759         if (hw->mac_type == e1000_igb)
1760                 mdelay(15);
1761
1762         /* Call a subroutine to configure the link and setup flow control. */
1763         ret_val = e1000_setup_link(hw);
1764
1765         /* Set the transmit descriptor write-back policy */
1766         if (hw->mac_type > e1000_82544) {
1767                 ctrl = E1000_READ_REG(hw, TXDCTL);
1768                 ctrl =
1769                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1770                     E1000_TXDCTL_FULL_TX_DESC_WB;
1771                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1772         }
1773
1774         /* Set the receive descriptor write back policy */
1775         if (hw->mac_type >= e1000_82571) {
1776                 ctrl = E1000_READ_REG(hw, RXDCTL);
1777                 ctrl =
1778                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1779                     E1000_RXDCTL_FULL_RX_DESC_WB;
1780                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1781         }
1782
1783         switch (hw->mac_type) {
1784         default:
1785                 break;
1786         case e1000_80003es2lan:
1787                 /* Enable retransmit on late collisions */
1788                 reg_data = E1000_READ_REG(hw, TCTL);
1789                 reg_data |= E1000_TCTL_RTLC;
1790                 E1000_WRITE_REG(hw, TCTL, reg_data);
1791
1792                 /* Configure Gigabit Carry Extend Padding */
1793                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1794                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1795                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1796                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1797
1798                 /* Configure Transmit Inter-Packet Gap */
1799                 reg_data = E1000_READ_REG(hw, TIPG);
1800                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1801                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1802                 E1000_WRITE_REG(hw, TIPG, reg_data);
1803
1804                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1805                 reg_data &= ~0x00100000;
1806                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1807                 /* Fall through */
1808         case e1000_82571:
1809         case e1000_82572:
1810         case e1000_ich8lan:
1811                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1812                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1813                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1814                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1815                 break;
1816         case e1000_82573:
1817         case e1000_82574:
1818                 reg_data = E1000_READ_REG(hw, GCR);
1819                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1820                 E1000_WRITE_REG(hw, GCR, reg_data);
1821         case e1000_igb:
1822                 break;
1823         }
1824
1825         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1826                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1827                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1828                 /* Relaxed ordering must be disabled to avoid a parity
1829                  * error crash in a PCI slot. */
1830                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1831                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1832         }
1833
1834         return ret_val;
1835 }
1836
1837 /******************************************************************************
1838  * Configures flow control and link settings.
1839  *
1840  * hw - Struct containing variables accessed by shared code
1841  *
1842  * Determines which flow control settings to use. Calls the apropriate media-
1843  * specific link configuration function. Configures the flow control settings.
1844  * Assuming the adapter has a valid link partner, a valid link should be
1845  * established. Assumes the hardware has previously been reset and the
1846  * transmitter and receiver are not enabled.
1847  *****************************************************************************/
1848 static int
1849 e1000_setup_link(struct e1000_hw *hw)
1850 {
1851         int32_t ret_val;
1852 #ifndef CONFIG_E1000_NO_NVM
1853         uint32_t ctrl_ext;
1854         uint16_t eeprom_data;
1855 #endif
1856
1857         DEBUGFUNC();
1858
1859         /* In the case of the phy reset being blocked, we already have a link.
1860          * We do not have to set it up again. */
1861         if (e1000_check_phy_reset_block(hw))
1862                 return E1000_SUCCESS;
1863
1864 #ifndef CONFIG_E1000_NO_NVM
1865         /* Read and store word 0x0F of the EEPROM. This word contains bits
1866          * that determine the hardware's default PAUSE (flow control) mode,
1867          * a bit that determines whether the HW defaults to enabling or
1868          * disabling auto-negotiation, and the direction of the
1869          * SW defined pins. If there is no SW over-ride of the flow
1870          * control setting, then the variable hw->fc will
1871          * be initialized based on a value in the EEPROM.
1872          */
1873         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1874                                 &eeprom_data) < 0) {
1875                 DEBUGOUT("EEPROM Read Error\n");
1876                 return -E1000_ERR_EEPROM;
1877         }
1878 #endif
1879         if (hw->fc == e1000_fc_default) {
1880                 switch (hw->mac_type) {
1881                 case e1000_ich8lan:
1882                 case e1000_82573:
1883                 case e1000_82574:
1884                 case e1000_igb:
1885                         hw->fc = e1000_fc_full;
1886                         break;
1887                 default:
1888 #ifndef CONFIG_E1000_NO_NVM
1889                         ret_val = e1000_read_eeprom(hw,
1890                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1891                         if (ret_val) {
1892                                 DEBUGOUT("EEPROM Read Error\n");
1893                                 return -E1000_ERR_EEPROM;
1894                         }
1895                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1896                                 hw->fc = e1000_fc_none;
1897                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1898                                     EEPROM_WORD0F_ASM_DIR)
1899                                 hw->fc = e1000_fc_tx_pause;
1900                         else
1901 #endif
1902                                 hw->fc = e1000_fc_full;
1903                         break;
1904                 }
1905         }
1906
1907         /* We want to save off the original Flow Control configuration just
1908          * in case we get disconnected and then reconnected into a different
1909          * hub or switch with different Flow Control capabilities.
1910          */
1911         if (hw->mac_type == e1000_82542_rev2_0)
1912                 hw->fc &= (~e1000_fc_tx_pause);
1913
1914         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1915                 hw->fc &= (~e1000_fc_rx_pause);
1916
1917         hw->original_fc = hw->fc;
1918
1919         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1920
1921 #ifndef CONFIG_E1000_NO_NVM
1922         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1923          * polarity value for the SW controlled pins, and setup the
1924          * Extended Device Control reg with that info.
1925          * This is needed because one of the SW controlled pins is used for
1926          * signal detection.  So this should be done before e1000_setup_pcs_link()
1927          * or e1000_phy_setup() is called.
1928          */
1929         if (hw->mac_type == e1000_82543) {
1930                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1931                             SWDPIO__EXT_SHIFT);
1932                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1933         }
1934 #endif
1935
1936         /* Call the necessary subroutine to configure the link. */
1937         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1938             e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
1939         if (ret_val < 0) {
1940                 return ret_val;
1941         }
1942
1943         /* Initialize the flow control address, type, and PAUSE timer
1944          * registers to their default values.  This is done even if flow
1945          * control is disabled, because it does not hurt anything to
1946          * initialize these registers.
1947          */
1948         DEBUGOUT("Initializing the Flow Control address, type"
1949                         "and timer regs\n");
1950
1951         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1952         if (hw->mac_type != e1000_ich8lan) {
1953                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1954                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1955                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1956         }
1957
1958         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1959
1960         /* Set the flow control receive threshold registers.  Normally,
1961          * these registers will be set to a default threshold that may be
1962          * adjusted later by the driver's runtime code.  However, if the
1963          * ability to transmit pause frames in not enabled, then these
1964          * registers will be set to 0.
1965          */
1966         if (!(hw->fc & e1000_fc_tx_pause)) {
1967                 E1000_WRITE_REG(hw, FCRTL, 0);
1968                 E1000_WRITE_REG(hw, FCRTH, 0);
1969         } else {
1970                 /* We need to set up the Receive Threshold high and low water marks
1971                  * as well as (optionally) enabling the transmission of XON frames.
1972                  */
1973                 if (hw->fc_send_xon) {
1974                         E1000_WRITE_REG(hw, FCRTL,
1975                                         (hw->fc_low_water | E1000_FCRTL_XONE));
1976                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1977                 } else {
1978                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1979                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1980                 }
1981         }
1982         return ret_val;
1983 }
1984
1985 /******************************************************************************
1986  * Sets up link for a fiber based adapter
1987  *
1988  * hw - Struct containing variables accessed by shared code
1989  *
1990  * Manipulates Physical Coding Sublayer functions in order to configure
1991  * link. Assumes the hardware has been previously reset and the transmitter
1992  * and receiver are not enabled.
1993  *****************************************************************************/
1994 static int
1995 e1000_setup_fiber_link(struct e1000_hw *hw)
1996 {
1997         uint32_t ctrl;
1998         uint32_t status;
1999         uint32_t txcw = 0;
2000         uint32_t i;
2001         uint32_t signal;
2002         int32_t ret_val;
2003
2004         DEBUGFUNC();
2005         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2006          * set when the optics detect a signal. On older adapters, it will be
2007          * cleared when there is a signal
2008          */
2009         ctrl = E1000_READ_REG(hw, CTRL);
2010         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2011                 signal = E1000_CTRL_SWDPIN1;
2012         else
2013                 signal = 0;
2014
2015         printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2016                ctrl);
2017         /* Take the link out of reset */
2018         ctrl &= ~(E1000_CTRL_LRST);
2019
2020         e1000_config_collision_dist(hw);
2021
2022         /* Check for a software override of the flow control settings, and setup
2023          * the device accordingly.  If auto-negotiation is enabled, then software
2024          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2025          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2026          * auto-negotiation is disabled, then software will have to manually
2027          * configure the two flow control enable bits in the CTRL register.
2028          *
2029          * The possible values of the "fc" parameter are:
2030          *      0:  Flow control is completely disabled
2031          *      1:  Rx flow control is enabled (we can receive pause frames, but
2032          *          not send pause frames).
2033          *      2:  Tx flow control is enabled (we can send pause frames but we do
2034          *          not support receiving pause frames).
2035          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2036          */
2037         switch (hw->fc) {
2038         case e1000_fc_none:
2039                 /* Flow control is completely disabled by a software over-ride. */
2040                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2041                 break;
2042         case e1000_fc_rx_pause:
2043                 /* RX Flow control is enabled and TX Flow control is disabled by a
2044                  * software over-ride. Since there really isn't a way to advertise
2045                  * that we are capable of RX Pause ONLY, we will advertise that we
2046                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2047                  *  disable the adapter's ability to send PAUSE frames.
2048                  */
2049                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2050                 break;
2051         case e1000_fc_tx_pause:
2052                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2053                  * software over-ride.
2054                  */
2055                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2056                 break;
2057         case e1000_fc_full:
2058                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2059                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2060                 break;
2061         default:
2062                 DEBUGOUT("Flow control param set incorrectly\n");
2063                 return -E1000_ERR_CONFIG;
2064                 break;
2065         }
2066
2067         /* Since auto-negotiation is enabled, take the link out of reset (the link
2068          * will be in reset, because we previously reset the chip). This will
2069          * restart auto-negotiation.  If auto-neogtiation is successful then the
2070          * link-up status bit will be set and the flow control enable bits (RFCE
2071          * and TFCE) will be set according to their negotiated value.
2072          */
2073         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2074
2075         E1000_WRITE_REG(hw, TXCW, txcw);
2076         E1000_WRITE_REG(hw, CTRL, ctrl);
2077         E1000_WRITE_FLUSH(hw);
2078
2079         hw->txcw = txcw;
2080         mdelay(1);
2081
2082         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2083          * indication in the Device Status Register.  Time-out if a link isn't
2084          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2085          * less than 500 milliseconds even if the other end is doing it in SW).
2086          */
2087         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2088                 DEBUGOUT("Looking for Link\n");
2089                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2090                         mdelay(10);
2091                         status = E1000_READ_REG(hw, STATUS);
2092                         if (status & E1000_STATUS_LU)
2093                                 break;
2094                 }
2095                 if (i == (LINK_UP_TIMEOUT / 10)) {
2096                         /* AutoNeg failed to achieve a link, so we'll call
2097                          * e1000_check_for_link. This routine will force the link up if we
2098                          * detect a signal. This will allow us to communicate with
2099                          * non-autonegotiating link partners.
2100                          */
2101                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2102                         hw->autoneg_failed = 1;
2103                         ret_val = e1000_check_for_link(hw);
2104                         if (ret_val < 0) {
2105                                 DEBUGOUT("Error while checking for link\n");
2106                                 return ret_val;
2107                         }
2108                         hw->autoneg_failed = 0;
2109                 } else {
2110                         hw->autoneg_failed = 0;
2111                         DEBUGOUT("Valid Link Found\n");
2112                 }
2113         } else {
2114                 DEBUGOUT("No Signal Detected\n");
2115                 return -E1000_ERR_NOLINK;
2116         }
2117         return 0;
2118 }
2119
2120 /******************************************************************************
2121 * Make sure we have a valid PHY and change PHY mode before link setup.
2122 *
2123 * hw - Struct containing variables accessed by shared code
2124 ******************************************************************************/
2125 static int32_t
2126 e1000_copper_link_preconfig(struct e1000_hw *hw)
2127 {
2128         uint32_t ctrl;
2129         int32_t ret_val;
2130         uint16_t phy_data;
2131
2132         DEBUGFUNC();
2133
2134         ctrl = E1000_READ_REG(hw, CTRL);
2135         /* With 82543, we need to force speed and duplex on the MAC equal to what
2136          * the PHY speed and duplex configuration is. In addition, we need to
2137          * perform a hardware reset on the PHY to take it out of reset.
2138          */
2139         if (hw->mac_type > e1000_82543) {
2140                 ctrl |= E1000_CTRL_SLU;
2141                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2142                 E1000_WRITE_REG(hw, CTRL, ctrl);
2143         } else {
2144                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2145                                 | E1000_CTRL_SLU);
2146                 E1000_WRITE_REG(hw, CTRL, ctrl);
2147                 ret_val = e1000_phy_hw_reset(hw);
2148                 if (ret_val)
2149                         return ret_val;
2150         }
2151
2152         /* Make sure we have a valid PHY */
2153         ret_val = e1000_detect_gig_phy(hw);
2154         if (ret_val) {
2155                 DEBUGOUT("Error, did not detect valid phy.\n");
2156                 return ret_val;
2157         }
2158         DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2159
2160         /* Set PHY to class A mode (if necessary) */
2161         ret_val = e1000_set_phy_mode(hw);
2162         if (ret_val)
2163                 return ret_val;
2164         if ((hw->mac_type == e1000_82545_rev_3) ||
2165                 (hw->mac_type == e1000_82546_rev_3)) {
2166                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2167                                 &phy_data);
2168                 phy_data |= 0x00000008;
2169                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2170                                 phy_data);
2171         }
2172
2173         if (hw->mac_type <= e1000_82543 ||
2174                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2175                 hw->mac_type == e1000_82541_rev_2
2176                 || hw->mac_type == e1000_82547_rev_2)
2177                         hw->phy_reset_disable = false;
2178
2179         return E1000_SUCCESS;
2180 }
2181
2182 /*****************************************************************************
2183  *
2184  * This function sets the lplu state according to the active flag.  When
2185  * activating lplu this function also disables smart speed and vise versa.
2186  * lplu will not be activated unless the device autonegotiation advertisment
2187  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2188  * hw: Struct containing variables accessed by shared code
2189  * active - true to enable lplu false to disable lplu.
2190  *
2191  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2192  *            E1000_SUCCESS at any other case.
2193  *
2194  ****************************************************************************/
2195
2196 static int32_t
2197 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2198 {
2199         uint32_t phy_ctrl = 0;
2200         int32_t ret_val;
2201         uint16_t phy_data;
2202         DEBUGFUNC();
2203
2204         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2205             && hw->phy_type != e1000_phy_igp_3)
2206                 return E1000_SUCCESS;
2207
2208         /* During driver activity LPLU should not be used or it will attain link
2209          * from the lowest speeds starting from 10Mbps. The capability is used
2210          * for Dx transitions and states */
2211         if (hw->mac_type == e1000_82541_rev_2
2212                         || hw->mac_type == e1000_82547_rev_2) {
2213                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2214                                 &phy_data);
2215                 if (ret_val)
2216                         return ret_val;
2217         } else if (hw->mac_type == e1000_ich8lan) {
2218                 /* MAC writes into PHY register based on the state transition
2219                  * and start auto-negotiation. SW driver can overwrite the
2220                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2221                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2222         } else {
2223                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2224                                 &phy_data);
2225                 if (ret_val)
2226                         return ret_val;
2227         }
2228
2229         if (!active) {
2230                 if (hw->mac_type == e1000_82541_rev_2 ||
2231                         hw->mac_type == e1000_82547_rev_2) {
2232                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2233                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2234                                         phy_data);
2235                         if (ret_val)
2236                                 return ret_val;
2237                 } else {
2238                         if (hw->mac_type == e1000_ich8lan) {
2239                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2240                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2241                         } else {
2242                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2243                                 ret_val = e1000_write_phy_reg(hw,
2244                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2245                                 if (ret_val)
2246                                         return ret_val;
2247                         }
2248                 }
2249
2250         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2251          * Dx states where the power conservation is most important.  During
2252          * driver activity we should enable SmartSpeed, so performance is
2253          * maintained. */
2254                 if (hw->smart_speed == e1000_smart_speed_on) {
2255                         ret_val = e1000_read_phy_reg(hw,
2256                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2257                         if (ret_val)
2258                                 return ret_val;
2259
2260                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2261                         ret_val = e1000_write_phy_reg(hw,
2262                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2263                         if (ret_val)
2264                                 return ret_val;
2265                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2266                         ret_val = e1000_read_phy_reg(hw,
2267                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2268                         if (ret_val)
2269                                 return ret_val;
2270
2271                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2272                         ret_val = e1000_write_phy_reg(hw,
2273                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2274                         if (ret_val)
2275                                 return ret_val;
2276                 }
2277
2278         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2279                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2280                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2281
2282                 if (hw->mac_type == e1000_82541_rev_2 ||
2283                     hw->mac_type == e1000_82547_rev_2) {
2284                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2285                         ret_val = e1000_write_phy_reg(hw,
2286                                         IGP01E1000_GMII_FIFO, phy_data);
2287                         if (ret_val)
2288                                 return ret_val;
2289                 } else {
2290                         if (hw->mac_type == e1000_ich8lan) {
2291                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2292                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2293                         } else {
2294                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2295                                 ret_val = e1000_write_phy_reg(hw,
2296                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2297                                 if (ret_val)
2298                                         return ret_val;
2299                         }
2300                 }
2301
2302                 /* When LPLU is enabled we should disable SmartSpeed */
2303                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2304                                 &phy_data);
2305                 if (ret_val)
2306                         return ret_val;
2307
2308                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2309                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2310                                 phy_data);
2311                 if (ret_val)
2312                         return ret_val;
2313         }
2314         return E1000_SUCCESS;
2315 }
2316
2317 /*****************************************************************************
2318  *
2319  * This function sets the lplu d0 state according to the active flag.  When
2320  * activating lplu this function also disables smart speed and vise versa.
2321  * lplu will not be activated unless the device autonegotiation advertisment
2322  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2323  * hw: Struct containing variables accessed by shared code
2324  * active - true to enable lplu false to disable lplu.
2325  *
2326  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2327  *            E1000_SUCCESS at any other case.
2328  *
2329  ****************************************************************************/
2330
2331 static int32_t
2332 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2333 {
2334         uint32_t phy_ctrl = 0;
2335         int32_t ret_val;
2336         uint16_t phy_data;
2337         DEBUGFUNC();
2338
2339         if (hw->mac_type <= e1000_82547_rev_2)
2340                 return E1000_SUCCESS;
2341
2342         if (hw->mac_type == e1000_ich8lan) {
2343                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2344         } else if (hw->mac_type == e1000_igb) {
2345                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2346         } else {
2347                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2348                                 &phy_data);
2349                 if (ret_val)
2350                         return ret_val;
2351         }
2352
2353         if (!active) {
2354                 if (hw->mac_type == e1000_ich8lan) {
2355                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2356                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2357                 } else if (hw->mac_type == e1000_igb) {
2358                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2359                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2360                 } else {
2361                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2362                         ret_val = e1000_write_phy_reg(hw,
2363                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2364                         if (ret_val)
2365                                 return ret_val;
2366                 }
2367
2368                 if (hw->mac_type == e1000_igb)
2369                         return E1000_SUCCESS;
2370
2371         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2372          * Dx states where the power conservation is most important.  During
2373          * driver activity we should enable SmartSpeed, so performance is
2374          * maintained. */
2375                 if (hw->smart_speed == e1000_smart_speed_on) {
2376                         ret_val = e1000_read_phy_reg(hw,
2377                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2378                         if (ret_val)
2379                                 return ret_val;
2380
2381                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2382                         ret_val = e1000_write_phy_reg(hw,
2383                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2384                         if (ret_val)
2385                                 return ret_val;
2386                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2387                         ret_val = e1000_read_phy_reg(hw,
2388                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2389                         if (ret_val)
2390                                 return ret_val;
2391
2392                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2393                         ret_val = e1000_write_phy_reg(hw,
2394                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2395                         if (ret_val)
2396                                 return ret_val;
2397                 }
2398
2399
2400         } else {
2401
2402                 if (hw->mac_type == e1000_ich8lan) {
2403                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2404                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2405                 } else if (hw->mac_type == e1000_igb) {
2406                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2407                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2408                 } else {
2409                         phy_data |= IGP02E1000_PM_D0_LPLU;
2410                         ret_val = e1000_write_phy_reg(hw,
2411                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2412                         if (ret_val)
2413                                 return ret_val;
2414                 }
2415
2416                 if (hw->mac_type == e1000_igb)
2417                         return E1000_SUCCESS;
2418
2419                 /* When LPLU is enabled we should disable SmartSpeed */
2420                 ret_val = e1000_read_phy_reg(hw,
2421                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2422                 if (ret_val)
2423                         return ret_val;
2424
2425                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2426                 ret_val = e1000_write_phy_reg(hw,
2427                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2428                 if (ret_val)
2429                         return ret_val;
2430
2431         }
2432         return E1000_SUCCESS;
2433 }
2434
2435 /********************************************************************
2436 * Copper link setup for e1000_phy_igp series.
2437 *
2438 * hw - Struct containing variables accessed by shared code
2439 *********************************************************************/
2440 static int32_t
2441 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2442 {
2443         uint32_t led_ctrl;
2444         int32_t ret_val;
2445         uint16_t phy_data;
2446
2447         DEBUGFUNC();
2448
2449         if (hw->phy_reset_disable)
2450                 return E1000_SUCCESS;
2451
2452         ret_val = e1000_phy_reset(hw);
2453         if (ret_val) {
2454                 DEBUGOUT("Error Resetting the PHY\n");
2455                 return ret_val;
2456         }
2457
2458         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2459         mdelay(15);
2460         if (hw->mac_type != e1000_ich8lan) {
2461                 /* Configure activity LED after PHY reset */
2462                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2463                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2464                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2465                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2466         }
2467
2468         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2469         if (hw->phy_type == e1000_phy_igp) {
2470                 /* disable lplu d3 during driver init */
2471                 ret_val = e1000_set_d3_lplu_state(hw, false);
2472                 if (ret_val) {
2473                         DEBUGOUT("Error Disabling LPLU D3\n");
2474                         return ret_val;
2475                 }
2476         }
2477
2478         /* disable lplu d0 during driver init */
2479         ret_val = e1000_set_d0_lplu_state(hw, false);
2480         if (ret_val) {
2481                 DEBUGOUT("Error Disabling LPLU D0\n");
2482                 return ret_val;
2483         }
2484         /* Configure mdi-mdix settings */
2485         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2486         if (ret_val)
2487                 return ret_val;
2488
2489         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2490                 hw->dsp_config_state = e1000_dsp_config_disabled;
2491                 /* Force MDI for earlier revs of the IGP PHY */
2492                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2493                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2494                 hw->mdix = 1;
2495
2496         } else {
2497                 hw->dsp_config_state = e1000_dsp_config_enabled;
2498                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2499
2500                 switch (hw->mdix) {
2501                 case 1:
2502                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2503                         break;
2504                 case 2:
2505                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2506                         break;
2507                 case 0:
2508                 default:
2509                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2510                         break;
2511                 }
2512         }
2513         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2514         if (ret_val)
2515                 return ret_val;
2516
2517         /* set auto-master slave resolution settings */
2518         if (hw->autoneg) {
2519                 e1000_ms_type phy_ms_setting = hw->master_slave;
2520
2521                 if (hw->ffe_config_state == e1000_ffe_config_active)
2522                         hw->ffe_config_state = e1000_ffe_config_enabled;
2523
2524                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2525                         hw->dsp_config_state = e1000_dsp_config_enabled;
2526
2527                 /* when autonegotiation advertisment is only 1000Mbps then we
2528                   * should disable SmartSpeed and enable Auto MasterSlave
2529                   * resolution as hardware default. */
2530                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2531                         /* Disable SmartSpeed */
2532                         ret_val = e1000_read_phy_reg(hw,
2533                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2534                         if (ret_val)
2535                                 return ret_val;
2536                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2537                         ret_val = e1000_write_phy_reg(hw,
2538                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2539                         if (ret_val)
2540                                 return ret_val;
2541                         /* Set auto Master/Slave resolution process */
2542                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2543                                         &phy_data);
2544                         if (ret_val)
2545                                 return ret_val;
2546                         phy_data &= ~CR_1000T_MS_ENABLE;
2547                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2548                                         phy_data);
2549                         if (ret_val)
2550                                 return ret_val;
2551                 }
2552
2553                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2554                 if (ret_val)
2555                         return ret_val;
2556
2557                 /* load defaults for future use */
2558                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2559                                 ((phy_data & CR_1000T_MS_VALUE) ?
2560                                 e1000_ms_force_master :
2561                                 e1000_ms_force_slave) :
2562                                 e1000_ms_auto;
2563
2564                 switch (phy_ms_setting) {
2565                 case e1000_ms_force_master:
2566                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2567                         break;
2568                 case e1000_ms_force_slave:
2569                         phy_data |= CR_1000T_MS_ENABLE;
2570                         phy_data &= ~(CR_1000T_MS_VALUE);
2571                         break;
2572                 case e1000_ms_auto:
2573                         phy_data &= ~CR_1000T_MS_ENABLE;
2574                 default:
2575                         break;
2576                 }
2577                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2578                 if (ret_val)
2579                         return ret_val;
2580         }
2581
2582         return E1000_SUCCESS;
2583 }
2584
2585 /*****************************************************************************
2586  * This function checks the mode of the firmware.
2587  *
2588  * returns  - true when the mode is IAMT or false.
2589  ****************************************************************************/
2590 bool
2591 e1000_check_mng_mode(struct e1000_hw *hw)
2592 {
2593         uint32_t fwsm;
2594         DEBUGFUNC();
2595
2596         fwsm = E1000_READ_REG(hw, FWSM);
2597
2598         if (hw->mac_type == e1000_ich8lan) {
2599                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2600                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2601                         return true;
2602         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2603                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2604                         return true;
2605
2606         return false;
2607 }
2608
2609 static int32_t
2610 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2611 {
2612         uint16_t swfw = E1000_SWFW_PHY0_SM;
2613         uint32_t reg_val;
2614         DEBUGFUNC();
2615
2616         if (e1000_is_second_port(hw))
2617                 swfw = E1000_SWFW_PHY1_SM;
2618
2619         if (e1000_swfw_sync_acquire(hw, swfw))
2620                 return -E1000_ERR_SWFW_SYNC;
2621
2622         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2623                         & E1000_KUMCTRLSTA_OFFSET) | data;
2624         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2625         udelay(2);
2626
2627         return E1000_SUCCESS;
2628 }
2629
2630 static int32_t
2631 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2632 {
2633         uint16_t swfw = E1000_SWFW_PHY0_SM;
2634         uint32_t reg_val;
2635         DEBUGFUNC();
2636
2637         if (e1000_is_second_port(hw))
2638                 swfw = E1000_SWFW_PHY1_SM;
2639
2640         if (e1000_swfw_sync_acquire(hw, swfw)) {
2641                 debug("%s[%i]\n", __func__, __LINE__);
2642                 return -E1000_ERR_SWFW_SYNC;
2643         }
2644
2645         /* Write register address */
2646         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2647                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2648         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2649         udelay(2);
2650
2651         /* Read the data returned */
2652         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2653         *data = (uint16_t)reg_val;
2654
2655         return E1000_SUCCESS;
2656 }
2657
2658 /********************************************************************
2659 * Copper link setup for e1000_phy_gg82563 series.
2660 *
2661 * hw - Struct containing variables accessed by shared code
2662 *********************************************************************/
2663 static int32_t
2664 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2665 {
2666         int32_t ret_val;
2667         uint16_t phy_data;
2668         uint32_t reg_data;
2669
2670         DEBUGFUNC();
2671
2672         if (!hw->phy_reset_disable) {
2673                 /* Enable CRS on TX for half-duplex operation. */
2674                 ret_val = e1000_read_phy_reg(hw,
2675                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2676                 if (ret_val)
2677                         return ret_val;
2678
2679                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2680                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2681                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2682
2683                 ret_val = e1000_write_phy_reg(hw,
2684                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2685                 if (ret_val)
2686                         return ret_val;
2687
2688                 /* Options:
2689                  *   MDI/MDI-X = 0 (default)
2690                  *   0 - Auto for all speeds
2691                  *   1 - MDI mode
2692                  *   2 - MDI-X mode
2693                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2694                  */
2695                 ret_val = e1000_read_phy_reg(hw,
2696                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2697                 if (ret_val)
2698                         return ret_val;
2699
2700                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2701
2702                 switch (hw->mdix) {
2703                 case 1:
2704                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2705                         break;
2706                 case 2:
2707                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2708                         break;
2709                 case 0:
2710                 default:
2711                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2712                         break;
2713                 }
2714
2715                 /* Options:
2716                  *   disable_polarity_correction = 0 (default)
2717                  *       Automatic Correction for Reversed Cable Polarity
2718                  *   0 - Disabled
2719                  *   1 - Enabled
2720                  */
2721                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2722                 ret_val = e1000_write_phy_reg(hw,
2723                                 GG82563_PHY_SPEC_CTRL, phy_data);
2724
2725                 if (ret_val)
2726                         return ret_val;
2727
2728                 /* SW Reset the PHY so all changes take effect */
2729                 ret_val = e1000_phy_reset(hw);
2730                 if (ret_val) {
2731                         DEBUGOUT("Error Resetting the PHY\n");
2732                         return ret_val;
2733                 }
2734         } /* phy_reset_disable */
2735
2736         if (hw->mac_type == e1000_80003es2lan) {
2737                 /* Bypass RX and TX FIFO's */
2738                 ret_val = e1000_write_kmrn_reg(hw,
2739                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2740                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2741                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2742                 if (ret_val)
2743                         return ret_val;
2744
2745                 ret_val = e1000_read_phy_reg(hw,
2746                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2747                 if (ret_val)
2748                         return ret_val;
2749
2750                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2751                 ret_val = e1000_write_phy_reg(hw,
2752                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2753
2754                 if (ret_val)
2755                         return ret_val;
2756
2757                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2758                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2759                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2760
2761                 ret_val = e1000_read_phy_reg(hw,
2762                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2763                 if (ret_val)
2764                         return ret_val;
2765
2766         /* Do not init these registers when the HW is in IAMT mode, since the
2767          * firmware will have already initialized them.  We only initialize
2768          * them if the HW is not in IAMT mode.
2769          */
2770                 if (e1000_check_mng_mode(hw) == false) {
2771                         /* Enable Electrical Idle on the PHY */
2772                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2773                         ret_val = e1000_write_phy_reg(hw,
2774                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2775                         if (ret_val)
2776                                 return ret_val;
2777
2778                         ret_val = e1000_read_phy_reg(hw,
2779                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2780                         if (ret_val)
2781                                 return ret_val;
2782
2783                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2784                         ret_val = e1000_write_phy_reg(hw,
2785                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2786
2787                         if (ret_val)
2788                                 return ret_val;
2789                 }
2790
2791                 /* Workaround: Disable padding in Kumeran interface in the MAC
2792                  * and in the PHY to avoid CRC errors.
2793                  */
2794                 ret_val = e1000_read_phy_reg(hw,
2795                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2796                 if (ret_val)
2797                         return ret_val;
2798                 phy_data |= GG82563_ICR_DIS_PADDING;
2799                 ret_val = e1000_write_phy_reg(hw,
2800                                 GG82563_PHY_INBAND_CTRL, phy_data);
2801                 if (ret_val)
2802                         return ret_val;
2803         }
2804         return E1000_SUCCESS;
2805 }
2806
2807 /********************************************************************
2808 * Copper link setup for e1000_phy_m88 series.
2809 *
2810 * hw - Struct containing variables accessed by shared code
2811 *********************************************************************/
2812 static int32_t
2813 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2814 {
2815         int32_t ret_val;
2816         uint16_t phy_data;
2817
2818         DEBUGFUNC();
2819
2820         if (hw->phy_reset_disable)
2821                 return E1000_SUCCESS;
2822
2823         /* Enable CRS on TX. This must be set for half-duplex operation. */
2824         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2825         if (ret_val)
2826                 return ret_val;
2827
2828         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2829
2830         /* Options:
2831          *   MDI/MDI-X = 0 (default)
2832          *   0 - Auto for all speeds
2833          *   1 - MDI mode
2834          *   2 - MDI-X mode
2835          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2836          */
2837         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2838
2839         switch (hw->mdix) {
2840         case 1:
2841                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2842                 break;
2843         case 2:
2844                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2845                 break;
2846         case 3:
2847                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2848                 break;
2849         case 0:
2850         default:
2851                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2852                 break;
2853         }
2854
2855         /* Options:
2856          *   disable_polarity_correction = 0 (default)
2857          *       Automatic Correction for Reversed Cable Polarity
2858          *   0 - Disabled
2859          *   1 - Enabled
2860          */
2861         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2862         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2863         if (ret_val)
2864                 return ret_val;
2865
2866         if (hw->phy_revision < M88E1011_I_REV_4) {
2867                 /* Force TX_CLK in the Extended PHY Specific Control Register
2868                  * to 25MHz clock.
2869                  */
2870                 ret_val = e1000_read_phy_reg(hw,
2871                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2872                 if (ret_val)
2873                         return ret_val;
2874
2875                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2876
2877                 if ((hw->phy_revision == E1000_REVISION_2) &&
2878                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2879                         /* Vidalia Phy, set the downshift counter to 5x */
2880                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2881                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2882                         ret_val = e1000_write_phy_reg(hw,
2883                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2884                         if (ret_val)
2885                                 return ret_val;
2886                 } else {
2887                         /* Configure Master and Slave downshift values */
2888                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2889                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2890                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2891                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2892                         ret_val = e1000_write_phy_reg(hw,
2893                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2894                         if (ret_val)
2895                                 return ret_val;
2896                 }
2897         }
2898
2899         /* SW Reset the PHY so all changes take effect */
2900         ret_val = e1000_phy_reset(hw);
2901         if (ret_val) {
2902                 DEBUGOUT("Error Resetting the PHY\n");
2903                 return ret_val;
2904         }
2905
2906         return E1000_SUCCESS;
2907 }
2908
2909 /********************************************************************
2910 * Setup auto-negotiation and flow control advertisements,
2911 * and then perform auto-negotiation.
2912 *
2913 * hw - Struct containing variables accessed by shared code
2914 *********************************************************************/
2915 static int32_t
2916 e1000_copper_link_autoneg(struct e1000_hw *hw)
2917 {
2918         int32_t ret_val;
2919         uint16_t phy_data;
2920
2921         DEBUGFUNC();
2922
2923         /* Perform some bounds checking on the hw->autoneg_advertised
2924          * parameter.  If this variable is zero, then set it to the default.
2925          */
2926         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2927
2928         /* If autoneg_advertised is zero, we assume it was not defaulted
2929          * by the calling code so we set to advertise full capability.
2930          */
2931         if (hw->autoneg_advertised == 0)
2932                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2933
2934         /* IFE phy only supports 10/100 */
2935         if (hw->phy_type == e1000_phy_ife)
2936                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2937
2938         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2939         ret_val = e1000_phy_setup_autoneg(hw);
2940         if (ret_val) {
2941                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2942                 return ret_val;
2943         }
2944         DEBUGOUT("Restarting Auto-Neg\n");
2945
2946         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2947          * the Auto Neg Restart bit in the PHY control register.
2948          */
2949         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2950         if (ret_val)
2951                 return ret_val;
2952
2953         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2954         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2955         if (ret_val)
2956                 return ret_val;
2957
2958         /* Does the user want to wait for Auto-Neg to complete here, or
2959          * check at a later time (for example, callback routine).
2960          */
2961         /* If we do not wait for autonegtation to complete I
2962          * do not see a valid link status.
2963          * wait_autoneg_complete = 1 .
2964          */
2965         if (hw->wait_autoneg_complete) {
2966                 ret_val = e1000_wait_autoneg(hw);
2967                 if (ret_val) {
2968                         DEBUGOUT("Error while waiting for autoneg"
2969                                         "to complete\n");
2970                         return ret_val;
2971                 }
2972         }
2973
2974         hw->get_link_status = true;
2975
2976         return E1000_SUCCESS;
2977 }
2978
2979 /******************************************************************************
2980 * Config the MAC and the PHY after link is up.
2981 *   1) Set up the MAC to the current PHY speed/duplex
2982 *      if we are on 82543.  If we
2983 *      are on newer silicon, we only need to configure
2984 *      collision distance in the Transmit Control Register.
2985 *   2) Set up flow control on the MAC to that established with
2986 *      the link partner.
2987 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2988 *
2989 * hw - Struct containing variables accessed by shared code
2990 ******************************************************************************/
2991 static int32_t
2992 e1000_copper_link_postconfig(struct e1000_hw *hw)
2993 {
2994         int32_t ret_val;
2995         DEBUGFUNC();
2996
2997         if (hw->mac_type >= e1000_82544) {
2998                 e1000_config_collision_dist(hw);
2999         } else {
3000                 ret_val = e1000_config_mac_to_phy(hw);
3001                 if (ret_val) {
3002                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3003                         return ret_val;
3004                 }
3005         }
3006         ret_val = e1000_config_fc_after_link_up(hw);
3007         if (ret_val) {
3008                 DEBUGOUT("Error Configuring Flow Control\n");
3009                 return ret_val;
3010         }
3011         return E1000_SUCCESS;
3012 }
3013
3014 /******************************************************************************
3015 * Detects which PHY is present and setup the speed and duplex
3016 *
3017 * hw - Struct containing variables accessed by shared code
3018 ******************************************************************************/
3019 static int
3020 e1000_setup_copper_link(struct e1000_hw *hw)
3021 {
3022         int32_t ret_val;
3023         uint16_t i;
3024         uint16_t phy_data;
3025         uint16_t reg_data;
3026
3027         DEBUGFUNC();
3028
3029         switch (hw->mac_type) {
3030         case e1000_80003es2lan:
3031         case e1000_ich8lan:
3032                 /* Set the mac to wait the maximum time between each
3033                  * iteration and increase the max iterations when
3034                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3035                 ret_val = e1000_write_kmrn_reg(hw,
3036                                 GG82563_REG(0x34, 4), 0xFFFF);
3037                 if (ret_val)
3038                         return ret_val;
3039                 ret_val = e1000_read_kmrn_reg(hw,
3040                                 GG82563_REG(0x34, 9), &reg_data);
3041                 if (ret_val)
3042                         return ret_val;
3043                 reg_data |= 0x3F;
3044                 ret_val = e1000_write_kmrn_reg(hw,
3045                                 GG82563_REG(0x34, 9), reg_data);
3046                 if (ret_val)
3047                         return ret_val;
3048         default:
3049                 break;
3050         }
3051
3052         /* Check if it is a valid PHY and set PHY mode if necessary. */
3053         ret_val = e1000_copper_link_preconfig(hw);
3054         if (ret_val)
3055                 return ret_val;
3056         switch (hw->mac_type) {
3057         case e1000_80003es2lan:
3058                 /* Kumeran registers are written-only */
3059                 reg_data =
3060                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3061                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3062                 ret_val = e1000_write_kmrn_reg(hw,
3063                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3064                 if (ret_val)
3065                         return ret_val;
3066                 break;
3067         default:
3068                 break;
3069         }
3070
3071         if (hw->phy_type == e1000_phy_igp ||
3072                 hw->phy_type == e1000_phy_igp_3 ||
3073                 hw->phy_type == e1000_phy_igp_2) {
3074                 ret_val = e1000_copper_link_igp_setup(hw);
3075                 if (ret_val)
3076                         return ret_val;
3077         } else if (hw->phy_type == e1000_phy_m88 ||
3078                 hw->phy_type == e1000_phy_igb) {
3079                 ret_val = e1000_copper_link_mgp_setup(hw);
3080                 if (ret_val)
3081                         return ret_val;
3082         } else if (hw->phy_type == e1000_phy_gg82563) {
3083                 ret_val = e1000_copper_link_ggp_setup(hw);
3084                 if (ret_val)
3085                         return ret_val;
3086         }
3087
3088         /* always auto */
3089         /* Setup autoneg and flow control advertisement
3090           * and perform autonegotiation */
3091         ret_val = e1000_copper_link_autoneg(hw);
3092         if (ret_val)
3093                 return ret_val;
3094
3095         /* Check link status. Wait up to 100 microseconds for link to become
3096          * valid.
3097          */
3098         for (i = 0; i < 10; i++) {
3099                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3100                 if (ret_val)
3101                         return ret_val;
3102                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3103                 if (ret_val)
3104                         return ret_val;
3105
3106                 if (phy_data & MII_SR_LINK_STATUS) {
3107                         /* Config the MAC and PHY after link is up */
3108                         ret_val = e1000_copper_link_postconfig(hw);
3109                         if (ret_val)
3110                                 return ret_val;
3111
3112                         DEBUGOUT("Valid link established!!!\n");
3113                         return E1000_SUCCESS;
3114                 }
3115                 udelay(10);
3116         }
3117
3118         DEBUGOUT("Unable to establish link!!!\n");
3119         return E1000_SUCCESS;
3120 }
3121
3122 /******************************************************************************
3123 * Configures PHY autoneg and flow control advertisement settings
3124 *
3125 * hw - Struct containing variables accessed by shared code
3126 ******************************************************************************/
3127 int32_t
3128 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3129 {
3130         int32_t ret_val;
3131         uint16_t mii_autoneg_adv_reg;
3132         uint16_t mii_1000t_ctrl_reg;
3133
3134         DEBUGFUNC();
3135
3136         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3137         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3138         if (ret_val)
3139                 return ret_val;
3140
3141         if (hw->phy_type != e1000_phy_ife) {
3142                 /* Read the MII 1000Base-T Control Register (Address 9). */
3143                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3144                                 &mii_1000t_ctrl_reg);
3145                 if (ret_val)
3146                         return ret_val;
3147         } else
3148                 mii_1000t_ctrl_reg = 0;
3149
3150         /* Need to parse both autoneg_advertised and fc and set up
3151          * the appropriate PHY registers.  First we will parse for
3152          * autoneg_advertised software override.  Since we can advertise
3153          * a plethora of combinations, we need to check each bit
3154          * individually.
3155          */
3156
3157         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3158          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3159          * the  1000Base-T Control Register (Address 9).
3160          */
3161         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3162         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3163
3164         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3165
3166         /* Do we want to advertise 10 Mb Half Duplex? */
3167         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3168                 DEBUGOUT("Advertise 10mb Half duplex\n");
3169                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3170         }
3171
3172         /* Do we want to advertise 10 Mb Full Duplex? */
3173         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3174                 DEBUGOUT("Advertise 10mb Full duplex\n");
3175                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3176         }
3177
3178         /* Do we want to advertise 100 Mb Half Duplex? */
3179         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3180                 DEBUGOUT("Advertise 100mb Half duplex\n");
3181                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3182         }
3183
3184         /* Do we want to advertise 100 Mb Full Duplex? */
3185         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3186                 DEBUGOUT("Advertise 100mb Full duplex\n");
3187                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3188         }
3189
3190         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3191         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3192                 DEBUGOUT
3193                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3194         }
3195
3196         /* Do we want to advertise 1000 Mb Full Duplex? */
3197         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3198                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3199                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3200         }
3201
3202         /* Check for a software override of the flow control settings, and
3203          * setup the PHY advertisement registers accordingly.  If
3204          * auto-negotiation is enabled, then software will have to set the
3205          * "PAUSE" bits to the correct value in the Auto-Negotiation
3206          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3207          *
3208          * The possible values of the "fc" parameter are:
3209          *      0:  Flow control is completely disabled
3210          *      1:  Rx flow control is enabled (we can receive pause frames
3211          *          but not send pause frames).
3212          *      2:  Tx flow control is enabled (we can send pause frames
3213          *          but we do not support receiving pause frames).
3214          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3215          *  other:  No software override.  The flow control configuration
3216          *          in the EEPROM is used.
3217          */
3218         switch (hw->fc) {
3219         case e1000_fc_none:     /* 0 */
3220                 /* Flow control (RX & TX) is completely disabled by a
3221                  * software over-ride.
3222                  */
3223                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3224                 break;
3225         case e1000_fc_rx_pause: /* 1 */
3226                 /* RX Flow control is enabled, and TX Flow control is
3227                  * disabled, by a software over-ride.
3228                  */
3229                 /* Since there really isn't a way to advertise that we are
3230                  * capable of RX Pause ONLY, we will advertise that we
3231                  * support both symmetric and asymmetric RX PAUSE.  Later
3232                  * (in e1000_config_fc_after_link_up) we will disable the
3233                  *hw's ability to send PAUSE frames.
3234                  */
3235                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3236                 break;
3237         case e1000_fc_tx_pause: /* 2 */
3238                 /* TX Flow control is enabled, and RX Flow control is
3239                  * disabled, by a software over-ride.
3240                  */
3241                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3242                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3243                 break;
3244         case e1000_fc_full:     /* 3 */
3245                 /* Flow control (both RX and TX) is enabled by a software
3246                  * over-ride.
3247                  */
3248                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3249                 break;
3250         default:
3251                 DEBUGOUT("Flow control param set incorrectly\n");
3252                 return -E1000_ERR_CONFIG;
3253         }
3254
3255         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3256         if (ret_val)
3257                 return ret_val;
3258
3259         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3260
3261         if (hw->phy_type != e1000_phy_ife) {
3262                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3263                                 mii_1000t_ctrl_reg);
3264                 if (ret_val)
3265                         return ret_val;
3266         }
3267
3268         return E1000_SUCCESS;
3269 }
3270
3271 /******************************************************************************
3272 * Sets the collision distance in the Transmit Control register
3273 *
3274 * hw - Struct containing variables accessed by shared code
3275 *
3276 * Link should have been established previously. Reads the speed and duplex
3277 * information from the Device Status register.
3278 ******************************************************************************/
3279 static void
3280 e1000_config_collision_dist(struct e1000_hw *hw)
3281 {
3282         uint32_t tctl, coll_dist;
3283
3284         DEBUGFUNC();
3285
3286         if (hw->mac_type < e1000_82543)
3287                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3288         else
3289                 coll_dist = E1000_COLLISION_DISTANCE;
3290
3291         tctl = E1000_READ_REG(hw, TCTL);
3292
3293         tctl &= ~E1000_TCTL_COLD;
3294         tctl |= coll_dist << E1000_COLD_SHIFT;
3295
3296         E1000_WRITE_REG(hw, TCTL, tctl);
3297         E1000_WRITE_FLUSH(hw);
3298 }
3299
3300 /******************************************************************************
3301 * Sets MAC speed and duplex settings to reflect the those in the PHY
3302 *
3303 * hw - Struct containing variables accessed by shared code
3304 * mii_reg - data to write to the MII control register
3305 *
3306 * The contents of the PHY register containing the needed information need to
3307 * be passed in.
3308 ******************************************************************************/
3309 static int
3310 e1000_config_mac_to_phy(struct e1000_hw *hw)
3311 {
3312         uint32_t ctrl;
3313         uint16_t phy_data;
3314
3315         DEBUGFUNC();
3316
3317         /* Read the Device Control Register and set the bits to Force Speed
3318          * and Duplex.
3319          */
3320         ctrl = E1000_READ_REG(hw, CTRL);
3321         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3322         ctrl &= ~(E1000_CTRL_ILOS);
3323         ctrl |= (E1000_CTRL_SPD_SEL);
3324
3325         /* Set up duplex in the Device Control and Transmit Control
3326          * registers depending on negotiated values.
3327          */
3328         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3329                 DEBUGOUT("PHY Read Error\n");
3330                 return -E1000_ERR_PHY;
3331         }
3332         if (phy_data & M88E1000_PSSR_DPLX)
3333                 ctrl |= E1000_CTRL_FD;
3334         else
3335                 ctrl &= ~E1000_CTRL_FD;
3336
3337         e1000_config_collision_dist(hw);
3338
3339         /* Set up speed in the Device Control register depending on
3340          * negotiated values.
3341          */
3342         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3343                 ctrl |= E1000_CTRL_SPD_1000;
3344         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3345                 ctrl |= E1000_CTRL_SPD_100;
3346         /* Write the configured values back to the Device Control Reg. */
3347         E1000_WRITE_REG(hw, CTRL, ctrl);
3348         return 0;
3349 }
3350
3351 /******************************************************************************
3352  * Forces the MAC's flow control settings.
3353  *
3354  * hw - Struct containing variables accessed by shared code
3355  *
3356  * Sets the TFCE and RFCE bits in the device control register to reflect
3357  * the adapter settings. TFCE and RFCE need to be explicitly set by
3358  * software when a Copper PHY is used because autonegotiation is managed
3359  * by the PHY rather than the MAC. Software must also configure these
3360  * bits when link is forced on a fiber connection.
3361  *****************************************************************************/
3362 static int
3363 e1000_force_mac_fc(struct e1000_hw *hw)
3364 {
3365         uint32_t ctrl;
3366
3367         DEBUGFUNC();
3368
3369         /* Get the current configuration of the Device Control Register */
3370         ctrl = E1000_READ_REG(hw, CTRL);
3371
3372         /* Because we didn't get link via the internal auto-negotiation
3373          * mechanism (we either forced link or we got link via PHY
3374          * auto-neg), we have to manually enable/disable transmit an
3375          * receive flow control.
3376          *
3377          * The "Case" statement below enables/disable flow control
3378          * according to the "hw->fc" parameter.
3379          *
3380          * The possible values of the "fc" parameter are:
3381          *      0:  Flow control is completely disabled
3382          *      1:  Rx flow control is enabled (we can receive pause
3383          *          frames but not send pause frames).
3384          *      2:  Tx flow control is enabled (we can send pause frames
3385          *          frames but we do not receive pause frames).
3386          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3387          *  other:  No other values should be possible at this point.
3388          */
3389
3390         switch (hw->fc) {
3391         case e1000_fc_none:
3392                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3393                 break;
3394         case e1000_fc_rx_pause:
3395                 ctrl &= (~E1000_CTRL_TFCE);
3396                 ctrl |= E1000_CTRL_RFCE;
3397                 break;
3398         case e1000_fc_tx_pause:
3399                 ctrl &= (~E1000_CTRL_RFCE);
3400                 ctrl |= E1000_CTRL_TFCE;
3401                 break;
3402         case e1000_fc_full:
3403                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3404                 break;
3405         default:
3406                 DEBUGOUT("Flow control param set incorrectly\n");
3407                 return -E1000_ERR_CONFIG;
3408         }
3409
3410         /* Disable TX Flow Control for 82542 (rev 2.0) */
3411         if (hw->mac_type == e1000_82542_rev2_0)
3412                 ctrl &= (~E1000_CTRL_TFCE);
3413
3414         E1000_WRITE_REG(hw, CTRL, ctrl);
3415         return 0;
3416 }
3417
3418 /******************************************************************************
3419  * Configures flow control settings after link is established
3420  *
3421  * hw - Struct containing variables accessed by shared code
3422  *
3423  * Should be called immediately after a valid link has been established.
3424  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3425  * and autonegotiation is enabled, the MAC flow control settings will be set
3426  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3427  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3428  *****************************************************************************/
3429 static int32_t
3430 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3431 {
3432         int32_t ret_val;
3433         uint16_t mii_status_reg;
3434         uint16_t mii_nway_adv_reg;
3435         uint16_t mii_nway_lp_ability_reg;
3436         uint16_t speed;
3437         uint16_t duplex;
3438
3439         DEBUGFUNC();
3440
3441         /* Check for the case where we have fiber media and auto-neg failed
3442          * so we had to force link.  In this case, we need to force the
3443          * configuration of the MAC to match the "fc" parameter.
3444          */
3445         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3446                 || ((hw->media_type == e1000_media_type_internal_serdes)
3447                 && (hw->autoneg_failed))
3448                 || ((hw->media_type == e1000_media_type_copper)
3449                 && (!hw->autoneg))) {
3450                 ret_val = e1000_force_mac_fc(hw);
3451                 if (ret_val < 0) {
3452                         DEBUGOUT("Error forcing flow control settings\n");
3453                         return ret_val;
3454                 }
3455         }
3456
3457         /* Check for the case where we have copper media and auto-neg is
3458          * enabled.  In this case, we need to check and see if Auto-Neg
3459          * has completed, and if so, how the PHY and link partner has
3460          * flow control configured.
3461          */
3462         if (hw->media_type == e1000_media_type_copper) {
3463                 /* Read the MII Status Register and check to see if AutoNeg
3464                  * has completed.  We read this twice because this reg has
3465                  * some "sticky" (latched) bits.
3466                  */
3467                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3468                         DEBUGOUT("PHY Read Error\n");
3469                         return -E1000_ERR_PHY;
3470                 }
3471                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3472                         DEBUGOUT("PHY Read Error\n");
3473                         return -E1000_ERR_PHY;
3474                 }
3475
3476                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3477                         /* The AutoNeg process has completed, so we now need to
3478                          * read both the Auto Negotiation Advertisement Register
3479                          * (Address 4) and the Auto_Negotiation Base Page Ability
3480                          * Register (Address 5) to determine how flow control was
3481                          * negotiated.
3482                          */
3483                         if (e1000_read_phy_reg
3484                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3485                                 DEBUGOUT("PHY Read Error\n");
3486                                 return -E1000_ERR_PHY;
3487                         }
3488                         if (e1000_read_phy_reg
3489                             (hw, PHY_LP_ABILITY,
3490                              &mii_nway_lp_ability_reg) < 0) {
3491                                 DEBUGOUT("PHY Read Error\n");
3492                                 return -E1000_ERR_PHY;
3493                         }
3494
3495                         /* Two bits in the Auto Negotiation Advertisement Register
3496                          * (Address 4) and two bits in the Auto Negotiation Base
3497                          * Page Ability Register (Address 5) determine flow control
3498                          * for both the PHY and the link partner.  The following
3499                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3500                          * 1999, describes these PAUSE resolution bits and how flow
3501                          * control is determined based upon these settings.
3502                          * NOTE:  DC = Don't Care
3503                          *
3504                          *   LOCAL DEVICE  |   LINK PARTNER
3505                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3506                          *-------|---------|-------|---------|--------------------
3507                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3508                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3509                          *   0   |    1    |   1   |    0    | e1000_fc_none
3510                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3511                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3512                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3513                          *   1   |    1    |   0   |    0    | e1000_fc_none
3514                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3515                          *
3516                          */
3517                         /* Are both PAUSE bits set to 1?  If so, this implies
3518                          * Symmetric Flow Control is enabled at both ends.  The
3519                          * ASM_DIR bits are irrelevant per the spec.
3520                          *
3521                          * For Symmetric Flow Control:
3522                          *
3523                          *   LOCAL DEVICE  |   LINK PARTNER
3524                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3525                          *-------|---------|-------|---------|--------------------
3526                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3527                          *
3528                          */
3529                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3530                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3531                                 /* Now we need to check if the user selected RX ONLY
3532                                  * of pause frames.  In this case, we had to advertise
3533                                  * FULL flow control because we could not advertise RX
3534                                  * ONLY. Hence, we must now check to see if we need to
3535                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3536                                  */
3537                                 if (hw->original_fc == e1000_fc_full) {
3538                                         hw->fc = e1000_fc_full;
3539                                         DEBUGOUT("Flow Control = FULL.\r\n");
3540                                 } else {
3541                                         hw->fc = e1000_fc_rx_pause;
3542                                         DEBUGOUT
3543                                             ("Flow Control = RX PAUSE frames only.\r\n");
3544                                 }
3545                         }
3546                         /* For receiving PAUSE frames ONLY.
3547                          *
3548                          *   LOCAL DEVICE  |   LINK PARTNER
3549                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3550                          *-------|---------|-------|---------|--------------------
3551                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3552                          *
3553                          */
3554                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3555                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3556                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3557                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3558                         {
3559                                 hw->fc = e1000_fc_tx_pause;
3560                                 DEBUGOUT
3561                                     ("Flow Control = TX PAUSE frames only.\r\n");
3562                         }
3563                         /* For transmitting PAUSE frames ONLY.
3564                          *
3565                          *   LOCAL DEVICE  |   LINK PARTNER
3566                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3567                          *-------|---------|-------|---------|--------------------
3568                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3569                          *
3570                          */
3571                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3572                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3573                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3574                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3575                         {
3576                                 hw->fc = e1000_fc_rx_pause;
3577                                 DEBUGOUT
3578                                     ("Flow Control = RX PAUSE frames only.\r\n");
3579                         }
3580                         /* Per the IEEE spec, at this point flow control should be
3581                          * disabled.  However, we want to consider that we could
3582                          * be connected to a legacy switch that doesn't advertise
3583                          * desired flow control, but can be forced on the link
3584                          * partner.  So if we advertised no flow control, that is
3585                          * what we will resolve to.  If we advertised some kind of
3586                          * receive capability (Rx Pause Only or Full Flow Control)
3587                          * and the link partner advertised none, we will configure
3588                          * ourselves to enable Rx Flow Control only.  We can do
3589                          * this safely for two reasons:  If the link partner really
3590                          * didn't want flow control enabled, and we enable Rx, no
3591                          * harm done since we won't be receiving any PAUSE frames
3592                          * anyway.  If the intent on the link partner was to have
3593                          * flow control enabled, then by us enabling RX only, we
3594                          * can at least receive pause frames and process them.
3595                          * This is a good idea because in most cases, since we are
3596                          * predominantly a server NIC, more times than not we will
3597                          * be asked to delay transmission of packets than asking
3598                          * our link partner to pause transmission of frames.
3599                          */
3600                         else if (hw->original_fc == e1000_fc_none ||
3601                                  hw->original_fc == e1000_fc_tx_pause) {
3602                                 hw->fc = e1000_fc_none;
3603                                 DEBUGOUT("Flow Control = NONE.\r\n");
3604                         } else {
3605                                 hw->fc = e1000_fc_rx_pause;
3606                                 DEBUGOUT
3607                                     ("Flow Control = RX PAUSE frames only.\r\n");
3608                         }
3609
3610                         /* Now we need to do one last check...  If we auto-
3611                          * negotiated to HALF DUPLEX, flow control should not be
3612                          * enabled per IEEE 802.3 spec.
3613                          */
3614                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3615
3616                         if (duplex == HALF_DUPLEX)
3617                                 hw->fc = e1000_fc_none;
3618
3619                         /* Now we call a subroutine to actually force the MAC
3620                          * controller to use the correct flow control settings.
3621                          */
3622                         ret_val = e1000_force_mac_fc(hw);
3623                         if (ret_val < 0) {
3624                                 DEBUGOUT
3625                                     ("Error forcing flow control settings\n");
3626                                 return ret_val;
3627                         }
3628                 } else {
3629                         DEBUGOUT
3630                             ("Copper PHY and Auto Neg has not completed.\r\n");
3631                 }
3632         }
3633         return E1000_SUCCESS;
3634 }
3635
3636 /******************************************************************************
3637  * Checks to see if the link status of the hardware has changed.
3638  *
3639  * hw - Struct containing variables accessed by shared code
3640  *
3641  * Called by any function that needs to check the link status of the adapter.
3642  *****************************************************************************/
3643 static int
3644 e1000_check_for_link(struct e1000_hw *hw)
3645 {
3646         uint32_t rxcw;
3647         uint32_t ctrl;
3648         uint32_t status;
3649         uint32_t rctl;
3650         uint32_t signal;
3651         int32_t ret_val;
3652         uint16_t phy_data;
3653         uint16_t lp_capability;
3654
3655         DEBUGFUNC();
3656
3657         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3658          * set when the optics detect a signal. On older adapters, it will be
3659          * cleared when there is a signal
3660          */
3661         ctrl = E1000_READ_REG(hw, CTRL);
3662         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3663                 signal = E1000_CTRL_SWDPIN1;
3664         else
3665                 signal = 0;
3666
3667         status = E1000_READ_REG(hw, STATUS);
3668         rxcw = E1000_READ_REG(hw, RXCW);
3669         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3670
3671         /* If we have a copper PHY then we only want to go out to the PHY
3672          * registers to see if Auto-Neg has completed and/or if our link
3673          * status has changed.  The get_link_status flag will be set if we
3674          * receive a Link Status Change interrupt or we have Rx Sequence
3675          * Errors.
3676          */
3677         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3678                 /* First we want to see if the MII Status Register reports
3679                  * link.  If so, then we want to get the current speed/duplex
3680                  * of the PHY.
3681                  * Read the register twice since the link bit is sticky.
3682                  */
3683                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3684                         DEBUGOUT("PHY Read Error\n");
3685                         return -E1000_ERR_PHY;
3686                 }
3687                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3688                         DEBUGOUT("PHY Read Error\n");
3689                         return -E1000_ERR_PHY;
3690                 }
3691
3692                 if (phy_data & MII_SR_LINK_STATUS) {
3693                         hw->get_link_status = false;
3694                 } else {
3695                         /* No link detected */
3696                         return -E1000_ERR_NOLINK;
3697                 }
3698
3699                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3700                  * have Si on board that is 82544 or newer, Auto
3701                  * Speed Detection takes care of MAC speed/duplex
3702                  * configuration.  So we only need to configure Collision
3703                  * Distance in the MAC.  Otherwise, we need to force
3704                  * speed/duplex on the MAC to the current PHY speed/duplex
3705                  * settings.
3706                  */
3707                 if (hw->mac_type >= e1000_82544)
3708                         e1000_config_collision_dist(hw);
3709                 else {
3710                         ret_val = e1000_config_mac_to_phy(hw);
3711                         if (ret_val < 0) {
3712                                 DEBUGOUT
3713                                     ("Error configuring MAC to PHY settings\n");
3714                                 return ret_val;
3715                         }
3716                 }
3717
3718                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3719                  * need to restore the desired flow control settings because we may
3720                  * have had to re-autoneg with a different link partner.
3721                  */
3722                 ret_val = e1000_config_fc_after_link_up(hw);
3723                 if (ret_val < 0) {
3724                         DEBUGOUT("Error configuring flow control\n");
3725                         return ret_val;
3726                 }
3727
3728                 /* At this point we know that we are on copper and we have
3729                  * auto-negotiated link.  These are conditions for checking the link
3730                  * parter capability register.  We use the link partner capability to
3731                  * determine if TBI Compatibility needs to be turned on or off.  If
3732                  * the link partner advertises any speed in addition to Gigabit, then
3733                  * we assume that they are GMII-based, and TBI compatibility is not
3734                  * needed. If no other speeds are advertised, we assume the link
3735                  * partner is TBI-based, and we turn on TBI Compatibility.
3736                  */
3737                 if (hw->tbi_compatibility_en) {
3738                         if (e1000_read_phy_reg
3739                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3740                                 DEBUGOUT("PHY Read Error\n");
3741                                 return -E1000_ERR_PHY;
3742                         }
3743                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3744                                              NWAY_LPAR_10T_FD_CAPS |
3745                                              NWAY_LPAR_100TX_HD_CAPS |
3746                                              NWAY_LPAR_100TX_FD_CAPS |
3747                                              NWAY_LPAR_100T4_CAPS)) {
3748                                 /* If our link partner advertises anything in addition to
3749                                  * gigabit, we do not need to enable TBI compatibility.
3750                                  */
3751                                 if (hw->tbi_compatibility_on) {
3752                                         /* If we previously were in the mode, turn it off. */
3753                                         rctl = E1000_READ_REG(hw, RCTL);
3754                                         rctl &= ~E1000_RCTL_SBP;
3755                                         E1000_WRITE_REG(hw, RCTL, rctl);
3756                                         hw->tbi_compatibility_on = false;
3757                                 }
3758                         } else {
3759                                 /* If TBI compatibility is was previously off, turn it on. For
3760                                  * compatibility with a TBI link partner, we will store bad
3761                                  * packets. Some frames have an additional byte on the end and
3762                                  * will look like CRC errors to to the hardware.
3763                                  */
3764                                 if (!hw->tbi_compatibility_on) {
3765                                         hw->tbi_compatibility_on = true;
3766                                         rctl = E1000_READ_REG(hw, RCTL);
3767                                         rctl |= E1000_RCTL_SBP;
3768                                         E1000_WRITE_REG(hw, RCTL, rctl);
3769                                 }
3770                         }
3771                 }
3772         }
3773         /* If we don't have link (auto-negotiation failed or link partner cannot
3774          * auto-negotiate), the cable is plugged in (we have signal), and our
3775          * link partner is not trying to auto-negotiate with us (we are receiving
3776          * idles or data), we need to force link up. We also need to give
3777          * auto-negotiation time to complete, in case the cable was just plugged
3778          * in. The autoneg_failed flag does this.
3779          */
3780         else if ((hw->media_type == e1000_media_type_fiber) &&
3781                  (!(status & E1000_STATUS_LU)) &&
3782                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3783                  (!(rxcw & E1000_RXCW_C))) {
3784                 if (hw->autoneg_failed == 0) {
3785                         hw->autoneg_failed = 1;
3786                         return 0;
3787                 }
3788                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3789
3790                 /* Disable auto-negotiation in the TXCW register */
3791                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3792
3793                 /* Force link-up and also force full-duplex. */
3794                 ctrl = E1000_READ_REG(hw, CTRL);
3795                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3796                 E1000_WRITE_REG(hw, CTRL, ctrl);
3797
3798                 /* Configure Flow Control after forcing link up. */
3799                 ret_val = e1000_config_fc_after_link_up(hw);
3800                 if (ret_val < 0) {
3801                         DEBUGOUT("Error configuring flow control\n");
3802                         return ret_val;
3803                 }
3804         }
3805         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3806          * auto-negotiation in the TXCW register and disable forced link in the
3807          * Device Control register in an attempt to auto-negotiate with our link
3808          * partner.
3809          */
3810         else if ((hw->media_type == e1000_media_type_fiber) &&
3811                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3812                 DEBUGOUT
3813                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3814                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3815                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3816         }
3817         return 0;
3818 }
3819
3820 /******************************************************************************
3821 * Configure the MAC-to-PHY interface for 10/100Mbps
3822 *
3823 * hw - Struct containing variables accessed by shared code
3824 ******************************************************************************/
3825 static int32_t
3826 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3827 {
3828         int32_t ret_val = E1000_SUCCESS;
3829         uint32_t tipg;
3830         uint16_t reg_data;
3831
3832         DEBUGFUNC();
3833
3834         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3835         ret_val = e1000_write_kmrn_reg(hw,
3836                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3837         if (ret_val)
3838                 return ret_val;
3839
3840         /* Configure Transmit Inter-Packet Gap */
3841         tipg = E1000_READ_REG(hw, TIPG);
3842         tipg &= ~E1000_TIPG_IPGT_MASK;
3843         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3844         E1000_WRITE_REG(hw, TIPG, tipg);
3845
3846         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3847
3848         if (ret_val)
3849                 return ret_val;
3850
3851         if (duplex == HALF_DUPLEX)
3852                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3853         else
3854                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3855
3856         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3857
3858         return ret_val;
3859 }
3860
3861 static int32_t
3862 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3863 {
3864         int32_t ret_val = E1000_SUCCESS;
3865         uint16_t reg_data;
3866         uint32_t tipg;
3867
3868         DEBUGFUNC();
3869
3870         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3871         ret_val = e1000_write_kmrn_reg(hw,
3872                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3873         if (ret_val)
3874                 return ret_val;
3875
3876         /* Configure Transmit Inter-Packet Gap */
3877         tipg = E1000_READ_REG(hw, TIPG);
3878         tipg &= ~E1000_TIPG_IPGT_MASK;
3879         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3880         E1000_WRITE_REG(hw, TIPG, tipg);
3881
3882         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3883
3884         if (ret_val)
3885                 return ret_val;
3886
3887         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3888         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3889
3890         return ret_val;
3891 }
3892
3893 /******************************************************************************
3894  * Detects the current speed and duplex settings of the hardware.
3895  *
3896  * hw - Struct containing variables accessed by shared code
3897  * speed - Speed of the connection
3898  * duplex - Duplex setting of the connection
3899  *****************************************************************************/
3900 static int
3901 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3902                 uint16_t *duplex)
3903 {
3904         uint32_t status;
3905         int32_t ret_val;
3906         uint16_t phy_data;
3907
3908         DEBUGFUNC();
3909
3910         if (hw->mac_type >= e1000_82543) {
3911                 status = E1000_READ_REG(hw, STATUS);
3912                 if (status & E1000_STATUS_SPEED_1000) {
3913                         *speed = SPEED_1000;
3914                         DEBUGOUT("1000 Mbs, ");
3915                 } else if (status & E1000_STATUS_SPEED_100) {
3916                         *speed = SPEED_100;
3917                         DEBUGOUT("100 Mbs, ");
3918                 } else {
3919                         *speed = SPEED_10;
3920                         DEBUGOUT("10 Mbs, ");
3921                 }
3922
3923                 if (status & E1000_STATUS_FD) {
3924                         *duplex = FULL_DUPLEX;
3925                         DEBUGOUT("Full Duplex\r\n");
3926                 } else {
3927                         *duplex = HALF_DUPLEX;
3928                         DEBUGOUT(" Half Duplex\r\n");
3929                 }
3930         } else {
3931                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3932                 *speed = SPEED_1000;
3933                 *duplex = FULL_DUPLEX;
3934         }
3935
3936         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3937          * even if it is operating at half duplex.  Here we set the duplex
3938          * settings to match the duplex in the link partner's capabilities.
3939          */
3940         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3941                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3942                 if (ret_val)
3943                         return ret_val;
3944
3945                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3946                         *duplex = HALF_DUPLEX;
3947                 else {
3948                         ret_val = e1000_read_phy_reg(hw,
3949                                         PHY_LP_ABILITY, &phy_data);
3950                         if (ret_val)
3951                                 return ret_val;
3952                         if ((*speed == SPEED_100 &&
3953                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3954                                 || (*speed == SPEED_10
3955                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3956                                 *duplex = HALF_DUPLEX;
3957                 }
3958         }
3959
3960         if ((hw->mac_type == e1000_80003es2lan) &&
3961                 (hw->media_type == e1000_media_type_copper)) {
3962                 if (*speed == SPEED_1000)
3963                         ret_val = e1000_configure_kmrn_for_1000(hw);
3964                 else
3965                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3966                 if (ret_val)
3967                         return ret_val;
3968         }
3969         return E1000_SUCCESS;
3970 }
3971
3972 /******************************************************************************
3973 * Blocks until autoneg completes or times out (~4.5 seconds)
3974 *
3975 * hw - Struct containing variables accessed by shared code
3976 ******************************************************************************/
3977 static int
3978 e1000_wait_autoneg(struct e1000_hw *hw)
3979 {
3980         uint16_t i;
3981         uint16_t phy_data;
3982
3983         DEBUGFUNC();
3984         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3985
3986         /* We will wait for autoneg to complete or timeout to expire. */
3987         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3988                 /* Read the MII Status Register and wait for Auto-Neg
3989                  * Complete bit to be set.
3990                  */
3991                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3992                         DEBUGOUT("PHY Read Error\n");
3993                         return -E1000_ERR_PHY;
3994                 }
3995                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3996                         DEBUGOUT("PHY Read Error\n");
3997                         return -E1000_ERR_PHY;
3998                 }
3999                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4000                         DEBUGOUT("Auto-Neg complete.\n");
4001                         return 0;
4002                 }
4003                 mdelay(100);
4004         }
4005         DEBUGOUT("Auto-Neg timedout.\n");
4006         return -E1000_ERR_TIMEOUT;
4007 }
4008
4009 /******************************************************************************
4010 * Raises the Management Data Clock
4011 *
4012 * hw - Struct containing variables accessed by shared code
4013 * ctrl - Device control register's current value
4014 ******************************************************************************/
4015 static void
4016 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4017 {
4018         /* Raise the clock input to the Management Data Clock (by setting the MDC
4019          * bit), and then delay 2 microseconds.
4020          */
4021         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4022         E1000_WRITE_FLUSH(hw);
4023         udelay(2);
4024 }
4025
4026 /******************************************************************************
4027 * Lowers the Management Data Clock
4028 *
4029 * hw - Struct containing variables accessed by shared code
4030 * ctrl - Device control register's current value
4031 ******************************************************************************/
4032 static void
4033 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4034 {
4035         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4036          * bit), and then delay 2 microseconds.
4037          */
4038         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4039         E1000_WRITE_FLUSH(hw);
4040         udelay(2);
4041 }
4042
4043 /******************************************************************************
4044 * Shifts data bits out to the PHY
4045 *
4046 * hw - Struct containing variables accessed by shared code
4047 * data - Data to send out to the PHY
4048 * count - Number of bits to shift out
4049 *
4050 * Bits are shifted out in MSB to LSB order.
4051 ******************************************************************************/
4052 static void
4053 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4054 {
4055         uint32_t ctrl;
4056         uint32_t mask;
4057
4058         /* We need to shift "count" number of bits out to the PHY. So, the value
4059          * in the "data" parameter will be shifted out to the PHY one bit at a
4060          * time. In order to do this, "data" must be broken down into bits.
4061          */
4062         mask = 0x01;
4063         mask <<= (count - 1);
4064
4065         ctrl = E1000_READ_REG(hw, CTRL);
4066
4067         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4068         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4069
4070         while (mask) {
4071                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4072                  * then raising and lowering the Management Data Clock. A "0" is
4073                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4074                  * raising and lowering the clock.
4075                  */
4076                 if (data & mask)
4077                         ctrl |= E1000_CTRL_MDIO;
4078                 else
4079                         ctrl &= ~E1000_CTRL_MDIO;
4080
4081                 E1000_WRITE_REG(hw, CTRL, ctrl);
4082                 E1000_WRITE_FLUSH(hw);
4083
4084                 udelay(2);
4085
4086                 e1000_raise_mdi_clk(hw, &ctrl);
4087                 e1000_lower_mdi_clk(hw, &ctrl);
4088
4089                 mask = mask >> 1;
4090         }
4091 }
4092
4093 /******************************************************************************
4094 * Shifts data bits in from the PHY
4095 *
4096 * hw - Struct containing variables accessed by shared code
4097 *
4098 * Bits are shifted in in MSB to LSB order.
4099 ******************************************************************************/
4100 static uint16_t
4101 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4102 {
4103         uint32_t ctrl;
4104         uint16_t data = 0;
4105         uint8_t i;
4106
4107         /* In order to read a register from the PHY, we need to shift in a total
4108          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4109          * to avoid contention on the MDIO pin when a read operation is performed.
4110          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4111          * by raising the input to the Management Data Clock (setting the MDC bit),
4112          * and then reading the value of the MDIO bit.
4113          */
4114         ctrl = E1000_READ_REG(hw, CTRL);
4115
4116         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4117         ctrl &= ~E1000_CTRL_MDIO_DIR;
4118         ctrl &= ~E1000_CTRL_MDIO;
4119
4120         E1000_WRITE_REG(hw, CTRL, ctrl);
4121         E1000_WRITE_FLUSH(hw);
4122
4123         /* Raise and Lower the clock before reading in the data. This accounts for
4124          * the turnaround bits. The first clock occurred when we clocked out the
4125          * last bit of the Register Address.
4126          */
4127         e1000_raise_mdi_clk(hw, &ctrl);
4128         e1000_lower_mdi_clk(hw, &ctrl);
4129
4130         for (data = 0, i = 0; i < 16; i++) {
4131                 data = data << 1;
4132                 e1000_raise_mdi_clk(hw, &ctrl);
4133                 ctrl = E1000_READ_REG(hw, CTRL);
4134                 /* Check to see if we shifted in a "1". */
4135                 if (ctrl & E1000_CTRL_MDIO)
4136                         data |= 1;
4137                 e1000_lower_mdi_clk(hw, &ctrl);
4138         }
4139
4140         e1000_raise_mdi_clk(hw, &ctrl);
4141         e1000_lower_mdi_clk(hw, &ctrl);
4142
4143         return data;
4144 }
4145
4146 /*****************************************************************************
4147 * Reads the value from a PHY register
4148 *
4149 * hw - Struct containing variables accessed by shared code
4150 * reg_addr - address of the PHY register to read
4151 ******************************************************************************/
4152 static int
4153 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4154 {
4155         uint32_t i;
4156         uint32_t mdic = 0;
4157         const uint32_t phy_addr = 1;
4158
4159         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4160                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4161                 return -E1000_ERR_PARAM;
4162         }
4163
4164         if (hw->mac_type > e1000_82543) {
4165                 /* Set up Op-code, Phy Address, and register address in the MDI
4166                  * Control register.  The MAC will take care of interfacing with the
4167                  * PHY to retrieve the desired data.
4168                  */
4169                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4170                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4171                         (E1000_MDIC_OP_READ));
4172
4173                 E1000_WRITE_REG(hw, MDIC, mdic);
4174
4175                 /* Poll the ready bit to see if the MDI read completed */
4176                 for (i = 0; i < 64; i++) {
4177                         udelay(10);
4178                         mdic = E1000_READ_REG(hw, MDIC);
4179                         if (mdic & E1000_MDIC_READY)
4180                                 break;
4181                 }
4182                 if (!(mdic & E1000_MDIC_READY)) {
4183                         DEBUGOUT("MDI Read did not complete\n");
4184                         return -E1000_ERR_PHY;
4185                 }
4186                 if (mdic & E1000_MDIC_ERROR) {
4187                         DEBUGOUT("MDI Error\n");
4188                         return -E1000_ERR_PHY;
4189                 }
4190                 *phy_data = (uint16_t) mdic;
4191         } else {
4192                 /* We must first send a preamble through the MDIO pin to signal the
4193                  * beginning of an MII instruction.  This is done by sending 32
4194                  * consecutive "1" bits.
4195                  */
4196                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4197
4198                 /* Now combine the next few fields that are required for a read
4199                  * operation.  We use this method instead of calling the
4200                  * e1000_shift_out_mdi_bits routine five different times. The format of
4201                  * a MII read instruction consists of a shift out of 14 bits and is
4202                  * defined as follows:
4203                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4204                  * followed by a shift in of 18 bits.  This first two bits shifted in
4205                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4206                  * READ operation is performed.  These two bits are thrown away
4207                  * followed by a shift in of 16 bits which contains the desired data.
4208                  */
4209                 mdic = ((reg_addr) | (phy_addr << 5) |
4210                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4211
4212                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4213
4214                 /* Now that we've shifted out the read command to the MII, we need to
4215                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4216                  * register address.
4217                  */
4218                 *phy_data = e1000_shift_in_mdi_bits(hw);
4219         }
4220         return 0;
4221 }
4222
4223 /******************************************************************************
4224 * Writes a value to a PHY register
4225 *
4226 * hw - Struct containing variables accessed by shared code
4227 * reg_addr - address of the PHY register to write
4228 * data - data to write to the PHY
4229 ******************************************************************************/
4230 static int
4231 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4232 {
4233         uint32_t i;
4234         uint32_t mdic = 0;
4235         const uint32_t phy_addr = 1;
4236
4237         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4238                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4239                 return -E1000_ERR_PARAM;
4240         }
4241
4242         if (hw->mac_type > e1000_82543) {
4243                 /* Set up Op-code, Phy Address, register address, and data intended
4244                  * for the PHY register in the MDI Control register.  The MAC will take
4245                  * care of interfacing with the PHY to send the desired data.
4246                  */
4247                 mdic = (((uint32_t) phy_data) |
4248                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4249                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4250                         (E1000_MDIC_OP_WRITE));
4251
4252                 E1000_WRITE_REG(hw, MDIC, mdic);
4253
4254                 /* Poll the ready bit to see if the MDI read completed */
4255                 for (i = 0; i < 64; i++) {
4256                         udelay(10);
4257                         mdic = E1000_READ_REG(hw, MDIC);
4258                         if (mdic & E1000_MDIC_READY)
4259                                 break;
4260                 }
4261                 if (!(mdic & E1000_MDIC_READY)) {
4262                         DEBUGOUT("MDI Write did not complete\n");
4263                         return -E1000_ERR_PHY;
4264                 }
4265         } else {
4266                 /* We'll need to use the SW defined pins to shift the write command
4267                  * out to the PHY. We first send a preamble to the PHY to signal the
4268                  * beginning of the MII instruction.  This is done by sending 32
4269                  * consecutive "1" bits.
4270                  */
4271                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4272
4273                 /* Now combine the remaining required fields that will indicate a
4274                  * write operation. We use this method instead of calling the
4275                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4276                  * format of a MII write instruction is as follows:
4277                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4278                  */
4279                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4280                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4281                 mdic <<= 16;
4282                 mdic |= (uint32_t) phy_data;
4283
4284                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4285         }
4286         return 0;
4287 }
4288
4289 /******************************************************************************
4290  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4291  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4292  * the caller to figure out how to deal with it.
4293  *
4294  * hw - Struct containing variables accessed by shared code
4295  *
4296  * returns: - E1000_BLK_PHY_RESET
4297  *            E1000_SUCCESS
4298  *
4299  *****************************************************************************/
4300 int32_t
4301 e1000_check_phy_reset_block(struct e1000_hw *hw)
4302 {
4303         uint32_t manc = 0;
4304         uint32_t fwsm = 0;
4305
4306         if (hw->mac_type == e1000_ich8lan) {
4307                 fwsm = E1000_READ_REG(hw, FWSM);
4308                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4309                                                 : E1000_BLK_PHY_RESET;
4310         }
4311
4312         if (hw->mac_type > e1000_82547_rev_2)
4313                 manc = E1000_READ_REG(hw, MANC);
4314         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4315                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4316 }
4317
4318 /***************************************************************************
4319  * Checks if the PHY configuration is done
4320  *
4321  * hw: Struct containing variables accessed by shared code
4322  *
4323  * returns: - E1000_ERR_RESET if fail to reset MAC
4324  *            E1000_SUCCESS at any other case.
4325  *
4326  ***************************************************************************/
4327 static int32_t
4328 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4329 {
4330         int32_t timeout = PHY_CFG_TIMEOUT;
4331         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4332
4333         DEBUGFUNC();
4334
4335         switch (hw->mac_type) {
4336         default:
4337                 mdelay(10);
4338                 break;
4339
4340         case e1000_80003es2lan:
4341                 /* Separate *_CFG_DONE_* bit for each port */
4342                 if (e1000_is_second_port(hw))
4343                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4344                 /* Fall Through */
4345
4346         case e1000_82571:
4347         case e1000_82572:
4348         case e1000_igb:
4349                 while (timeout) {
4350                         if (hw->mac_type == e1000_igb) {
4351                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4352                                         break;
4353                         } else {
4354                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4355                                         break;
4356                         }
4357                         mdelay(1);
4358                         timeout--;
4359                 }
4360                 if (!timeout) {
4361                         DEBUGOUT("MNG configuration cycle has not "
4362                                         "completed.\n");
4363                         return -E1000_ERR_RESET;
4364                 }
4365                 break;
4366         }
4367
4368         return E1000_SUCCESS;
4369 }
4370
4371 /******************************************************************************
4372 * Returns the PHY to the power-on reset state
4373 *
4374 * hw - Struct containing variables accessed by shared code
4375 ******************************************************************************/
4376 int32_t
4377 e1000_phy_hw_reset(struct e1000_hw *hw)
4378 {
4379         uint16_t swfw = E1000_SWFW_PHY0_SM;
4380         uint32_t ctrl, ctrl_ext;
4381         uint32_t led_ctrl;
4382         int32_t ret_val;
4383
4384         DEBUGFUNC();
4385
4386         /* In the case of the phy reset being blocked, it's not an error, we
4387          * simply return success without performing the reset. */
4388         ret_val = e1000_check_phy_reset_block(hw);
4389         if (ret_val)
4390                 return E1000_SUCCESS;
4391
4392         DEBUGOUT("Resetting Phy...\n");
4393
4394         if (hw->mac_type > e1000_82543) {
4395                 if (e1000_is_second_port(hw))
4396                         swfw = E1000_SWFW_PHY1_SM;
4397
4398                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4399                         DEBUGOUT("Unable to acquire swfw sync\n");
4400                         return -E1000_ERR_SWFW_SYNC;
4401                 }
4402
4403                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4404                  * bit. Then, take it out of reset.
4405                  */
4406                 ctrl = E1000_READ_REG(hw, CTRL);
4407                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4408                 E1000_WRITE_FLUSH(hw);
4409
4410                 if (hw->mac_type < e1000_82571)
4411                         udelay(10);
4412                 else
4413                         udelay(100);
4414
4415                 E1000_WRITE_REG(hw, CTRL, ctrl);
4416                 E1000_WRITE_FLUSH(hw);
4417
4418                 if (hw->mac_type >= e1000_82571)
4419                         mdelay(10);
4420
4421         } else {
4422                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4423                  * bit to put the PHY into reset. Then, take it out of reset.
4424                  */
4425                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4426                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4427                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4428                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4429                 E1000_WRITE_FLUSH(hw);
4430                 mdelay(10);
4431                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4432                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4433                 E1000_WRITE_FLUSH(hw);
4434         }
4435         udelay(150);
4436
4437         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4438                 /* Configure activity LED after PHY reset */
4439                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4440                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4441                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4442                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4443         }
4444
4445         e1000_swfw_sync_release(hw, swfw);
4446
4447         /* Wait for FW to finish PHY configuration. */
4448         ret_val = e1000_get_phy_cfg_done(hw);
4449         if (ret_val != E1000_SUCCESS)
4450                 return ret_val;
4451
4452         return ret_val;
4453 }
4454
4455 /******************************************************************************
4456  * IGP phy init script - initializes the GbE PHY
4457  *
4458  * hw - Struct containing variables accessed by shared code
4459  *****************************************************************************/
4460 static void
4461 e1000_phy_init_script(struct e1000_hw *hw)
4462 {
4463         uint32_t ret_val;
4464         uint16_t phy_saved_data;
4465         DEBUGFUNC();
4466
4467         if (hw->phy_init_script) {
4468                 mdelay(20);
4469
4470                 /* Save off the current value of register 0x2F5B to be
4471                  * restored at the end of this routine. */
4472                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4473
4474                 /* Disabled the PHY transmitter */
4475                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4476
4477                 mdelay(20);
4478
4479                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4480
4481                 mdelay(5);
4482
4483                 switch (hw->mac_type) {
4484                 case e1000_82541:
4485                 case e1000_82547:
4486                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4487
4488                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4489
4490                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4491
4492                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4493
4494                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4495
4496                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4497
4498                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4499
4500                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4501
4502                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4503                         break;
4504
4505                 case e1000_82541_rev_2:
4506                 case e1000_82547_rev_2:
4507                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4508                         break;
4509                 default:
4510                         break;
4511                 }
4512
4513                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4514
4515                 mdelay(20);
4516
4517                 /* Now enable the transmitter */
4518                 if (!ret_val)
4519                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4520
4521                 if (hw->mac_type == e1000_82547) {
4522                         uint16_t fused, fine, coarse;
4523
4524                         /* Move to analog registers page */
4525                         e1000_read_phy_reg(hw,
4526                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4527
4528                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4529                                 e1000_read_phy_reg(hw,
4530                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4531
4532                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4533                                 coarse = fused
4534                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4535
4536                                 if (coarse >
4537                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4538                                         coarse -=
4539                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4540                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4541                                 } else if (coarse
4542                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4543                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4544
4545                                 fused = (fused
4546                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4547                                         (fine
4548                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4549                                         (coarse
4550                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4551
4552                                 e1000_write_phy_reg(hw,
4553                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4554                                 e1000_write_phy_reg(hw,
4555                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4556                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4557                         }
4558                 }
4559         }
4560 }
4561
4562 /******************************************************************************
4563 * Resets the PHY
4564 *
4565 * hw - Struct containing variables accessed by shared code
4566 *
4567 * Sets bit 15 of the MII Control register
4568 ******************************************************************************/
4569 int32_t
4570 e1000_phy_reset(struct e1000_hw *hw)
4571 {
4572         int32_t ret_val;
4573         uint16_t phy_data;
4574
4575         DEBUGFUNC();
4576
4577         /* In the case of the phy reset being blocked, it's not an error, we
4578          * simply return success without performing the reset. */
4579         ret_val = e1000_check_phy_reset_block(hw);
4580         if (ret_val)
4581                 return E1000_SUCCESS;
4582
4583         switch (hw->phy_type) {
4584         case e1000_phy_igp:
4585         case e1000_phy_igp_2:
4586         case e1000_phy_igp_3:
4587         case e1000_phy_ife:
4588         case e1000_phy_igb:
4589                 ret_val = e1000_phy_hw_reset(hw);
4590                 if (ret_val)
4591                         return ret_val;
4592                 break;
4593         default:
4594                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4595                 if (ret_val)
4596                         return ret_val;
4597
4598                 phy_data |= MII_CR_RESET;
4599                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4600                 if (ret_val)
4601                         return ret_val;
4602
4603                 udelay(1);
4604                 break;
4605         }
4606
4607         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4608                 e1000_phy_init_script(hw);
4609
4610         return E1000_SUCCESS;
4611 }
4612
4613 static int e1000_set_phy_type (struct e1000_hw *hw)
4614 {
4615         DEBUGFUNC ();
4616
4617         if (hw->mac_type == e1000_undefined)
4618                 return -E1000_ERR_PHY_TYPE;
4619
4620         switch (hw->phy_id) {
4621         case M88E1000_E_PHY_ID:
4622         case M88E1000_I_PHY_ID:
4623         case M88E1011_I_PHY_ID:
4624         case M88E1111_I_PHY_ID:
4625                 hw->phy_type = e1000_phy_m88;
4626                 break;
4627         case IGP01E1000_I_PHY_ID:
4628                 if (hw->mac_type == e1000_82541 ||
4629                         hw->mac_type == e1000_82541_rev_2 ||
4630                         hw->mac_type == e1000_82547 ||
4631                         hw->mac_type == e1000_82547_rev_2) {
4632                         hw->phy_type = e1000_phy_igp;
4633                         break;
4634                 }
4635         case IGP03E1000_E_PHY_ID:
4636                 hw->phy_type = e1000_phy_igp_3;
4637                 break;
4638         case IFE_E_PHY_ID:
4639         case IFE_PLUS_E_PHY_ID:
4640         case IFE_C_E_PHY_ID:
4641                 hw->phy_type = e1000_phy_ife;
4642                 break;
4643         case GG82563_E_PHY_ID:
4644                 if (hw->mac_type == e1000_80003es2lan) {
4645                         hw->phy_type = e1000_phy_gg82563;
4646                         break;
4647                 }
4648         case BME1000_E_PHY_ID:
4649                 hw->phy_type = e1000_phy_bm;
4650                 break;
4651         case I210_I_PHY_ID:
4652                 hw->phy_type = e1000_phy_igb;
4653                 break;
4654                 /* Fall Through */
4655         default:
4656                 /* Should never have loaded on this device */
4657                 hw->phy_type = e1000_phy_undefined;
4658                 return -E1000_ERR_PHY_TYPE;
4659         }
4660
4661         return E1000_SUCCESS;
4662 }
4663
4664 /******************************************************************************
4665 * Probes the expected PHY address for known PHY IDs
4666 *
4667 * hw - Struct containing variables accessed by shared code
4668 ******************************************************************************/
4669 static int32_t
4670 e1000_detect_gig_phy(struct e1000_hw *hw)
4671 {
4672         int32_t phy_init_status, ret_val;
4673         uint16_t phy_id_high, phy_id_low;
4674         bool match = false;
4675
4676         DEBUGFUNC();
4677
4678         /* The 82571 firmware may still be configuring the PHY.  In this
4679          * case, we cannot access the PHY until the configuration is done.  So
4680          * we explicitly set the PHY values. */
4681         if (hw->mac_type == e1000_82571 ||
4682                 hw->mac_type == e1000_82572) {
4683                 hw->phy_id = IGP01E1000_I_PHY_ID;
4684                 hw->phy_type = e1000_phy_igp_2;
4685                 return E1000_SUCCESS;
4686         }
4687
4688         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4689          * work- around that forces PHY page 0 to be set or the reads fail.
4690          * The rest of the code in this routine uses e1000_read_phy_reg to
4691          * read the PHY ID.  So for ESB-2 we need to have this set so our
4692          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4693          * the routines below will figure this out as well. */
4694         if (hw->mac_type == e1000_80003es2lan)
4695                 hw->phy_type = e1000_phy_gg82563;
4696
4697         /* Read the PHY ID Registers to identify which PHY is onboard. */
4698         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4699         if (ret_val)
4700                 return ret_val;
4701
4702         hw->phy_id = (uint32_t) (phy_id_high << 16);
4703         udelay(20);
4704         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4705         if (ret_val)
4706                 return ret_val;
4707
4708         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4709         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4710
4711         switch (hw->mac_type) {
4712         case e1000_82543:
4713                 if (hw->phy_id == M88E1000_E_PHY_ID)
4714                         match = true;
4715                 break;
4716         case e1000_82544:
4717                 if (hw->phy_id == M88E1000_I_PHY_ID)
4718                         match = true;
4719                 break;
4720         case e1000_82540:
4721         case e1000_82545:
4722         case e1000_82545_rev_3:
4723         case e1000_82546:
4724         case e1000_82546_rev_3:
4725                 if (hw->phy_id == M88E1011_I_PHY_ID)
4726                         match = true;
4727                 break;
4728         case e1000_82541:
4729         case e1000_82541_rev_2:
4730         case e1000_82547:
4731         case e1000_82547_rev_2:
4732                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4733                         match = true;
4734
4735                 break;
4736         case e1000_82573:
4737                 if (hw->phy_id == M88E1111_I_PHY_ID)
4738                         match = true;
4739                 break;
4740         case e1000_82574:
4741                 if (hw->phy_id == BME1000_E_PHY_ID)
4742                         match = true;
4743                 break;
4744         case e1000_80003es2lan:
4745                 if (hw->phy_id == GG82563_E_PHY_ID)
4746                         match = true;
4747                 break;
4748         case e1000_ich8lan:
4749                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4750                         match = true;
4751                 if (hw->phy_id == IFE_E_PHY_ID)
4752                         match = true;
4753                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4754                         match = true;
4755                 if (hw->phy_id == IFE_C_E_PHY_ID)
4756                         match = true;
4757                 break;
4758         case e1000_igb:
4759                 if (hw->phy_id == I210_I_PHY_ID)
4760                         match = true;
4761                 break;
4762         default:
4763                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4764                 return -E1000_ERR_CONFIG;
4765         }
4766
4767         phy_init_status = e1000_set_phy_type(hw);
4768
4769         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4770                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4771                 return 0;
4772         }
4773         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4774         return -E1000_ERR_PHY;
4775 }
4776
4777 /*****************************************************************************
4778  * Set media type and TBI compatibility.
4779  *
4780  * hw - Struct containing variables accessed by shared code
4781  * **************************************************************************/
4782 void
4783 e1000_set_media_type(struct e1000_hw *hw)
4784 {
4785         uint32_t status;
4786
4787         DEBUGFUNC();
4788
4789         if (hw->mac_type != e1000_82543) {
4790                 /* tbi_compatibility is only valid on 82543 */
4791                 hw->tbi_compatibility_en = false;
4792         }
4793
4794         switch (hw->device_id) {
4795         case E1000_DEV_ID_82545GM_SERDES:
4796         case E1000_DEV_ID_82546GB_SERDES:
4797         case E1000_DEV_ID_82571EB_SERDES:
4798         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4799         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4800         case E1000_DEV_ID_82572EI_SERDES:
4801         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4802                 hw->media_type = e1000_media_type_internal_serdes;
4803                 break;
4804         default:
4805                 switch (hw->mac_type) {
4806                 case e1000_82542_rev2_0:
4807                 case e1000_82542_rev2_1:
4808                         hw->media_type = e1000_media_type_fiber;
4809                         break;
4810                 case e1000_ich8lan:
4811                 case e1000_82573:
4812                 case e1000_82574:
4813                 case e1000_igb:
4814                         /* The STATUS_TBIMODE bit is reserved or reused
4815                          * for the this device.
4816                          */
4817                         hw->media_type = e1000_media_type_copper;
4818                         break;
4819                 default:
4820                         status = E1000_READ_REG(hw, STATUS);
4821                         if (status & E1000_STATUS_TBIMODE) {
4822                                 hw->media_type = e1000_media_type_fiber;
4823                                 /* tbi_compatibility not valid on fiber */
4824                                 hw->tbi_compatibility_en = false;
4825                         } else {
4826                                 hw->media_type = e1000_media_type_copper;
4827                         }
4828                         break;
4829                 }
4830         }
4831 }
4832
4833 /**
4834  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4835  *
4836  * e1000_sw_init initializes the Adapter private data structure.
4837  * Fields are initialized based on PCI device information and
4838  * OS network device settings (MTU size).
4839  **/
4840
4841 static int
4842 e1000_sw_init(struct e1000_hw *hw)
4843 {
4844         int result;
4845
4846         /* PCI config space info */
4847 #ifdef CONFIG_DM_ETH
4848         dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4849         dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4850         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4851                              &hw->subsystem_vendor_id);
4852         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4853
4854         dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4855         dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4856 #else
4857         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4858         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4859         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4860                              &hw->subsystem_vendor_id);
4861         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4862
4863         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4864         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4865 #endif
4866
4867         /* identify the MAC */
4868         result = e1000_set_mac_type(hw);
4869         if (result) {
4870                 E1000_ERR(hw, "Unknown MAC Type\n");
4871                 return result;
4872         }
4873
4874         switch (hw->mac_type) {
4875         default:
4876                 break;
4877         case e1000_82541:
4878         case e1000_82547:
4879         case e1000_82541_rev_2:
4880         case e1000_82547_rev_2:
4881                 hw->phy_init_script = 1;
4882                 break;
4883         }
4884
4885         /* flow control settings */
4886         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4887         hw->fc_low_water = E1000_FC_LOW_THRESH;
4888         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4889         hw->fc_send_xon = 1;
4890
4891         /* Media type - copper or fiber */
4892         hw->tbi_compatibility_en = true;
4893         e1000_set_media_type(hw);
4894
4895         if (hw->mac_type >= e1000_82543) {
4896                 uint32_t status = E1000_READ_REG(hw, STATUS);
4897
4898                 if (status & E1000_STATUS_TBIMODE) {
4899                         DEBUGOUT("fiber interface\n");
4900                         hw->media_type = e1000_media_type_fiber;
4901                 } else {
4902                         DEBUGOUT("copper interface\n");
4903                         hw->media_type = e1000_media_type_copper;
4904                 }
4905         } else {
4906                 hw->media_type = e1000_media_type_fiber;
4907         }
4908
4909         hw->wait_autoneg_complete = true;
4910         if (hw->mac_type < e1000_82543)
4911                 hw->report_tx_early = 0;
4912         else
4913                 hw->report_tx_early = 1;
4914
4915         return E1000_SUCCESS;
4916 }
4917
4918 void
4919 fill_rx(struct e1000_hw *hw)
4920 {
4921         struct e1000_rx_desc *rd;
4922         unsigned long flush_start, flush_end;
4923
4924         rx_last = rx_tail;
4925         rd = rx_base + rx_tail;
4926         rx_tail = (rx_tail + 1) % 8;
4927         memset(rd, 0, 16);
4928         rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4929
4930         /*
4931          * Make sure there are no stale data in WB over this area, which
4932          * might get written into the memory while the e1000 also writes
4933          * into the same memory area.
4934          */
4935         invalidate_dcache_range((unsigned long)packet,
4936                                 (unsigned long)packet + 4096);
4937         /* Dump the DMA descriptor into RAM. */
4938         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4939         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4940         flush_dcache_range(flush_start, flush_end);
4941
4942         E1000_WRITE_REG(hw, RDT, rx_tail);
4943 }
4944
4945 /**
4946  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4947  * @adapter: board private structure
4948  *
4949  * Configure the Tx unit of the MAC after a reset.
4950  **/
4951
4952 static void
4953 e1000_configure_tx(struct e1000_hw *hw)
4954 {
4955         unsigned long tctl;
4956         unsigned long tipg, tarc;
4957         uint32_t ipgr1, ipgr2;
4958
4959         E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4960         E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
4961
4962         E1000_WRITE_REG(hw, TDLEN, 128);
4963
4964         /* Setup the HW Tx Head and Tail descriptor pointers */
4965         E1000_WRITE_REG(hw, TDH, 0);
4966         E1000_WRITE_REG(hw, TDT, 0);
4967         tx_tail = 0;
4968
4969         /* Set the default values for the Tx Inter Packet Gap timer */
4970         if (hw->mac_type <= e1000_82547_rev_2 &&
4971             (hw->media_type == e1000_media_type_fiber ||
4972              hw->media_type == e1000_media_type_internal_serdes))
4973                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4974         else
4975                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4976
4977         /* Set the default values for the Tx Inter Packet Gap timer */
4978         switch (hw->mac_type) {
4979         case e1000_82542_rev2_0:
4980         case e1000_82542_rev2_1:
4981                 tipg = DEFAULT_82542_TIPG_IPGT;
4982                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4983                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4984                 break;
4985         case e1000_80003es2lan:
4986                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4987                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4988                 break;
4989         default:
4990                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4991                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4992                 break;
4993         }
4994         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4995         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4996         E1000_WRITE_REG(hw, TIPG, tipg);
4997         /* Program the Transmit Control Register */
4998         tctl = E1000_READ_REG(hw, TCTL);
4999         tctl &= ~E1000_TCTL_CT;
5000         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5001             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5002
5003         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5004                 tarc = E1000_READ_REG(hw, TARC0);
5005                 /* set the speed mode bit, we'll clear it if we're not at
5006                  * gigabit link later */
5007                 /* git bit can be set to 1*/
5008         } else if (hw->mac_type == e1000_80003es2lan) {
5009                 tarc = E1000_READ_REG(hw, TARC0);
5010                 tarc |= 1;
5011                 E1000_WRITE_REG(hw, TARC0, tarc);
5012                 tarc = E1000_READ_REG(hw, TARC1);
5013                 tarc |= 1;
5014                 E1000_WRITE_REG(hw, TARC1, tarc);
5015         }
5016
5017
5018         e1000_config_collision_dist(hw);
5019         /* Setup Transmit Descriptor Settings for eop descriptor */
5020         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5021
5022         /* Need to set up RS bit */
5023         if (hw->mac_type < e1000_82543)
5024                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5025         else
5026                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5027
5028
5029         if (hw->mac_type == e1000_igb) {
5030                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5031
5032                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5033                 reg_txdctl |= 1 << 25;
5034                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5035                 mdelay(20);
5036         }
5037
5038
5039
5040         E1000_WRITE_REG(hw, TCTL, tctl);
5041
5042
5043 }
5044
5045 /**
5046  * e1000_setup_rctl - configure the receive control register
5047  * @adapter: Board private structure
5048  **/
5049 static void
5050 e1000_setup_rctl(struct e1000_hw *hw)
5051 {
5052         uint32_t rctl;
5053
5054         rctl = E1000_READ_REG(hw, RCTL);
5055
5056         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5057
5058         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5059                 | E1000_RCTL_RDMTS_HALF;        /* |
5060                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5061
5062         if (hw->tbi_compatibility_on == 1)
5063                 rctl |= E1000_RCTL_SBP;
5064         else
5065                 rctl &= ~E1000_RCTL_SBP;
5066
5067         rctl &= ~(E1000_RCTL_SZ_4096);
5068                 rctl |= E1000_RCTL_SZ_2048;
5069                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5070         E1000_WRITE_REG(hw, RCTL, rctl);
5071 }
5072
5073 /**
5074  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5075  * @adapter: board private structure
5076  *
5077  * Configure the Rx unit of the MAC after a reset.
5078  **/
5079 static void
5080 e1000_configure_rx(struct e1000_hw *hw)
5081 {
5082         unsigned long rctl, ctrl_ext;
5083         rx_tail = 0;
5084
5085         /* make sure receives are disabled while setting up the descriptors */
5086         rctl = E1000_READ_REG(hw, RCTL);
5087         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5088         if (hw->mac_type >= e1000_82540) {
5089                 /* Set the interrupt throttling rate.  Value is calculated
5090                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5091 #define MAX_INTS_PER_SEC        8000
5092 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5093                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5094         }
5095
5096         if (hw->mac_type >= e1000_82571) {
5097                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5098                 /* Reset delay timers after every interrupt */
5099                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5100                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5101                 E1000_WRITE_FLUSH(hw);
5102         }
5103         /* Setup the Base and Length of the Rx Descriptor Ring */
5104         E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5105         E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5106
5107         E1000_WRITE_REG(hw, RDLEN, 128);
5108
5109         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5110         E1000_WRITE_REG(hw, RDH, 0);
5111         E1000_WRITE_REG(hw, RDT, 0);
5112         /* Enable Receives */
5113
5114         if (hw->mac_type == e1000_igb) {
5115
5116                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5117                 reg_rxdctl |= 1 << 25;
5118                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5119                 mdelay(20);
5120         }
5121
5122         E1000_WRITE_REG(hw, RCTL, rctl);
5123
5124         fill_rx(hw);
5125 }
5126
5127 /**************************************************************************
5128 POLL - Wait for a frame
5129 ***************************************************************************/
5130 static int
5131 _e1000_poll(struct e1000_hw *hw)
5132 {
5133         struct e1000_rx_desc *rd;
5134         unsigned long inval_start, inval_end;
5135         uint32_t len;
5136
5137         /* return true if there's an ethernet packet ready to read */
5138         rd = rx_base + rx_last;
5139
5140         /* Re-load the descriptor from RAM. */
5141         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5142         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5143         invalidate_dcache_range(inval_start, inval_end);
5144
5145         if (!(rd->status & E1000_RXD_STAT_DD))
5146                 return 0;
5147         /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5148         /* Packet received, make sure the data are re-loaded from RAM. */
5149         len = le16_to_cpu(rd->length);
5150         invalidate_dcache_range((unsigned long)packet,
5151                                 (unsigned long)packet +
5152                                 roundup(len, ARCH_DMA_MINALIGN));
5153         return len;
5154 }
5155
5156 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5157 {
5158         void *nv_packet = (void *)txpacket;
5159         struct e1000_tx_desc *txp;
5160         int i = 0;
5161         unsigned long flush_start, flush_end;
5162
5163         txp = tx_base + tx_tail;
5164         tx_tail = (tx_tail + 1) % 8;
5165
5166         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5167         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5168         txp->upper.data = 0;
5169
5170         /* Dump the packet into RAM so e1000 can pick them. */
5171         flush_dcache_range((unsigned long)nv_packet,
5172                            (unsigned long)nv_packet +
5173                            roundup(length, ARCH_DMA_MINALIGN));
5174         /* Dump the descriptor into RAM as well. */
5175         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5176         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5177         flush_dcache_range(flush_start, flush_end);
5178
5179         E1000_WRITE_REG(hw, TDT, tx_tail);
5180
5181         E1000_WRITE_FLUSH(hw);
5182         while (1) {
5183                 invalidate_dcache_range(flush_start, flush_end);
5184                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5185                         break;
5186                 if (i++ > TOUT_LOOP) {
5187                         DEBUGOUT("e1000: tx timeout\n");
5188                         return 0;
5189                 }
5190                 udelay(10);     /* give the nic a chance to write to the register */
5191         }
5192         return 1;
5193 }
5194
5195 static void
5196 _e1000_disable(struct e1000_hw *hw)
5197 {
5198         /* Turn off the ethernet interface */
5199         E1000_WRITE_REG(hw, RCTL, 0);
5200         E1000_WRITE_REG(hw, TCTL, 0);
5201
5202         /* Clear the transmit ring */
5203         E1000_WRITE_REG(hw, TDH, 0);
5204         E1000_WRITE_REG(hw, TDT, 0);
5205
5206         /* Clear the receive ring */
5207         E1000_WRITE_REG(hw, RDH, 0);
5208         E1000_WRITE_REG(hw, RDT, 0);
5209
5210         mdelay(10);
5211 }
5212
5213 /*reset function*/
5214 static inline int
5215 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5216 {
5217         e1000_reset_hw(hw);
5218         if (hw->mac_type >= e1000_82544)
5219                 E1000_WRITE_REG(hw, WUC, 0);
5220
5221         return e1000_init_hw(hw, enetaddr);
5222 }
5223
5224 static int
5225 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5226 {
5227         int ret_val = 0;
5228
5229         ret_val = e1000_reset(hw, enetaddr);
5230         if (ret_val < 0) {
5231                 if ((ret_val == -E1000_ERR_NOLINK) ||
5232                     (ret_val == -E1000_ERR_TIMEOUT)) {
5233                         E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5234                 } else {
5235                         E1000_ERR(hw, "Hardware Initialization Failed\n");
5236                 }
5237                 return ret_val;
5238         }
5239         e1000_configure_tx(hw);
5240         e1000_setup_rctl(hw);
5241         e1000_configure_rx(hw);
5242         return 0;
5243 }
5244
5245 /******************************************************************************
5246  * Gets the current PCI bus type of hardware
5247  *
5248  * hw - Struct containing variables accessed by shared code
5249  *****************************************************************************/
5250 void e1000_get_bus_type(struct e1000_hw *hw)
5251 {
5252         uint32_t status;
5253
5254         switch (hw->mac_type) {
5255         case e1000_82542_rev2_0:
5256         case e1000_82542_rev2_1:
5257                 hw->bus_type = e1000_bus_type_pci;
5258                 break;
5259         case e1000_82571:
5260         case e1000_82572:
5261         case e1000_82573:
5262         case e1000_82574:
5263         case e1000_80003es2lan:
5264         case e1000_ich8lan:
5265         case e1000_igb:
5266                 hw->bus_type = e1000_bus_type_pci_express;
5267                 break;
5268         default:
5269                 status = E1000_READ_REG(hw, STATUS);
5270                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5271                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5272                 break;
5273         }
5274 }
5275
5276 #ifndef CONFIG_DM_ETH
5277 /* A list of all registered e1000 devices */
5278 static LIST_HEAD(e1000_hw_list);
5279 #endif
5280
5281 #ifdef CONFIG_DM_ETH
5282 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5283                           struct udevice *devno, unsigned char enetaddr[6])
5284 #else
5285 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5286                           unsigned char enetaddr[6])
5287 #endif
5288 {
5289         u32 val;
5290
5291         /* Assign the passed-in values */
5292 #ifdef CONFIG_DM_ETH
5293         hw->pdev = devno;
5294 #else
5295         hw->pdev = devno;
5296 #endif
5297         hw->cardnum = cardnum;
5298
5299         /* Print a debug message with the IO base address */
5300 #ifdef CONFIG_DM_ETH
5301         dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5302 #else
5303         pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5304 #endif
5305         E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5306
5307         /* Try to enable I/O accesses and bus-mastering */
5308         val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5309 #ifdef CONFIG_DM_ETH
5310         dm_pci_write_config32(devno, PCI_COMMAND, val);
5311 #else
5312         pci_write_config_dword(devno, PCI_COMMAND, val);
5313 #endif
5314
5315         /* Make sure it worked */
5316 #ifdef CONFIG_DM_ETH
5317         dm_pci_read_config32(devno, PCI_COMMAND, &val);
5318 #else
5319         pci_read_config_dword(devno, PCI_COMMAND, &val);
5320 #endif
5321         if (!(val & PCI_COMMAND_MEMORY)) {
5322                 E1000_ERR(hw, "Can't enable I/O memory\n");
5323                 return -ENOSPC;
5324         }
5325         if (!(val & PCI_COMMAND_MASTER)) {
5326                 E1000_ERR(hw, "Can't enable bus-mastering\n");
5327                 return -EPERM;
5328         }
5329
5330         /* Are these variables needed? */
5331         hw->fc = e1000_fc_default;
5332         hw->original_fc = e1000_fc_default;
5333         hw->autoneg_failed = 0;
5334         hw->autoneg = 1;
5335         hw->get_link_status = true;
5336 #ifndef CONFIG_E1000_NO_NVM
5337         hw->eeprom_semaphore_present = true;
5338 #endif
5339 #ifdef CONFIG_DM_ETH
5340         hw->hw_addr = dm_pci_map_bar(devno,     PCI_BASE_ADDRESS_0,
5341                                                 PCI_REGION_MEM);
5342 #else
5343         hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5344                                                 PCI_REGION_MEM);
5345 #endif
5346         hw->mac_type = e1000_undefined;
5347
5348         /* MAC and Phy settings */
5349         if (e1000_sw_init(hw) < 0) {
5350                 E1000_ERR(hw, "Software init failed\n");
5351                 return -EIO;
5352         }
5353         if (e1000_check_phy_reset_block(hw))
5354                 E1000_ERR(hw, "PHY Reset is blocked!\n");
5355
5356         /* Basic init was OK, reset the hardware and allow SPI access */
5357         e1000_reset_hw(hw);
5358
5359 #ifndef CONFIG_E1000_NO_NVM
5360         /* Validate the EEPROM and get chipset information */
5361         if (e1000_init_eeprom_params(hw)) {
5362                 E1000_ERR(hw, "EEPROM is invalid!\n");
5363                 return -EINVAL;
5364         }
5365         if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5366             e1000_validate_eeprom_checksum(hw))
5367                 return -ENXIO;
5368         e1000_read_mac_addr(hw, enetaddr);
5369 #endif
5370         e1000_get_bus_type(hw);
5371
5372 #ifndef CONFIG_E1000_NO_NVM
5373         printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5374                enetaddr[0], enetaddr[1], enetaddr[2],
5375                enetaddr[3], enetaddr[4], enetaddr[5]);
5376 #else
5377         memset(enetaddr, 0, 6);
5378         printf("e1000: no NVM\n");
5379 #endif
5380
5381         return 0;
5382 }
5383
5384 /* Put the name of a device in a string */
5385 static void e1000_name(char *str, int cardnum)
5386 {
5387         sprintf(str, "e1000#%u", cardnum);
5388 }
5389
5390 #ifndef CONFIG_DM_ETH
5391 /**************************************************************************
5392 TRANSMIT - Transmit a frame
5393 ***************************************************************************/
5394 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5395 {
5396         struct e1000_hw *hw = nic->priv;
5397
5398         return _e1000_transmit(hw, txpacket, length);
5399 }
5400
5401 /**************************************************************************
5402 DISABLE - Turn off ethernet interface
5403 ***************************************************************************/
5404 static void
5405 e1000_disable(struct eth_device *nic)
5406 {
5407         struct e1000_hw *hw = nic->priv;
5408
5409         _e1000_disable(hw);
5410 }
5411
5412 /**************************************************************************
5413 INIT - set up ethernet interface(s)
5414 ***************************************************************************/
5415 static int
5416 e1000_init(struct eth_device *nic, bd_t *bis)
5417 {
5418         struct e1000_hw *hw = nic->priv;
5419
5420         return _e1000_init(hw, nic->enetaddr);
5421 }
5422
5423 static int
5424 e1000_poll(struct eth_device *nic)
5425 {
5426         struct e1000_hw *hw = nic->priv;
5427         int len;
5428
5429         len = _e1000_poll(hw);
5430         if (len) {
5431                 net_process_received_packet((uchar *)packet, len);
5432                 fill_rx(hw);
5433         }
5434
5435         return len ? 1 : 0;
5436 }
5437
5438 /**************************************************************************
5439 PROBE - Look for an adapter, this routine's visible to the outside
5440 You should omit the last argument struct pci_device * for a non-PCI NIC
5441 ***************************************************************************/
5442 int
5443 e1000_initialize(bd_t * bis)
5444 {
5445         unsigned int i;
5446         pci_dev_t devno;
5447         int ret;
5448
5449         DEBUGFUNC();
5450
5451         /* Find and probe all the matching PCI devices */
5452         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5453                 /*
5454                  * These will never get freed due to errors, this allows us to
5455                  * perform SPI EEPROM programming from U-Boot, for example.
5456                  */
5457                 struct eth_device *nic = malloc(sizeof(*nic));
5458                 struct e1000_hw *hw = malloc(sizeof(*hw));
5459                 if (!nic || !hw) {
5460                         printf("e1000#%u: Out of Memory!\n", i);
5461                         free(nic);
5462                         free(hw);
5463                         continue;
5464                 }
5465
5466                 /* Make sure all of the fields are initially zeroed */
5467                 memset(nic, 0, sizeof(*nic));
5468                 memset(hw, 0, sizeof(*hw));
5469                 nic->priv = hw;
5470
5471                 /* Generate a card name */
5472                 e1000_name(nic->name, i);
5473                 hw->name = nic->name;
5474
5475                 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5476                 if (ret)
5477                         continue;
5478                 list_add_tail(&hw->list_node, &e1000_hw_list);
5479
5480                 hw->nic = nic;
5481
5482                 /* Set up the function pointers and register the device */
5483                 nic->init = e1000_init;
5484                 nic->recv = e1000_poll;
5485                 nic->send = e1000_transmit;
5486                 nic->halt = e1000_disable;
5487                 eth_register(nic);
5488         }
5489
5490         return i;
5491 }
5492
5493 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5494 {
5495         struct e1000_hw *hw;
5496
5497         list_for_each_entry(hw, &e1000_hw_list, list_node)
5498                 if (hw->cardnum == cardnum)
5499                         return hw;
5500
5501         return NULL;
5502 }
5503 #endif /* !CONFIG_DM_ETH */
5504
5505 #ifdef CONFIG_CMD_E1000
5506 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5507                 int argc, char * const argv[])
5508 {
5509         unsigned char *mac = NULL;
5510 #ifdef CONFIG_DM_ETH
5511         struct eth_pdata *plat;
5512         struct udevice *dev;
5513         char name[30];
5514         int ret;
5515 #endif
5516 #if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
5517         struct e1000_hw *hw;
5518 #endif
5519         int cardnum;
5520
5521         if (argc < 3) {
5522                 cmd_usage(cmdtp);
5523                 return 1;
5524         }
5525
5526         /* Make sure we can find the requested e1000 card */
5527         cardnum = simple_strtoul(argv[1], NULL, 10);
5528 #ifdef CONFIG_DM_ETH
5529         e1000_name(name, cardnum);
5530         ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5531         if (!ret) {
5532                 plat = dev_get_platdata(dev);
5533                 mac = plat->enetaddr;
5534         }
5535 #else
5536         hw = e1000_find_card(cardnum);
5537         if (hw)
5538                 mac = hw->nic->enetaddr;
5539 #endif
5540         if (!mac) {
5541                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5542                 return 1;
5543         }
5544
5545         if (!strcmp(argv[2], "print-mac-address")) {
5546                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5547                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5548                 return 0;
5549         }
5550
5551 #ifdef CONFIG_E1000_SPI
5552 #ifdef CONFIG_DM_ETH
5553         hw = dev_get_priv(dev);
5554 #endif
5555         /* Handle the "SPI" subcommand */
5556         if (!strcmp(argv[2], "spi"))
5557                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5558 #endif
5559
5560         cmd_usage(cmdtp);
5561         return 1;
5562 }
5563
5564 U_BOOT_CMD(
5565         e1000, 7, 0, do_e1000,
5566         "Intel e1000 controller management",
5567         /*  */"<card#> print-mac-address\n"
5568 #ifdef CONFIG_E1000_SPI
5569         "e1000 <card#> spi show [<offset> [<length>]]\n"
5570         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5571         "e1000 <card#> spi program <addr> <offset> <length>\n"
5572         "e1000 <card#> spi checksum [update]\n"
5573 #endif
5574         "       - Manage the Intel E1000 PCI device"
5575 );
5576 #endif /* not CONFIG_CMD_E1000 */
5577
5578 #ifdef CONFIG_DM_ETH
5579 static int e1000_eth_start(struct udevice *dev)
5580 {
5581         struct eth_pdata *plat = dev_get_platdata(dev);
5582         struct e1000_hw *hw = dev_get_priv(dev);
5583
5584         return _e1000_init(hw, plat->enetaddr);
5585 }
5586
5587 static void e1000_eth_stop(struct udevice *dev)
5588 {
5589         struct e1000_hw *hw = dev_get_priv(dev);
5590
5591         _e1000_disable(hw);
5592 }
5593
5594 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5595 {
5596         struct e1000_hw *hw = dev_get_priv(dev);
5597         int ret;
5598
5599         ret = _e1000_transmit(hw, packet, length);
5600
5601         return ret ? 0 : -ETIMEDOUT;
5602 }
5603
5604 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5605 {
5606         struct e1000_hw *hw = dev_get_priv(dev);
5607         int len;
5608
5609         len = _e1000_poll(hw);
5610         if (len)
5611                 *packetp = packet;
5612
5613         return len ? len : -EAGAIN;
5614 }
5615
5616 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5617 {
5618         struct e1000_hw *hw = dev_get_priv(dev);
5619
5620         fill_rx(hw);
5621
5622         return 0;
5623 }
5624
5625 static int e1000_eth_probe(struct udevice *dev)
5626 {
5627         struct eth_pdata *plat = dev_get_platdata(dev);
5628         struct e1000_hw *hw = dev_get_priv(dev);
5629         int ret;
5630
5631         hw->name = dev->name;
5632         ret = e1000_init_one(hw, trailing_strtol(dev->name),
5633                              dev, plat->enetaddr);
5634         if (ret < 0) {
5635                 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5636                 return ret;
5637         }
5638
5639         return 0;
5640 }
5641
5642 static int e1000_eth_bind(struct udevice *dev)
5643 {
5644         char name[20];
5645
5646         /*
5647          * A simple way to number the devices. When device tree is used this
5648          * is unnecessary, but when the device is just discovered on the PCI
5649          * bus we need a name. We could instead have the uclass figure out
5650          * which devices are different and number them.
5651          */
5652         e1000_name(name, num_cards++);
5653
5654         return device_set_name(dev, name);
5655 }
5656
5657 static const struct eth_ops e1000_eth_ops = {
5658         .start  = e1000_eth_start,
5659         .send   = e1000_eth_send,
5660         .recv   = e1000_eth_recv,
5661         .stop   = e1000_eth_stop,
5662         .free_pkt = e1000_free_pkt,
5663 };
5664
5665 static const struct udevice_id e1000_eth_ids[] = {
5666         { .compatible = "intel,e1000" },
5667         { }
5668 };
5669
5670 U_BOOT_DRIVER(eth_e1000) = {
5671         .name   = "eth_e1000",
5672         .id     = UCLASS_ETH,
5673         .of_match = e1000_eth_ids,
5674         .bind   = e1000_eth_bind,
5675         .probe  = e1000_eth_probe,
5676         .ops    = &e1000_eth_ops,
5677         .priv_auto_alloc_size = sizeof(struct e1000_hw),
5678         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5679 };
5680
5681 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5682 #endif