3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5 * SPDX-License-Identifier: GPL-2.0+
18 /* Ethernet chip registers.
20 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
21 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
22 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
23 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
24 #define SCBPointer 4 /* General purpose pointer. */
25 #define SCBPort 8 /* Misc. commands and operands. */
26 #define SCBflash 12 /* Flash memory control. */
27 #define SCBeeprom 14 /* EEPROM memory control. */
28 #define SCBCtrlMDI 16 /* MDI interface control. */
29 #define SCBEarlyRx 20 /* Early receive byte count. */
30 #define SCBGenControl 28 /* 82559 General Control Register */
31 #define SCBGenStatus 29 /* 82559 General Status register */
33 /* 82559 SCB status word defnitions
35 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
36 #define SCB_STATUS_FR 0x4000 /* frame received */
37 #define SCB_STATUS_CNA 0x2000 /* CU left active state */
38 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
39 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
40 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
41 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
43 #define SCB_INTACK_MASK 0xFD00 /* all the above */
45 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
46 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
48 /* System control block commands
52 #define CU_START 0x0010
53 #define CU_RESUME 0x0020
54 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
55 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
56 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
57 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
60 #define RUC_NOP 0x0000
61 #define RUC_START 0x0001
62 #define RUC_RESUME 0x0002
63 #define RUC_ABORT 0x0004
64 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
65 #define RUC_RESUMENR 0x0007
67 #define CU_CMD_MASK 0x00f0
68 #define RU_CMD_MASK 0x0007
70 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
71 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
73 #define CU_STATUS_MASK 0x00C0
74 #define RU_STATUS_MASK 0x003C
76 #define RU_STATUS_IDLE (0<<2)
77 #define RU_STATUS_SUS (1<<2)
78 #define RU_STATUS_NORES (2<<2)
79 #define RU_STATUS_READY (4<<2)
80 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
81 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
82 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
84 /* 82559 Port interface commands.
86 #define I82559_RESET 0x00000000 /* Software reset */
87 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
88 #define I82559_SELECTIVE_RESET 0x00000002
89 #define I82559_DUMP 0x00000003
90 #define I82559_DUMP_WAKEUP 0x00000007
92 /* 82559 Eeprom interface.
94 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
95 #define EE_CS 0x02 /* EEPROM chip select. */
96 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
97 #define EE_WRITE_0 0x01
98 #define EE_WRITE_1 0x05
99 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
100 #define EE_ENB (0x4800 | EE_CS)
101 #define EE_CMD_BITS 3
102 #define EE_DATA_BITS 16
104 /* The EEPROM commands include the alway-set leading bit.
106 #define EE_EWENB_CMD (4 << addr_len)
107 #define EE_WRITE_CMD (5 << addr_len)
108 #define EE_READ_CMD (6 << addr_len)
109 #define EE_ERASE_CMD (7 << addr_len)
111 /* Receive frame descriptors.
115 volatile u16 control;
116 volatile u32 link; /* struct RxFD * */
117 volatile u32 rx_buf_addr; /* void * */
120 volatile u8 data[PKTSIZE_ALIGN];
123 #define RFD_STATUS_C 0x8000 /* completion of received frame */
124 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
126 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
127 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
128 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
129 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
131 #define RFD_COUNT_MASK 0x3fff
132 #define RFD_COUNT_F 0x4000
133 #define RFD_COUNT_EOF 0x8000
135 #define RFD_RX_CRC 0x0800 /* crc error */
136 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
137 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
138 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
139 #define RFD_RX_SHORT 0x0080 /* short frame error */
140 #define RFD_RX_LENGTH 0x0020
141 #define RFD_RX_ERROR 0x0010 /* receive error */
142 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
143 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
144 #define RFD_RX_TCO 0x0001 /* TCO indication */
146 /* Transmit frame descriptors
148 struct TxFD { /* Transmit frame descriptor set. */
150 volatile u16 command;
151 volatile u32 link; /* void * */
152 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
155 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
156 volatile s32 tx_buf_size0; /* Length of Tx frame. */
157 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
158 volatile s32 tx_buf_size1; /* Length of Tx frame. */
161 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
162 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
163 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
164 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
165 #define TxCB_CMD_S 0x4000 /* suspend on completion */
166 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
168 #define TxCB_COUNT_MASK 0x3fff
169 #define TxCB_COUNT_EOF 0x8000
171 /* The Speedo3 Rx and Tx frame/buffer descriptors.
173 struct descriptor { /* A generic descriptor. */
175 volatile u16 command;
176 volatile u32 link; /* struct descriptor * */
178 unsigned char params[0];
181 #define CONFIG_SYS_CMD_EL 0x8000
182 #define CONFIG_SYS_CMD_SUSPEND 0x4000
183 #define CONFIG_SYS_CMD_INT 0x2000
184 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
185 #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
187 #define CONFIG_SYS_STATUS_C 0x8000
188 #define CONFIG_SYS_STATUS_OK 0x2000
192 #define NUM_RX_DESC PKTBUFSRX
193 #define NUM_TX_DESC 1 /* Number of TX descriptors */
195 #define TOUT_LOOP 1000000
199 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
200 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
201 static int rx_next; /* RX descriptor ring pointer */
202 static int tx_next; /* TX descriptor ring pointer */
203 static int tx_threshold;
206 * The parameters for a CmdConfigure operation.
207 * There are so many options that it would be difficult to document
208 * each bit. We mostly use the default or recommended settings.
210 static const char i82557_config_cmd[] = {
211 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
213 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
216 static const char i82558_config_cmd[] = {
217 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
218 0, 0x2E, 0, 0x60, 0x08, 0x88,
219 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
223 static void init_rx_ring (struct eth_device *dev);
224 static void purge_tx_ring (struct eth_device *dev);
226 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
228 static int eepro100_init (struct eth_device *dev, bd_t * bis);
229 static int eepro100_send(struct eth_device *dev, void *packet, int length);
230 static int eepro100_recv (struct eth_device *dev);
231 static void eepro100_halt (struct eth_device *dev);
233 #if defined(CONFIG_E500)
234 #define bus_to_phys(a) (a)
235 #define phys_to_bus(a) (a)
237 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
238 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
241 static inline int INW (struct eth_device *dev, u_long addr)
243 return le16_to_cpu(*(volatile u16 *)(addr + (u_long)dev->iobase));
246 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
248 *(volatile u16 *)((addr + (u_long)dev->iobase)) = cpu_to_le16(command);
251 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
253 *(volatile u32 *)((addr + (u_long)dev->iobase)) = cpu_to_le32(command);
256 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
257 static inline int INL (struct eth_device *dev, u_long addr)
259 return le32_to_cpu(*(volatile u32 *)(addr + (u_long)dev->iobase));
262 static int get_phyreg (struct eth_device *dev, unsigned char addr,
263 unsigned char reg, unsigned short *value)
268 /* read requested data */
269 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
270 OUTL (dev, cmd, SCBCtrlMDI);
274 cmd = INL (dev, SCBCtrlMDI);
275 } while (!(cmd & (1 << 28)) && (--timeout));
280 *value = (unsigned short) (cmd & 0xffff);
285 static int set_phyreg (struct eth_device *dev, unsigned char addr,
286 unsigned char reg, unsigned short value)
291 /* write requested data */
292 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
293 OUTL (dev, cmd | value, SCBCtrlMDI);
295 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
304 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
305 * Do this by checking model value field from ID2 register.
307 static struct eth_device* verify_phyaddr (const char *devname,
310 struct eth_device *dev;
311 unsigned short value;
314 dev = eth_get_dev_by_name(devname);
316 printf("%s: no such device\n", devname);
320 /* read id2 register */
321 if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
322 printf("%s: mii read timeout!\n", devname);
327 model = (unsigned char)((value >> 4) & 0x003f);
330 printf("%s: no PHY at address %d\n", devname, addr);
337 static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
340 unsigned short value = 0;
341 struct eth_device *dev;
343 dev = verify_phyaddr(bus->name, addr);
347 if (get_phyreg(dev, addr, reg, &value) != 0) {
348 printf("%s: mii read timeout!\n", bus->name);
355 static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad,
358 struct eth_device *dev;
360 dev = verify_phyaddr(bus->name, addr);
364 if (set_phyreg(dev, addr, reg, value) != 0) {
365 printf("%s: mii write timeout!\n", bus->name);
374 /* Wait for the chip get the command.
376 static int wait_for_eepro100 (struct eth_device *dev)
380 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
381 if (i >= TOUT_LOOP) {
389 static struct pci_device_id supported[] = {
390 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
391 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
392 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
396 int eepro100_initialize (bd_t * bis)
400 struct eth_device *dev;
407 if ((devno = pci_find_devices (supported, idx++)) < 0) {
411 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
415 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
419 pci_write_config_dword (devno,
421 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
423 /* Check if I/O accesses and Bus Mastering are enabled.
425 pci_read_config_dword (devno, PCI_COMMAND, &status);
426 if (!(status & PCI_COMMAND_MEMORY)) {
427 printf ("Error: Can not enable MEM access.\n");
431 if (!(status & PCI_COMMAND_MASTER)) {
432 printf ("Error: Can not enable Bus Mastering.\n");
436 dev = (struct eth_device *) malloc (sizeof *dev);
438 printf("eepro100: Can not allocate memory\n");
441 memset(dev, 0, sizeof(*dev));
443 sprintf (dev->name, "i82559#%d", card_number);
444 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
445 dev->iobase = bus_to_phys (iobase);
446 dev->init = eepro100_init;
447 dev->halt = eepro100_halt;
448 dev->send = eepro100_send;
449 dev->recv = eepro100_recv;
453 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
454 /* register mii command access routines */
456 struct mii_dev *mdiodev = mdio_alloc();
459 strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
460 mdiodev->read = eepro100_miiphy_read;
461 mdiodev->write = eepro100_miiphy_write;
463 retval = mdio_register(mdiodev);
470 /* Set the latency timer for value.
472 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
476 read_hw_addr (dev, bis);
483 static int eepro100_init (struct eth_device *dev, bd_t * bis)
487 struct descriptor *ias_cmd, *cfg_cmd;
489 /* Reset the ethernet controller
491 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
494 OUTL (dev, I82559_RESET, SCBPort);
497 if (!wait_for_eepro100 (dev)) {
498 printf ("Error: Can not reset ethernet controller.\n");
501 OUTL (dev, 0, SCBPointer);
502 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
504 if (!wait_for_eepro100 (dev)) {
505 printf ("Error: Can not reset ethernet controller.\n");
508 OUTL (dev, 0, SCBPointer);
509 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
511 /* Initialize Rx and Tx rings.
516 /* Tell the adapter where the RX ring is located.
518 if (!wait_for_eepro100 (dev)) {
519 printf ("Error: Can not reset ethernet controller.\n");
523 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
524 OUTW (dev, SCB_M | RUC_START, SCBCmd);
526 /* Send the Configure frame */
528 tx_next = ((tx_next + 1) % NUM_TX_DESC);
530 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
531 cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
533 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
535 memcpy (cfg_cmd->params, i82558_config_cmd,
536 sizeof (i82558_config_cmd));
538 if (!wait_for_eepro100 (dev)) {
539 printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
543 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
544 OUTW (dev, SCB_M | CU_START, SCBCmd);
547 !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
549 if (i >= TOUT_LOOP) {
550 printf ("%s: Tx error buffer not ready\n", dev->name);
555 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
556 printf ("TX error status = 0x%08X\n",
557 le16_to_cpu (tx_ring[tx_cur].status));
561 /* Send the Individual Address Setup frame
564 tx_next = ((tx_next + 1) % NUM_TX_DESC);
566 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
567 ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
569 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
571 memcpy (ias_cmd->params, dev->enetaddr, 6);
573 /* Tell the adapter where the TX ring is located.
575 if (!wait_for_eepro100 (dev)) {
576 printf ("Error: Can not reset ethernet controller.\n");
580 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
581 OUTW (dev, SCB_M | CU_START, SCBCmd);
583 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
585 if (i >= TOUT_LOOP) {
586 printf ("%s: Tx error buffer not ready\n",
592 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
593 printf ("TX error status = 0x%08X\n",
594 le16_to_cpu (tx_ring[tx_cur].status));
604 static int eepro100_send(struct eth_device *dev, void *packet, int length)
610 printf ("%s: bad packet size: %d\n", dev->name, length);
615 tx_next = (tx_next + 1) % NUM_TX_DESC;
617 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
621 tx_ring[tx_cur].status = 0;
622 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
623 tx_ring[tx_cur].link =
624 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
625 tx_ring[tx_cur].tx_desc_addr =
626 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
627 tx_ring[tx_cur].tx_buf_addr0 =
628 cpu_to_le32 (phys_to_bus ((u_long) packet));
629 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
631 if (!wait_for_eepro100 (dev)) {
632 printf ("%s: Tx error ethernet controller not ready.\n",
639 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
640 OUTW (dev, SCB_M | CU_START, SCBCmd);
642 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
644 if (i >= TOUT_LOOP) {
645 printf ("%s: Tx error buffer not ready\n", dev->name);
650 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
651 printf ("TX error status = 0x%08X\n",
652 le16_to_cpu (tx_ring[tx_cur].status));
662 static int eepro100_recv (struct eth_device *dev)
665 int rx_prev, length = 0;
667 stat = INW (dev, SCBStatus);
668 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
671 status = le16_to_cpu (rx_ring[rx_next].status);
673 if (!(status & RFD_STATUS_C)) {
677 /* Valid frame status.
679 if ((status & RFD_STATUS_OK)) {
680 /* A valid frame received.
682 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
684 /* Pass the packet up to the protocol
687 net_process_received_packet((u8 *)rx_ring[rx_next].data,
690 /* There was an error.
692 printf ("RX error status = 0x%08X\n", status);
695 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
696 rx_ring[rx_next].status = 0;
697 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
699 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
700 rx_ring[rx_prev].control = 0;
702 /* Update entry information.
704 rx_next = (rx_next + 1) % NUM_RX_DESC;
707 if (stat & SCB_STATUS_RNR) {
709 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
711 /* Reinitialize Rx ring.
715 if (!wait_for_eepro100 (dev)) {
716 printf ("Error: Can not restart ethernet controller.\n");
720 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
721 OUTW (dev, SCB_M | RUC_START, SCBCmd);
728 static void eepro100_halt (struct eth_device *dev)
730 /* Reset the ethernet controller
732 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
735 OUTL (dev, I82559_RESET, SCBPort);
738 if (!wait_for_eepro100 (dev)) {
739 printf ("Error: Can not reset ethernet controller.\n");
742 OUTL (dev, 0, SCBPointer);
743 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
745 if (!wait_for_eepro100 (dev)) {
746 printf ("Error: Can not reset ethernet controller.\n");
749 OUTL (dev, 0, SCBPointer);
750 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
758 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
760 unsigned short retval = 0;
761 int read_cmd = location | EE_READ_CMD;
764 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
765 OUTW (dev, EE_ENB, SCBeeprom);
767 /* Shift the read command bits out. */
768 for (i = 12; i >= 0; i--) {
769 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
771 OUTW (dev, EE_ENB | dataval, SCBeeprom);
773 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
776 OUTW (dev, EE_ENB, SCBeeprom);
778 for (i = 15; i >= 0; i--) {
779 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
781 retval = (retval << 1) |
782 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
783 OUTW (dev, EE_ENB, SCBeeprom);
787 /* Terminate the EEPROM access. */
788 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
792 #ifdef CONFIG_EEPRO100_SROM_WRITE
793 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
795 unsigned short dataval;
796 int enable_cmd = 0x3f | EE_EWENB_CMD;
797 int write_cmd = location | EE_WRITE_CMD;
799 unsigned long datalong, tmplong;
801 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
803 OUTW(dev, EE_ENB, SCBeeprom);
805 /* Shift the enable command bits out. */
806 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
808 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
809 OUTW(dev, EE_ENB | dataval, SCBeeprom);
811 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
815 OUTW(dev, EE_ENB, SCBeeprom);
817 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
819 OUTW(dev, EE_ENB, SCBeeprom);
822 /* Shift the write command bits out. */
823 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
825 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
826 OUTW(dev, EE_ENB | dataval, SCBeeprom);
828 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
833 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
835 for (i = 0; i< EE_DATA_BITS; i++)
837 /* Extract and move data bit to bit DI */
838 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
840 OUTW(dev, EE_ENB | dataval, SCBeeprom);
842 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
844 OUTW(dev, EE_ENB | dataval, SCBeeprom);
847 datalong = datalong << 1; /* Adjust significant data bit*/
850 /* Finish up command (toggle CS) */
851 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
852 udelay(1); /* delay for more than 250 ns */
853 OUTW(dev, EE_ENB, SCBeeprom);
855 /* Wait for programming ready (D0 = 1) */
859 dataval = INW(dev, SCBeeprom);
860 if (dataval & EE_DATA_READ)
868 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
872 /* Terminate the EEPROM access. */
873 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
879 static void init_rx_ring (struct eth_device *dev)
883 for (i = 0; i < NUM_RX_DESC; i++) {
884 rx_ring[i].status = 0;
886 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
888 cpu_to_le32 (phys_to_bus
889 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
890 rx_ring[i].rx_buf_addr = 0xffffffff;
891 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
897 static void purge_tx_ring (struct eth_device *dev)
902 tx_threshold = 0x01208000;
904 for (i = 0; i < NUM_TX_DESC; i++) {
905 tx_ring[i].status = 0;
906 tx_ring[i].command = 0;
908 tx_ring[i].tx_desc_addr = 0;
909 tx_ring[i].count = 0;
911 tx_ring[i].tx_buf_addr0 = 0;
912 tx_ring[i].tx_buf_size0 = 0;
913 tx_ring[i].tx_buf_addr1 = 0;
914 tx_ring[i].tx_buf_size1 = 0;
918 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
922 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
924 for (j = 0, i = 0; i < 0x40; i++) {
925 u16 value = read_eeprom (dev, i, addr_len);
929 dev->enetaddr[j++] = value;
930 dev->enetaddr[j++] = value >> 8;
935 memset (dev->enetaddr, 0, ETH_ALEN);
937 printf ("%s: Invalid EEPROM checksum %#4.4x, "
938 "check settings before activating this device!\n",