2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8 * SPDX-License-Identifier: GPL-2.0+
21 #include <linux/errno.h>
22 #include <linux/compiler.h>
24 #include <asm/arch/clock.h>
25 #include <asm/arch/imx-regs.h>
26 #include <asm/imx-common/sys_proto.h>
28 DECLARE_GLOBAL_DATA_PTR;
31 * Timeout the transfer after 5 mS. This is usually a bit more, since
32 * the code in the tightloops this timeout is used in adds some overhead.
34 #define FEC_XFER_TIMEOUT 5000
37 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
38 * 64-byte alignment in the DMA RX FEC buffer.
39 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
40 * satisfies the alignment on other SoCs (32-bytes)
42 #define FEC_DMA_RX_MINALIGN 64
45 #error "CONFIG_MII has to be defined!"
48 #ifndef CONFIG_FEC_XCV_TYPE
49 #define CONFIG_FEC_XCV_TYPE MII100
53 * The i.MX28 operates with packets in big endian. We need to swap them before
54 * sending and after receiving.
57 #define CONFIG_FEC_MXC_SWAP_PACKET
60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
62 /* Check various alignment issues at compile time */
63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
79 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 packet[i] = __swab32(packet[i]);
84 /* MII-interface related functions */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
88 uint32_t reg; /* convenient holder for the PHY register */
89 uint32_t phy; /* convenient holder for the PHY */
94 * reading from any PHY's register is done by properly
95 * programming the FEC's MII data register.
97 writel(FEC_IEVENT_MII, ð->ievent);
98 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
99 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 phy | reg, ð->mii_data);
104 /* wait for the related interrupt */
105 start = get_timer(0);
106 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
107 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
108 printf("Read MDIO failed...\n");
113 /* clear mii interrupt bit */
114 writel(FEC_IEVENT_MII, ð->ievent);
116 /* it's now safe to read the PHY's register */
117 val = (unsigned short)readl(ð->mii_data);
118 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
123 static void fec_mii_setspeed(struct ethernet_regs *eth)
126 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
127 * and do not drop the Preamble.
129 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
130 * MII_SPEED) register that defines the MDIO output hold time. Earlier
131 * versions are RAZ there, so just ignore the difference and write the
133 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
134 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
136 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
137 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
138 * holdtime cannot result in a value greater than 3.
140 u32 pclk = imx_get_fecclk();
141 u32 speed = DIV_ROUND_UP(pclk, 5000000);
142 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
143 #ifdef FEC_QUIRK_ENET_MAC
146 writel(speed << 1 | hold << 8, ð->mii_speed);
147 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
150 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
151 uint8_t regaddr, uint16_t data)
153 uint32_t reg; /* convenient holder for the PHY register */
154 uint32_t phy; /* convenient holder for the PHY */
157 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
158 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
160 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
161 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
163 /* wait for the MII interrupt */
164 start = get_timer(0);
165 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
166 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
167 printf("Write MDIO failed...\n");
172 /* clear MII interrupt bit */
173 writel(FEC_IEVENT_MII, ð->ievent);
174 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
180 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
183 return fec_mdio_read(bus->priv, phyaddr, regaddr);
186 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
187 int regaddr, u16 data)
189 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
192 #ifndef CONFIG_PHYLIB
193 static int miiphy_restart_aneg(struct eth_device *dev)
196 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
197 struct fec_priv *fec = (struct fec_priv *)dev->priv;
198 struct ethernet_regs *eth = fec->bus->priv;
201 * Wake up from sleep if necessary
202 * Reset PHY, then delay 300ns
205 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
207 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
210 /* Set the auto-negotiation advertisement register bits */
211 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
212 LPA_100FULL | LPA_100HALF | LPA_10FULL |
213 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
214 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
215 BMCR_ANENABLE | BMCR_ANRESTART);
217 if (fec->mii_postcall)
218 ret = fec->mii_postcall(fec->phy_id);
224 #ifndef CONFIG_FEC_FIXED_SPEED
225 static int miiphy_wait_aneg(struct eth_device *dev)
229 struct fec_priv *fec = (struct fec_priv *)dev->priv;
230 struct ethernet_regs *eth = fec->bus->priv;
232 /* Wait for AN completion */
233 start = get_timer(0);
235 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
236 printf("%s: Autonegotiation timeout\n", dev->name);
240 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
242 printf("%s: Autonegotiation failed. status: %d\n",
246 } while (!(status & BMSR_LSTATUS));
250 #endif /* CONFIG_FEC_FIXED_SPEED */
253 static int fec_rx_task_enable(struct fec_priv *fec)
255 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
259 static int fec_rx_task_disable(struct fec_priv *fec)
264 static int fec_tx_task_enable(struct fec_priv *fec)
266 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
270 static int fec_tx_task_disable(struct fec_priv *fec)
276 * Initialize receive task's buffer descriptors
277 * @param[in] fec all we know about the device yet
278 * @param[in] count receive buffer count to be allocated
279 * @param[in] dsize desired size of each receive buffer
280 * @return 0 on success
282 * Init all RX descriptors to default values.
284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
291 * Reload the RX descriptors with default values and wipe
294 size = roundup(dsize, ARCH_DMA_MINALIGN);
295 for (i = 0; i < count; i++) {
296 data = (uint8_t *)fec->rbd_base[i].data_pointer;
297 memset(data, 0, dsize);
298 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
300 fec->rbd_base[i].status = FEC_RBD_EMPTY;
301 fec->rbd_base[i].data_length = 0;
304 /* Mark the last RBD to close the ring. */
305 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
308 flush_dcache_range((unsigned)fec->rbd_base,
309 (unsigned)fec->rbd_base + size);
313 * Initialize transmit task's buffer descriptors
314 * @param[in] fec all we know about the device yet
316 * Transmit buffers are created externally. We only have to init the BDs here.\n
317 * Note: There is a race condition in the hardware. When only one BD is in
318 * use it must be marked with the WRAP bit to use it for every transmitt.
319 * This bit in combination with the READY bit results into double transmit
320 * of each data buffer. It seems the state machine checks READY earlier then
321 * resetting it after the first transfer.
322 * Using two BDs solves this issue.
324 static void fec_tbd_init(struct fec_priv *fec)
326 unsigned addr = (unsigned)fec->tbd_base;
327 unsigned size = roundup(2 * sizeof(struct fec_bd),
330 memset(fec->tbd_base, 0, size);
331 fec->tbd_base[0].status = 0;
332 fec->tbd_base[1].status = FEC_TBD_WRAP;
334 flush_dcache_range(addr, addr + size);
338 * Mark the given read buffer descriptor as free
339 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
340 * @param[in] prbd buffer descriptor to mark free again
342 static void fec_rbd_clean(int last, struct fec_bd *prbd)
344 unsigned short flags = FEC_RBD_EMPTY;
346 flags |= FEC_RBD_WRAP;
347 writew(flags, &prbd->status);
348 writew(0, &prbd->data_length);
351 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
353 imx_get_mac_from_fuse(dev_id, mac);
354 return !is_valid_ethaddr(mac);
358 static int fecmxc_set_hwaddr(struct udevice *dev)
360 static int fec_set_hwaddr(struct eth_device *dev)
364 struct fec_priv *fec = dev_get_priv(dev);
365 struct eth_pdata *pdata = dev_get_platdata(dev);
366 uchar *mac = pdata->enetaddr;
368 uchar *mac = dev->enetaddr;
369 struct fec_priv *fec = (struct fec_priv *)dev->priv;
372 writel(0, &fec->eth->iaddr1);
373 writel(0, &fec->eth->iaddr2);
374 writel(0, &fec->eth->gaddr1);
375 writel(0, &fec->eth->gaddr2);
377 /* Set physical address */
378 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
380 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
385 /* Do initial configuration of the FEC registers */
386 static void fec_reg_setup(struct fec_priv *fec)
390 /* Set interrupt mask register */
391 writel(0x00000000, &fec->eth->imask);
393 /* Clear FEC-Lite interrupt event register(IEVENT) */
394 writel(0xffffffff, &fec->eth->ievent);
396 /* Set FEC-Lite receive control register(R_CNTRL): */
398 /* Start with frame length = 1518, common for all modes. */
399 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
400 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
401 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
402 if (fec->xcv_type == RGMII)
403 rcntrl |= FEC_RCNTRL_RGMII;
404 else if (fec->xcv_type == RMII)
405 rcntrl |= FEC_RCNTRL_RMII;
407 writel(rcntrl, &fec->eth->r_cntrl);
411 * Start the FEC engine
412 * @param[in] dev Our device to handle
415 static int fec_open(struct udevice *dev)
417 static int fec_open(struct eth_device *edev)
421 struct fec_priv *fec = dev_get_priv(dev);
423 struct fec_priv *fec = (struct fec_priv *)edev->priv;
429 debug("fec_open: fec_open(dev)\n");
430 /* full-duplex, heartbeat disabled */
431 writel(1 << 2, &fec->eth->x_cntrl);
434 /* Invalidate all descriptors */
435 for (i = 0; i < FEC_RBD_NUM - 1; i++)
436 fec_rbd_clean(0, &fec->rbd_base[i]);
437 fec_rbd_clean(1, &fec->rbd_base[i]);
439 /* Flush the descriptors into RAM */
440 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
442 addr = (uint32_t)fec->rbd_base;
443 flush_dcache_range(addr, addr + size);
445 #ifdef FEC_QUIRK_ENET_MAC
446 /* Enable ENET HW endian SWAP */
447 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
449 /* Enable ENET store and forward mode */
450 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
453 /* Enable FEC-Lite controller */
454 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
457 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
460 /* setup the MII gasket for RMII mode */
461 /* disable the gasket */
462 writew(0, &fec->eth->miigsk_enr);
464 /* wait for the gasket to be disabled */
465 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
468 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
469 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
471 /* re-enable the gasket */
472 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
474 /* wait until MII gasket is ready */
476 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
477 if (--max_loops <= 0) {
478 printf("WAIT for MII Gasket ready timed out\n");
486 /* Start up the PHY */
487 int ret = phy_startup(fec->phydev);
490 printf("Could not initialize PHY %s\n",
491 fec->phydev->dev->name);
494 speed = fec->phydev->speed;
496 #elif CONFIG_FEC_FIXED_SPEED
497 speed = CONFIG_FEC_FIXED_SPEED;
499 miiphy_wait_aneg(edev);
500 speed = miiphy_speed(edev->name, fec->phy_id);
501 miiphy_duplex(edev->name, fec->phy_id);
504 #ifdef FEC_QUIRK_ENET_MAC
506 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
507 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
508 if (speed == _1000BASET)
509 ecr |= FEC_ECNTRL_SPEED;
510 else if (speed != _100BASET)
511 rcr |= FEC_RCNTRL_RMII_10T;
512 writel(ecr, &fec->eth->ecntrl);
513 writel(rcr, &fec->eth->r_cntrl);
516 debug("%s:Speed=%i\n", __func__, speed);
518 /* Enable SmartDMA receive task */
519 fec_rx_task_enable(fec);
526 static int fecmxc_init(struct udevice *dev)
528 static int fec_init(struct eth_device *dev, bd_t *bd)
532 struct fec_priv *fec = dev_get_priv(dev);
534 struct fec_priv *fec = (struct fec_priv *)dev->priv;
536 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
539 /* Initialize MAC address */
541 fecmxc_set_hwaddr(dev);
546 /* Setup transmit descriptors, there are two in total. */
549 /* Setup receive descriptors. */
550 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
554 if (fec->xcv_type != SEVENWIRE)
555 fec_mii_setspeed(fec->bus->priv);
557 /* Set Opcode/Pause Duration Register */
558 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
559 writel(0x2, &fec->eth->x_wmrk);
561 /* Set multicast address filter */
562 writel(0x00000000, &fec->eth->gaddr1);
563 writel(0x00000000, &fec->eth->gaddr2);
565 /* Do not access reserved register for i.MX6UL */
568 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
571 /* FIFO receive start register */
572 writel(0x520, &fec->eth->r_fstart);
575 /* size and address of each buffer */
576 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
577 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
578 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
580 #ifndef CONFIG_PHYLIB
581 if (fec->xcv_type != SEVENWIRE)
582 miiphy_restart_aneg(dev);
589 * Halt the FEC engine
590 * @param[in] dev Our device to handle
593 static void fecmxc_halt(struct udevice *dev)
595 static void fec_halt(struct eth_device *dev)
599 struct fec_priv *fec = dev_get_priv(dev);
601 struct fec_priv *fec = (struct fec_priv *)dev->priv;
603 int counter = 0xffff;
605 /* issue graceful stop command to the FEC transmitter if necessary */
606 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
609 debug("eth_halt: wait for stop regs\n");
610 /* wait for graceful stop to register */
611 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
614 /* Disable SmartDMA tasks */
615 fec_tx_task_disable(fec);
616 fec_rx_task_disable(fec);
619 * Disable the Ethernet Controller
620 * Note: this will also reset the BD index counter!
622 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
626 debug("eth_halt: done\n");
631 * @param[in] dev Our ethernet device to handle
632 * @param[in] packet Pointer to the data to be transmitted
633 * @param[in] length Data count in bytes
634 * @return 0 on success
637 static int fecmxc_send(struct udevice *dev, void *packet, int length)
639 static int fec_send(struct eth_device *dev, void *packet, int length)
645 int timeout = FEC_XFER_TIMEOUT;
649 * This routine transmits one frame. This routine only accepts
650 * 6-byte Ethernet addresses.
653 struct fec_priv *fec = dev_get_priv(dev);
655 struct fec_priv *fec = (struct fec_priv *)dev->priv;
659 * Check for valid length of data.
661 if ((length > 1500) || (length <= 0)) {
662 printf("Payload (%d) too large\n", length);
667 * Setup the transmit buffer. We are always using the first buffer for
668 * transmission, the second will be empty and only used to stop the DMA
669 * engine. We also flush the packet to RAM here to avoid cache trouble.
671 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
672 swap_packet((uint32_t *)packet, length);
675 addr = (uint32_t)packet;
676 end = roundup(addr + length, ARCH_DMA_MINALIGN);
677 addr &= ~(ARCH_DMA_MINALIGN - 1);
678 flush_dcache_range(addr, end);
680 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
681 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
684 * update BD's status now
686 * - is always the last in a chain (means no chain)
687 * - should transmitt the CRC
688 * - might be the last BD in the list, so the address counter should
689 * wrap (-> keep the WRAP flag)
691 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
692 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
693 writew(status, &fec->tbd_base[fec->tbd_index].status);
696 * Flush data cache. This code flushes both TX descriptors to RAM.
697 * After this code, the descriptors will be safely in RAM and we
700 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
701 addr = (uint32_t)fec->tbd_base;
702 flush_dcache_range(addr, addr + size);
705 * Below we read the DMA descriptor's last four bytes back from the
706 * DRAM. This is important in order to make sure that all WRITE
707 * operations on the bus that were triggered by previous cache FLUSH
710 * Otherwise, on MX28, it is possible to observe a corruption of the
711 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
712 * for the bus structure of MX28. The scenario is as follows:
714 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
715 * to DRAM due to flush_dcache_range()
716 * 2) ARM core writes the FEC registers via AHB_ARB2
717 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
719 * Note that 2) does sometimes finish before 1) due to reordering of
720 * WRITE accesses on the AHB bus, therefore triggering 3) before the
721 * DMA descriptor is fully written into DRAM. This results in occasional
722 * corruption of the DMA descriptor.
724 readl(addr + size - 4);
726 /* Enable SmartDMA transmit task */
727 fec_tx_task_enable(fec);
730 * Wait until frame is sent. On each turn of the wait cycle, we must
731 * invalidate data cache to see what's really in RAM. Also, we need
735 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
745 * The TDAR bit is cleared when the descriptors are all out from TX
746 * but on mx6solox we noticed that the READY bit is still not cleared
748 * These are two distinct signals, and in IC simulation, we found that
749 * TDAR always gets cleared prior than the READY bit of last BD becomes
751 * In mx6solox, we use a later version of FEC IP. It looks like that
752 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
755 * Fix this by polling the READY bit of BD after the TDAR polling,
756 * which covers the mx6solox case and does not harm the other SoCs.
758 timeout = FEC_XFER_TIMEOUT;
760 invalidate_dcache_range(addr, addr + size);
761 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
770 debug("fec_send: status 0x%x index %d ret %i\n",
771 readw(&fec->tbd_base[fec->tbd_index].status),
772 fec->tbd_index, ret);
773 /* for next transmission use the other buffer */
783 * Pull one frame from the card
784 * @param[in] dev Our ethernet device to handle
785 * @return Length of packet read
788 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
790 static int fec_recv(struct eth_device *dev)
794 struct fec_priv *fec = dev_get_priv(dev);
796 struct fec_priv *fec = (struct fec_priv *)dev->priv;
798 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
799 unsigned long ievent;
800 int frame_length, len = 0;
802 uint32_t addr, size, end;
804 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
806 /* Check if any critical events have happened */
807 ievent = readl(&fec->eth->ievent);
808 writel(ievent, &fec->eth->ievent);
809 debug("fec_recv: ievent 0x%lx\n", ievent);
810 if (ievent & FEC_IEVENT_BABR) {
816 fec_init(dev, fec->bd);
818 printf("some error: 0x%08lx\n", ievent);
821 if (ievent & FEC_IEVENT_HBERR) {
822 /* Heartbeat error */
823 writel(0x00000001 | readl(&fec->eth->x_cntrl),
826 if (ievent & FEC_IEVENT_GRA) {
827 /* Graceful stop complete */
828 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
834 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
839 fec_init(dev, fec->bd);
845 * Read the buffer status. Before the status can be read, the data cache
846 * must be invalidated, because the data in RAM might have been changed
847 * by DMA. The descriptors are properly aligned to cachelines so there's
848 * no need to worry they'd overlap.
850 * WARNING: By invalidating the descriptor here, we also invalidate
851 * the descriptors surrounding this one. Therefore we can NOT change the
852 * contents of this descriptor nor the surrounding ones. The problem is
853 * that in order to mark the descriptor as processed, we need to change
854 * the descriptor. The solution is to mark the whole cache line when all
855 * descriptors in the cache line are processed.
857 addr = (uint32_t)rbd;
858 addr &= ~(ARCH_DMA_MINALIGN - 1);
859 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
860 invalidate_dcache_range(addr, addr + size);
862 bd_status = readw(&rbd->status);
863 debug("fec_recv: status 0x%x\n", bd_status);
865 if (!(bd_status & FEC_RBD_EMPTY)) {
866 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
867 ((readw(&rbd->data_length) - 4) > 14)) {
868 /* Get buffer address and size */
869 addr = readl(&rbd->data_pointer);
870 frame_length = readw(&rbd->data_length) - 4;
871 /* Invalidate data cache over the buffer */
872 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
873 addr &= ~(ARCH_DMA_MINALIGN - 1);
874 invalidate_dcache_range(addr, end);
876 /* Fill the buffer and pass it to upper layers */
877 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
878 swap_packet((uint32_t *)addr, frame_length);
880 memcpy(buff, (char *)addr, frame_length);
881 net_process_received_packet(buff, frame_length);
884 if (bd_status & FEC_RBD_ERR)
885 printf("error frame: 0x%08x 0x%08x\n",
890 * Free the current buffer, restart the engine and move forward
891 * to the next buffer. Here we check if the whole cacheline of
892 * descriptors was already processed and if so, we mark it free
895 size = RXDESC_PER_CACHELINE - 1;
896 if ((fec->rbd_index & size) == size) {
897 i = fec->rbd_index - size;
898 addr = (uint32_t)&fec->rbd_base[i];
899 for (; i <= fec->rbd_index ; i++) {
900 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
903 flush_dcache_range(addr,
904 addr + ARCH_DMA_MINALIGN);
907 fec_rx_task_enable(fec);
908 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
910 debug("fec_recv: stop\n");
915 static void fec_set_dev_name(char *dest, int dev_id)
917 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
920 static int fec_alloc_descs(struct fec_priv *fec)
926 /* Allocate TX descriptors. */
927 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
928 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
932 /* Allocate RX descriptors. */
933 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
934 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
938 memset(fec->rbd_base, 0, size);
940 /* Allocate RX buffers. */
942 /* Maximum RX buffer size. */
943 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
944 for (i = 0; i < FEC_RBD_NUM; i++) {
945 data = memalign(FEC_DMA_RX_MINALIGN, size);
947 printf("%s: error allocating rxbuf %d\n", __func__, i);
951 memset(data, 0, size);
953 fec->rbd_base[i].data_pointer = (uint32_t)data;
954 fec->rbd_base[i].status = FEC_RBD_EMPTY;
955 fec->rbd_base[i].data_length = 0;
956 /* Flush the buffer to memory. */
957 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
960 /* Mark the last RBD to close the ring. */
961 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
970 free((void *)fec->rbd_base[i].data_pointer);
978 static void fec_free_descs(struct fec_priv *fec)
982 for (i = 0; i < FEC_RBD_NUM; i++)
983 free((void *)fec->rbd_base[i].data_pointer);
988 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
990 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
996 printf("mdio_alloc failed\n");
999 bus->read = fec_phy_read;
1000 bus->write = fec_phy_write;
1002 fec_set_dev_name(bus->name, dev_id);
1004 ret = mdio_register(bus);
1006 printf("mdio_register failed\n");
1010 fec_mii_setspeed(eth);
1014 #ifndef CONFIG_DM_ETH
1015 #ifdef CONFIG_PHYLIB
1016 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1017 struct mii_dev *bus, struct phy_device *phydev)
1019 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1020 struct mii_dev *bus, int phy_id)
1023 struct eth_device *edev;
1024 struct fec_priv *fec;
1025 unsigned char ethaddr[6];
1029 /* create and fill edev struct */
1030 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1032 puts("fec_mxc: not enough malloc memory for eth_device\n");
1037 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1039 puts("fec_mxc: not enough malloc memory for fec_priv\n");
1044 memset(edev, 0, sizeof(*edev));
1045 memset(fec, 0, sizeof(*fec));
1047 ret = fec_alloc_descs(fec);
1052 edev->init = fec_init;
1053 edev->send = fec_send;
1054 edev->recv = fec_recv;
1055 edev->halt = fec_halt;
1056 edev->write_hwaddr = fec_set_hwaddr;
1058 fec->eth = (struct ethernet_regs *)base_addr;
1061 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1064 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1065 start = get_timer(0);
1066 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1067 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1068 printf("FEC MXC: Timeout resetting chip\n");
1075 fec_set_dev_name(edev->name, dev_id);
1076 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1078 fec_mii_setspeed(bus->priv);
1079 #ifdef CONFIG_PHYLIB
1080 fec->phydev = phydev;
1081 phy_connect_dev(phydev, edev);
1085 fec->phy_id = phy_id;
1089 if (fec_get_hwaddr(dev_id, ethaddr) == 0) {
1090 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1091 memcpy(edev->enetaddr, ethaddr, 6);
1092 if (!getenv("ethaddr"))
1093 eth_setenv_enetaddr("ethaddr", ethaddr);
1097 fec_free_descs(fec);
1106 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1109 struct mii_dev *bus = NULL;
1110 #ifdef CONFIG_PHYLIB
1111 struct phy_device *phydev = NULL;
1117 * The i.MX28 has two ethernet interfaces, but they are not equal.
1118 * Only the first one can access the MDIO bus.
1120 base_mii = MXS_ENET0_BASE;
1124 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1125 bus = fec_get_miibus(base_mii, dev_id);
1128 #ifdef CONFIG_PHYLIB
1129 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1131 mdio_unregister(bus);
1135 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1137 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1140 #ifdef CONFIG_PHYLIB
1143 mdio_unregister(bus);
1149 #ifdef CONFIG_FEC_MXC_PHYADDR
1150 int fecmxc_initialize(bd_t *bd)
1152 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1157 #ifndef CONFIG_PHYLIB
1158 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1160 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1161 fec->mii_postcall = cb;
1168 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1170 struct fec_priv *priv = dev_get_priv(dev);
1171 struct eth_pdata *pdata = dev_get_platdata(dev);
1173 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1176 static const struct eth_ops fecmxc_ops = {
1177 .start = fecmxc_init,
1178 .send = fecmxc_send,
1179 .recv = fecmxc_recv,
1180 .stop = fecmxc_halt,
1181 .write_hwaddr = fecmxc_set_hwaddr,
1182 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
1185 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1187 struct phy_device *phydev;
1188 int mask = 0xffffffff;
1190 #ifdef CONFIG_PHYLIB
1191 mask = 1 << CONFIG_FEC_MXC_PHYADDR;
1194 phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
1198 phy_connect_dev(phydev, dev);
1200 priv->phydev = phydev;
1206 static int fecmxc_probe(struct udevice *dev)
1208 struct eth_pdata *pdata = dev_get_platdata(dev);
1209 struct fec_priv *priv = dev_get_priv(dev);
1210 struct mii_dev *bus = NULL;
1215 ret = fec_alloc_descs(priv);
1219 bus = fec_get_miibus((uint32_t)priv->eth, dev_id);
1224 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1225 priv->interface = pdata->phy_interface;
1226 ret = fec_phy_init(priv, dev);
1231 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1232 &priv->eth->ecntrl);
1233 start = get_timer(0);
1234 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1235 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1236 printf("FEC MXC: Timeout reseting chip\n");
1242 fec_reg_setup(priv);
1243 fec_set_dev_name((char *)dev->name, dev_id);
1244 priv->dev_id = (dev_id == -1) ? 0 : dev_id;
1251 mdio_unregister(bus);
1254 fec_free_descs(priv);
1258 static int fecmxc_remove(struct udevice *dev)
1260 struct fec_priv *priv = dev_get_priv(dev);
1263 fec_free_descs(priv);
1264 mdio_unregister(priv->bus);
1265 mdio_free(priv->bus);
1270 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1272 struct eth_pdata *pdata = dev_get_platdata(dev);
1273 struct fec_priv *priv = dev_get_priv(dev);
1274 const char *phy_mode;
1276 pdata->iobase = (phys_addr_t)dev_get_addr(dev);
1277 priv->eth = (struct ethernet_regs *)pdata->iobase;
1279 pdata->phy_interface = -1;
1280 phy_mode = fdt_getprop(gd->fdt_blob, dev->of_offset, "phy-mode", NULL);
1282 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1283 if (pdata->phy_interface == -1) {
1284 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1289 * Need to get the reset-gpio and related properties from DT
1290 * and implemet the enet reset code on .probe call
1296 static const struct udevice_id fecmxc_ids[] = {
1297 { .compatible = "fsl,imx6q-fec" },
1301 U_BOOT_DRIVER(fecmxc_gem) = {
1304 .of_match = fecmxc_ids,
1305 .ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1306 .probe = fecmxc_probe,
1307 .remove = fecmxc_remove,
1309 .priv_auto_alloc_size = sizeof(struct fec_priv),
1310 .platdata_auto_alloc_size = sizeof(struct eth_pdata),