]> git.sur5r.net Git - u-boot/blob - drivers/nvme/nvme.c
nvme: Respect timeout when en/disabling the controller
[u-boot] / drivers / nvme / nvme.c
1 /*
2  * Copyright (C) 2017 NXP Semiconductors
3  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <memalign.h>
12 #include <pci.h>
13 #include <dm/device-internal.h>
14 #include "nvme.h"
15
16 struct nvme_info *nvme_info;
17
18 #define NVME_Q_DEPTH            2
19 #define NVME_AQ_DEPTH           2
20 #define NVME_SQ_SIZE(depth)     (depth * sizeof(struct nvme_command))
21 #define NVME_CQ_SIZE(depth)     (depth * sizeof(struct nvme_completion))
22 #define ADMIN_TIMEOUT           60
23 #define IO_TIMEOUT              30
24 #define MAX_PRP_POOL            512
25
26 /*
27  * An NVM Express queue. Each device has at least two (one for admin
28  * commands and one for I/O commands).
29  */
30 struct nvme_queue {
31         struct nvme_dev *dev;
32         struct nvme_command *sq_cmds;
33         struct nvme_completion *cqes;
34         wait_queue_head_t sq_full;
35         u32 __iomem *q_db;
36         u16 q_depth;
37         s16 cq_vector;
38         u16 sq_head;
39         u16 sq_tail;
40         u16 cq_head;
41         u16 qid;
42         u8 cq_phase;
43         u8 cqe_seen;
44         unsigned long cmdid_data[];
45 };
46
47 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
48 {
49         u32 bit = enabled ? NVME_CSTS_RDY : 0;
50         int timeout;
51         ulong start;
52
53         /* Timeout field in the CAP register is in 500 millisecond units */
54         timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
55
56         start = get_timer(0);
57         while (get_timer(start) < timeout) {
58                 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
59                         return 0;
60         }
61
62         return -ETIME;
63 }
64
65 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
66                            int total_len, u64 dma_addr)
67 {
68         u32 page_size = dev->page_size;
69         int offset = dma_addr & (page_size - 1);
70         u64 *prp_pool;
71         int length = total_len;
72         int i, nprps;
73         length -= (page_size - offset);
74
75         if (length <= 0) {
76                 *prp2 = 0;
77                 return 0;
78         }
79
80         if (length)
81                 dma_addr += (page_size - offset);
82
83         if (length <= page_size) {
84                 *prp2 = dma_addr;
85                 return 0;
86         }
87
88         nprps = DIV_ROUND_UP(length, page_size);
89
90         if (nprps > dev->prp_entry_num) {
91                 free(dev->prp_pool);
92                 dev->prp_pool = malloc(nprps << 3);
93                 if (!dev->prp_pool) {
94                         printf("Error: malloc prp_pool fail\n");
95                         return -ENOMEM;
96                 }
97                 dev->prp_entry_num = nprps;
98         }
99
100         prp_pool = dev->prp_pool;
101         i = 0;
102         while (nprps) {
103                 if (i == ((page_size >> 3) - 1)) {
104                         *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
105                                         page_size);
106                         i = 0;
107                         prp_pool += page_size;
108                 }
109                 *(prp_pool + i++) = cpu_to_le64(dma_addr);
110                 dma_addr += page_size;
111                 nprps--;
112         }
113         *prp2 = (ulong)dev->prp_pool;
114
115         return 0;
116 }
117
118 static __le16 nvme_get_cmd_id(void)
119 {
120         static unsigned short cmdid;
121
122         return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
123 }
124
125 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
126 {
127         u64 start = (ulong)&nvmeq->cqes[index];
128         u64 stop = start + sizeof(struct nvme_completion);
129
130         invalidate_dcache_range(start, stop);
131
132         return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
133 }
134
135 /**
136  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
137  *
138  * @nvmeq:      The queue to use
139  * @cmd:        The command to send
140  */
141 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
142 {
143         u16 tail = nvmeq->sq_tail;
144
145         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
146         flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
147                            (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
148
149         if (++tail == nvmeq->q_depth)
150                 tail = 0;
151         writel(tail, nvmeq->q_db);
152         nvmeq->sq_tail = tail;
153 }
154
155 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
156                                 struct nvme_command *cmd,
157                                 u32 *result, unsigned timeout)
158 {
159         u16 head = nvmeq->cq_head;
160         u16 phase = nvmeq->cq_phase;
161         u16 status;
162         ulong start_time;
163         ulong timeout_us = timeout * 100000;
164
165         cmd->common.command_id = nvme_get_cmd_id();
166         nvme_submit_cmd(nvmeq, cmd);
167
168         start_time = timer_get_us();
169
170         for (;;) {
171                 status = nvme_read_completion_status(nvmeq, head);
172                 if ((status & 0x01) == phase)
173                         break;
174                 if (timeout_us > 0 && (timer_get_us() - start_time)
175                     >= timeout_us)
176                         return -ETIMEDOUT;
177         }
178
179         status >>= 1;
180         if (status) {
181                 printf("ERROR: status = %x, phase = %d, head = %d\n",
182                        status, phase, head);
183                 status = 0;
184                 if (++head == nvmeq->q_depth) {
185                         head = 0;
186                         phase = !phase;
187                 }
188                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
189                 nvmeq->cq_head = head;
190                 nvmeq->cq_phase = phase;
191
192                 return -EIO;
193         }
194
195         if (result)
196                 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
197
198         if (++head == nvmeq->q_depth) {
199                 head = 0;
200                 phase = !phase;
201         }
202         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
203         nvmeq->cq_head = head;
204         nvmeq->cq_phase = phase;
205
206         return status;
207 }
208
209 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
210                                  u32 *result)
211 {
212         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
213 }
214
215 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
216                                            int qid, int depth)
217 {
218         struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
219         if (!nvmeq)
220                 return NULL;
221         memset(nvmeq, 0, sizeof(*nvmeq));
222
223         nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
224         if (!nvmeq->cqes)
225                 goto free_nvmeq;
226         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
227
228         nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
229         if (!nvmeq->sq_cmds)
230                 goto free_queue;
231         memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
232
233         nvmeq->dev = dev;
234
235         nvmeq->cq_head = 0;
236         nvmeq->cq_phase = 1;
237         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
238         nvmeq->q_depth = depth;
239         nvmeq->qid = qid;
240         dev->queue_count++;
241         dev->queues[qid] = nvmeq;
242
243         return nvmeq;
244
245  free_queue:
246         free((void *)nvmeq->cqes);
247  free_nvmeq:
248         free(nvmeq);
249
250         return NULL;
251 }
252
253 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
254 {
255         struct nvme_command c;
256
257         memset(&c, 0, sizeof(c));
258         c.delete_queue.opcode = opcode;
259         c.delete_queue.qid = cpu_to_le16(id);
260
261         return nvme_submit_admin_cmd(dev, &c, NULL);
262 }
263
264 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
265 {
266         return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
267 }
268
269 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
270 {
271         return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
272 }
273
274 static int nvme_enable_ctrl(struct nvme_dev *dev)
275 {
276         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
277         dev->ctrl_config |= NVME_CC_ENABLE;
278         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
279
280         return nvme_wait_ready(dev, true);
281 }
282
283 static int nvme_disable_ctrl(struct nvme_dev *dev)
284 {
285         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
286         dev->ctrl_config &= ~NVME_CC_ENABLE;
287         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
288
289         return nvme_wait_ready(dev, false);
290 }
291
292 static void nvme_free_queue(struct nvme_queue *nvmeq)
293 {
294         free((void *)nvmeq->cqes);
295         free(nvmeq->sq_cmds);
296         free(nvmeq);
297 }
298
299 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
300 {
301         int i;
302
303         for (i = dev->queue_count - 1; i >= lowest; i--) {
304                 struct nvme_queue *nvmeq = dev->queues[i];
305                 dev->queue_count--;
306                 dev->queues[i] = NULL;
307                 nvme_free_queue(nvmeq);
308         }
309 }
310
311 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
312 {
313         struct nvme_dev *dev = nvmeq->dev;
314
315         nvmeq->sq_tail = 0;
316         nvmeq->cq_head = 0;
317         nvmeq->cq_phase = 1;
318         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
319         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
320         flush_dcache_range((ulong)nvmeq->cqes,
321                            (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
322         dev->online_queues++;
323 }
324
325 static int nvme_configure_admin_queue(struct nvme_dev *dev)
326 {
327         int result;
328         u32 aqa;
329         u64 cap = dev->cap;
330         struct nvme_queue *nvmeq;
331         /* most architectures use 4KB as the page size */
332         unsigned page_shift = 12;
333         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
334         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
335
336         if (page_shift < dev_page_min) {
337                 debug("Device minimum page size (%u) too large for host (%u)\n",
338                       1 << dev_page_min, 1 << page_shift);
339                 return -ENODEV;
340         }
341
342         if (page_shift > dev_page_max) {
343                 debug("Device maximum page size (%u) smaller than host (%u)\n",
344                       1 << dev_page_max, 1 << page_shift);
345                 page_shift = dev_page_max;
346         }
347
348         result = nvme_disable_ctrl(dev);
349         if (result < 0)
350                 return result;
351
352         nvmeq = dev->queues[0];
353         if (!nvmeq) {
354                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
355                 if (!nvmeq)
356                         return -ENOMEM;
357         }
358
359         aqa = nvmeq->q_depth - 1;
360         aqa |= aqa << 16;
361         aqa |= aqa << 16;
362
363         dev->page_size = 1 << page_shift;
364
365         dev->ctrl_config = NVME_CC_CSS_NVM;
366         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
367         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
368         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
369
370         writel(aqa, &dev->bar->aqa);
371         nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
372         nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
373
374         result = nvme_enable_ctrl(dev);
375         if (result)
376                 goto free_nvmeq;
377
378         nvmeq->cq_vector = 0;
379
380         nvme_init_queue(dev->queues[0], 0);
381
382         return result;
383
384  free_nvmeq:
385         nvme_free_queues(dev, 0);
386
387         return result;
388 }
389
390 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
391                             struct nvme_queue *nvmeq)
392 {
393         struct nvme_command c;
394         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
395
396         memset(&c, 0, sizeof(c));
397         c.create_cq.opcode = nvme_admin_create_cq;
398         c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
399         c.create_cq.cqid = cpu_to_le16(qid);
400         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
401         c.create_cq.cq_flags = cpu_to_le16(flags);
402         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
403
404         return nvme_submit_admin_cmd(dev, &c, NULL);
405 }
406
407 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
408                             struct nvme_queue *nvmeq)
409 {
410         struct nvme_command c;
411         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
412
413         memset(&c, 0, sizeof(c));
414         c.create_sq.opcode = nvme_admin_create_sq;
415         c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
416         c.create_sq.sqid = cpu_to_le16(qid);
417         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
418         c.create_sq.sq_flags = cpu_to_le16(flags);
419         c.create_sq.cqid = cpu_to_le16(qid);
420
421         return nvme_submit_admin_cmd(dev, &c, NULL);
422 }
423
424 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
425                   unsigned cns, dma_addr_t dma_addr)
426 {
427         struct nvme_command c;
428         u32 page_size = dev->page_size;
429         int offset = dma_addr & (page_size - 1);
430         int length = sizeof(struct nvme_id_ctrl);
431
432         memset(&c, 0, sizeof(c));
433         c.identify.opcode = nvme_admin_identify;
434         c.identify.nsid = cpu_to_le32(nsid);
435         c.identify.prp1 = cpu_to_le64(dma_addr);
436
437         length -= (page_size - offset);
438         if (length <= 0) {
439                 c.identify.prp2 = 0;
440         } else {
441                 dma_addr += (page_size - offset);
442                 c.identify.prp2 = cpu_to_le64(dma_addr);
443         }
444
445         c.identify.cns = cpu_to_le32(cns);
446
447         return nvme_submit_admin_cmd(dev, &c, NULL);
448 }
449
450 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
451                       dma_addr_t dma_addr, u32 *result)
452 {
453         struct nvme_command c;
454
455         memset(&c, 0, sizeof(c));
456         c.features.opcode = nvme_admin_get_features;
457         c.features.nsid = cpu_to_le32(nsid);
458         c.features.prp1 = cpu_to_le64(dma_addr);
459         c.features.fid = cpu_to_le32(fid);
460
461         return nvme_submit_admin_cmd(dev, &c, result);
462 }
463
464 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
465                       dma_addr_t dma_addr, u32 *result)
466 {
467         struct nvme_command c;
468
469         memset(&c, 0, sizeof(c));
470         c.features.opcode = nvme_admin_set_features;
471         c.features.prp1 = cpu_to_le64(dma_addr);
472         c.features.fid = cpu_to_le32(fid);
473         c.features.dword11 = cpu_to_le32(dword11);
474
475         return nvme_submit_admin_cmd(dev, &c, result);
476 }
477
478 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
479 {
480         struct nvme_dev *dev = nvmeq->dev;
481         int result;
482
483         nvmeq->cq_vector = qid - 1;
484         result = nvme_alloc_cq(dev, qid, nvmeq);
485         if (result < 0)
486                 goto release_cq;
487
488         result = nvme_alloc_sq(dev, qid, nvmeq);
489         if (result < 0)
490                 goto release_sq;
491
492         nvme_init_queue(nvmeq, qid);
493
494         return result;
495
496  release_sq:
497         nvme_delete_sq(dev, qid);
498  release_cq:
499         nvme_delete_cq(dev, qid);
500
501         return result;
502 }
503
504 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
505 {
506         int status;
507         u32 result;
508         u32 q_count = (count - 1) | ((count - 1) << 16);
509
510         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
511                         q_count, 0, &result);
512
513         if (status < 0)
514                 return status;
515         if (status > 1)
516                 return 0;
517
518         return min(result & 0xffff, result >> 16) + 1;
519 }
520
521 static void nvme_create_io_queues(struct nvme_dev *dev)
522 {
523         unsigned int i;
524
525         for (i = dev->queue_count; i <= dev->max_qid; i++)
526                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
527                         break;
528
529         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
530                 if (nvme_create_queue(dev->queues[i], i))
531                         break;
532 }
533
534 static int nvme_setup_io_queues(struct nvme_dev *dev)
535 {
536         int nr_io_queues;
537         int result;
538
539         nr_io_queues = 1;
540         result = nvme_set_queue_count(dev, nr_io_queues);
541         if (result <= 0)
542                 return result;
543
544         if (result < nr_io_queues)
545                 nr_io_queues = result;
546
547         dev->max_qid = nr_io_queues;
548
549         /* Free previously allocated queues */
550         nvme_free_queues(dev, nr_io_queues + 1);
551         nvme_create_io_queues(dev);
552
553         return 0;
554 }
555
556 static int nvme_get_info_from_identify(struct nvme_dev *dev)
557 {
558         struct nvme_id_ctrl buf, *ctrl = &buf;
559         int ret;
560         int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
561
562         ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl);
563         if (ret)
564                 return -EIO;
565
566         dev->nn = le32_to_cpu(ctrl->nn);
567         dev->vwc = ctrl->vwc;
568         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
569         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
570         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
571         if (ctrl->mdts)
572                 dev->max_transfer_shift = (ctrl->mdts + shift);
573         else {
574                 /*
575                  * Maximum Data Transfer Size (MDTS) field indicates the maximum
576                  * data transfer size between the host and the controller. The
577                  * host should not submit a command that exceeds this transfer
578                  * size. The value is in units of the minimum memory page size
579                  * and is reported as a power of two (2^n).
580                  *
581                  * The spec also says: a value of 0h indicates no restrictions
582                  * on transfer size. But in nvme_blk_read/write() below we have
583                  * the following algorithm for maximum number of logic blocks
584                  * per transfer:
585                  *
586                  * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
587                  *
588                  * In order for lbas not to overflow, the maximum number is 15
589                  * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
590                  * Let's use 20 which provides 1MB size.
591                  */
592                 dev->max_transfer_shift = 20;
593         }
594
595         return 0;
596 }
597
598 int nvme_scan_namespace(void)
599 {
600         struct uclass *uc;
601         struct udevice *dev;
602         int ret;
603
604         ret = uclass_get(UCLASS_NVME, &uc);
605         if (ret)
606                 return ret;
607
608         uclass_foreach_dev(dev, uc) {
609                 ret = device_probe(dev);
610                 if (ret)
611                         return ret;
612         }
613
614         return 0;
615 }
616
617 static int nvme_blk_probe(struct udevice *udev)
618 {
619         struct nvme_dev *ndev = dev_get_priv(udev->parent);
620         struct blk_desc *desc = dev_get_uclass_platdata(udev);
621         struct nvme_ns *ns = dev_get_priv(udev);
622         u8 flbas;
623         struct nvme_id_ns buf, *id = &buf;
624         struct pci_child_platdata *pplat;
625
626         memset(ns, 0, sizeof(*ns));
627         ns->dev = ndev;
628         ns->ns_id = desc->devnum - ndev->blk_dev_start + 1;
629         if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id))
630                 return -EIO;
631
632         flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
633         ns->flbas = flbas;
634         ns->lba_shift = id->lbaf[flbas].ds;
635         ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
636         ns->mode_select_block_len = 1 << ns->lba_shift;
637         list_add(&ns->list, &ndev->namespaces);
638
639         desc->lba = ns->mode_select_num_blocks;
640         desc->log2blksz = ns->lba_shift;
641         desc->blksz = 1 << ns->lba_shift;
642         desc->bdev = udev;
643         pplat = dev_get_parent_platdata(udev->parent);
644         sprintf(desc->vendor, "0x%.4x", pplat->vendor);
645         memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
646         memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
647         part_init(desc);
648
649         return 0;
650 }
651
652 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
653                            lbaint_t blkcnt, void *buffer)
654 {
655         struct nvme_ns *ns = dev_get_priv(udev);
656         struct nvme_dev *dev = ns->dev;
657         struct nvme_command c;
658         struct blk_desc *desc = dev_get_uclass_platdata(udev);
659         int status;
660         u64 prp2;
661         u64 total_len = blkcnt << desc->log2blksz;
662         u64 temp_len = total_len;
663
664         u64 slba = blknr;
665         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
666         u64 total_lbas = blkcnt;
667
668         c.rw.opcode = nvme_cmd_read;
669         c.rw.flags = 0;
670         c.rw.nsid = cpu_to_le32(ns->ns_id);
671         c.rw.control = 0;
672         c.rw.dsmgmt = 0;
673         c.rw.reftag = 0;
674         c.rw.apptag = 0;
675         c.rw.appmask = 0;
676         c.rw.metadata = 0;
677
678         while (total_lbas) {
679                 if (total_lbas < lbas) {
680                         lbas = (u16)total_lbas;
681                         total_lbas = 0;
682                 } else {
683                         total_lbas -= lbas;
684                 }
685
686                 if (nvme_setup_prps
687                    (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer))
688                         return -EIO;
689                 c.rw.slba = cpu_to_le64(slba);
690                 slba += lbas;
691                 c.rw.length = cpu_to_le16(lbas - 1);
692                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
693                 c.rw.prp2 = cpu_to_le64(prp2);
694                 status = nvme_submit_sync_cmd(dev->queues[1],
695                                 &c, NULL, IO_TIMEOUT);
696                 if (status)
697                         break;
698                 temp_len -= lbas << ns->lba_shift;
699                 buffer += lbas << ns->lba_shift;
700         }
701
702         return (total_len - temp_len) >> desc->log2blksz;
703 }
704
705 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
706                             lbaint_t blkcnt, const void *buffer)
707 {
708         struct nvme_ns *ns = dev_get_priv(udev);
709         struct nvme_dev *dev = ns->dev;
710         struct nvme_command c;
711         struct blk_desc *desc = dev_get_uclass_platdata(udev);
712         int status;
713         u64 prp2;
714         u64 total_len = blkcnt << desc->log2blksz;
715         u64 temp_len = total_len;
716
717         u64 slba = blknr;
718         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
719         u64 total_lbas = blkcnt;
720
721         c.rw.opcode = nvme_cmd_write;
722         c.rw.flags = 0;
723         c.rw.nsid = cpu_to_le32(ns->ns_id);
724         c.rw.control = 0;
725         c.rw.dsmgmt = 0;
726         c.rw.reftag = 0;
727         c.rw.apptag = 0;
728         c.rw.appmask = 0;
729         c.rw.metadata = 0;
730
731         while (total_lbas) {
732                 if (total_lbas < lbas) {
733                         lbas = (u16)total_lbas;
734                         total_lbas = 0;
735                 } else {
736                         total_lbas -= lbas;
737                 }
738
739                 if (nvme_setup_prps
740                    (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer))
741                         return -EIO;
742                 c.rw.slba = cpu_to_le64(slba);
743                 slba += lbas;
744                 c.rw.length = cpu_to_le16(lbas - 1);
745                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
746                 c.rw.prp2 = cpu_to_le64(prp2);
747                 status = nvme_submit_sync_cmd(dev->queues[1],
748                                 &c, NULL, IO_TIMEOUT);
749                 if (status)
750                         break;
751                 temp_len -= lbas << ns->lba_shift;
752                 buffer += lbas << ns->lba_shift;
753         }
754
755         return (total_len - temp_len) >> desc->log2blksz;
756 }
757
758 static const struct blk_ops nvme_blk_ops = {
759         .read   = nvme_blk_read,
760         .write  = nvme_blk_write,
761 };
762
763 U_BOOT_DRIVER(nvme_blk) = {
764         .name   = "nvme-blk",
765         .id     = UCLASS_BLK,
766         .probe  = nvme_blk_probe,
767         .ops    = &nvme_blk_ops,
768         .priv_auto_alloc_size = sizeof(struct nvme_ns),
769 };
770
771 static int nvme_bind(struct udevice *udev)
772 {
773         char name[20];
774         sprintf(name, "nvme#%d", nvme_info->ndev_num++);
775
776         return device_set_name(udev, name);
777 }
778
779 static int nvme_probe(struct udevice *udev)
780 {
781         int ret;
782         struct nvme_dev *ndev = dev_get_priv(udev);
783
784         ndev->instance = trailing_strtol(udev->name);
785
786         INIT_LIST_HEAD(&ndev->namespaces);
787         ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
788                         PCI_REGION_MEM);
789         if (readl(&ndev->bar->csts) == -1) {
790                 ret = -ENODEV;
791                 printf("Error: %s: Out of memory!\n", udev->name);
792                 goto free_nvme;
793         }
794
795         ndev->queues = malloc(2 * sizeof(struct nvme_queue *));
796         if (!ndev->queues) {
797                 ret = -ENOMEM;
798                 printf("Error: %s: Out of memory!\n", udev->name);
799                 goto free_nvme;
800         }
801         memset(ndev->queues, 0, sizeof(2 * sizeof(struct nvme_queue *)));
802
803         ndev->prp_pool = malloc(MAX_PRP_POOL);
804         if (!ndev->prp_pool) {
805                 ret = -ENOMEM;
806                 printf("Error: %s: Out of memory!\n", udev->name);
807                 goto free_nvme;
808         }
809         ndev->prp_entry_num = MAX_PRP_POOL >> 3;
810
811         ndev->cap = nvme_readq(&ndev->bar->cap);
812         ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
813         ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
814         ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
815
816         ret = nvme_configure_admin_queue(ndev);
817         if (ret)
818                 goto free_queue;
819
820         ret = nvme_setup_io_queues(ndev);
821         if (ret)
822                 goto free_queue;
823
824         nvme_get_info_from_identify(ndev);
825         ndev->blk_dev_start = nvme_info->ns_num;
826         list_add(&ndev->node, &nvme_info->dev_list);
827
828         return 0;
829
830 free_queue:
831         free((void *)ndev->queues);
832 free_nvme:
833         return ret;
834 }
835
836 U_BOOT_DRIVER(nvme) = {
837         .name   = "nvme",
838         .id     = UCLASS_NVME,
839         .bind   = nvme_bind,
840         .probe  = nvme_probe,
841         .priv_auto_alloc_size = sizeof(struct nvme_dev),
842 };
843
844 struct pci_device_id nvme_supported[] = {
845         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
846         {}
847 };
848
849 U_BOOT_PCI_DEVICE(nvme, nvme_supported);