]> git.sur5r.net Git - u-boot/blob - fs/jffs2/mini_inflate.c
sunxi: gmac: Update bananapi fixup to the new CONFIG_TARGET_<BOARD> structure
[u-boot] / fs / jffs2 / mini_inflate.c
1 /*-------------------------------------------------------------------------
2  * Filename:      mini_inflate.c
3  * Version:       $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
4  * Copyright:     Copyright (C) 2001, Russ Dill
5  * Author:        Russ Dill <Russ.Dill@asu.edu>
6  * Description:   Mini inflate implementation (RFC 1951)
7  *-----------------------------------------------------------------------*/
8 /*
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <config.h>
13 #include <jffs2/mini_inflate.h>
14
15 /* The order that the code lengths in section 3.2.7 are in */
16 static unsigned char huffman_order[] = {16, 17, 18,  0,  8,  7,  9,  6, 10,  5,
17                                         11,  4, 12,  3, 13,  2, 14,  1, 15};
18
19 inline void cramfs_memset(int *s, const int c, size n)
20 {
21         n--;
22         for (;n > 0; n--) s[n] = c;
23         s[0] = c;
24 }
25
26 /* associate a stream with a block of data and reset the stream */
27 static void init_stream(struct bitstream *stream, unsigned char *data,
28                         void *(*inflate_memcpy)(void *, const void *, size))
29 {
30         stream->error = NO_ERROR;
31         stream->memcpy = inflate_memcpy;
32         stream->decoded = 0;
33         stream->data = data;
34         stream->bit = 0;        /* The first bit of the stream is the lsb of the
35                                  * first byte */
36
37         /* really sorry about all this initialization, think of a better way,
38          * let me know and it will get cleaned up */
39         stream->codes.bits = 8;
40         stream->codes.num_symbols = 19;
41         stream->codes.lengths = stream->code_lengths;
42         stream->codes.symbols = stream->code_symbols;
43         stream->codes.count = stream->code_count;
44         stream->codes.first = stream->code_first;
45         stream->codes.pos = stream->code_pos;
46
47         stream->lengths.bits = 16;
48         stream->lengths.num_symbols = 288;
49         stream->lengths.lengths = stream->length_lengths;
50         stream->lengths.symbols = stream->length_symbols;
51         stream->lengths.count = stream->length_count;
52         stream->lengths.first = stream->length_first;
53         stream->lengths.pos = stream->length_pos;
54
55         stream->distance.bits = 16;
56         stream->distance.num_symbols = 32;
57         stream->distance.lengths = stream->distance_lengths;
58         stream->distance.symbols = stream->distance_symbols;
59         stream->distance.count = stream->distance_count;
60         stream->distance.first = stream->distance_first;
61         stream->distance.pos = stream->distance_pos;
62
63 }
64
65 /* pull 'bits' bits out of the stream. The last bit pulled it returned as the
66  * msb. (section 3.1.1)
67  */
68 inline unsigned long pull_bits(struct bitstream *stream,
69                                const unsigned int bits)
70 {
71         unsigned long ret;
72         int i;
73
74         ret = 0;
75         for (i = 0; i < bits; i++) {
76                 ret += ((*(stream->data) >> stream->bit) & 1) << i;
77
78                 /* if, before incrementing, we are on bit 7,
79                  * go to the lsb of the next byte */
80                 if (stream->bit++ == 7) {
81                         stream->bit = 0;
82                         stream->data++;
83                 }
84         }
85         return ret;
86 }
87
88 inline int pull_bit(struct bitstream *stream)
89 {
90         int ret = ((*(stream->data) >> stream->bit) & 1);
91         if (stream->bit++ == 7) {
92                 stream->bit = 0;
93                 stream->data++;
94         }
95         return ret;
96 }
97
98 /* discard bits up to the next whole byte */
99 static void discard_bits(struct bitstream *stream)
100 {
101         if (stream->bit != 0) {
102                 stream->bit = 0;
103                 stream->data++;
104         }
105 }
106
107 /* No decompression, the data is all literals (section 3.2.4) */
108 static void decompress_none(struct bitstream *stream, unsigned char *dest)
109 {
110         unsigned int length;
111
112         discard_bits(stream);
113         length = *(stream->data++);
114         length += *(stream->data++) << 8;
115         pull_bits(stream, 16);  /* throw away the inverse of the size */
116
117         stream->decoded += length;
118         stream->memcpy(dest, stream->data, length);
119         stream->data += length;
120 }
121
122 /* Read in a symbol from the stream (section 3.2.2) */
123 static int read_symbol(struct bitstream *stream, struct huffman_set *set)
124 {
125         int bits = 0;
126         int code = 0;
127         while (!(set->count[bits] && code < set->first[bits] +
128                                              set->count[bits])) {
129                 code = (code << 1) + pull_bit(stream);
130                 if (++bits > set->bits) {
131                         /* error decoding (corrupted data?) */
132                         stream->error = CODE_NOT_FOUND;
133                         return -1;
134                 }
135         }
136         return set->symbols[set->pos[bits] + code - set->first[bits]];
137 }
138
139 /* decompress a stream of data encoded with the passed length and distance
140  * huffman codes */
141 static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
142 {
143         struct huffman_set *lengths = &(stream->lengths);
144         struct huffman_set *distance = &(stream->distance);
145
146         int symbol, length, dist, i;
147
148         do {
149                 if ((symbol = read_symbol(stream, lengths)) < 0) return;
150                 if (symbol < 256) {
151                         *(dest++) = symbol; /* symbol is a literal */
152                         stream->decoded++;
153                 } else if (symbol > 256) {
154                         /* Determine the length of the repitition
155                          * (section 3.2.5) */
156                         if (symbol < 265) length = symbol - 254;
157                         else if (symbol == 285) length = 258;
158                         else {
159                                 length = pull_bits(stream, (symbol - 261) >> 2);
160                                 length += (4 << ((symbol - 261) >> 2)) + 3;
161                                 length += ((symbol - 1) % 4) <<
162                                           ((symbol - 261) >> 2);
163                         }
164
165                         /* Determine how far back to go */
166                         if ((symbol = read_symbol(stream, distance)) < 0)
167                                 return;
168                         if (symbol < 4) dist = symbol + 1;
169                         else {
170                                 dist = pull_bits(stream, (symbol - 2) >> 1);
171                                 dist += (2 << ((symbol - 2) >> 1)) + 1;
172                                 dist += (symbol % 2) << ((symbol - 2) >> 1);
173                         }
174                         stream->decoded += length;
175                         for (i = 0; i < length; i++) {
176                                 *dest = dest[-dist];
177                                 dest++;
178                         }
179                 }
180         } while (symbol != 256); /* 256 is the end of the data block */
181 }
182
183 /* Fill the lookup tables (section 3.2.2) */
184 static void fill_code_tables(struct huffman_set *set)
185 {
186         int code = 0, i, length;
187
188         /* fill in the first code of each bit length, and the pos pointer */
189         set->pos[0] = 0;
190         for (i = 1; i < set->bits; i++) {
191                 code = (code + set->count[i - 1]) << 1;
192                 set->first[i] = code;
193                 set->pos[i] = set->pos[i - 1] + set->count[i - 1];
194         }
195
196         /* Fill in the table of symbols in order of their huffman code */
197         for (i = 0; i < set->num_symbols; i++) {
198                 if ((length = set->lengths[i]))
199                         set->symbols[set->pos[length]++] = i;
200         }
201
202         /* reset the pos pointer */
203         for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
204 }
205
206 static void init_code_tables(struct huffman_set *set)
207 {
208         cramfs_memset(set->lengths, 0, set->num_symbols);
209         cramfs_memset(set->count, 0, set->bits);
210         cramfs_memset(set->first, 0, set->bits);
211 }
212
213 /* read in the huffman codes for dynamic decoding (section 3.2.7) */
214 static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
215 {
216         /* I tried my best to minimize the memory footprint here, while still
217          * keeping up performance. I really dislike the _lengths[] tables, but
218          * I see no way of eliminating them without a sizable performance
219          * impact. The first struct table keeps track of stats on each bit
220          * length. The _length table keeps a record of the bit length of each
221          * symbol. The _symbols table is for looking up symbols by the huffman
222          * code (the pos element points to the first place in the symbol table
223          * where that bit length occurs). I also hate the initization of these
224          * structs, if someone knows how to compact these, lemme know. */
225
226         struct huffman_set *codes = &(stream->codes);
227         struct huffman_set *lengths = &(stream->lengths);
228         struct huffman_set *distance = &(stream->distance);
229
230         int hlit = pull_bits(stream, 5) + 257;
231         int hdist = pull_bits(stream, 5) + 1;
232         int hclen = pull_bits(stream, 4) + 4;
233         int length, curr_code, symbol, i, last_code;
234
235         last_code = 0;
236
237         init_code_tables(codes);
238         init_code_tables(lengths);
239         init_code_tables(distance);
240
241         /* fill in the count of each bit length' as well as the lengths
242          * table */
243         for (i = 0; i < hclen; i++) {
244                 length = pull_bits(stream, 3);
245                 codes->lengths[huffman_order[i]] = length;
246                 if (length) codes->count[length]++;
247
248         }
249         fill_code_tables(codes);
250
251         /* Do the same for the length codes, being carefull of wrap through
252          * to the distance table */
253         curr_code = 0;
254         while (curr_code < hlit) {
255                 if ((symbol = read_symbol(stream, codes)) < 0) return;
256                 if (symbol == 0) {
257                         curr_code++;
258                         last_code = 0;
259                 } else if (symbol < 16) { /* Literal length */
260                         lengths->lengths[curr_code] =  last_code = symbol;
261                         lengths->count[symbol]++;
262                         curr_code++;
263                 } else if (symbol == 16) { /* repeat the last symbol 3 - 6
264                                             * times */
265                         length = 3 + pull_bits(stream, 2);
266                         for (;length; length--, curr_code++)
267                                 if (curr_code < hlit) {
268                                         lengths->lengths[curr_code] =
269                                                 last_code;
270                                         lengths->count[last_code]++;
271                                 } else { /* wrap to the distance table */
272                                         distance->lengths[curr_code - hlit] =
273                                                 last_code;
274                                         distance->count[last_code]++;
275                                 }
276                 } else if (symbol == 17) { /* repeat a bit length 0 */
277                         curr_code += 3 + pull_bits(stream, 3);
278                         last_code = 0;
279                 } else { /* same, but more times */
280                         curr_code += 11 + pull_bits(stream, 7);
281                         last_code = 0;
282                 }
283         }
284         fill_code_tables(lengths);
285
286         /* Fill the distance table, don't need to worry about wrapthrough
287          * here */
288         curr_code -= hlit;
289         while (curr_code < hdist) {
290                 if ((symbol = read_symbol(stream, codes)) < 0) return;
291                 if (symbol == 0) {
292                         curr_code++;
293                         last_code = 0;
294                 } else if (symbol < 16) {
295                         distance->lengths[curr_code] = last_code = symbol;
296                         distance->count[symbol]++;
297                         curr_code++;
298                 } else if (symbol == 16) {
299                         length = 3 + pull_bits(stream, 2);
300                         for (;length; length--, curr_code++) {
301                                 distance->lengths[curr_code] =
302                                         last_code;
303                                 distance->count[last_code]++;
304                         }
305                 } else if (symbol == 17) {
306                         curr_code += 3 + pull_bits(stream, 3);
307                         last_code = 0;
308                 } else {
309                         curr_code += 11 + pull_bits(stream, 7);
310                         last_code = 0;
311                 }
312         }
313         fill_code_tables(distance);
314
315         decompress_huffman(stream, dest);
316 }
317
318 /* fill in the length and distance huffman codes for fixed encoding
319  * (section 3.2.6) */
320 static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
321 {
322         /* let gcc fill in the initial values */
323         struct huffman_set *lengths = &(stream->lengths);
324         struct huffman_set *distance = &(stream->distance);
325
326         cramfs_memset(lengths->count, 0, 16);
327         cramfs_memset(lengths->first, 0, 16);
328         cramfs_memset(lengths->lengths, 8, 144);
329         cramfs_memset(lengths->lengths + 144, 9, 112);
330         cramfs_memset(lengths->lengths + 256, 7, 24);
331         cramfs_memset(lengths->lengths + 280, 8, 8);
332         lengths->count[7] = 24;
333         lengths->count[8] = 152;
334         lengths->count[9] = 112;
335
336         cramfs_memset(distance->count, 0, 16);
337         cramfs_memset(distance->first, 0, 16);
338         cramfs_memset(distance->lengths, 5, 32);
339         distance->count[5] = 32;
340
341
342         fill_code_tables(lengths);
343         fill_code_tables(distance);
344
345
346         decompress_huffman(stream, dest);
347 }
348
349 /* returns the number of bytes decoded, < 0 if there was an error. Note that
350  * this function assumes that the block starts on a byte boundry
351  * (non-compliant, but I don't see where this would happen). section 3.2.3 */
352 long decompress_block(unsigned char *dest, unsigned char *source,
353                       void *(*inflate_memcpy)(void *, const void *, size))
354 {
355         int bfinal, btype;
356         struct bitstream stream;
357
358         init_stream(&stream, source, inflate_memcpy);
359         do {
360                 bfinal = pull_bit(&stream);
361                 btype = pull_bits(&stream, 2);
362                 if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
363                 else if (btype == DYNAMIC_COMP)
364                         decompress_dynamic(&stream, dest + stream.decoded);
365                 else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
366                 else stream.error = COMP_UNKNOWN;
367         } while (!bfinal && !stream.error);
368
369 #if 0
370         putstr("decompress_block start\r\n");
371         putLabeledWord("stream.error = ",stream.error);
372         putLabeledWord("stream.decoded = ",stream.decoded);
373         putLabeledWord("dest = ",dest);
374         putstr("decompress_block end\r\n");
375 #endif
376         return stream.error ? -stream.error : stream.decoded;
377 }