2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * SPDX-License-Identifier: GPL-2.0+
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
13 * This file contains journal replay code. It runs when the file-system is being
14 * mounted and requires no locking.
16 * The larger is the journal, the longer it takes to scan it, so the longer it
17 * takes to mount UBIFS. This is why the journal has limited size which may be
18 * changed depending on the system requirements. But a larger journal gives
19 * faster I/O speed because it writes the index less frequently. So this is a
20 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
21 * larger is the journal, the more memory its index may consume.
25 #include <linux/compat.h>
26 #include <linux/err.h>
29 #include <linux/bug.h>
30 #include <linux/list_sort.h>
33 * struct replay_entry - replay list entry.
34 * @lnum: logical eraseblock number of the node
37 * @deletion: non-zero if this entry corresponds to a node deletion
38 * @sqnum: node sequence number
39 * @list: links the replay list
41 * @nm: directory entry name
42 * @old_size: truncation old size
43 * @new_size: truncation new size
45 * The replay process first scans all buds and builds the replay list, then
46 * sorts the replay list in nodes sequence number order, and then inserts all
47 * the replay entries to the TNC.
53 unsigned int deletion:1;
54 unsigned long long sqnum;
55 struct list_head list;
67 * struct bud_entry - entry in the list of buds to replay.
68 * @list: next bud in the list
69 * @bud: bud description object
70 * @sqnum: reference node sequence number
71 * @free: free bytes in the bud
72 * @dirty: dirty bytes in the bud
75 struct list_head list;
76 struct ubifs_bud *bud;
77 unsigned long long sqnum;
83 * set_bud_lprops - set free and dirty space used by a bud.
84 * @c: UBIFS file-system description object
85 * @b: bud entry which describes the bud
87 * This function makes sure the LEB properties of bud @b are set correctly
88 * after the replay. Returns zero in case of success and a negative error code
91 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
93 const struct ubifs_lprops *lp;
98 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
107 * The LEB was added to the journal with a starting offset of
108 * zero which means the LEB must have been empty. The LEB
109 * property values should be @lp->free == @c->leb_size and
110 * @lp->dirty == 0, but that is not the case. The reason is that
111 * the LEB had been garbage collected before it became the bud,
112 * and there was not commit inbetween. The garbage collector
113 * resets the free and dirty space without recording it
114 * anywhere except lprops, so if there was no commit then
115 * lprops does not have that information.
117 * We do not need to adjust free space because the scan has told
118 * us the exact value which is recorded in the replay entry as
121 * However we do need to subtract from the dirty space the
122 * amount of space that the garbage collector reclaimed, which
123 * is the whole LEB minus the amount of space that was free.
125 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
126 lp->free, lp->dirty);
127 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
128 lp->free, lp->dirty);
129 dirty -= c->leb_size - lp->free;
131 * If the replay order was perfect the dirty space would now be
132 * zero. The order is not perfect because the journal heads
133 * race with each other. This is not a problem but is does mean
134 * that the dirty space may temporarily exceed c->leb_size
138 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
139 b->bud->lnum, lp->free, lp->dirty, b->free,
142 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
143 lp->flags | LPROPS_TAKEN, 0);
149 /* Make sure the journal head points to the latest bud */
150 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
151 b->bud->lnum, c->leb_size - b->free);
154 ubifs_release_lprops(c);
159 * set_buds_lprops - set free and dirty space for all replayed buds.
160 * @c: UBIFS file-system description object
162 * This function sets LEB properties for all replayed buds. Returns zero in
163 * case of success and a negative error code in case of failure.
165 static int set_buds_lprops(struct ubifs_info *c)
170 list_for_each_entry(b, &c->replay_buds, list) {
171 err = set_bud_lprops(c, b);
180 * trun_remove_range - apply a replay entry for a truncation to the TNC.
181 * @c: UBIFS file-system description object
182 * @r: replay entry of truncation
184 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
186 unsigned min_blk, max_blk;
187 union ubifs_key min_key, max_key;
190 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
191 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
194 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
195 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
198 ino = key_inum(c, &r->key);
200 data_key_init(c, &min_key, ino, min_blk);
201 data_key_init(c, &max_key, ino, max_blk);
203 return ubifs_tnc_remove_range(c, &min_key, &max_key);
207 * apply_replay_entry - apply a replay entry to the TNC.
208 * @c: UBIFS file-system description object
209 * @r: replay entry to apply
211 * Apply a replay entry to the TNC.
213 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
217 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
218 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
220 /* Set c->replay_sqnum to help deal with dangling branches. */
221 c->replay_sqnum = r->sqnum;
223 if (is_hash_key(c, &r->key)) {
225 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
227 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
231 switch (key_type(c, &r->key)) {
234 ino_t inum = key_inum(c, &r->key);
236 err = ubifs_tnc_remove_ino(c, inum);
240 err = trun_remove_range(c, r);
243 err = ubifs_tnc_remove(c, &r->key);
247 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
252 if (c->need_recovery)
253 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
261 * replay_entries_cmp - compare 2 replay entries.
262 * @priv: UBIFS file-system description object
263 * @a: first replay entry
264 * @a: second replay entry
266 * This is a comparios function for 'list_sort()' which compares 2 replay
267 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
268 * greater sequence number and %-1 otherwise.
270 static int replay_entries_cmp(void *priv, struct list_head *a,
273 struct replay_entry *ra, *rb;
279 ra = list_entry(a, struct replay_entry, list);
280 rb = list_entry(b, struct replay_entry, list);
281 ubifs_assert(ra->sqnum != rb->sqnum);
282 if (ra->sqnum > rb->sqnum)
288 * apply_replay_list - apply the replay list to the TNC.
289 * @c: UBIFS file-system description object
291 * Apply all entries in the replay list to the TNC. Returns zero in case of
292 * success and a negative error code in case of failure.
294 static int apply_replay_list(struct ubifs_info *c)
296 struct replay_entry *r;
299 list_sort(c, &c->replay_list, &replay_entries_cmp);
301 list_for_each_entry(r, &c->replay_list, list) {
304 err = apply_replay_entry(c, r);
313 * destroy_replay_list - destroy the replay.
314 * @c: UBIFS file-system description object
316 * Destroy the replay list.
318 static void destroy_replay_list(struct ubifs_info *c)
320 struct replay_entry *r, *tmp;
322 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
323 if (is_hash_key(c, &r->key))
331 * insert_node - insert a node to the replay list
332 * @c: UBIFS file-system description object
333 * @lnum: node logical eraseblock number
337 * @sqnum: sequence number
338 * @deletion: non-zero if this is a deletion
339 * @used: number of bytes in use in a LEB
340 * @old_size: truncation old size
341 * @new_size: truncation new size
343 * This function inserts a scanned non-direntry node to the replay list. The
344 * replay list contains @struct replay_entry elements, and we sort this list in
345 * sequence number order before applying it. The replay list is applied at the
346 * very end of the replay process. Since the list is sorted in sequence number
347 * order, the older modifications are applied first. This function returns zero
348 * in case of success and a negative error code in case of failure.
350 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
351 union ubifs_key *key, unsigned long long sqnum,
352 int deletion, int *used, loff_t old_size,
355 struct replay_entry *r;
357 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
359 if (key_inum(c, key) >= c->highest_inum)
360 c->highest_inum = key_inum(c, key);
362 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
367 *used += ALIGN(len, 8);
371 r->deletion = !!deletion;
373 key_copy(c, key, &r->key);
374 r->old_size = old_size;
375 r->new_size = new_size;
377 list_add_tail(&r->list, &c->replay_list);
382 * insert_dent - insert a directory entry node into the replay list.
383 * @c: UBIFS file-system description object
384 * @lnum: node logical eraseblock number
388 * @name: directory entry name
389 * @nlen: directory entry name length
390 * @sqnum: sequence number
391 * @deletion: non-zero if this is a deletion
392 * @used: number of bytes in use in a LEB
394 * This function inserts a scanned directory entry node or an extended
395 * attribute entry to the replay list. Returns zero in case of success and a
396 * negative error code in case of failure.
398 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
399 union ubifs_key *key, const char *name, int nlen,
400 unsigned long long sqnum, int deletion, int *used)
402 struct replay_entry *r;
405 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
406 if (key_inum(c, key) >= c->highest_inum)
407 c->highest_inum = key_inum(c, key);
409 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
413 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
420 *used += ALIGN(len, 8);
424 r->deletion = !!deletion;
426 key_copy(c, key, &r->key);
428 memcpy(nbuf, name, nlen);
432 list_add_tail(&r->list, &c->replay_list);
437 * ubifs_validate_entry - validate directory or extended attribute entry node.
438 * @c: UBIFS file-system description object
439 * @dent: the node to validate
441 * This function validates directory or extended attribute entry node @dent.
442 * Returns zero if the node is all right and a %-EINVAL if not.
444 int ubifs_validate_entry(struct ubifs_info *c,
445 const struct ubifs_dent_node *dent)
447 int key_type = key_type_flash(c, dent->key);
448 int nlen = le16_to_cpu(dent->nlen);
450 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
451 dent->type >= UBIFS_ITYPES_CNT ||
452 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
453 strnlen(dent->name, nlen) != nlen ||
454 le64_to_cpu(dent->inum) > MAX_INUM) {
455 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
456 "directory entry" : "extended attribute entry");
460 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
461 ubifs_err(c, "bad key type %d", key_type);
469 * is_last_bud - check if the bud is the last in the journal head.
470 * @c: UBIFS file-system description object
471 * @bud: bud description object
473 * This function checks if bud @bud is the last bud in its journal head. This
474 * information is then used by 'replay_bud()' to decide whether the bud can
475 * have corruptions or not. Indeed, only last buds can be corrupted by power
476 * cuts. Returns %1 if this is the last bud, and %0 if not.
478 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
480 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
481 struct ubifs_bud *next;
485 if (list_is_last(&bud->list, &jh->buds_list))
489 * The following is a quirk to make sure we work correctly with UBIFS
490 * images used with older UBIFS.
492 * Normally, the last bud will be the last in the journal head's list
493 * of bud. However, there is one exception if the UBIFS image belongs
494 * to older UBIFS. This is fairly unlikely: one would need to use old
495 * UBIFS, then have a power cut exactly at the right point, and then
496 * try to mount this image with new UBIFS.
498 * The exception is: it is possible to have 2 buds A and B, A goes
499 * before B, and B is the last, bud B is contains no data, and bud A is
500 * corrupted at the end. The reason is that in older versions when the
501 * journal code switched the next bud (from A to B), it first added a
502 * log reference node for the new bud (B), and only after this it
503 * synchronized the write-buffer of current bud (A). But later this was
504 * changed and UBIFS started to always synchronize the write-buffer of
505 * the bud (A) before writing the log reference for the new bud (B).
507 * But because older UBIFS always synchronized A's write-buffer before
508 * writing to B, we can recognize this exceptional situation but
509 * checking the contents of bud B - if it is empty, then A can be
510 * treated as the last and we can recover it.
512 * TODO: remove this piece of code in a couple of years (today it is
515 next = list_entry(bud->list.next, struct ubifs_bud, list);
516 if (!list_is_last(&next->list, &jh->buds_list))
519 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
523 return data == 0xFFFFFFFF;
527 * replay_bud - replay a bud logical eraseblock.
528 * @c: UBIFS file-system description object
529 * @b: bud entry which describes the bud
531 * This function replays bud @bud, recovers it if needed, and adds all nodes
532 * from this bud to the replay list. Returns zero in case of success and a
533 * negative error code in case of failure.
535 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
537 int is_last = is_last_bud(c, b->bud);
538 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
539 struct ubifs_scan_leb *sleb;
540 struct ubifs_scan_node *snod;
542 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
543 lnum, b->bud->jhead, offs, is_last);
545 if (c->need_recovery && is_last)
547 * Recover only last LEBs in the journal heads, because power
548 * cuts may cause corruptions only in these LEBs, because only
549 * these LEBs could possibly be written to at the power cut
552 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
554 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
556 return PTR_ERR(sleb);
559 * The bud does not have to start from offset zero - the beginning of
560 * the 'lnum' LEB may contain previously committed data. One of the
561 * things we have to do in replay is to correctly update lprops with
562 * newer information about this LEB.
564 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
565 * bytes of free space because it only contain information about
568 * But we know that real amount of free space is 'c->leb_size -
569 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
570 * 'sleb->endpt' is used by bud data. We have to correctly calculate
571 * how much of these data are dirty and update lprops with this
574 * The dirt in that LEB region is comprised of padding nodes, deletion
575 * nodes, truncation nodes and nodes which are obsoleted by subsequent
576 * nodes in this LEB. So instead of calculating clean space, we
577 * calculate used space ('used' variable).
580 list_for_each_entry(snod, &sleb->nodes, list) {
585 if (snod->sqnum >= SQNUM_WATERMARK) {
586 ubifs_err(c, "file system's life ended");
590 if (snod->sqnum > c->max_sqnum)
591 c->max_sqnum = snod->sqnum;
593 switch (snod->type) {
596 struct ubifs_ino_node *ino = snod->node;
597 loff_t new_size = le64_to_cpu(ino->size);
599 if (le32_to_cpu(ino->nlink) == 0)
601 err = insert_node(c, lnum, snod->offs, snod->len,
602 &snod->key, snod->sqnum, deletion,
606 case UBIFS_DATA_NODE:
608 struct ubifs_data_node *dn = snod->node;
609 loff_t new_size = le32_to_cpu(dn->size) +
610 key_block(c, &snod->key) *
613 err = insert_node(c, lnum, snod->offs, snod->len,
614 &snod->key, snod->sqnum, deletion,
618 case UBIFS_DENT_NODE:
619 case UBIFS_XENT_NODE:
621 struct ubifs_dent_node *dent = snod->node;
623 err = ubifs_validate_entry(c, dent);
627 err = insert_dent(c, lnum, snod->offs, snod->len,
628 &snod->key, dent->name,
629 le16_to_cpu(dent->nlen), snod->sqnum,
630 !le64_to_cpu(dent->inum), &used);
633 case UBIFS_TRUN_NODE:
635 struct ubifs_trun_node *trun = snod->node;
636 loff_t old_size = le64_to_cpu(trun->old_size);
637 loff_t new_size = le64_to_cpu(trun->new_size);
640 /* Validate truncation node */
641 if (old_size < 0 || old_size > c->max_inode_sz ||
642 new_size < 0 || new_size > c->max_inode_sz ||
643 old_size <= new_size) {
644 ubifs_err(c, "bad truncation node");
649 * Create a fake truncation key just to use the same
650 * functions which expect nodes to have keys.
652 trun_key_init(c, &key, le32_to_cpu(trun->inum));
653 err = insert_node(c, lnum, snod->offs, snod->len,
654 &key, snod->sqnum, 1, &used,
659 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
660 snod->type, lnum, snod->offs);
668 ubifs_assert(ubifs_search_bud(c, lnum));
669 ubifs_assert(sleb->endpt - offs >= used);
670 ubifs_assert(sleb->endpt % c->min_io_size == 0);
672 b->dirty = sleb->endpt - offs - used;
673 b->free = c->leb_size - sleb->endpt;
674 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
675 lnum, b->dirty, b->free);
678 ubifs_scan_destroy(sleb);
682 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
683 ubifs_dump_node(c, snod->node);
684 ubifs_scan_destroy(sleb);
689 * replay_buds - replay all buds.
690 * @c: UBIFS file-system description object
692 * This function returns zero in case of success and a negative error code in
695 static int replay_buds(struct ubifs_info *c)
699 unsigned long long prev_sqnum = 0;
701 list_for_each_entry(b, &c->replay_buds, list) {
702 err = replay_bud(c, b);
706 ubifs_assert(b->sqnum > prev_sqnum);
707 prev_sqnum = b->sqnum;
714 * destroy_bud_list - destroy the list of buds to replay.
715 * @c: UBIFS file-system description object
717 static void destroy_bud_list(struct ubifs_info *c)
721 while (!list_empty(&c->replay_buds)) {
722 b = list_entry(c->replay_buds.next, struct bud_entry, list);
729 * add_replay_bud - add a bud to the list of buds to replay.
730 * @c: UBIFS file-system description object
731 * @lnum: bud logical eraseblock number to replay
732 * @offs: bud start offset
733 * @jhead: journal head to which this bud belongs
734 * @sqnum: reference node sequence number
736 * This function returns zero in case of success and a negative error code in
739 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
740 unsigned long long sqnum)
742 struct ubifs_bud *bud;
745 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
747 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
751 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
760 ubifs_add_bud(c, bud);
764 list_add_tail(&b->list, &c->replay_buds);
770 * validate_ref - validate a reference node.
771 * @c: UBIFS file-system description object
772 * @ref: the reference node to validate
773 * @ref_lnum: LEB number of the reference node
774 * @ref_offs: reference node offset
776 * This function returns %1 if a bud reference already exists for the LEB. %0 is
777 * returned if the reference node is new, otherwise %-EINVAL is returned if
780 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
782 struct ubifs_bud *bud;
783 int lnum = le32_to_cpu(ref->lnum);
784 unsigned int offs = le32_to_cpu(ref->offs);
785 unsigned int jhead = le32_to_cpu(ref->jhead);
788 * ref->offs may point to the end of LEB when the journal head points
789 * to the end of LEB and we write reference node for it during commit.
790 * So this is why we require 'offs > c->leb_size'.
792 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
793 lnum < c->main_first || offs > c->leb_size ||
794 offs & (c->min_io_size - 1))
797 /* Make sure we have not already looked at this bud */
798 bud = ubifs_search_bud(c, lnum);
800 if (bud->jhead == jhead && bud->start <= offs)
802 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
810 * replay_log_leb - replay a log logical eraseblock.
811 * @c: UBIFS file-system description object
812 * @lnum: log logical eraseblock to replay
813 * @offs: offset to start replaying from
816 * This function replays a log LEB and returns zero in case of success, %1 if
817 * this is the last LEB in the log, and a negative error code in case of
820 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
823 struct ubifs_scan_leb *sleb;
824 struct ubifs_scan_node *snod;
825 const struct ubifs_cs_node *node;
827 dbg_mnt("replay log LEB %d:%d", lnum, offs);
828 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
830 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
831 return PTR_ERR(sleb);
833 * Note, the below function will recover this log LEB only if
834 * it is the last, because unclean reboots can possibly corrupt
835 * only the tail of the log.
837 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
839 return PTR_ERR(sleb);
842 if (sleb->nodes_cnt == 0) {
848 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
849 if (c->cs_sqnum == 0) {
851 * This is the first log LEB we are looking at, make sure that
852 * the first node is a commit start node. Also record its
853 * sequence number so that UBIFS can determine where the log
854 * ends, because all nodes which were have higher sequence
857 if (snod->type != UBIFS_CS_NODE) {
858 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
862 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
863 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
865 (unsigned long long)le64_to_cpu(node->cmt_no),
870 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
871 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
874 if (snod->sqnum < c->cs_sqnum) {
876 * This means that we reached end of log and now
877 * look to the older log data, which was already
878 * committed but the eraseblock was not erased (UBIFS
879 * only un-maps it). So this basically means we have to
880 * exit with "end of log" code.
886 /* Make sure the first node sits at offset zero of the LEB */
887 if (snod->offs != 0) {
888 ubifs_err(c, "first node is not at zero offset");
892 list_for_each_entry(snod, &sleb->nodes, list) {
895 if (snod->sqnum >= SQNUM_WATERMARK) {
896 ubifs_err(c, "file system's life ended");
900 if (snod->sqnum < c->cs_sqnum) {
901 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
902 snod->sqnum, c->cs_sqnum);
906 if (snod->sqnum > c->max_sqnum)
907 c->max_sqnum = snod->sqnum;
909 switch (snod->type) {
910 case UBIFS_REF_NODE: {
911 const struct ubifs_ref_node *ref = snod->node;
913 err = validate_ref(c, ref);
915 break; /* Already have this bud */
919 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
920 le32_to_cpu(ref->offs),
921 le32_to_cpu(ref->jhead),
929 /* Make sure it sits at the beginning of LEB */
930 if (snod->offs != 0) {
931 ubifs_err(c, "unexpected node in log");
936 ubifs_err(c, "unexpected node in log");
941 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
942 c->lhead_lnum = lnum;
943 c->lhead_offs = sleb->endpt;
948 ubifs_scan_destroy(sleb);
952 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
953 lnum, offs + snod->offs);
954 ubifs_dump_node(c, snod->node);
955 ubifs_scan_destroy(sleb);
960 * take_ihead - update the status of the index head in lprops to 'taken'.
961 * @c: UBIFS file-system description object
963 * This function returns the amount of free space in the index head LEB or a
964 * negative error code.
966 static int take_ihead(struct ubifs_info *c)
968 const struct ubifs_lprops *lp;
973 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
981 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
982 lp->flags | LPROPS_TAKEN, 0);
990 ubifs_release_lprops(c);
995 * ubifs_replay_journal - replay journal.
996 * @c: UBIFS file-system description object
998 * This function scans the journal, replays and cleans it up. It makes sure all
999 * memory data structures related to uncommitted journal are built (dirty TNC
1000 * tree, tree of buds, modified lprops, etc).
1002 int ubifs_replay_journal(struct ubifs_info *c)
1004 int err, lnum, free;
1006 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1008 /* Update the status of the index head in lprops to 'taken' */
1009 free = take_ihead(c);
1011 return free; /* Error code */
1013 if (c->ihead_offs != c->leb_size - free) {
1014 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1019 dbg_mnt("start replaying the journal");
1021 lnum = c->ltail_lnum = c->lhead_lnum;
1024 err = replay_log_leb(c, lnum, 0, c->sbuf);
1026 if (lnum != c->lhead_lnum)
1027 /* We hit the end of the log */
1031 * The head of the log must always start with the
1032 * "commit start" node on a properly formatted UBIFS.
1033 * But we found no nodes at all, which means that
1034 * someting went wrong and we cannot proceed mounting
1037 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1043 lnum = ubifs_next_log_lnum(c, lnum);
1044 } while (lnum != c->ltail_lnum);
1046 err = replay_buds(c);
1050 err = apply_replay_list(c);
1054 err = set_buds_lprops(c);
1059 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1060 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1061 * depend on it. This means we have to initialize it to make sure
1062 * budgeting works properly.
1064 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1065 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1067 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1068 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1069 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1070 (unsigned long)c->highest_inum);
1072 destroy_replay_list(c);
1073 destroy_bud_list(c);