]> git.sur5r.net Git - u-boot/blob - nand_spl/nand_boot.c
am3517evm: Use generic MMC driver
[u-boot] / nand_spl / nand_boot.c
1 /*
2  * (C) Copyright 2006-2008
3  * Stefan Roese, DENX Software Engineering, sr@denx.de.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
26
27 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
28 /*
29  * NAND command for small page NAND devices (512)
30  */
31 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
32 {
33         struct nand_chip *this = mtd->priv;
34         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
35
36         while (!this->dev_ready(mtd))
37                 ;
38
39         /* Begin command latch cycle */
40         this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
41         /* Set ALE and clear CLE to start address cycle */
42         /* Column address */
43         this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
44         this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
45         this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
46                        NAND_CTRL_ALE); /* A[24:17] */
47 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
48         /* One more address cycle for devices > 32MiB */
49         this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
50                        NAND_CTRL_ALE); /* A[28:25] */
51 #endif
52         /* Latch in address */
53         this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
54
55         /*
56          * Wait a while for the data to be ready
57          */
58         while (!this->dev_ready(mtd))
59                 ;
60
61         return 0;
62 }
63 #else
64 /*
65  * NAND command for large page NAND devices (2k)
66  */
67 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
68 {
69         struct nand_chip *this = mtd->priv;
70         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
71         void (*hwctrl)(struct mtd_info *mtd, int cmd,
72                         unsigned int ctrl) = this->cmd_ctrl;
73
74         while (!this->dev_ready(mtd))
75                 ;
76
77         /* Emulate NAND_CMD_READOOB */
78         if (cmd == NAND_CMD_READOOB) {
79                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
80                 cmd = NAND_CMD_READ0;
81         }
82
83         /* Shift the offset from byte addressing to word addressing. */
84         if (this->options & NAND_BUSWIDTH_16)
85                 offs >>= 1;
86
87         /* Begin command latch cycle */
88         hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
89         /* Set ALE and clear CLE to start address cycle */
90         /* Column address */
91         hwctrl(mtd, offs & 0xff,
92                        NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
93         hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
94         /* Row address */
95         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
96         hwctrl(mtd, ((page_addr >> 8) & 0xff),
97                        NAND_CTRL_ALE); /* A[27:20] */
98 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
99         /* One more address cycle for devices > 128MiB */
100         hwctrl(mtd, (page_addr >> 16) & 0x0f,
101                        NAND_CTRL_ALE); /* A[31:28] */
102 #endif
103         /* Latch in address */
104         hwctrl(mtd, NAND_CMD_READSTART,
105                        NAND_CTRL_CLE | NAND_CTRL_CHANGE);
106         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
107
108         /*
109          * Wait a while for the data to be ready
110          */
111         while (!this->dev_ready(mtd))
112                 ;
113
114         return 0;
115 }
116 #endif
117
118 static int nand_is_bad_block(struct mtd_info *mtd, int block)
119 {
120         struct nand_chip *this = mtd->priv;
121
122         nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
123
124         /*
125          * Read one byte (or two if it's a 16 bit chip).
126          */
127         if (this->options & NAND_BUSWIDTH_16) {
128                 if (readw(this->IO_ADDR_R) != 0xffff)
129                         return 1;
130         } else {
131                 if (readb(this->IO_ADDR_R) != 0xff)
132                         return 1;
133         }
134
135         return 0;
136 }
137
138 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
139 {
140         struct nand_chip *this = mtd->priv;
141         u_char *ecc_calc;
142         u_char *ecc_code;
143         u_char *oob_data;
144         int i;
145         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
146         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
147         int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
148         uint8_t *p = dst;
149         int stat;
150
151         nand_command(mtd, block, page, 0, NAND_CMD_READ0);
152
153         /* No malloc available for now, just use some temporary locations
154          * in SDRAM
155          */
156         ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
157         ecc_code = ecc_calc + 0x100;
158         oob_data = ecc_calc + 0x200;
159
160         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
161                 this->ecc.hwctl(mtd, NAND_ECC_READ);
162                 this->read_buf(mtd, p, eccsize);
163                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
164         }
165         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
166
167         /* Pick the ECC bytes out of the oob data */
168         for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
169                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
170
171         eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
172         p = dst;
173
174         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
175                 /* No chance to do something with the possible error message
176                  * from correct_data(). We just hope that all possible errors
177                  * are corrected by this routine.
178                  */
179                 stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
180         }
181
182         return 0;
183 }
184
185 static int nand_load(struct mtd_info *mtd, unsigned int offs,
186                      unsigned int uboot_size, uchar *dst)
187 {
188         unsigned int block, lastblock;
189         unsigned int page;
190
191         /*
192          * offs has to be aligned to a page address!
193          */
194         block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
195         lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
196         page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
197
198         while (block <= lastblock) {
199                 if (!nand_is_bad_block(mtd, block)) {
200                         /*
201                          * Skip bad blocks
202                          */
203                         while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
204                                 nand_read_page(mtd, block, page, dst);
205                                 dst += CONFIG_SYS_NAND_PAGE_SIZE;
206                                 page++;
207                         }
208
209                         page = 0;
210                 } else {
211                         lastblock++;
212                 }
213
214                 block++;
215         }
216
217         return 0;
218 }
219
220 /*
221  * The main entry for NAND booting. It's necessary that SDRAM is already
222  * configured and available since this code loads the main U-Boot image
223  * from NAND into SDRAM and starts it from there.
224  */
225 void nand_boot(void)
226 {
227         struct nand_chip nand_chip;
228         nand_info_t nand_info;
229         int ret;
230         __attribute__((noreturn)) void (*uboot)(void);
231
232         /*
233          * Init board specific nand support
234          */
235         nand_chip.select_chip = NULL;
236         nand_info.priv = &nand_chip;
237         nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
238         nand_chip.dev_ready = NULL;     /* preset to NULL */
239         nand_chip.options = 0;
240         board_nand_init(&nand_chip);
241
242         if (nand_chip.select_chip)
243                 nand_chip.select_chip(&nand_info, 0);
244
245         /*
246          * Load U-Boot image from NAND into RAM
247          */
248         ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
249                         (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
250
251 #ifdef CONFIG_NAND_ENV_DST
252         nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
253                   (uchar *)CONFIG_NAND_ENV_DST);
254
255 #ifdef CONFIG_ENV_OFFSET_REDUND
256         nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
257                   (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
258 #endif
259 #endif
260
261         if (nand_chip.select_chip)
262                 nand_chip.select_chip(&nand_info, -1);
263
264         /*
265          * Jump to U-Boot image
266          */
267         uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
268         (*uboot)();
269 }