2 * (C) Copyright 2006-2008
3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
27 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
28 CONFIG_SYS_NAND_ECCSIZE)
29 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
32 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
34 * NAND command for small page NAND devices (512)
36 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
38 struct nand_chip *this = mtd->priv;
39 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
41 while (!this->dev_ready(mtd))
44 /* Begin command latch cycle */
45 this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
46 /* Set ALE and clear CLE to start address cycle */
48 this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
49 this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
50 this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
51 NAND_CTRL_ALE); /* A[24:17] */
52 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
53 /* One more address cycle for devices > 32MiB */
54 this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
55 NAND_CTRL_ALE); /* A[28:25] */
57 /* Latch in address */
58 this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61 * Wait a while for the data to be ready
63 while (!this->dev_ready(mtd))
70 * NAND command for large page NAND devices (2k)
72 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
74 struct nand_chip *this = mtd->priv;
75 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
76 void (*hwctrl)(struct mtd_info *mtd, int cmd,
77 unsigned int ctrl) = this->cmd_ctrl;
79 while (!this->dev_ready(mtd))
82 /* Emulate NAND_CMD_READOOB */
83 if (cmd == NAND_CMD_READOOB) {
84 offs += CONFIG_SYS_NAND_PAGE_SIZE;
88 /* Shift the offset from byte addressing to word addressing. */
89 if (this->options & NAND_BUSWIDTH_16)
92 /* Begin command latch cycle */
93 hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
94 /* Set ALE and clear CLE to start address cycle */
96 hwctrl(mtd, offs & 0xff,
97 NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
98 hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
100 hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
101 hwctrl(mtd, ((page_addr >> 8) & 0xff),
102 NAND_CTRL_ALE); /* A[27:20] */
103 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
104 /* One more address cycle for devices > 128MiB */
105 hwctrl(mtd, (page_addr >> 16) & 0x0f,
106 NAND_CTRL_ALE); /* A[31:28] */
108 /* Latch in address */
109 hwctrl(mtd, NAND_CMD_READSTART,
110 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
111 hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
114 * Wait a while for the data to be ready
116 while (!this->dev_ready(mtd))
123 static int nand_is_bad_block(struct mtd_info *mtd, int block)
125 struct nand_chip *this = mtd->priv;
127 nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
130 * Read one byte (or two if it's a 16 bit chip).
132 if (this->options & NAND_BUSWIDTH_16) {
133 if (readw(this->IO_ADDR_R) != 0xffff)
136 if (readb(this->IO_ADDR_R) != 0xff)
143 #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST)
144 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
146 struct nand_chip *this = mtd->priv;
147 u_char ecc_calc[ECCTOTAL];
148 u_char ecc_code[ECCTOTAL];
149 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
151 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
152 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
153 int eccsteps = ECCSTEPS;
156 nand_command(mtd, block, page, 0, NAND_CMD_READOOB);
157 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
158 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
160 /* Pick the ECC bytes out of the oob data */
161 for (i = 0; i < ECCTOTAL; i++)
162 ecc_code[i] = oob_data[nand_ecc_pos[i]];
165 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
166 this->ecc.hwctl(mtd, NAND_ECC_READ);
167 this->read_buf(mtd, p, eccsize);
168 this->ecc.calculate(mtd, p, &ecc_calc[i]);
169 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
175 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
177 struct nand_chip *this = mtd->priv;
178 u_char ecc_calc[ECCTOTAL];
179 u_char ecc_code[ECCTOTAL];
180 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
182 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
183 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
184 int eccsteps = ECCSTEPS;
187 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
189 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
190 this->ecc.hwctl(mtd, NAND_ECC_READ);
191 this->read_buf(mtd, p, eccsize);
192 this->ecc.calculate(mtd, p, &ecc_calc[i]);
194 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
196 /* Pick the ECC bytes out of the oob data */
197 for (i = 0; i < ECCTOTAL; i++)
198 ecc_code[i] = oob_data[nand_ecc_pos[i]];
203 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
204 /* No chance to do something with the possible error message
205 * from correct_data(). We just hope that all possible errors
206 * are corrected by this routine.
208 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
213 #endif /* #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) */
215 static int nand_load(struct mtd_info *mtd, unsigned int offs,
216 unsigned int uboot_size, uchar *dst)
218 unsigned int block, lastblock;
222 * offs has to be aligned to a page address!
224 block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
225 lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
226 page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
228 while (block <= lastblock) {
229 if (!nand_is_bad_block(mtd, block)) {
233 while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
234 nand_read_page(mtd, block, page, dst);
235 dst += CONFIG_SYS_NAND_PAGE_SIZE;
251 * The main entry for NAND booting. It's necessary that SDRAM is already
252 * configured and available since this code loads the main U-Boot image
253 * from NAND into SDRAM and starts it from there.
257 struct nand_chip nand_chip;
258 nand_info_t nand_info;
259 __attribute__((noreturn)) void (*uboot)(void);
262 * Init board specific nand support
264 nand_chip.select_chip = NULL;
265 nand_info.priv = &nand_chip;
266 nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
267 nand_chip.dev_ready = NULL; /* preset to NULL */
268 nand_chip.options = 0;
269 board_nand_init(&nand_chip);
271 if (nand_chip.select_chip)
272 nand_chip.select_chip(&nand_info, 0);
275 * Load U-Boot image from NAND into RAM
277 nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
278 (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
280 #ifdef CONFIG_NAND_ENV_DST
281 nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
282 (uchar *)CONFIG_NAND_ENV_DST);
284 #ifdef CONFIG_ENV_OFFSET_REDUND
285 nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
286 (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
290 if (nand_chip.select_chip)
291 nand_chip.select_chip(&nand_info, -1);
294 * Jump to U-Boot image
296 uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;