2 * Copyright (C) 2009 by Marvell Semiconductors, Inc.
3 * Written by Nicolas Pitre <nico at marvell.com>
5 * Copyright (C) 2009 by David Brownell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the
19 * Free Software Foundation, Inc.,
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
29 #include <helper/binarybuffer.h>
30 #include <target/arm.h>
31 #include <target/algorithm.h>
35 * Copies code to a working area. This will allocate room for the code plus the
36 * additional amount requested if the working area pointer is null.
38 * @param target Pointer to the target to copy code to
39 * @param code Pointer to the code area to be copied
40 * @param code_size Size of the code being copied
41 * @param additional Size of the additional area to be allocated in addition to
43 * @param area Pointer to a pointer to a working area to copy code to
44 * @return Success or failure of the operation
46 static int arm_code_to_working_area(struct target *target,
47 const uint32_t *code, unsigned code_size,
48 unsigned additional, struct working_area **area)
50 uint8_t code_buf[code_size];
53 unsigned size = code_size + additional;
55 /* REVISIT this assumes size doesn't ever change.
56 * That's usually correct; but there are boards with
57 * both large and small page chips, where it won't be...
60 /* make sure we have a working area */
62 retval = target_alloc_working_area(target, size, area);
63 if (retval != ERROR_OK) {
64 LOG_DEBUG("%s: no %d byte buffer", __FUNCTION__, (int) size);
65 return ERROR_NAND_NO_BUFFER;
69 /* buffer code in target endianness */
70 for (i = 0; i < code_size / 4; i++)
71 target_buffer_set_u32(target, code_buf + i * 4, code[i]);
73 /* copy code to work area */
74 retval = target_write_memory(target, (*area)->address,
75 4, code_size / 4, code_buf);
81 * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
82 * For now this only supports ARMv4 and ARMv5 cores.
84 * Enhancements to target_run_algorithm() could enable:
85 * - ARMv6 and ARMv7 cores in ARM mode
87 * Different code fragments could handle:
88 * - Thumb2 cores like Cortex-M (needs different byteswapping)
89 * - 16-bit wide data (needs different setup too)
91 * @param nand Pointer to the arm_nand_data struct that defines the I/O
92 * @param data Pointer to the data to be copied to flash
93 * @param size Size of the data being copied
94 * @return Success or failure of the operation
96 int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
98 struct target *target = nand->target;
99 struct arm_algorithm algo;
100 struct arm *armv4_5 = target->arch_info;
101 struct reg_param reg_params[3];
107 * r0 NAND data address (byte wide)
111 static const uint32_t code[] = {
112 0xe4d13001, /* s: ldrb r3, [r1], #1 */
113 0xe5c03000, /* strb r3, [r0] */
114 0xe2522001, /* subs r2, r2, #1 */
115 0x1afffffb, /* bne s */
117 /* exit: ARMv4 needs hardware breakpoint */
118 0xe1200070, /* e: bkpt #0 */
121 if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
122 retval = arm_code_to_working_area(target, code, sizeof(code),
123 nand->chunk_size, &nand->copy_area);
124 if (retval != ERROR_OK) {
129 nand->op = ARM_NAND_WRITE;
131 /* copy data to work area */
132 target_buf = nand->copy_area->address + sizeof(code);
133 retval = target_bulk_write_memory(target, target_buf, size / 4, data);
134 if (retval == ERROR_OK && (size & 3) != 0)
135 retval = target_write_memory(target,
136 target_buf + (size & ~3),
137 1, size & 3, data + (size & ~3));
138 if (retval != ERROR_OK)
141 /* set up algorithm and parameters */
142 algo.common_magic = ARM_COMMON_MAGIC;
143 algo.core_mode = ARM_MODE_SVC;
144 algo.core_state = ARM_STATE_ARM;
146 init_reg_param(®_params[0], "r0", 32, PARAM_IN);
147 init_reg_param(®_params[1], "r1", 32, PARAM_IN);
148 init_reg_param(®_params[2], "r2", 32, PARAM_IN);
150 buf_set_u32(reg_params[0].value, 0, 32, nand->data);
151 buf_set_u32(reg_params[1].value, 0, 32, target_buf);
152 buf_set_u32(reg_params[2].value, 0, 32, size);
154 /* armv4 must exit using a hardware breakpoint */
155 if (armv4_5->is_armv4)
156 exit = nand->copy_area->address + sizeof(code) - 4;
158 /* use alg to write data from work area to NAND chip */
159 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
160 nand->copy_area->address, exit, 1000, &algo);
161 if (retval != ERROR_OK)
162 LOG_ERROR("error executing hosted NAND write");
164 destroy_reg_param(®_params[0]);
165 destroy_reg_param(®_params[1]);
166 destroy_reg_param(®_params[2]);
172 * Uses an on-chip algorithm for an ARM device to read from a NAND device and
173 * store the data into the host machine's memory.
175 * @param nand Pointer to the arm_nand_data struct that defines the I/O
176 * @param data Pointer to the data buffer to store the read data
177 * @param size Amount of data to be stored to the buffer.
178 * @return Success or failure of the operation
180 int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
182 struct target *target = nand->target;
183 struct arm_algorithm algo;
184 struct arm *armv4_5 = target->arch_info;
185 struct reg_param reg_params[3];
192 * r1 NAND data address (byte wide)
195 static const uint32_t code[] = {
196 0xe5d13000, /* s: ldrb r3, [r1] */
197 0xe4c03001, /* strb r3, [r0], #1 */
198 0xe2522001, /* subs r2, r2, #1 */
199 0x1afffffb, /* bne s */
201 /* exit: ARMv4 needs hardware breakpoint */
202 0xe1200070, /* e: bkpt #0 */
205 /* create the copy area if not yet available */
206 if (nand->op != ARM_NAND_READ || !nand->copy_area) {
207 retval = arm_code_to_working_area(target, code, sizeof(code),
208 nand->chunk_size, &nand->copy_area);
209 if (retval != ERROR_OK) {
214 nand->op = ARM_NAND_READ;
215 target_buf = nand->copy_area->address + sizeof(code);
217 /* set up algorithm and parameters */
218 algo.common_magic = ARM_COMMON_MAGIC;
219 algo.core_mode = ARM_MODE_SVC;
220 algo.core_state = ARM_STATE_ARM;
222 init_reg_param(®_params[0], "r0", 32, PARAM_IN);
223 init_reg_param(®_params[1], "r1", 32, PARAM_IN);
224 init_reg_param(®_params[2], "r2", 32, PARAM_IN);
226 buf_set_u32(reg_params[0].value, 0, 32, target_buf);
227 buf_set_u32(reg_params[1].value, 0, 32, nand->data);
228 buf_set_u32(reg_params[2].value, 0, 32, size);
230 /* armv4 must exit using a hardware breakpoint */
231 if (armv4_5->is_armv4)
232 exit = nand->copy_area->address + sizeof(code) - 4;
234 /* use alg to write data from NAND chip to work area */
235 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
236 nand->copy_area->address, exit, 1000, &algo);
237 if (retval != ERROR_OK)
238 LOG_ERROR("error executing hosted NAND read");
240 destroy_reg_param(®_params[0]);
241 destroy_reg_param(®_params[1]);
242 destroy_reg_param(®_params[2]);
244 /* read from work area to the host's memory */
245 retval = target_read_buffer(target, target_buf, size, data);