]> git.sur5r.net Git - openocd/blob - src/jtag/zy1000/zy1000.c
zy1000: switch to pthread
[openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <pthread.h>
49
50 #include <target/embeddedice.h>
51 #include <jtag/minidriver.h>
52 #include <jtag/interface.h>
53 #include <time.h>
54 #include <helper/time_support.h>
55
56 #include <netinet/tcp.h>
57
58 #if BUILD_ECOSBOARD
59 #include "zy1000_version.h"
60
61 #include <cyg/hal/hal_io.h>             // low level i/o
62 #include <cyg/hal/hal_diag.h>
63
64 #ifdef CYGPKG_HAL_NIOS2
65 #include <cyg/hal/io.h>
66 #include <cyg/firmwareutil/firmwareutil.h>
67 #define ZYLIN_KHZ 60000
68 #else
69 #define ZYLIN_KHZ 64000
70 #endif
71
72 #define ZYLIN_VERSION GIT_ZY1000_VERSION
73 #define ZYLIN_DATE __DATE__
74 #define ZYLIN_TIME __TIME__
75 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
76 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
77
78 #else
79 /* Assume we're connecting to a revc w/60MHz clock. */
80 #define ZYLIN_KHZ 60000
81 #endif
82
83
84 /* The software needs to check if it's in RCLK mode or not */
85 static bool zy1000_rclk = false;
86
87 static int zy1000_khz(int khz, int *jtag_speed)
88 {
89         if (khz == 0)
90         {
91                 *jtag_speed = 0;
92         }
93         else
94         {
95                 int speed;
96                 /* Round speed up to nearest divisor.
97                  *
98                  * E.g. 16000kHz
99                  * (64000 + 15999) / 16000 = 4
100                  * (4 + 1) / 2 = 2
101                  * 2 * 2 = 4
102                  *
103                  * 64000 / 4 = 16000
104                  *
105                  * E.g. 15999
106                  * (64000 + 15998) / 15999 = 5
107                  * (5 + 1) / 2 = 3
108                  * 3 * 2 = 6
109                  *
110                  * 64000 / 6 = 10666
111                  *
112                  */
113                 speed = (ZYLIN_KHZ + (khz -1)) / khz;
114                 speed = (speed + 1 ) / 2;
115                 speed *= 2;
116                 if (speed > 8190)
117                 {
118                         /* maximum dividend */
119                         speed = 8190;
120                 }
121                 *jtag_speed = speed;
122         }
123         return ERROR_OK;
124 }
125
126 static int zy1000_speed_div(int speed, int *khz)
127 {
128         if (speed == 0)
129         {
130                 *khz = 0;
131         }
132         else
133         {
134                 *khz = ZYLIN_KHZ / speed;
135         }
136
137         return ERROR_OK;
138 }
139
140 static bool readPowerDropout(void)
141 {
142         uint32_t state;
143         // sample and clear power dropout
144         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
145         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
146         bool powerDropout;
147         powerDropout = (state & 0x80) != 0;
148         return powerDropout;
149 }
150
151
152 static bool readSRST(void)
153 {
154         uint32_t state;
155         // sample and clear SRST sensing
156         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
157         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
158         bool srstAsserted;
159         srstAsserted = (state & 0x40) != 0;
160         return srstAsserted;
161 }
162
163 static int zy1000_srst_asserted(int *srst_asserted)
164 {
165         *srst_asserted = readSRST();
166         return ERROR_OK;
167 }
168
169 static int zy1000_power_dropout(int *dropout)
170 {
171         *dropout = readPowerDropout();
172         return ERROR_OK;
173 }
174
175 void zy1000_reset(int trst, int srst)
176 {
177         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
178
179         /* flush the JTAG FIFO. Not flushing the queue before messing with
180          * reset has such interesting bugs as causing hard to reproduce
181          * RCLK bugs as RCLK will stop responding when TRST is asserted
182          */
183         waitIdle();
184
185         if (!srst)
186         {
187                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
188         }
189         else
190         {
191                 /* Danger!!! if clk != 0 when in
192                  * idle in TAP_IDLE, reset halt on str912 will fail.
193                  */
194                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
195         }
196
197         if (!trst)
198         {
199                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
200         }
201         else
202         {
203                 /* assert reset */
204                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
205         }
206
207         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
208         {
209                 /* we're now in the RESET state until trst is deasserted */
210                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
211         } else
212         {
213                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
214                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
215         }
216
217         /* wait for srst to float back up */
218         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
219                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
220         {
221                 bool first = true;
222                 long long start = 0;
223                 long total = 0;
224                 for (;;)
225                 {       
226                         // We don't want to sense our own reset, so we clear here.
227                         // There is of course a timing hole where we could loose
228                         // a "real" reset.
229                         if (!readSRST())
230                         {
231                                 if (total > 1)
232                                 {
233                                   LOG_USER("SRST took %dms to deassert", (int)total);
234                                 }
235                                 break;
236                         }
237
238                         if (first)
239                         {
240                             first = false;
241                             start = timeval_ms();
242                         }
243
244                         total = timeval_ms() - start;
245
246                         keep_alive();
247
248                         if (total > 5000)
249                         {
250                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
251                             break;
252                         }
253                 }
254
255         }
256 }
257
258 int zy1000_speed(int speed)
259 {
260         /* flush JTAG master FIFO before setting speed */
261         waitIdle();
262
263         zy1000_rclk = false;
264
265         if (speed == 0)
266         {
267                 /*0 means RCLK*/
268                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
269                 zy1000_rclk = true;
270                 LOG_DEBUG("jtag_speed using RCLK");
271         }
272         else
273         {
274                 if (speed > 8190 || speed < 2)
275                 {
276                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
277                                         ZYLIN_KHZ, (ZYLIN_KHZ * 1000) / 8190, ZYLIN_KHZ / (2 * 1000));
278                         return ERROR_INVALID_ARGUMENTS;
279                 }
280
281                 int khz;
282                 speed &= ~1;
283                 zy1000_speed_div(speed, &khz);
284                 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
285                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
286                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
287         }
288         return ERROR_OK;
289 }
290
291 static bool savePower;
292
293
294 static void setPower(bool power)
295 {
296         savePower = power;
297         if (power)
298         {
299                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
300         } else
301         {
302                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
303         }
304 }
305
306 COMMAND_HANDLER(handle_power_command)
307 {
308         switch (CMD_ARGC)
309         {
310         case 1: {
311                 bool enable;
312                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
313                 setPower(enable);
314                 // fall through
315         }
316         case 0:
317                 LOG_INFO("Target power %s", savePower ? "on" : "off");
318                 break;
319         default:
320                 return ERROR_INVALID_ARGUMENTS;
321         }
322
323         return ERROR_OK;
324 }
325
326 #if !BUILD_ZY1000_MASTER
327 static char *tcp_server = "notspecified";
328 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
329 {
330         if (argc != 2)
331                 return JIM_ERR;
332
333         tcp_server = strdup(Jim_GetString(argv[1], NULL));
334
335         return JIM_OK;
336 }
337 #endif
338
339 #if BUILD_ECOSBOARD
340 /* Give TELNET a way to find out what version this is */
341 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
342 {
343         if ((argc < 1) || (argc > 3))
344                 return JIM_ERR;
345         const char *version_str = NULL;
346
347         if (argc == 1)
348         {
349                 version_str = ZYLIN_OPENOCD_VERSION;
350         } else
351         {
352                 const char *str = Jim_GetString(argv[1], NULL);
353                 const char *str2 = NULL;
354                 if (argc > 2)
355                         str2 = Jim_GetString(argv[2], NULL);
356                 if (strcmp("openocd", str) == 0)
357                 {
358                         version_str = ZYLIN_OPENOCD;
359                 }
360                 else if (strcmp("zy1000", str) == 0)
361                 {
362                         version_str = ZYLIN_VERSION;
363                 }
364                 else if (strcmp("date", str) == 0)
365                 {
366                         version_str = ZYLIN_DATE;
367                 }
368                 else if (strcmp("time", str) == 0)
369                 {
370                         version_str = ZYLIN_TIME;
371                 }
372                 else if (strcmp("pcb", str) == 0)
373                 {
374 #ifdef CYGPKG_HAL_NIOS2
375                         version_str="c";
376 #else
377                         version_str="b";
378 #endif
379                 }
380 #ifdef CYGPKG_HAL_NIOS2
381                 else if (strcmp("fpga", str) == 0)
382                 {
383
384                         /* return a list of 32 bit integers to describe the expected
385                          * and actual FPGA
386                          */
387                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
388                         uint32_t id, timestamp;
389                         HAL_READ_UINT32(SYSID_BASE, id);
390                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
391                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
392                         version_str = fpga_id;
393                         if ((argc>2) && (strcmp("time", str2) == 0))
394                         {
395                             time_t last_mod = timestamp;
396                             char * t = ctime (&last_mod) ;
397                             t[strlen(t)-1] = 0;
398                             version_str = t;
399                         }
400                 }
401 #endif
402
403                 else
404                 {
405                         return JIM_ERR;
406                 }
407         }
408
409         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
410
411         return JIM_OK;
412 }
413 #endif
414
415 #ifdef CYGPKG_HAL_NIOS2
416
417
418 struct info_forward
419 {
420         void *data;
421         struct cyg_upgrade_info *upgraded_file;
422 };
423
424 static void report_info(void *data, const char * format, va_list args)
425 {
426         char *s = alloc_vprintf(format, args);
427         LOG_USER_N("%s", s);
428         free(s);
429 }
430
431 struct cyg_upgrade_info firmware_info =
432 {
433                 (uint8_t *)0x84000000,
434                 "/ram/firmware.phi",
435                 "Firmware",
436                 0x0300000,
437                 0x1f00000 -
438                 0x0300000,
439                 "ZylinNiosFirmware\n",
440                 report_info,
441 };
442
443 // File written to /ram/firmware.phi before arriving at this fn
444 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
445 {
446         if (argc != 1)
447                 return JIM_ERR;
448
449         if (!cyg_firmware_upgrade(NULL, firmware_info))
450                 return JIM_ERR;
451
452         return JIM_OK;
453 }
454 #endif
455
456 static int
457 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
458                                                                    int argc,
459                 Jim_Obj * const *argv)
460 {
461         if (argc != 1)
462         {
463                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
464                 return JIM_ERR;
465         }
466
467         bool dropout = readPowerDropout();
468
469         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
470
471         return JIM_OK;
472 }
473
474
475
476 int zy1000_quit(void)
477 {
478
479         return ERROR_OK;
480 }
481
482
483
484 int interface_jtag_execute_queue(void)
485 {
486         uint32_t empty;
487
488         waitIdle();
489
490         /* We must make sure to write data read back to memory location before we return
491          * from this fn
492          */
493         zy1000_flush_readqueue();
494
495         /* and handle any callbacks... */
496         zy1000_flush_callbackqueue();
497
498         if (zy1000_rclk)
499         {
500                 /* Only check for errors when using RCLK to speed up
501                  * jtag over TCP/IP
502                  */
503                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
504                 /* clear JTAG error register */
505                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
506
507                 if ((empty&0x400) != 0)
508                 {
509                         LOG_WARNING("RCLK timeout");
510                         /* the error is informative only as we don't want to break the firmware if there
511                          * is a false positive.
512                          */
513         //              return ERROR_FAIL;
514                 }
515         }
516         return ERROR_OK;
517 }
518
519
520
521
522 static void writeShiftValue(uint8_t *data, int bits);
523
524 // here we shuffle N bits out/in
525 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
526 {
527         tap_state_t pause_state = shiftState;
528         for (int j = 0; j < num_bits; j += 32)
529         {
530                 int k = num_bits - j;
531                 if (k > 32)
532                 {
533                         k = 32;
534                         /* we have more to shift out */
535                 } else if (pause_now)
536                 {
537                         /* this was the last to shift out this time */
538                         pause_state = end_state;
539                 }
540
541                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
542                 // bits are pushed out LSB to MSB
543                 uint32_t value;
544                 value = 0;
545                 if (out_value != NULL)
546                 {
547                         for (int l = 0; l < k; l += 8)
548                         {
549                                 value|=out_value[(j + l)/8]<<l;
550                         }
551                 }
552                 /* mask away unused bits for easier debugging */
553                 if (k < 32)
554                 {
555                         value&=~(((uint32_t)0xffffffff) << k);
556                 } else
557                 {
558                         /* Shifting by >= 32 is not defined by the C standard
559                          * and will in fact shift by &0x1f bits on nios */
560                 }
561
562                 shiftValueInner(shiftState, pause_state, k, value);
563
564                 if (in_value != NULL)
565                 {
566                         writeShiftValue(in_value + (j/8), k);
567                 }
568         }
569 }
570
571 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
572 {
573         for (int i = 0; i < num_fields; i++)
574         {
575                 scanBits(fields[i].out_value,
576                                 fields[i].in_value,
577                                 fields[i].num_bits,
578                                 (i == num_fields-1),
579                                 shiftState,
580                                 end_state);
581         }
582 }
583
584 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
585 {
586         int scan_size = 0;
587         struct jtag_tap *tap, *nextTap;
588         tap_state_t pause_state = TAP_IRSHIFT;
589
590         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
591         {
592                 nextTap = jtag_tap_next_enabled(tap);
593                 if (nextTap==NULL)
594                 {
595                         pause_state = state;
596                 }
597                 scan_size = tap->ir_length;
598
599                 /* search the list */
600                 if (tap == active)
601                 {
602                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
603                         /* update device information */
604                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
605
606                         tap->bypass = 0;
607                 } else
608                 {
609                         /* if a device isn't listed, set it to BYPASS */
610                         assert(scan_size <= 32);
611                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
612
613                         tap->bypass = 1;
614                 }
615         }
616
617         return ERROR_OK;
618 }
619
620
621
622
623
624 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
625 {
626         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
627         return ERROR_OK;
628 }
629
630 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
631 {
632         struct jtag_tap *tap, *nextTap;
633         tap_state_t pause_state = TAP_DRSHIFT;
634         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
635         {
636                 nextTap = jtag_tap_next_enabled(tap);
637                 if (nextTap==NULL)
638                 {
639                         pause_state = state;
640                 }
641
642                 /* Find a range of fields to write to this tap */
643                 if (tap == active)
644                 {
645                         assert(!tap->bypass);
646
647                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
648                 } else
649                 {
650                         /* Shift out a 0 for disabled tap's */
651                         assert(tap->bypass);
652                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
653                 }
654         }
655         return ERROR_OK;
656 }
657
658 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
659 {
660         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
661         return ERROR_OK;
662 }
663
664 int interface_jtag_add_tlr()
665 {
666         setCurrentState(TAP_RESET);
667         return ERROR_OK;
668 }
669
670
671 int interface_jtag_add_reset(int req_trst, int req_srst)
672 {
673         zy1000_reset(req_trst, req_srst);
674         return ERROR_OK;
675 }
676
677 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
678 {
679         /* num_cycles can be 0 */
680         setCurrentState(clockstate);
681
682         /* execute num_cycles, 32 at the time. */
683         int i;
684         for (i = 0; i < num_cycles; i += 32)
685         {
686                 int num;
687                 num = 32;
688                 if (num_cycles-i < num)
689                 {
690                         num = num_cycles-i;
691                 }
692                 shiftValueInner(clockstate, clockstate, num, 0);
693         }
694
695 #if !TEST_MANUAL()
696         /* finish in end_state */
697         setCurrentState(state);
698 #else
699         tap_state_t t = TAP_IDLE;
700         /* test manual drive code on any target */
701         int tms;
702         uint8_t tms_scan = tap_get_tms_path(t, state);
703         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
704
705         for (i = 0; i < tms_count; i++)
706         {
707                 tms = (tms_scan >> i) & 1;
708                 waitIdle();
709                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
710         }
711         waitIdle();
712         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
713 #endif
714
715         return ERROR_OK;
716 }
717
718 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
719 {
720         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
721 }
722
723 int interface_jtag_add_clocks(int num_cycles)
724 {
725         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
726 }
727
728 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
729 {
730         /*wait for the fifo to be empty*/
731         waitIdle();
732
733         for (unsigned i = 0; i < num_bits; i++)
734         {
735                 int tms;
736
737                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
738                 {
739                         tms = 0;
740                 }
741                 else
742                 {
743                         tms = 1;
744                 }
745
746                 waitIdle();
747                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
748         }
749
750         waitIdle();
751         if (state != TAP_INVALID)
752         {
753                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
754         } else
755         {
756                 /* this would be normal if we are switching to SWD mode */
757         }
758         return ERROR_OK;
759 }
760
761 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
762 {
763         int state_count;
764         int tms = 0;
765
766         state_count = 0;
767
768         tap_state_t cur_state = cmd_queue_cur_state;
769
770         uint8_t seq[16];
771         memset(seq, 0, sizeof(seq));
772         assert(num_states < (int)((sizeof(seq) * 8)));
773
774         while (num_states)
775         {
776                 if (tap_state_transition(cur_state, false) == path[state_count])
777                 {
778                         tms = 0;
779                 }
780                 else if (tap_state_transition(cur_state, true) == path[state_count])
781                 {
782                         tms = 1;
783                 }
784                 else
785                 {
786                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
787                         exit(-1);
788                 }
789
790                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
791
792                 cur_state = path[state_count];
793                 state_count++;
794                 num_states--;
795         }
796
797         return interface_add_tms_seq(state_count, seq, cur_state);
798 }
799
800 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
801 {
802         /* bypass bits before and after */
803         int pre_bits = 0;
804         int post_bits = 0;
805
806         bool found = false;
807         struct jtag_tap *cur_tap, *nextTap;
808         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
809         {
810                 nextTap = jtag_tap_next_enabled(cur_tap);
811                 if (cur_tap == tap)
812                 {
813                         found = true;
814                 } else
815                 {
816                         if (found)
817                         {
818                                 post_bits++;
819                         } else
820                         {
821                                 pre_bits++;
822                         }
823                 }
824         }
825         *pre = pre_bits;
826         *post = post_bits;
827 }
828
829 /*
830         static const int embeddedice_num_bits[] = {32, 6};
831         uint32_t values[2];
832
833         values[0] = value;
834         values[1] = (1 << 5) | reg_addr;
835
836         jtag_add_dr_out(tap,
837                         2,
838                         embeddedice_num_bits,
839                         values,
840                         TAP_IDLE);
841 */
842
843 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
844 {
845 #if 0
846         int i;
847         for (i = 0; i < count; i++)
848         {
849                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
850                 buffer += 4;
851         }
852 #else
853         int pre_bits;
854         int post_bits;
855         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
856
857         if ((pre_bits > 32) || (post_bits + 6 > 32))
858         {
859                 int i;
860                 for (i = 0; i < count; i++)
861                 {
862                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
863                         buffer += 4;
864                 }
865         } else
866         {
867                 int i;
868                 for (i = 0; i < count; i++)
869                 {
870                         /* Fewer pokes means we get to use the FIFO more efficiently */
871                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
872                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
873                         /* Danger! here we need to exit into the TAP_IDLE state to make
874                          * DCC pick up this value.
875                          */
876                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
877                         buffer += 4;
878                 }
879         }
880 #endif
881 }
882
883
884
885 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
886 {
887         /* bypass bits before and after */
888         int pre_bits;
889         int post_bits;
890         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
891         post_bits+=2;
892
893         if ((pre_bits > 32) || (post_bits > 32))
894         {
895                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
896                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
897         } else
898         {
899                 static const int bits[] = {32, 2};
900                 uint32_t values[] = {0, 0};
901
902                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
903                  * with unaligned uint32_t * pointers... */
904                 const uint8_t *t = (const uint8_t *)data;
905
906                 while (--count > 0)
907                 {
908 #if 1
909                         /* Danger! This code doesn't update cmd_queue_cur_state, so
910                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
911                          * this loop would fail!
912                          */
913                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
914
915                         uint32_t value;
916                         value = *t++;
917                         value |= (*t++<<8);
918                         value |= (*t++<<16);
919                         value |= (*t++<<24);
920
921                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
922                         /* minimum 2 bits */
923                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
924
925                         /* copy & paste from arm11_dbgtap.c */
926                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
927                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
928                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
929                          * or in the jtag registers module.
930                          */
931                         waitIdle();
932                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
933                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
934                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
935                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
936                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
937                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
938                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
939                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
940                         /* we don't have to wait for the queue to empty here */
941                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
942                         waitIdle();
943 #else
944                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
945                         {
946                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
947                         };
948
949                         values[0] = *t++;
950                         values[0] |= (*t++<<8);
951                         values[0] |= (*t++<<16);
952                         values[0] |= (*t++<<24);
953
954                         jtag_add_dr_out(tap,
955                                 2,
956                                 bits,
957                                 values,
958                                 TAP_IDLE);
959
960                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
961                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
962 #endif
963                 }
964
965                 values[0] = *t++;
966                 values[0] |= (*t++<<8);
967                 values[0] |= (*t++<<16);
968                 values[0] |= (*t++<<24);
969
970                 /* This will happen on the last iteration updating cmd_queue_cur_state
971                  * so we don't have to track it during the common code path
972                  */
973                 jtag_add_dr_out(tap,
974                         2,
975                         bits,
976                         values,
977                         TAP_IDLE);
978
979                 return jtag_execute_queue();
980         }
981 }
982
983
984 static const struct command_registration zy1000_commands[] = {
985         {
986                 .name = "power",
987                 .handler = handle_power_command,
988                 .mode = COMMAND_ANY,
989                 .help = "Turn power switch to target on/off. "
990                         "With no arguments, prints status.",
991                 .usage = "('on'|'off)",
992         },
993 #if BUILD_ZY1000_MASTER
994 #if BUILD_ECOSBOARD
995         {
996                 .name = "zy1000_version",
997                 .mode = COMMAND_ANY,
998                 .jim_handler = jim_zy1000_version,
999                 .help = "Print version info for zy1000.",
1000                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
1001         },
1002 #endif
1003 #else
1004         {
1005                 .name = "zy1000_server",
1006                 .mode = COMMAND_ANY,
1007                 .jim_handler = jim_zy1000_server,
1008                 .help = "Tcpip address for ZY1000 server.",
1009                 .usage = "address",
1010         },
1011 #endif
1012         {
1013                 .name = "powerstatus",
1014                 .mode = COMMAND_ANY,
1015                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1016                 .help = "Returns power status of target",
1017         },
1018 #ifdef CYGPKG_HAL_NIOS2
1019         {
1020                 .name = "updatezy1000firmware",
1021                 .mode = COMMAND_ANY,
1022                 .jim_handler = jim_zy1000_writefirmware,
1023                 .help = "writes firmware to flash",
1024                 /* .usage = "some_string", */
1025         },
1026 #endif
1027         COMMAND_REGISTRATION_DONE
1028 };
1029
1030
1031 static int tcp_ip = -1;
1032
1033 /* Write large packets if we can */
1034 static size_t out_pos;
1035 static uint8_t out_buffer[16384];
1036 static size_t in_pos;
1037 static size_t in_write;
1038 static uint8_t in_buffer[16384];
1039
1040 static bool flush_writes(void)
1041 {
1042         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1043         out_pos = 0;
1044         return ok;
1045 }
1046
1047 static bool writeLong(uint32_t l)
1048 {
1049         int i;
1050         for (i = 0; i < 4; i++)
1051         {
1052                 uint8_t c = (l >> (i*8))&0xff;
1053                 out_buffer[out_pos++] = c;
1054                 if (out_pos >= sizeof(out_buffer))
1055                 {
1056                         if (!flush_writes())
1057                         {
1058                                 return false;
1059                         }
1060                 }
1061         }
1062         return true;
1063 }
1064
1065 static bool readLong(uint32_t *out_data)
1066 {
1067         uint32_t data = 0;
1068         int i;
1069         for (i = 0; i < 4; i++)
1070         {
1071                 uint8_t c;
1072                 if (in_pos == in_write)
1073                 {
1074                         /* If we have some data that we can send, send them before
1075                          * we wait for more data
1076                          */
1077                         if (out_pos > 0)
1078                         {
1079                                 if (!flush_writes())
1080                                 {
1081                                         return false;
1082                                 }
1083                         }
1084
1085                         /* read more */
1086                         int t;
1087                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1088                         if (t < 1)
1089                         {
1090                                 return false;
1091                         }
1092                         in_write = (size_t) t;
1093                         in_pos = 0;
1094                 }
1095                 c = in_buffer[in_pos++];
1096
1097                 data |= (c << (i*8));
1098         }
1099         *out_data = data;
1100         return true;
1101 }
1102
1103 enum ZY1000_CMD
1104 {
1105         ZY1000_CMD_POKE = 0x0,
1106         ZY1000_CMD_PEEK = 0x8,
1107         ZY1000_CMD_SLEEP = 0x1,
1108         ZY1000_CMD_WAITIDLE = 2
1109 };
1110
1111
1112 #if !BUILD_ZY1000_MASTER
1113
1114 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1115 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1116
1117 /* We initialize this late since we need to know the server address
1118  * first.
1119  */
1120 static void tcpip_open(void)
1121 {
1122         if (tcp_ip >= 0)
1123                 return;
1124
1125         struct sockaddr_in echoServAddr; /* Echo server address */
1126
1127         /* Create a reliable, stream socket using TCP */
1128         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1129         {
1130                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1131                 exit(-1);
1132         }
1133
1134         /* Construct the server address structure */
1135         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1136         echoServAddr.sin_family = AF_INET; /* Internet address family */
1137         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1138         echoServAddr.sin_port = htons(7777); /* Server port */
1139
1140         /* Establish the connection to the echo server */
1141         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1142         {
1143                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1144                 exit(-1);
1145         }
1146
1147         int flag = 1;
1148         setsockopt(tcp_ip,      /* socket affected */
1149                         IPPROTO_TCP,            /* set option at TCP level */
1150                         TCP_NODELAY,            /* name of option */
1151                         (char *)&flag,          /* the cast is historical cruft */
1152                         sizeof(int));           /* length of option value */
1153
1154 }
1155
1156
1157 /* send a poke */
1158 void zy1000_tcpout(uint32_t address, uint32_t data)
1159 {
1160         tcpip_open();
1161         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1162                         !writeLong(data))
1163         {
1164                 fprintf(stderr, "Could not write to zy1000 server\n");
1165                 exit(-1);
1166         }
1167 }
1168
1169 /* By sending the wait to the server, we avoid a readback
1170  * of status. Radically improves performance for this operation
1171  * with long ping times.
1172  */
1173 void waitIdle(void)
1174 {
1175         tcpip_open();
1176         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1177         {
1178                 fprintf(stderr, "Could not write to zy1000 server\n");
1179                 exit(-1);
1180         }
1181 }
1182
1183 uint32_t zy1000_tcpin(uint32_t address)
1184 {
1185         tcpip_open();
1186
1187         zy1000_flush_readqueue();
1188
1189         uint32_t data;
1190         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1191                         !readLong(&data))
1192         {
1193                 fprintf(stderr, "Could not read from zy1000 server\n");
1194                 exit(-1);
1195         }
1196         return data;
1197 }
1198
1199 int interface_jtag_add_sleep(uint32_t us)
1200 {
1201         tcpip_open();
1202         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1203                         !writeLong(us))
1204         {
1205                 fprintf(stderr, "Could not read from zy1000 server\n");
1206                 exit(-1);
1207         }
1208         return ERROR_OK;
1209 }
1210
1211 /* queue a readback */
1212 #define readqueue_size 16384
1213 static struct
1214 {
1215         uint8_t *dest;
1216         int bits;
1217 } readqueue[readqueue_size];
1218
1219 static int readqueue_pos = 0;
1220
1221 /* flush the readqueue, this means reading any data that
1222  * we're expecting and store them into the final position
1223  */
1224 void zy1000_flush_readqueue(void)
1225 {
1226         if (readqueue_pos == 0)
1227         {
1228                 /* simply debugging by allowing easy breakpoints when there
1229                  * is something to do. */
1230                 return;
1231         }
1232         int i;
1233         tcpip_open();
1234         for (i = 0; i < readqueue_pos; i++)
1235         {
1236                 uint32_t value;
1237                 if (!readLong(&value))
1238                 {
1239                         fprintf(stderr, "Could not read from zy1000 server\n");
1240                         exit(-1);
1241                 }
1242
1243                 uint8_t *in_value = readqueue[i].dest;
1244                 int k = readqueue[i].bits;
1245
1246                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1247                 value >>= 32-k;
1248
1249                 for (int l = 0; l < k; l += 8)
1250                 {
1251                         in_value[l/8]=(value >> l)&0xff;
1252                 }
1253         }
1254         readqueue_pos = 0;
1255 }
1256
1257 /* By queuing the callback's we avoid flushing the
1258 read queue until jtag_execute_queue(). This can
1259 reduce latency dramatically for cases where
1260 callbacks are used extensively.
1261 */
1262 #define callbackqueue_size 128
1263 static struct callbackentry
1264 {
1265         jtag_callback_t callback;
1266         jtag_callback_data_t data0;
1267         jtag_callback_data_t data1;
1268         jtag_callback_data_t data2;
1269         jtag_callback_data_t data3;
1270 } callbackqueue[callbackqueue_size];
1271
1272 static int callbackqueue_pos = 0;
1273
1274 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1275 {
1276         if (callbackqueue_pos >= callbackqueue_size)
1277         {
1278                 zy1000_flush_callbackqueue();
1279         }
1280
1281         callbackqueue[callbackqueue_pos].callback = callback;
1282         callbackqueue[callbackqueue_pos].data0 = data0;
1283         callbackqueue[callbackqueue_pos].data1 = data1;
1284         callbackqueue[callbackqueue_pos].data2 = data2;
1285         callbackqueue[callbackqueue_pos].data3 = data3;
1286         callbackqueue_pos++;
1287 }
1288
1289 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1290 {
1291         ((jtag_callback1_t)data1)(data0);
1292         return ERROR_OK;
1293 }
1294
1295 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1296 {
1297         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1298 }
1299
1300 void zy1000_flush_callbackqueue(void)
1301 {
1302         /* we have to flush the read queue so we have access to
1303          the data the callbacks will use 
1304         */
1305         zy1000_flush_readqueue();
1306         int i;
1307         for (i = 0; i < callbackqueue_pos; i++)
1308         {
1309                 struct callbackentry *entry = &callbackqueue[i];
1310                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1311         }
1312         callbackqueue_pos = 0;
1313 }
1314
1315 static void writeShiftValue(uint8_t *data, int bits)
1316 {
1317         waitIdle();
1318
1319         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1320         {
1321                 fprintf(stderr, "Could not read from zy1000 server\n");
1322                 exit(-1);
1323         }
1324
1325         if (readqueue_pos >= readqueue_size)
1326         {
1327                 zy1000_flush_readqueue();
1328         }
1329
1330         readqueue[readqueue_pos].dest = data;
1331         readqueue[readqueue_pos].bits = bits;
1332         readqueue_pos++;
1333 }
1334
1335 #else
1336
1337 static void writeShiftValue(uint8_t *data, int bits)
1338 {
1339         uint32_t value;
1340         waitIdle();
1341         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1342         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1343
1344         // data in, LSB to MSB
1345         // we're shifting in data to MSB, shift data to be aligned for returning the value
1346         value >>= 32 - bits;
1347
1348         for (int l = 0; l < bits; l += 8)
1349         {
1350                 data[l/8]=(value >> l)&0xff;
1351         }
1352 }
1353
1354 #endif
1355
1356 #if BUILD_ZY1000_MASTER
1357
1358 pthread_t thread;
1359
1360 #if BUILD_ECOSBOARD
1361 static char watchdog_stack[2048];
1362 static cyg_thread watchdog_thread_object;
1363 static cyg_handle_t watchdog_thread_handle;
1364 #endif
1365
1366 /* Infinite loop peeking & poking */
1367 static void tcpipserver(void)
1368 {
1369         for (;;)
1370         {
1371                 uint32_t address;
1372                 if (!readLong(&address))
1373                         return;
1374                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1375                 address &= 0xffffff;
1376                 switch (c)
1377                 {
1378                         case ZY1000_CMD_POKE:
1379                         {
1380                                 uint32_t data;
1381                                 if (!readLong(&data))
1382                                         return;
1383                                 address &= ~0x80000000;
1384                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1385                                 break;
1386                         }
1387                         case ZY1000_CMD_PEEK:
1388                         {
1389                                 uint32_t data;
1390                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1391                                 if (!writeLong(data))
1392                                         return;
1393                                 break;
1394                         }
1395                         case ZY1000_CMD_SLEEP:
1396                         {
1397                                 uint32_t data;
1398                                 if (!readLong(&data))
1399                                         return;
1400                                 /* Wait for some us */
1401                                 usleep(data);
1402                                 break;
1403                         }
1404                         case ZY1000_CMD_WAITIDLE:
1405                         {
1406                                 waitIdle();
1407                                 break;
1408                         }
1409                         default:
1410                                 return;
1411                 }
1412         }
1413 }
1414
1415
1416 static void *tcpip_server(void *data)
1417 {
1418         int so_reuseaddr_option = 1;
1419
1420         int fd;
1421         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1422         {
1423                 LOG_ERROR("error creating socket: %s", strerror(errno));
1424                 exit(-1);
1425         }
1426
1427         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1428                         sizeof(int));
1429
1430         struct sockaddr_in sin;
1431         unsigned int address_size;
1432         address_size = sizeof(sin);
1433         memset(&sin, 0, sizeof(sin));
1434         sin.sin_family = AF_INET;
1435         sin.sin_addr.s_addr = INADDR_ANY;
1436         sin.sin_port = htons(7777);
1437
1438         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1439         {
1440                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1441                 exit(-1);
1442         }
1443
1444         if (listen(fd, 1) == -1)
1445         {
1446                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1447                 exit(-1);
1448         }
1449
1450
1451         for (;;)
1452         {
1453                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1454                 if (tcp_ip < 0)
1455                 {
1456                         continue;
1457                 }
1458
1459                 int flag = 1;
1460                 setsockopt(tcp_ip,      /* socket affected */
1461                                 IPPROTO_TCP,            /* set option at TCP level */
1462                                 TCP_NODELAY,            /* name of option */
1463                                 (char *)&flag,          /* the cast is historical cruft */
1464                                 sizeof(int));           /* length of option value */
1465
1466                 bool save_poll = jtag_poll_get_enabled();
1467
1468                 /* polling will screw up the "connection" */
1469                 jtag_poll_set_enabled(false);
1470
1471                 tcpipserver();
1472
1473                 jtag_poll_set_enabled(save_poll);
1474
1475                 close(tcp_ip);
1476
1477         }
1478         /* Never reached actually */
1479         close(fd);
1480
1481         return NULL;
1482 }
1483
1484 #ifdef WATCHDOG_BASE
1485 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1486 static void watchdog_server(cyg_addrword_t data)
1487 {
1488         int so_reuseaddr_option = 1;
1489
1490         int fd;
1491         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1492         {
1493                 LOG_ERROR("error creating socket: %s", strerror(errno));
1494                 exit(-1);
1495         }
1496
1497         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1498                         sizeof(int));
1499
1500         struct sockaddr_in sin;
1501         unsigned int address_size;
1502         address_size = sizeof(sin);
1503         memset(&sin, 0, sizeof(sin));
1504         sin.sin_family = AF_INET;
1505         sin.sin_addr.s_addr = INADDR_ANY;
1506         sin.sin_port = htons(8888);
1507
1508         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1509         {
1510                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1511                 exit(-1);
1512         }
1513
1514         if (listen(fd, 1) == -1)
1515         {
1516                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1517                 exit(-1);
1518         }
1519
1520
1521         for (;;)
1522         {
1523                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1524
1525                 /* Start watchdog, must be reset every 10 seconds. */
1526                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1527
1528                 if (watchdog_ip < 0)
1529                 {
1530                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1531                         exit(-1);
1532                 }
1533
1534                 int flag = 1;
1535                 setsockopt(watchdog_ip, /* socket affected */
1536                                 IPPROTO_TCP,            /* set option at TCP level */
1537                                 TCP_NODELAY,            /* name of option */
1538                                 (char *)&flag,          /* the cast is historical cruft */
1539                                 sizeof(int));           /* length of option value */
1540
1541
1542                 char buf;
1543                 for (;;)
1544                 {
1545                         if (read(watchdog_ip, &buf, 1) == 1)
1546                         {
1547                                 /* Reset timer */
1548                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1549                                 /* Echo so we can telnet in and see that resetting works */
1550                                 write(watchdog_ip, &buf, 1);
1551                         } else
1552                         {
1553                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1554                                  * now.
1555                                  */
1556                                 return;
1557                         }
1558
1559                 }
1560
1561                 /* Never reached */
1562         }
1563 }
1564 #endif
1565
1566 #endif
1567
1568 #if BUILD_ZY1000_MASTER
1569 int interface_jtag_add_sleep(uint32_t us)
1570 {
1571         jtag_sleep(us);
1572         return ERROR_OK;
1573 }
1574 #endif
1575
1576 #if BUILD_ZY1000_MASTER && !BUILD_ECOSBOARD
1577 volatile void *zy1000_jtag_master;
1578 #include <sys/mman.h>
1579 #endif
1580
1581 int zy1000_init(void)
1582 {
1583 #if BUILD_ECOSBOARD
1584         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1585 #elif BUILD_ZY1000_MASTER
1586         int fd;
1587         if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
1588         {
1589                 LOG_ERROR("No access to /dev/mem");
1590                 return ERROR_FAIL;
1591         }
1592 #ifndef REGISTERS_BASE
1593 #define REGISTERS_BASE 0x9002000
1594 #define REGISTERS_SPAN 128
1595 #endif
1596     
1597     zy1000_jtag_master = mmap(0, REGISTERS_SPAN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, REGISTERS_BASE);
1598     
1599     if(zy1000_jtag_master == (void *) -1) 
1600     {
1601             close(fd);
1602                 LOG_ERROR("No access to /dev/mem");
1603                 return ERROR_FAIL;
1604     } 
1605 #endif
1606
1607
1608
1609         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1610
1611         setPower(true); // on by default
1612
1613
1614          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1615         zy1000_reset(0, 0);
1616         int jtag_speed_var;
1617         int retval = jtag_get_speed(&jtag_speed_var);
1618         if (retval != ERROR_OK)
1619                 return retval;
1620         zy1000_speed(jtag_speed_var);
1621
1622 #if BUILD_ZY1000_MASTER
1623         pthread_create(&thread, NULL, tcpip_server, NULL);
1624
1625 #if BUILD_ECOSBOARD
1626 #ifdef WATCHDOG_BASE
1627         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1628                         (void *) watchdog_stack, sizeof(watchdog_stack),
1629                         &watchdog_thread_handle, &watchdog_thread_object);
1630         cyg_thread_resume(watchdog_thread_handle);
1631 #endif
1632 #endif
1633 #endif
1634
1635         return ERROR_OK;
1636 }
1637
1638
1639
1640 struct jtag_interface zy1000_interface =
1641 {
1642         .name = "ZY1000",
1643         .supported = DEBUG_CAP_TMS_SEQ,
1644         .execute_queue = NULL,
1645         .speed = zy1000_speed,
1646         .commands = zy1000_commands,
1647         .init = zy1000_init,
1648         .quit = zy1000_quit,
1649         .khz = zy1000_khz,
1650         .speed_div = zy1000_speed_div,
1651         .power_dropout = zy1000_power_dropout,
1652         .srst_asserted = zy1000_srst_asserted,
1653 };