]> git.sur5r.net Git - openocd/blob - src/target/aarch64.c
aarch64: correct breakpoint register offset
[openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
61
62                 switch (armv8->arm.core_mode) {
63                         case ARMV8_64_EL0T:
64                         case ARMV8_64_EL1T:
65                         case ARMV8_64_EL1H:
66                                 retval = armv8->arm.msr(target, 3, /*op 0*/
67                                                 0, 1,   /* op1, op2 */
68                                                 0, 0,   /* CRn, CRm */
69                                                 aarch64->system_control_reg);
70                                 if (retval != ERROR_OK)
71                                         return retval;
72                         break;
73                         case ARMV8_64_EL2T:
74                         case ARMV8_64_EL2H:
75                                 retval = armv8->arm.msr(target, 3, /*op 0*/
76                                                 4, 1,   /* op1, op2 */
77                                                 0, 0,   /* CRn, CRm */
78                                                 aarch64->system_control_reg);
79                                 if (retval != ERROR_OK)
80                                         return retval;
81                         break;
82                         case ARMV8_64_EL3H:
83                         case ARMV8_64_EL3T:
84                                 retval = armv8->arm.msr(target, 3, /*op 0*/
85                                                 6, 1,   /* op1, op2 */
86                                                 0, 0,   /* CRn, CRm */
87                                                 aarch64->system_control_reg);
88                                 if (retval != ERROR_OK)
89                                         return retval;
90                         break;
91                         default:
92                                 LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
93                         }
94         }
95         return retval;
96 }
97
98 /*  check address before aarch64_apb read write access with mmu on
99  *  remove apb predictible data abort */
100 static int aarch64_check_address(struct target *target, uint32_t address)
101 {
102         /* TODO */
103         return ERROR_OK;
104 }
105 /*  modify system_control_reg in order to enable or disable mmu for :
106  *  - virt2phys address conversion
107  *  - read or write memory in phys or virt address */
108 static int aarch64_mmu_modify(struct target *target, int enable)
109 {
110         struct aarch64_common *aarch64 = target_to_aarch64(target);
111         struct armv8_common *armv8 = &aarch64->armv8_common;
112         int retval = ERROR_OK;
113
114         if (enable) {
115                 /*      if mmu enabled at target stop and mmu not enable */
116                 if (!(aarch64->system_control_reg & 0x1U)) {
117                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
118                         return ERROR_FAIL;
119                 }
120                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
121                         aarch64->system_control_reg_curr |= 0x1U;
122                         switch (armv8->arm.core_mode) {
123                                 case ARMV8_64_EL0T:
124                                 case ARMV8_64_EL1T:
125                                 case ARMV8_64_EL1H:
126                                         retval = armv8->arm.msr(target, 3, /*op 0*/
127                                                         0, 0,   /* op1, op2 */
128                                                         1, 0,   /* CRn, CRm */
129                                                         aarch64->system_control_reg_curr);
130                                         if (retval != ERROR_OK)
131                                                 return retval;
132                                 break;
133                                 case ARMV8_64_EL2T:
134                                 case ARMV8_64_EL2H:
135                                         retval = armv8->arm.msr(target, 3, /*op 0*/
136                                                         4, 0,   /* op1, op2 */
137                                                         1, 0,   /* CRn, CRm */
138                                                         aarch64->system_control_reg_curr);
139                                         if (retval != ERROR_OK)
140                                                 return retval;
141                                 break;
142                                 case ARMV8_64_EL3H:
143                                 case ARMV8_64_EL3T:
144                                         retval = armv8->arm.msr(target, 3, /*op 0*/
145                                                         6, 0,   /* op1, op2 */
146                                                         1, 0,   /* CRn, CRm */
147                                                         aarch64->system_control_reg_curr);
148                                         if (retval != ERROR_OK)
149                                                 return retval;
150                                 break;
151                                 default:
152                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
153                         }
154                 }
155         } else {
156                 if (aarch64->system_control_reg_curr & 0x4U) {
157                         /*  data cache is active */
158                         aarch64->system_control_reg_curr &= ~0x4U;
159                         /* flush data cache armv7 function to be called */
160                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
161                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
162                 }
163                 if ((aarch64->system_control_reg_curr & 0x1U)) {
164                         aarch64->system_control_reg_curr &= ~0x1U;
165                         switch (armv8->arm.core_mode) {
166                                 case ARMV8_64_EL0T:
167                                 case ARMV8_64_EL1T:
168                                 case ARMV8_64_EL1H:
169                                         retval = armv8->arm.msr(target, 3, /*op 0*/
170                                                         0, 0,   /* op1, op2 */
171                                                         1, 0,   /* CRn, CRm */
172                                                         aarch64->system_control_reg_curr);
173                                         if (retval != ERROR_OK)
174                                                 return retval;
175                                         break;
176                                 case ARMV8_64_EL2T:
177                                 case ARMV8_64_EL2H:
178                                         retval = armv8->arm.msr(target, 3, /*op 0*/
179                                                         4, 0,   /* op1, op2 */
180                                                         1, 0,   /* CRn, CRm */
181                                                         aarch64->system_control_reg_curr);
182                                         if (retval != ERROR_OK)
183                                                 return retval;
184                                         break;
185                                 case ARMV8_64_EL3H:
186                                 case ARMV8_64_EL3T:
187                                         retval = armv8->arm.msr(target, 3, /*op 0*/
188                                                         6, 0,   /* op1, op2 */
189                                                         1, 0,   /* CRn, CRm */
190                                                         aarch64->system_control_reg_curr);
191                                         if (retval != ERROR_OK)
192                                                 return retval;
193                                         break;
194                                 default:
195                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
196                                         break;
197                         }
198                 }
199         }
200         return retval;
201 }
202
203 /*
204  * Basic debug access, very low level assumes state is saved
205  */
206 static int aarch64_init_debug_access(struct target *target)
207 {
208         struct armv8_common *armv8 = target_to_armv8(target);
209         int retval;
210         uint32_t dummy;
211
212         LOG_DEBUG(" ");
213
214         /* Unlocking the debug registers for modification
215          * The debugport might be uninitialised so try twice */
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
217                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
218         if (retval != ERROR_OK) {
219                 /* try again */
220                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
221                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
222                 if (retval == ERROR_OK)
223                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
224         }
225         if (retval != ERROR_OK)
226                 return retval;
227         /* Clear Sticky Power Down status Bit in PRSR to enable access to
228            the registers in the Core Power Domain */
229         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
230                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
231         if (retval != ERROR_OK)
232                 return retval;
233
234         /* Enabling of instruction execution in debug mode is done in debug_entry code */
235
236         /* Resync breakpoint registers */
237
238         /* Since this is likely called from init or reset, update target state information*/
239         return aarch64_poll(target);
240 }
241
242 /* To reduce needless round-trips, pass in a pointer to the current
243  * DSCR value.  Initialize it to zero if you just need to know the
244  * value on return from this function; or DSCR_ITE if you
245  * happen to know that no instruction is pending.
246  */
247 static int aarch64_exec_opcode(struct target *target,
248         uint32_t opcode, uint32_t *dscr_p)
249 {
250         uint32_t dscr;
251         int retval;
252         struct armv8_common *armv8 = target_to_armv8(target);
253         dscr = dscr_p ? *dscr_p : 0;
254
255         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
256
257         /* Wait for InstrCompl bit to be set */
258         long long then = timeval_ms();
259         while ((dscr & DSCR_ITE) == 0) {
260                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
261                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
262                 if (retval != ERROR_OK) {
263                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
264                         return retval;
265                 }
266                 if (timeval_ms() > then + 1000) {
267                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
268                         return ERROR_FAIL;
269                 }
270         }
271
272         retval = mem_ap_write_u32(armv8->debug_ap,
273                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
274         if (retval != ERROR_OK)
275                 return retval;
276
277         then = timeval_ms();
278         do {
279                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
281                 if (retval != ERROR_OK) {
282                         LOG_ERROR("Could not read DSCR register");
283                         return retval;
284                 }
285                 if (timeval_ms() > then + 1000) {
286                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
287                         return ERROR_FAIL;
288                 }
289         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
290
291         if (dscr_p)
292                 *dscr_p = dscr;
293
294         return retval;
295 }
296
297 /* Write to memory mapped registers directly with no cache or mmu handling */
298 static int aarch64_dap_write_memap_register_u32(struct target *target,
299         uint32_t address,
300         uint32_t value)
301 {
302         int retval;
303         struct armv8_common *armv8 = target_to_armv8(target);
304
305         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
306
307         return retval;
308 }
309
310 /*
311  * AARCH64 implementation of Debug Programmer's Model
312  *
313  * NOTE the invariant:  these routines return with DSCR_ITE set,
314  * so there's no need to poll for it before executing an instruction.
315  *
316  * NOTE that in several of these cases the "stall" mode might be useful.
317  * It'd let us queue a few operations together... prepare/finish might
318  * be the places to enable/disable that mode.
319  */
320
321 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
322 {
323         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
324 }
325
326 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
327 {
328         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
329         return mem_ap_write_u32(armv8->debug_ap,
330                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
331 }
332
333 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
334 {
335         int ret;
336         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
337         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
338         ret = mem_ap_write_u32(armv8->debug_ap,
339                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
340         ret += mem_ap_write_u32(armv8->debug_ap,
341                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
342         return ret;
343 }
344
345 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
346         uint32_t *dscr_p)
347 {
348         uint32_t dscr = DSCR_ITE;
349         int retval;
350
351         if (dscr_p)
352                 dscr = *dscr_p;
353
354         /* Wait for DTRRXfull */
355         long long then = timeval_ms();
356         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
357                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
358                                 armv8->debug_base + CPUV8_DBG_DSCR,
359                                 &dscr);
360                 if (retval != ERROR_OK)
361                         return retval;
362                 if (timeval_ms() > then + 1000) {
363                         LOG_ERROR("Timeout waiting for read dcc");
364                         return ERROR_FAIL;
365                 }
366         }
367
368         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
369                                             armv8->debug_base + CPUV8_DBG_DTRTX,
370                                             data);
371         if (retval != ERROR_OK)
372                 return retval;
373         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
374
375         if (dscr_p)
376                 *dscr_p = dscr;
377
378         return retval;
379 }
380
381 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
382         uint32_t *dscr_p)
383 {
384         uint32_t dscr = DSCR_ITE;
385         uint32_t higher;
386         int retval;
387
388         if (dscr_p)
389                 dscr = *dscr_p;
390
391         /* Wait for DTRRXfull */
392         long long then = timeval_ms();
393         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
394                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
395                                 armv8->debug_base + CPUV8_DBG_DSCR,
396                                 &dscr);
397                 if (retval != ERROR_OK)
398                         return retval;
399                 if (timeval_ms() > then + 1000) {
400                         LOG_ERROR("Timeout waiting for read dcc");
401                         return ERROR_FAIL;
402                 }
403         }
404
405         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
406                                             armv8->debug_base + CPUV8_DBG_DTRTX,
407                                             (uint32_t *)data);
408         if (retval != ERROR_OK)
409                 return retval;
410
411         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
412                                             armv8->debug_base + CPUV8_DBG_DTRRX,
413                                             &higher);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         *data = *(uint32_t *)data | (uint64_t)higher << 32;
418         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
419
420         if (dscr_p)
421                 *dscr_p = dscr;
422
423         return retval;
424 }
425
426 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
427 {
428         struct aarch64_common *a8 = dpm_to_a8(dpm);
429         uint32_t dscr;
430         int retval;
431
432         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
433         long long then = timeval_ms();
434         for (;; ) {
435                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
436                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 if ((dscr & DSCR_ITE) != 0)
441                         break;
442                 if (timeval_ms() > then + 1000) {
443                         LOG_ERROR("Timeout waiting for dpm prepare");
444                         return ERROR_FAIL;
445                 }
446         }
447
448         /* this "should never happen" ... */
449         if (dscr & DSCR_DTR_RX_FULL) {
450                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
451                 /* Clear DCCRX */
452                 retval = mem_ap_read_u32(a8->armv8_common.debug_ap,
453                         a8->armv8_common.debug_base + CPUV8_DBG_DTRRX, &dscr);
454                 if (retval != ERROR_OK)
455                         return retval;
456
457                 /* Clear sticky error */
458                 retval = mem_ap_write_u32(a8->armv8_common.debug_ap,
459                         a8->armv8_common.debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
460                 if (retval != ERROR_OK)
461                         return retval;
462         }
463
464         return retval;
465 }
466
467 static int aarch64_dpm_finish(struct arm_dpm *dpm)
468 {
469         /* REVISIT what could be done here? */
470         return ERROR_OK;
471 }
472
473 static int aarch64_instr_execute(struct arm_dpm *dpm,
474         uint32_t opcode)
475 {
476         struct aarch64_common *a8 = dpm_to_a8(dpm);
477         uint32_t dscr = DSCR_ITE;
478
479         return aarch64_exec_opcode(
480                         a8->armv8_common.arm.target,
481                         opcode,
482                         &dscr);
483 }
484
485 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
486         uint32_t opcode, uint32_t data)
487 {
488         struct aarch64_common *a8 = dpm_to_a8(dpm);
489         int retval;
490         uint32_t dscr = DSCR_ITE;
491
492         retval = aarch64_write_dcc(&a8->armv8_common, data);
493         if (retval != ERROR_OK)
494                 return retval;
495
496         return aarch64_exec_opcode(
497                         a8->armv8_common.arm.target,
498                         opcode,
499                         &dscr);
500 }
501
502 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
503         uint32_t opcode, uint64_t data)
504 {
505         struct aarch64_common *a8 = dpm_to_a8(dpm);
506         int retval;
507         uint32_t dscr = DSCR_ITE;
508
509         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         return aarch64_exec_opcode(
514                         a8->armv8_common.arm.target,
515                         opcode,
516                         &dscr);
517 }
518
519 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
520         uint32_t opcode, uint32_t data)
521 {
522         struct aarch64_common *a8 = dpm_to_a8(dpm);
523         uint32_t dscr = DSCR_ITE;
524         int retval;
525
526         retval = aarch64_write_dcc(&a8->armv8_common, data);
527         if (retval != ERROR_OK)
528                 return retval;
529
530         retval = aarch64_exec_opcode(
531                         a8->armv8_common.arm.target,
532                         ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 0),
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         /* then the opcode, taking data from R0 */
538         retval = aarch64_exec_opcode(
539                         a8->armv8_common.arm.target,
540                         opcode,
541                         &dscr);
542
543         return retval;
544 }
545
546 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
547         uint32_t opcode, uint64_t data)
548 {
549         struct aarch64_common *a8 = dpm_to_a8(dpm);
550         uint32_t dscr = DSCR_ITE;
551         int retval;
552
553         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
554         if (retval != ERROR_OK)
555                 return retval;
556
557         retval = aarch64_exec_opcode(
558                         a8->armv8_common.arm.target,
559                         ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0),
560                         &dscr);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         /* then the opcode, taking data from R0 */
565         retval = aarch64_exec_opcode(
566                         a8->armv8_common.arm.target,
567                         opcode,
568                         &dscr);
569
570         return retval;
571 }
572
573 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
574 {
575         struct target *target = dpm->arm->target;
576         uint32_t dscr = DSCR_ITE;
577
578         /* "Prefetch flush" after modifying execution status in CPSR */
579         return aarch64_exec_opcode(target,
580                         DSB_SY,
581                         &dscr);
582 }
583
584 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
585         uint32_t opcode, uint32_t *data)
586 {
587         struct aarch64_common *a8 = dpm_to_a8(dpm);
588         int retval;
589         uint32_t dscr = DSCR_ITE;
590
591         /* the opcode, writing data to DCC */
592         retval = aarch64_exec_opcode(
593                         a8->armv8_common.arm.target,
594                         opcode,
595                         &dscr);
596         if (retval != ERROR_OK)
597                 return retval;
598
599         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
600 }
601
602 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
603         uint32_t opcode, uint64_t *data)
604 {
605         struct aarch64_common *a8 = dpm_to_a8(dpm);
606         int retval;
607         uint32_t dscr = DSCR_ITE;
608
609         /* the opcode, writing data to DCC */
610         retval = aarch64_exec_opcode(
611                         a8->armv8_common.arm.target,
612                         opcode,
613                         &dscr);
614         if (retval != ERROR_OK)
615                 return retval;
616
617         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
618 }
619
620 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
621         uint32_t opcode, uint32_t *data)
622 {
623         struct aarch64_common *a8 = dpm_to_a8(dpm);
624         uint32_t dscr = DSCR_ITE;
625         int retval;
626
627         /* the opcode, writing data to R0 */
628         retval = aarch64_exec_opcode(
629                         a8->armv8_common.arm.target,
630                         opcode,
631                         &dscr);
632         if (retval != ERROR_OK)
633                 return retval;
634
635         /* write R0 to DCC */
636         retval = aarch64_exec_opcode(
637                         a8->armv8_common.arm.target,
638                         ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 0),  /* msr dbgdtr_el0, x0 */
639                         &dscr);
640         if (retval != ERROR_OK)
641                 return retval;
642
643         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
644 }
645
646 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
647         uint32_t opcode, uint64_t *data)
648 {
649         struct aarch64_common *a8 = dpm_to_a8(dpm);
650         uint32_t dscr = DSCR_ITE;
651         int retval;
652
653         /* the opcode, writing data to R0 */
654         retval = aarch64_exec_opcode(
655                         a8->armv8_common.arm.target,
656                         opcode,
657                         &dscr);
658         if (retval != ERROR_OK)
659                 return retval;
660
661         /* write R0 to DCC */
662         retval = aarch64_exec_opcode(
663                         a8->armv8_common.arm.target,
664                         ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0),  /* msr dbgdtr_el0, x0 */
665                         &dscr);
666         if (retval != ERROR_OK)
667                 return retval;
668
669         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
670 }
671
672 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
673         uint32_t addr, uint32_t control)
674 {
675         struct aarch64_common *a8 = dpm_to_a8(dpm);
676         uint32_t vr = a8->armv8_common.debug_base;
677         uint32_t cr = a8->armv8_common.debug_base;
678         int retval;
679
680         switch (index_t) {
681                 case 0 ... 15:  /* breakpoints */
682                         vr += CPUV8_DBG_BVR_BASE;
683                         cr += CPUV8_DBG_BCR_BASE;
684                         break;
685                 case 16 ... 31: /* watchpoints */
686                         vr += CPUV8_DBG_WVR_BASE;
687                         cr += CPUV8_DBG_WCR_BASE;
688                         index_t -= 16;
689                         break;
690                 default:
691                         return ERROR_FAIL;
692         }
693         vr += 16 * index_t;
694         cr += 16 * index_t;
695
696         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
697                 (unsigned) vr, (unsigned) cr);
698
699         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
700                         vr, addr);
701         if (retval != ERROR_OK)
702                 return retval;
703         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
704                         cr, control);
705         return retval;
706 }
707
708 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
709 {
710         struct aarch64_common *a = dpm_to_a8(dpm);
711         uint32_t cr;
712
713         switch (index_t) {
714                 case 0 ... 15:
715                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
716                         break;
717                 case 16 ... 31:
718                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
719                         index_t -= 16;
720                         break;
721                 default:
722                         return ERROR_FAIL;
723         }
724         cr += 16 * index_t;
725
726         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
727
728         /* clear control register */
729         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
730
731 }
732
733 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
734 {
735         struct arm_dpm *dpm = &a8->armv8_common.dpm;
736         int retval;
737
738         dpm->arm = &a8->armv8_common.arm;
739         dpm->didr = debug;
740
741         dpm->prepare = aarch64_dpm_prepare;
742         dpm->finish = aarch64_dpm_finish;
743
744         dpm->instr_execute = aarch64_instr_execute;
745         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
746         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
747         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
748         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
749         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
750
751         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
752         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
753         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
754         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
755
756         dpm->arm_reg_current = armv8_reg_current;
757
758         dpm->bpwp_enable = aarch64_bpwp_enable;
759         dpm->bpwp_disable = aarch64_bpwp_disable;
760
761         retval = armv8_dpm_setup(dpm);
762         if (retval == ERROR_OK)
763                 retval = armv8_dpm_initialize(dpm);
764
765         return retval;
766 }
767 static struct target *get_aarch64(struct target *target, int32_t coreid)
768 {
769         struct target_list *head;
770         struct target *curr;
771
772         head = target->head;
773         while (head != (struct target_list *)NULL) {
774                 curr = head->target;
775                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
776                         return curr;
777                 head = head->next;
778         }
779         return target;
780 }
781 static int aarch64_halt(struct target *target);
782
783 static int aarch64_halt_smp(struct target *target)
784 {
785         int retval = 0;
786         struct target_list *head;
787         struct target *curr;
788         head = target->head;
789         while (head != (struct target_list *)NULL) {
790                 curr = head->target;
791                 if ((curr != target) && (curr->state != TARGET_HALTED))
792                         retval += aarch64_halt(curr);
793                 head = head->next;
794         }
795         return retval;
796 }
797
798 static int update_halt_gdb(struct target *target)
799 {
800         int retval = 0;
801         if (target->gdb_service && target->gdb_service->core[0] == -1) {
802                 target->gdb_service->target = target;
803                 target->gdb_service->core[0] = target->coreid;
804                 retval += aarch64_halt_smp(target);
805         }
806         return retval;
807 }
808
809 /*
810  * Cortex-A8 Run control
811  */
812
813 static int aarch64_poll(struct target *target)
814 {
815         int retval = ERROR_OK;
816         uint32_t dscr;
817         struct aarch64_common *aarch64 = target_to_aarch64(target);
818         struct armv8_common *armv8 = &aarch64->armv8_common;
819         enum target_state prev_target_state = target->state;
820         /*  toggle to another core is done by gdb as follow */
821         /*  maint packet J core_id */
822         /*  continue */
823         /*  the next polling trigger an halt event sent to gdb */
824         if ((target->state == TARGET_HALTED) && (target->smp) &&
825                 (target->gdb_service) &&
826                 (target->gdb_service->target == NULL)) {
827                 target->gdb_service->target =
828                         get_aarch64(target, target->gdb_service->core[1]);
829                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
830                 return retval;
831         }
832         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
833                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
834         if (retval != ERROR_OK)
835                 return retval;
836         aarch64->cpudbg_dscr = dscr;
837
838         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
839                 if (prev_target_state != TARGET_HALTED) {
840                         /* We have a halting debug event */
841                         LOG_DEBUG("Target halted");
842                         target->state = TARGET_HALTED;
843                         if ((prev_target_state == TARGET_RUNNING)
844                                 || (prev_target_state == TARGET_UNKNOWN)
845                                 || (prev_target_state == TARGET_RESET)) {
846                                 retval = aarch64_debug_entry(target);
847                                 if (retval != ERROR_OK)
848                                         return retval;
849                                 if (target->smp) {
850                                         retval = update_halt_gdb(target);
851                                         if (retval != ERROR_OK)
852                                                 return retval;
853                                 }
854                                 target_call_event_callbacks(target,
855                                         TARGET_EVENT_HALTED);
856                         }
857                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
858                                 LOG_DEBUG(" ");
859
860                                 retval = aarch64_debug_entry(target);
861                                 if (retval != ERROR_OK)
862                                         return retval;
863                                 if (target->smp) {
864                                         retval = update_halt_gdb(target);
865                                         if (retval != ERROR_OK)
866                                                 return retval;
867                                 }
868
869                                 target_call_event_callbacks(target,
870                                         TARGET_EVENT_DEBUG_HALTED);
871                         }
872                 }
873         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
874                 target->state = TARGET_RUNNING;
875         else {
876                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
877                 target->state = TARGET_UNKNOWN;
878         }
879
880         return retval;
881 }
882
883 static int aarch64_halt(struct target *target)
884 {
885         int retval = ERROR_OK;
886         uint32_t dscr;
887         struct armv8_common *armv8 = target_to_armv8(target);
888
889         /* enable CTI*/
890         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
891                         armv8->cti_base + CTI_CTR, 1);
892         if (retval != ERROR_OK)
893                 return retval;
894
895         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
896                         armv8->cti_base + CTI_GATE, 3);
897         if (retval != ERROR_OK)
898                 return retval;
899
900         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
901                         armv8->cti_base + CTI_OUTEN0, 1);
902         if (retval != ERROR_OK)
903                 return retval;
904
905         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
906                         armv8->cti_base + CTI_OUTEN1, 2);
907         if (retval != ERROR_OK)
908                 return retval;
909
910         /*
911          * add HDE in halting debug mode
912          */
913         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
914                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
919                         armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
920         if (retval != ERROR_OK)
921                 return retval;
922
923         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
924                         armv8->cti_base + CTI_APPPULSE, 1);
925         if (retval != ERROR_OK)
926                 return retval;
927
928         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
929                         armv8->cti_base + CTI_INACK, 1);
930         if (retval != ERROR_OK)
931                 return retval;
932
933
934         long long then = timeval_ms();
935         for (;; ) {
936                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
937                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
938                 if (retval != ERROR_OK)
939                         return retval;
940                 if ((dscr & DSCRV8_HALT_MASK) != 0)
941                         break;
942                 if (timeval_ms() > then + 1000) {
943                         LOG_ERROR("Timeout waiting for halt");
944                         return ERROR_FAIL;
945                 }
946         }
947
948         target->debug_reason = DBG_REASON_DBGRQ;
949
950         return ERROR_OK;
951 }
952
953 static int aarch64_internal_restore(struct target *target, int current,
954         uint64_t *address, int handle_breakpoints, int debug_execution)
955 {
956         struct armv8_common *armv8 = target_to_armv8(target);
957         struct arm *arm = &armv8->arm;
958         int retval;
959         uint64_t resume_pc;
960
961         if (!debug_execution)
962                 target_free_all_working_areas(target);
963
964         /* current = 1: continue on current pc, otherwise continue at <address> */
965         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
966         if (!current)
967                 resume_pc = *address;
968         else
969                 *address = resume_pc;
970
971         /* Make sure that the Armv7 gdb thumb fixups does not
972          * kill the return address
973          */
974         switch (arm->core_state) {
975                 case ARM_STATE_ARM:
976                         resume_pc &= 0xFFFFFFFC;
977                         break;
978                 case ARM_STATE_AARCH64:
979                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
980                         break;
981                 case ARM_STATE_THUMB:
982                 case ARM_STATE_THUMB_EE:
983                         /* When the return address is loaded into PC
984                          * bit 0 must be 1 to stay in Thumb state
985                          */
986                         resume_pc |= 0x1;
987                         break;
988                 case ARM_STATE_JAZELLE:
989                         LOG_ERROR("How do I resume into Jazelle state??");
990                         return ERROR_FAIL;
991         }
992         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
993         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
994         arm->pc->dirty = 1;
995         arm->pc->valid = 1;
996         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
997
998         /* called it now before restoring context because it uses cpu
999          * register r0 for restoring system control register */
1000         retval = aarch64_restore_system_control_reg(target);
1001         if (retval != ERROR_OK)
1002                 return retval;
1003         retval = aarch64_restore_context(target, handle_breakpoints);
1004         if (retval != ERROR_OK)
1005                 return retval;
1006         target->debug_reason = DBG_REASON_NOTHALTED;
1007         target->state = TARGET_RUNNING;
1008
1009         /* registers are now invalid */
1010         register_cache_invalidate(arm->core_cache);
1011
1012 #if 0
1013         /* the front-end may request us not to handle breakpoints */
1014         if (handle_breakpoints) {
1015                 /* Single step past breakpoint at current address */
1016                 breakpoint = breakpoint_find(target, resume_pc);
1017                 if (breakpoint) {
1018                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1019                         cortex_m3_unset_breakpoint(target, breakpoint);
1020                         cortex_m3_single_step_core(target);
1021                         cortex_m3_set_breakpoint(target, breakpoint);
1022                 }
1023         }
1024 #endif
1025
1026         return retval;
1027 }
1028
1029 static int aarch64_internal_restart(struct target *target)
1030 {
1031         struct armv8_common *armv8 = target_to_armv8(target);
1032         struct arm *arm = &armv8->arm;
1033         int retval;
1034         uint32_t dscr;
1035         /*
1036          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1037          * * exception flags: see ARMv7 ARM, C5.9.
1038          *
1039          * REVISIT: for single stepping, we probably want to
1040          * disable IRQs by default, with optional override...
1041          */
1042
1043         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1044                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1045         if (retval != ERROR_OK)
1046                 return retval;
1047
1048         if ((dscr & DSCR_ITE) == 0)
1049                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1050
1051         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1052                         armv8->cti_base + CTI_APPPULSE, 2);
1053         if (retval != ERROR_OK)
1054                 return retval;
1055
1056         long long then = timeval_ms();
1057         for (;; ) {
1058                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1059                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1060                 if (retval != ERROR_OK)
1061                         return retval;
1062                 if ((dscr & DSCR_HDE) != 0)
1063                         break;
1064                 if (timeval_ms() > then + 1000) {
1065                         LOG_ERROR("Timeout waiting for resume");
1066                         return ERROR_FAIL;
1067                 }
1068         }
1069
1070         target->debug_reason = DBG_REASON_NOTHALTED;
1071         target->state = TARGET_RUNNING;
1072
1073         /* registers are now invalid */
1074         register_cache_invalidate(arm->core_cache);
1075
1076         return ERROR_OK;
1077 }
1078
1079 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1080 {
1081         int retval = 0;
1082         struct target_list *head;
1083         struct target *curr;
1084         uint64_t address;
1085         head = target->head;
1086         while (head != (struct target_list *)NULL) {
1087                 curr = head->target;
1088                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1089                         /*  resume current address , not in step mode */
1090                         retval += aarch64_internal_restore(curr, 1, &address,
1091                                         handle_breakpoints, 0);
1092                         retval += aarch64_internal_restart(curr);
1093                 }
1094                 head = head->next;
1095
1096         }
1097         return retval;
1098 }
1099
1100 static int aarch64_resume(struct target *target, int current,
1101         target_addr_t address, int handle_breakpoints, int debug_execution)
1102 {
1103         int retval = 0;
1104         uint64_t addr = address;
1105
1106         /* dummy resume for smp toggle in order to reduce gdb impact  */
1107         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1108                 /*   simulate a start and halt of target */
1109                 target->gdb_service->target = NULL;
1110                 target->gdb_service->core[0] = target->gdb_service->core[1];
1111                 /*  fake resume at next poll we play the  target core[1], see poll*/
1112                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1113                 return 0;
1114         }
1115         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1116                                  debug_execution);
1117         if (target->smp) {
1118                 target->gdb_service->core[0] = -1;
1119                 retval = aarch64_restore_smp(target, handle_breakpoints);
1120                 if (retval != ERROR_OK)
1121                         return retval;
1122         }
1123         aarch64_internal_restart(target);
1124
1125         if (!debug_execution) {
1126                 target->state = TARGET_RUNNING;
1127                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1128                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1129         } else {
1130                 target->state = TARGET_DEBUG_RUNNING;
1131                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1132                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1133         }
1134
1135         return ERROR_OK;
1136 }
1137
1138 static int aarch64_debug_entry(struct target *target)
1139 {
1140         int retval = ERROR_OK;
1141         struct aarch64_common *aarch64 = target_to_aarch64(target);
1142         struct armv8_common *armv8 = target_to_armv8(target);
1143
1144         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1145
1146         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1147          * imprecise data aborts get discarded by issuing a Data
1148          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1149          */
1150
1151         /* make sure to clear all sticky errors */
1152         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1153                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1154         if (retval != ERROR_OK)
1155                 return retval;
1156
1157         /* Examine debug reason */
1158         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1159
1160         /* save address of instruction that triggered the watchpoint? */
1161         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1162                 uint32_t tmp;
1163                 uint64_t wfar = 0;
1164
1165                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1166                                 armv8->debug_base + CPUV8_DBG_WFAR1,
1167                                 &tmp);
1168                 if (retval != ERROR_OK)
1169                         return retval;
1170                 wfar = tmp;
1171                 wfar = (wfar << 32);
1172                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1173                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1174                                 &tmp);
1175                 if (retval != ERROR_OK)
1176                         return retval;
1177                 wfar |= tmp;
1178                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
1179         }
1180
1181         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1182
1183         if (armv8->post_debug_entry) {
1184                 retval = armv8->post_debug_entry(target);
1185                 if (retval != ERROR_OK)
1186                         return retval;
1187         }
1188
1189         return retval;
1190 }
1191
1192 static int aarch64_post_debug_entry(struct target *target)
1193 {
1194         struct aarch64_common *aarch64 = target_to_aarch64(target);
1195         struct armv8_common *armv8 = &aarch64->armv8_common;
1196         int retval;
1197
1198         mem_ap_write_atomic_u32(armv8->debug_ap,
1199                                     armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1200         switch (armv8->arm.core_mode) {
1201                 case ARMV8_64_EL0T:
1202                 case ARMV8_64_EL1T:
1203                 case ARMV8_64_EL1H:
1204                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1205                                         0, 0,   /* op1, op2 */
1206                                         1, 0,   /* CRn, CRm */
1207                                         &aarch64->system_control_reg);
1208                         if (retval != ERROR_OK)
1209                                 return retval;
1210                 break;
1211                 case ARMV8_64_EL2T:
1212                 case ARMV8_64_EL2H:
1213                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1214                                         4, 0,   /* op1, op2 */
1215                                         1, 0,   /* CRn, CRm */
1216                                         &aarch64->system_control_reg);
1217                         if (retval != ERROR_OK)
1218                                 return retval;
1219                 break;
1220                 case ARMV8_64_EL3H:
1221                 case ARMV8_64_EL3T:
1222                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1223                                         6, 0,   /* op1, op2 */
1224                                         1, 0,   /* CRn, CRm */
1225                                         &aarch64->system_control_reg);
1226                         if (retval != ERROR_OK)
1227                                 return retval;
1228                 break;
1229                 default:
1230                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
1231         }
1232         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1233         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1234
1235         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1236                 armv8_identify_cache(target);
1237
1238         armv8->armv8_mmu.mmu_enabled =
1239                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1240         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1241                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1242         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1243                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1244         aarch64->curr_mode = armv8->arm.core_mode;
1245         return ERROR_OK;
1246 }
1247
1248 static int aarch64_step(struct target *target, int current, target_addr_t address,
1249         int handle_breakpoints)
1250 {
1251         struct armv8_common *armv8 = target_to_armv8(target);
1252         int retval;
1253         uint32_t tmp;
1254
1255         if (target->state != TARGET_HALTED) {
1256                 LOG_WARNING("target not halted");
1257                 return ERROR_TARGET_NOT_HALTED;
1258         }
1259
1260         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1261                         armv8->debug_base + CPUV8_DBG_EDECR, &tmp);
1262         if (retval != ERROR_OK)
1263                 return retval;
1264
1265         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1266                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp|0x4));
1267         if (retval != ERROR_OK)
1268                 return retval;
1269
1270         target->debug_reason = DBG_REASON_SINGLESTEP;
1271         retval = aarch64_resume(target, 1, address, 0, 0);
1272         if (retval != ERROR_OK)
1273                 return retval;
1274
1275         long long then = timeval_ms();
1276         while (target->state != TARGET_HALTED) {
1277                 mem_ap_read_atomic_u32(armv8->debug_ap,
1278                         armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1279                 LOG_DEBUG("DESR = %#x", tmp);
1280                 retval = aarch64_poll(target);
1281                 if (retval != ERROR_OK)
1282                         return retval;
1283                 if (timeval_ms() > then + 1000) {
1284                         LOG_ERROR("timeout waiting for target halt");
1285                         return ERROR_FAIL;
1286                 }
1287         }
1288
1289         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1290                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp&(~0x4)));
1291         if (retval != ERROR_OK)
1292                 return retval;
1293
1294         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1295         if (target->state == TARGET_HALTED)
1296                 LOG_DEBUG("target stepped");
1297
1298         return ERROR_OK;
1299 }
1300
1301 static int aarch64_restore_context(struct target *target, bool bpwp)
1302 {
1303         struct armv8_common *armv8 = target_to_armv8(target);
1304
1305         LOG_DEBUG(" ");
1306
1307         if (armv8->pre_restore_context)
1308                 armv8->pre_restore_context(target);
1309
1310         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1311
1312 }
1313
1314 /*
1315  * Cortex-A8 Breakpoint and watchpoint functions
1316  */
1317
1318 /* Setup hardware Breakpoint Register Pair */
1319 static int aarch64_set_breakpoint(struct target *target,
1320         struct breakpoint *breakpoint, uint8_t matchmode)
1321 {
1322         int retval;
1323         int brp_i = 0;
1324         uint32_t control;
1325         uint8_t byte_addr_select = 0x0F;
1326         struct aarch64_common *aarch64 = target_to_aarch64(target);
1327         struct armv8_common *armv8 = &aarch64->armv8_common;
1328         struct aarch64_brp *brp_list = aarch64->brp_list;
1329         uint32_t dscr;
1330
1331         if (breakpoint->set) {
1332                 LOG_WARNING("breakpoint already set");
1333                 return ERROR_OK;
1334         }
1335
1336         if (breakpoint->type == BKPT_HARD) {
1337                 int64_t bpt_value;
1338                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1339                         brp_i++;
1340                 if (brp_i >= aarch64->brp_num) {
1341                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1342                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1343                 }
1344                 breakpoint->set = brp_i + 1;
1345                 if (breakpoint->length == 2)
1346                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1347                 control = ((matchmode & 0x7) << 20)
1348                         | (1 << 13)
1349                         | (byte_addr_select << 5)
1350                         | (3 << 1) | 1;
1351                 brp_list[brp_i].used = 1;
1352                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1353                 brp_list[brp_i].control = control;
1354                 bpt_value = brp_list[brp_i].value;
1355
1356                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1357                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1358                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1359                 if (retval != ERROR_OK)
1360                         return retval;
1361                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1362                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1363                                 (uint32_t)(bpt_value >> 32));
1364                 if (retval != ERROR_OK)
1365                         return retval;
1366
1367                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1368                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1369                                 brp_list[brp_i].control);
1370                 if (retval != ERROR_OK)
1371                         return retval;
1372                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1373                         brp_list[brp_i].control,
1374                         brp_list[brp_i].value);
1375
1376         } else if (breakpoint->type == BKPT_SOFT) {
1377                 uint8_t code[4];
1378                 buf_set_u32(code, 0, 32, ARMV8_BKPT(0x11));
1379                 retval = target_read_memory(target,
1380                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1381                                 breakpoint->length, 1,
1382                                 breakpoint->orig_instr);
1383                 if (retval != ERROR_OK)
1384                         return retval;
1385                 retval = target_write_memory(target,
1386                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1387                                 breakpoint->length, 1, code);
1388                 if (retval != ERROR_OK)
1389                         return retval;
1390                 breakpoint->set = 0x11; /* Any nice value but 0 */
1391         }
1392
1393         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1394                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1395         /* Ensure that halting debug mode is enable */
1396         dscr = dscr | DSCR_HDE;
1397         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1398                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1399         if (retval != ERROR_OK) {
1400                 LOG_DEBUG("Failed to set DSCR.HDE");
1401                 return retval;
1402         }
1403
1404         return ERROR_OK;
1405 }
1406
1407 static int aarch64_set_context_breakpoint(struct target *target,
1408         struct breakpoint *breakpoint, uint8_t matchmode)
1409 {
1410         int retval = ERROR_FAIL;
1411         int brp_i = 0;
1412         uint32_t control;
1413         uint8_t byte_addr_select = 0x0F;
1414         struct aarch64_common *aarch64 = target_to_aarch64(target);
1415         struct armv8_common *armv8 = &aarch64->armv8_common;
1416         struct aarch64_brp *brp_list = aarch64->brp_list;
1417
1418         if (breakpoint->set) {
1419                 LOG_WARNING("breakpoint already set");
1420                 return retval;
1421         }
1422         /*check available context BRPs*/
1423         while ((brp_list[brp_i].used ||
1424                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1425                 brp_i++;
1426
1427         if (brp_i >= aarch64->brp_num) {
1428                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1429                 return ERROR_FAIL;
1430         }
1431
1432         breakpoint->set = brp_i + 1;
1433         control = ((matchmode & 0x7) << 20)
1434                 | (1 << 13)
1435                 | (byte_addr_select << 5)
1436                 | (3 << 1) | 1;
1437         brp_list[brp_i].used = 1;
1438         brp_list[brp_i].value = (breakpoint->asid);
1439         brp_list[brp_i].control = control;
1440         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1441                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1442                         brp_list[brp_i].value);
1443         if (retval != ERROR_OK)
1444                 return retval;
1445         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1446                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1447                         brp_list[brp_i].control);
1448         if (retval != ERROR_OK)
1449                 return retval;
1450         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1451                 brp_list[brp_i].control,
1452                 brp_list[brp_i].value);
1453         return ERROR_OK;
1454
1455 }
1456
1457 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1458 {
1459         int retval = ERROR_FAIL;
1460         int brp_1 = 0;  /* holds the contextID pair */
1461         int brp_2 = 0;  /* holds the IVA pair */
1462         uint32_t control_CTX, control_IVA;
1463         uint8_t CTX_byte_addr_select = 0x0F;
1464         uint8_t IVA_byte_addr_select = 0x0F;
1465         uint8_t CTX_machmode = 0x03;
1466         uint8_t IVA_machmode = 0x01;
1467         struct aarch64_common *aarch64 = target_to_aarch64(target);
1468         struct armv8_common *armv8 = &aarch64->armv8_common;
1469         struct aarch64_brp *brp_list = aarch64->brp_list;
1470
1471         if (breakpoint->set) {
1472                 LOG_WARNING("breakpoint already set");
1473                 return retval;
1474         }
1475         /*check available context BRPs*/
1476         while ((brp_list[brp_1].used ||
1477                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1478                 brp_1++;
1479
1480         printf("brp(CTX) found num: %d\n", brp_1);
1481         if (brp_1 >= aarch64->brp_num) {
1482                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1483                 return ERROR_FAIL;
1484         }
1485
1486         while ((brp_list[brp_2].used ||
1487                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1488                 brp_2++;
1489
1490         printf("brp(IVA) found num: %d\n", brp_2);
1491         if (brp_2 >= aarch64->brp_num) {
1492                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1493                 return ERROR_FAIL;
1494         }
1495
1496         breakpoint->set = brp_1 + 1;
1497         breakpoint->linked_BRP = brp_2;
1498         control_CTX = ((CTX_machmode & 0x7) << 20)
1499                 | (brp_2 << 16)
1500                 | (0 << 14)
1501                 | (CTX_byte_addr_select << 5)
1502                 | (3 << 1) | 1;
1503         brp_list[brp_1].used = 1;
1504         brp_list[brp_1].value = (breakpoint->asid);
1505         brp_list[brp_1].control = control_CTX;
1506         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1507                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1508                         brp_list[brp_1].value);
1509         if (retval != ERROR_OK)
1510                 return retval;
1511         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1512                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1513                         brp_list[brp_1].control);
1514         if (retval != ERROR_OK)
1515                 return retval;
1516
1517         control_IVA = ((IVA_machmode & 0x7) << 20)
1518                 | (brp_1 << 16)
1519                 | (1 << 13)
1520                 | (IVA_byte_addr_select << 5)
1521                 | (3 << 1) | 1;
1522         brp_list[brp_2].used = 1;
1523         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1524         brp_list[brp_2].control = control_IVA;
1525         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1526                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1527                         brp_list[brp_2].value & 0xFFFFFFFF);
1528         if (retval != ERROR_OK)
1529                 return retval;
1530         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1531                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1532                         brp_list[brp_2].value >> 32);
1533         if (retval != ERROR_OK)
1534                 return retval;
1535         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1536                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1537                         brp_list[brp_2].control);
1538         if (retval != ERROR_OK)
1539                 return retval;
1540
1541         return ERROR_OK;
1542 }
1543
1544 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1545 {
1546         int retval;
1547         struct aarch64_common *aarch64 = target_to_aarch64(target);
1548         struct armv8_common *armv8 = &aarch64->armv8_common;
1549         struct aarch64_brp *brp_list = aarch64->brp_list;
1550
1551         if (!breakpoint->set) {
1552                 LOG_WARNING("breakpoint not set");
1553                 return ERROR_OK;
1554         }
1555
1556         if (breakpoint->type == BKPT_HARD) {
1557                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1558                         int brp_i = breakpoint->set - 1;
1559                         int brp_j = breakpoint->linked_BRP;
1560                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1561                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1562                                 return ERROR_OK;
1563                         }
1564                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1565                                 brp_list[brp_i].control, brp_list[brp_i].value);
1566                         brp_list[brp_i].used = 0;
1567                         brp_list[brp_i].value = 0;
1568                         brp_list[brp_i].control = 0;
1569                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1570                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1571                                         brp_list[brp_i].control);
1572                         if (retval != ERROR_OK)
1573                                 return retval;
1574                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1575                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1576                                 return ERROR_OK;
1577                         }
1578                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1579                                 brp_list[brp_j].control, brp_list[brp_j].value);
1580                         brp_list[brp_j].used = 0;
1581                         brp_list[brp_j].value = 0;
1582                         brp_list[brp_j].control = 0;
1583                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1584                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1585                                         brp_list[brp_j].control);
1586                         if (retval != ERROR_OK)
1587                                 return retval;
1588                         breakpoint->linked_BRP = 0;
1589                         breakpoint->set = 0;
1590                         return ERROR_OK;
1591
1592                 } else {
1593                         int brp_i = breakpoint->set - 1;
1594                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1595                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1596                                 return ERROR_OK;
1597                         }
1598                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1599                                 brp_list[brp_i].control, brp_list[brp_i].value);
1600                         brp_list[brp_i].used = 0;
1601                         brp_list[brp_i].value = 0;
1602                         brp_list[brp_i].control = 0;
1603                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1604                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1605                                         brp_list[brp_i].control);
1606                         if (retval != ERROR_OK)
1607                                 return retval;
1608                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1609                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1610                                         brp_list[brp_i].value);
1611                         if (retval != ERROR_OK)
1612                                 return retval;
1613                         breakpoint->set = 0;
1614                         return ERROR_OK;
1615                 }
1616         } else {
1617                 /* restore original instruction (kept in target endianness) */
1618                 if (breakpoint->length == 4) {
1619                         retval = target_write_memory(target,
1620                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1621                                         4, 1, breakpoint->orig_instr);
1622                         if (retval != ERROR_OK)
1623                                 return retval;
1624                 } else {
1625                         retval = target_write_memory(target,
1626                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1627                                         2, 1, breakpoint->orig_instr);
1628                         if (retval != ERROR_OK)
1629                                 return retval;
1630                 }
1631         }
1632         breakpoint->set = 0;
1633
1634         return ERROR_OK;
1635 }
1636
1637 static int aarch64_add_breakpoint(struct target *target,
1638         struct breakpoint *breakpoint)
1639 {
1640         struct aarch64_common *aarch64 = target_to_aarch64(target);
1641
1642         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1643                 LOG_INFO("no hardware breakpoint available");
1644                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1645         }
1646
1647         if (breakpoint->type == BKPT_HARD)
1648                 aarch64->brp_num_available--;
1649
1650         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1651 }
1652
1653 static int aarch64_add_context_breakpoint(struct target *target,
1654         struct breakpoint *breakpoint)
1655 {
1656         struct aarch64_common *aarch64 = target_to_aarch64(target);
1657
1658         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1659                 LOG_INFO("no hardware breakpoint available");
1660                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1661         }
1662
1663         if (breakpoint->type == BKPT_HARD)
1664                 aarch64->brp_num_available--;
1665
1666         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1667 }
1668
1669 static int aarch64_add_hybrid_breakpoint(struct target *target,
1670         struct breakpoint *breakpoint)
1671 {
1672         struct aarch64_common *aarch64 = target_to_aarch64(target);
1673
1674         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1675                 LOG_INFO("no hardware breakpoint available");
1676                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1677         }
1678
1679         if (breakpoint->type == BKPT_HARD)
1680                 aarch64->brp_num_available--;
1681
1682         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1683 }
1684
1685
1686 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1687 {
1688         struct aarch64_common *aarch64 = target_to_aarch64(target);
1689
1690 #if 0
1691 /* It is perfectly possible to remove breakpoints while the target is running */
1692         if (target->state != TARGET_HALTED) {
1693                 LOG_WARNING("target not halted");
1694                 return ERROR_TARGET_NOT_HALTED;
1695         }
1696 #endif
1697
1698         if (breakpoint->set) {
1699                 aarch64_unset_breakpoint(target, breakpoint);
1700                 if (breakpoint->type == BKPT_HARD)
1701                         aarch64->brp_num_available++;
1702         }
1703
1704         return ERROR_OK;
1705 }
1706
1707 /*
1708  * Cortex-A8 Reset functions
1709  */
1710
1711 static int aarch64_assert_reset(struct target *target)
1712 {
1713         struct armv8_common *armv8 = target_to_armv8(target);
1714
1715         LOG_DEBUG(" ");
1716
1717         /* FIXME when halt is requested, make it work somehow... */
1718
1719         /* Issue some kind of warm reset. */
1720         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1721                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1722         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1723                 /* REVISIT handle "pulls" cases, if there's
1724                  * hardware that needs them to work.
1725                  */
1726                 jtag_add_reset(0, 1);
1727         } else {
1728                 LOG_ERROR("%s: how to reset?", target_name(target));
1729                 return ERROR_FAIL;
1730         }
1731
1732         /* registers are now invalid */
1733         register_cache_invalidate(armv8->arm.core_cache);
1734
1735         target->state = TARGET_RESET;
1736
1737         return ERROR_OK;
1738 }
1739
1740 static int aarch64_deassert_reset(struct target *target)
1741 {
1742         int retval;
1743
1744         LOG_DEBUG(" ");
1745
1746         /* be certain SRST is off */
1747         jtag_add_reset(0, 0);
1748
1749         retval = aarch64_poll(target);
1750         if (retval != ERROR_OK)
1751                 return retval;
1752
1753         if (target->reset_halt) {
1754                 if (target->state != TARGET_HALTED) {
1755                         LOG_WARNING("%s: ran after reset and before halt ...",
1756                                 target_name(target));
1757                         retval = target_halt(target);
1758                         if (retval != ERROR_OK)
1759                                 return retval;
1760                 }
1761         }
1762
1763         return ERROR_OK;
1764 }
1765
1766 static int aarch64_write_apb_ap_memory(struct target *target,
1767         uint64_t address, uint32_t size,
1768         uint32_t count, const uint8_t *buffer)
1769 {
1770         /* write memory through APB-AP */
1771         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1772         struct armv8_common *armv8 = target_to_armv8(target);
1773         struct arm *arm = &armv8->arm;
1774         int total_bytes = count * size;
1775         int total_u32;
1776         int start_byte = address & 0x3;
1777         int end_byte   = (address + total_bytes) & 0x3;
1778         struct reg *reg;
1779         uint32_t dscr;
1780         uint8_t *tmp_buff = NULL;
1781
1782         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1783                           address, size, count);
1784         if (target->state != TARGET_HALTED) {
1785                 LOG_WARNING("target not halted");
1786                 return ERROR_TARGET_NOT_HALTED;
1787         }
1788
1789         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1790
1791         /* Mark register R0 as dirty, as it will be used
1792          * for transferring the data.
1793          * It will be restored automatically when exiting
1794          * debug mode
1795          */
1796         reg = armv8_reg_current(arm, 1);
1797         reg->dirty = true;
1798
1799         reg = armv8_reg_current(arm, 0);
1800         reg->dirty = true;
1801
1802         /*  clear any abort  */
1803         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1804                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1805         if (retval != ERROR_OK)
1806                 return retval;
1807
1808
1809         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1810
1811         /* The algorithm only copies 32 bit words, so the buffer
1812          * should be expanded to include the words at either end.
1813          * The first and last words will be read first to avoid
1814          * corruption if needed.
1815          */
1816         tmp_buff = malloc(total_u32 * 4);
1817
1818         if ((start_byte != 0) && (total_u32 > 1)) {
1819                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1820                  * the other bytes in the word.
1821                  */
1822                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1823                 if (retval != ERROR_OK)
1824                         goto error_free_buff_w;
1825         }
1826
1827         /* If end of write is not aligned, or the write is less than 4 bytes */
1828         if ((end_byte != 0) ||
1829                 ((total_u32 == 1) && (total_bytes != 4))) {
1830
1831                 /* Read the last word to avoid corruption during 32 bit write */
1832                 int mem_offset = (total_u32-1) * 4;
1833                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1834                 if (retval != ERROR_OK)
1835                         goto error_free_buff_w;
1836         }
1837
1838         /* Copy the write buffer over the top of the temporary buffer */
1839         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1840
1841         /* We now have a 32 bit aligned buffer that can be written */
1842
1843         /* Read DSCR */
1844         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1845                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1846         if (retval != ERROR_OK)
1847                 goto error_free_buff_w;
1848
1849         /* Set Normal access mode  */
1850         dscr = (dscr & ~DSCR_MA);
1851         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1852                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1853
1854         if (arm->core_state == ARM_STATE_AARCH64) {
1855                 /* Write X0 with value 'address' using write procedure */
1856                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1857                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1858                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1859                 retval += aarch64_exec_opcode(target,
1860                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1861         } else {
1862                 /* Write R0 with value 'address' using write procedure */
1863                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1864                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1865                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1866                 retval += aarch64_exec_opcode(target,
1867                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1868
1869         }
1870         /* Step 1.d   - Change DCC to memory mode */
1871         dscr = dscr | DSCR_MA;
1872         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1873                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1874         if (retval != ERROR_OK)
1875                 goto error_unset_dtr_w;
1876
1877
1878         /* Step 2.a   - Do the write */
1879         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1880                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1881         if (retval != ERROR_OK)
1882                 goto error_unset_dtr_w;
1883
1884         /* Step 3.a   - Switch DTR mode back to Normal mode */
1885         dscr = (dscr & ~DSCR_MA);
1886         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1887                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1888         if (retval != ERROR_OK)
1889                 goto error_unset_dtr_w;
1890
1891         /* Check for sticky abort flags in the DSCR */
1892         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1893                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1894         if (retval != ERROR_OK)
1895                 goto error_free_buff_w;
1896         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1897                 /* Abort occurred - clear it and exit */
1898                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1899                 mem_ap_write_atomic_u32(armv8->debug_ap,
1900                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1901                 goto error_free_buff_w;
1902         }
1903
1904         /* Done */
1905         free(tmp_buff);
1906         return ERROR_OK;
1907
1908 error_unset_dtr_w:
1909         /* Unset DTR mode */
1910         mem_ap_read_atomic_u32(armv8->debug_ap,
1911                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1912         dscr = (dscr & ~DSCR_MA);
1913         mem_ap_write_atomic_u32(armv8->debug_ap,
1914                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1915 error_free_buff_w:
1916         LOG_ERROR("error");
1917         free(tmp_buff);
1918         return ERROR_FAIL;
1919 }
1920
1921 static int aarch64_read_apb_ap_memory(struct target *target,
1922         target_addr_t address, uint32_t size,
1923         uint32_t count, uint8_t *buffer)
1924 {
1925         /* read memory through APB-AP */
1926         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1927         struct armv8_common *armv8 = target_to_armv8(target);
1928         struct arm *arm = &armv8->arm;
1929         int total_bytes = count * size;
1930         int total_u32;
1931         int start_byte = address & 0x3;
1932         int end_byte   = (address + total_bytes) & 0x3;
1933         struct reg *reg;
1934         uint32_t dscr;
1935         uint8_t *tmp_buff = NULL;
1936         uint8_t *u8buf_ptr;
1937         uint32_t value;
1938
1939         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1940                           address, size, count);
1941         if (target->state != TARGET_HALTED) {
1942                 LOG_WARNING("target not halted");
1943                 return ERROR_TARGET_NOT_HALTED;
1944         }
1945
1946         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1947         /* Mark register X0, X1 as dirty, as it will be used
1948          * for transferring the data.
1949          * It will be restored automatically when exiting
1950          * debug mode
1951          */
1952         reg = armv8_reg_current(arm, 1);
1953         reg->dirty = true;
1954
1955         reg = armv8_reg_current(arm, 0);
1956         reg->dirty = true;
1957
1958         /*      clear any abort  */
1959         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1960                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1961         if (retval != ERROR_OK)
1962                 goto error_free_buff_r;
1963
1964         /* Read DSCR */
1965         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1966                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1967
1968         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1969
1970         /* Set Normal access mode  */
1971         dscr = (dscr & ~DSCR_MA);
1972         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1973                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1974
1975         if (arm->core_state == ARM_STATE_AARCH64) {
1976                 /* Write X0 with value 'address' using write procedure */
1977                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1978                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1979                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1980                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1981                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1982                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1983                 /* Step 1.e - Change DCC to memory mode */
1984                 dscr = dscr | DSCR_MA;
1985                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1986                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1987                 /* Step 1.f - read DBGDTRTX and discard the value */
1988                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1989                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1990         } else {
1991                 /* Write R0 with value 'address' using write procedure */
1992                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1993                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1994                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1995                 retval += aarch64_exec_opcode(target,
1996                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1997                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1998                 retval += aarch64_exec_opcode(target,
1999                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
2000                 /* Step 1.e - Change DCC to memory mode */
2001                 dscr = dscr | DSCR_MA;
2002                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2003                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2004                 /* Step 1.f - read DBGDTRTX and discard the value */
2005                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2006                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2007
2008         }
2009         if (retval != ERROR_OK)
2010                 goto error_unset_dtr_r;
2011
2012         /* Optimize the read as much as we can, either way we read in a single pass  */
2013         if ((start_byte) || (end_byte)) {
2014                 /* The algorithm only copies 32 bit words, so the buffer
2015                  * should be expanded to include the words at either end.
2016                  * The first and last words will be read into a temp buffer
2017                  * to avoid corruption
2018                  */
2019                 tmp_buff = malloc(total_u32 * 4);
2020                 if (!tmp_buff)
2021                         goto error_unset_dtr_r;
2022
2023                 /* use the tmp buffer to read the entire data */
2024                 u8buf_ptr = tmp_buff;
2025         } else
2026                 /* address and read length are aligned so read directly into the passed buffer */
2027                 u8buf_ptr = buffer;
2028
2029         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2030          * Abort flags are sticky, so can be read at end of transactions
2031          *
2032          * This data is read in aligned to 32 bit boundary.
2033          */
2034
2035         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2036          * increments X0 by 4. */
2037         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
2038                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
2039         if (retval != ERROR_OK)
2040                         goto error_unset_dtr_r;
2041
2042         /* Step 3.a - set DTR access mode back to Normal mode   */
2043         dscr = (dscr & ~DSCR_MA);
2044         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2045                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2046         if (retval != ERROR_OK)
2047                 goto error_free_buff_r;
2048
2049         /* Step 3.b - read DBGDTRTX for the final value */
2050         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2051                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2052         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
2053
2054         /* Check for sticky abort flags in the DSCR */
2055         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2056                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2057         if (retval != ERROR_OK)
2058                 goto error_free_buff_r;
2059         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2060                 /* Abort occurred - clear it and exit */
2061                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2062                 mem_ap_write_atomic_u32(armv8->debug_ap,
2063                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2064                 goto error_free_buff_r;
2065         }
2066
2067         /* check if we need to copy aligned data by applying any shift necessary */
2068         if (tmp_buff) {
2069                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
2070                 free(tmp_buff);
2071         }
2072
2073         /* Done */
2074         return ERROR_OK;
2075
2076 error_unset_dtr_r:
2077         /* Unset DTR mode */
2078         mem_ap_read_atomic_u32(armv8->debug_ap,
2079                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2080         dscr = (dscr & ~DSCR_MA);
2081         mem_ap_write_atomic_u32(armv8->debug_ap,
2082                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2083 error_free_buff_r:
2084         LOG_ERROR("error");
2085         free(tmp_buff);
2086         return ERROR_FAIL;
2087 }
2088
2089 static int aarch64_read_phys_memory(struct target *target,
2090         target_addr_t address, uint32_t size,
2091         uint32_t count, uint8_t *buffer)
2092 {
2093         struct armv8_common *armv8 = target_to_armv8(target);
2094         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2095         struct adiv5_dap *swjdp = armv8->arm.dap;
2096         uint8_t apsel = swjdp->apsel;
2097         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2098                 address, size, count);
2099
2100         if (count && buffer) {
2101
2102                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2103
2104                         /* read memory through AHB-AP */
2105                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
2106                 } else {
2107                         /* read memory through APB-AP */
2108                         retval = aarch64_mmu_modify(target, 0);
2109                         if (retval != ERROR_OK)
2110                                 return retval;
2111                         retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2112                 }
2113         }
2114         return retval;
2115 }
2116
2117 static int aarch64_read_memory(struct target *target, target_addr_t address,
2118         uint32_t size, uint32_t count, uint8_t *buffer)
2119 {
2120         int mmu_enabled = 0;
2121         target_addr_t virt, phys;
2122         int retval;
2123         struct armv8_common *armv8 = target_to_armv8(target);
2124         struct adiv5_dap *swjdp = armv8->arm.dap;
2125         uint8_t apsel = swjdp->apsel;
2126
2127         /* aarch64 handles unaligned memory access */
2128         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2129                 size, count);
2130
2131         /* determine if MMU was enabled on target stop */
2132         if (!armv8->is_armv7r) {
2133                 retval = aarch64_mmu(target, &mmu_enabled);
2134                 if (retval != ERROR_OK)
2135                         return retval;
2136         }
2137
2138         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2139                 if (mmu_enabled) {
2140                         virt = address;
2141                         retval = aarch64_virt2phys(target, virt, &phys);
2142                         if (retval != ERROR_OK)
2143                                 return retval;
2144
2145                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2146                                   virt, phys);
2147                         address = phys;
2148                 }
2149                 retval = aarch64_read_phys_memory(target, address, size, count,
2150                                                   buffer);
2151         } else {
2152                 if (mmu_enabled) {
2153                         retval = aarch64_check_address(target, address);
2154                         if (retval != ERROR_OK)
2155                                 return retval;
2156                         /* enable MMU as we could have disabled it for phys
2157                            access */
2158                         retval = aarch64_mmu_modify(target, 1);
2159                         if (retval != ERROR_OK)
2160                                 return retval;
2161                 }
2162                 retval = aarch64_read_apb_ap_memory(target, address, size,
2163                                                     count, buffer);
2164         }
2165         return retval;
2166 }
2167
2168 static int aarch64_write_phys_memory(struct target *target,
2169         target_addr_t address, uint32_t size,
2170         uint32_t count, const uint8_t *buffer)
2171 {
2172         struct armv8_common *armv8 = target_to_armv8(target);
2173         struct adiv5_dap *swjdp = armv8->arm.dap;
2174         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2175         uint8_t apsel = swjdp->apsel;
2176
2177         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2178                 size, count);
2179
2180         if (count && buffer) {
2181
2182                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2183
2184                         /* write memory through AHB-AP */
2185                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2186                 } else {
2187
2188                         /* write memory through APB-AP */
2189                         if (!armv8->is_armv7r) {
2190                                 retval = aarch64_mmu_modify(target, 0);
2191                                 if (retval != ERROR_OK)
2192                                         return retval;
2193                         }
2194                         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2195                 }
2196         }
2197
2198
2199         /* REVISIT this op is generic ARMv7-A/R stuff */
2200         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2201                 struct arm_dpm *dpm = armv8->arm.dpm;
2202
2203                 retval = dpm->prepare(dpm);
2204                 if (retval != ERROR_OK)
2205                         return retval;
2206
2207                 /* The Cache handling will NOT work with MMU active, the
2208                  * wrong addresses will be invalidated!
2209                  *
2210                  * For both ICache and DCache, walk all cache lines in the
2211                  * address range. Cortex-A8 has fixed 64 byte line length.
2212                  *
2213                  * REVISIT per ARMv7, these may trigger watchpoints ...
2214                  */
2215
2216                 /* invalidate I-Cache */
2217                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2218                         /* ICIMVAU - Invalidate Cache single entry
2219                          * with MVA to PoU
2220                          *      MCR p15, 0, r0, c7, c5, 1
2221                          */
2222                         for (uint32_t cacheline = address;
2223                                 cacheline < address + size * count;
2224                                 cacheline += 64) {
2225                                 retval = dpm->instr_write_data_r0(dpm,
2226                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2227                                                 cacheline);
2228                                 if (retval != ERROR_OK)
2229                                         return retval;
2230                         }
2231                 }
2232
2233                 /* invalidate D-Cache */
2234                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2235                         /* DCIMVAC - Invalidate data Cache line
2236                          * with MVA to PoC
2237                          *      MCR p15, 0, r0, c7, c6, 1
2238                          */
2239                         for (uint32_t cacheline = address;
2240                                 cacheline < address + size * count;
2241                                 cacheline += 64) {
2242                                 retval = dpm->instr_write_data_r0(dpm,
2243                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2244                                                 cacheline);
2245                                 if (retval != ERROR_OK)
2246                                         return retval;
2247                         }
2248                 }
2249
2250                 /* (void) */ dpm->finish(dpm);
2251         }
2252
2253         return retval;
2254 }
2255
2256 static int aarch64_write_memory(struct target *target, target_addr_t address,
2257         uint32_t size, uint32_t count, const uint8_t *buffer)
2258 {
2259         int mmu_enabled = 0;
2260         target_addr_t virt, phys;
2261         int retval;
2262         struct armv8_common *armv8 = target_to_armv8(target);
2263         struct adiv5_dap *swjdp = armv8->arm.dap;
2264         uint8_t apsel = swjdp->apsel;
2265
2266         /* aarch64 handles unaligned memory access */
2267         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2268                   "; count %" PRId32, address, size, count);
2269
2270         /* determine if MMU was enabled on target stop */
2271         if (!armv8->is_armv7r) {
2272                 retval = aarch64_mmu(target, &mmu_enabled);
2273                 if (retval != ERROR_OK)
2274                         return retval;
2275         }
2276
2277         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2278                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2279                           PRId32 "; count %" PRId32, address, size, count);
2280                 if (mmu_enabled) {
2281                         virt = address;
2282                         retval = aarch64_virt2phys(target, virt, &phys);
2283                         if (retval != ERROR_OK)
2284                                 return retval;
2285
2286                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2287                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2288                         address = phys;
2289                 }
2290                 retval = aarch64_write_phys_memory(target, address, size,
2291                                 count, buffer);
2292         } else {
2293                 if (mmu_enabled) {
2294                         retval = aarch64_check_address(target, address);
2295                         if (retval != ERROR_OK)
2296                                 return retval;
2297                         /* enable MMU as we could have disabled it for phys access */
2298                         retval = aarch64_mmu_modify(target, 1);
2299                         if (retval != ERROR_OK)
2300                                 return retval;
2301                 }
2302                 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2303         }
2304         return retval;
2305 }
2306
2307 static int aarch64_handle_target_request(void *priv)
2308 {
2309         struct target *target = priv;
2310         struct armv8_common *armv8 = target_to_armv8(target);
2311         int retval;
2312
2313         if (!target_was_examined(target))
2314                 return ERROR_OK;
2315         if (!target->dbg_msg_enabled)
2316                 return ERROR_OK;
2317
2318         if (target->state == TARGET_RUNNING) {
2319                 uint32_t request;
2320                 uint32_t dscr;
2321                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2322                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2323
2324                 /* check if we have data */
2325                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2326                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2327                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2328                         if (retval == ERROR_OK) {
2329                                 target_request(target, request);
2330                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2331                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2332                         }
2333                 }
2334         }
2335
2336         return ERROR_OK;
2337 }
2338
2339 static int aarch64_examine_first(struct target *target)
2340 {
2341         struct aarch64_common *aarch64 = target_to_aarch64(target);
2342         struct armv8_common *armv8 = &aarch64->armv8_common;
2343         struct adiv5_dap *swjdp = armv8->arm.dap;
2344         int retval = ERROR_OK;
2345         uint32_t pfr, debug, ctypr, ttypr, cpuid;
2346         int i;
2347
2348         /* We do one extra read to ensure DAP is configured,
2349          * we call ahbap_debugport_init(swjdp) instead
2350          */
2351         retval = dap_dp_init(swjdp);
2352         if (retval != ERROR_OK)
2353                 return retval;
2354
2355         /* Search for the APB-AB - it is needed for access to debug registers */
2356         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2357         if (retval != ERROR_OK) {
2358                 LOG_ERROR("Could not find APB-AP for debug access");
2359                 return retval;
2360         }
2361
2362         retval = mem_ap_init(armv8->debug_ap);
2363         if (retval != ERROR_OK) {
2364                 LOG_ERROR("Could not initialize the APB-AP");
2365                 return retval;
2366         }
2367
2368         armv8->debug_ap->memaccess_tck = 80;
2369
2370         /* Search for the AHB-AB */
2371         armv8->memory_ap_available = false;
2372         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2373         if (retval == ERROR_OK) {
2374                 retval = mem_ap_init(armv8->memory_ap);
2375                 if (retval == ERROR_OK)
2376                         armv8->memory_ap_available = true;
2377         }
2378         if (retval != ERROR_OK) {
2379                 /* AHB-AP not found or unavailable - use the CPU */
2380                 LOG_DEBUG("No AHB-AP available for memory access");
2381         }
2382
2383
2384         if (!target->dbgbase_set) {
2385                 uint32_t dbgbase;
2386                 /* Get ROM Table base */
2387                 uint32_t apid;
2388                 int32_t coreidx = target->coreid;
2389                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2390                 if (retval != ERROR_OK)
2391                         return retval;
2392                 /* Lookup 0x15 -- Processor DAP */
2393                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2394                                 &armv8->debug_base, &coreidx);
2395                 if (retval != ERROR_OK)
2396                         return retval;
2397                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2398                           coreidx, armv8->debug_base);
2399         } else
2400                 armv8->debug_base = target->dbgbase;
2401
2402         LOG_DEBUG("Target ctibase is 0x%x", target->ctibase);
2403         if (target->ctibase == 0)
2404                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x1000;
2405         else
2406                 armv8->cti_base = target->ctibase;
2407
2408         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2409                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2410         if (retval != ERROR_OK) {
2411                 LOG_DEBUG("Examine %s failed", "oslock");
2412                 return retval;
2413         }
2414
2415         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2416                         armv8->debug_base + 0x88, &cpuid);
2417         LOG_DEBUG("0x88 = %x", cpuid);
2418
2419         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2420                         armv8->debug_base + 0x314, &cpuid);
2421         LOG_DEBUG("0x314 = %x", cpuid);
2422
2423         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2424                         armv8->debug_base + 0x310, &cpuid);
2425         LOG_DEBUG("0x310 = %x", cpuid);
2426         if (retval != ERROR_OK)
2427                 return retval;
2428
2429         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2430                         armv8->debug_base + CPUDBG_CPUID, &cpuid);
2431         if (retval != ERROR_OK) {
2432                 LOG_DEBUG("Examine %s failed", "CPUID");
2433                 return retval;
2434         }
2435
2436         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2437                         armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2438         if (retval != ERROR_OK) {
2439                 LOG_DEBUG("Examine %s failed", "CTYPR");
2440                 return retval;
2441         }
2442
2443         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2444                         armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2445         if (retval != ERROR_OK) {
2446                 LOG_DEBUG("Examine %s failed", "TTYPR");
2447                 return retval;
2448         }
2449
2450         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2451                         armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2452         if (retval != ERROR_OK) {
2453                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2454                 return retval;
2455         }
2456         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2457                         armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2458         if (retval != ERROR_OK) {
2459                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2460                 return retval;
2461         }
2462
2463         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2464         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2465         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2466         LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2467         LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2468
2469         armv8->arm.core_type = ARM_MODE_MON;
2470         armv8->arm.core_state = ARM_STATE_AARCH64;
2471         retval = aarch64_dpm_setup(aarch64, debug);
2472         if (retval != ERROR_OK)
2473                 return retval;
2474
2475         /* Setup Breakpoint Register Pairs */
2476         aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2477         aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2478
2479         /* hack - no context bpt support yet */
2480         aarch64->brp_num_context = 0;
2481
2482         aarch64->brp_num_available = aarch64->brp_num;
2483         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2484         for (i = 0; i < aarch64->brp_num; i++) {
2485                 aarch64->brp_list[i].used = 0;
2486                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2487                         aarch64->brp_list[i].type = BRP_NORMAL;
2488                 else
2489                         aarch64->brp_list[i].type = BRP_CONTEXT;
2490                 aarch64->brp_list[i].value = 0;
2491                 aarch64->brp_list[i].control = 0;
2492                 aarch64->brp_list[i].BRPn = i;
2493         }
2494
2495         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2496
2497         target_set_examined(target);
2498         return ERROR_OK;
2499 }
2500
2501 static int aarch64_examine(struct target *target)
2502 {
2503         int retval = ERROR_OK;
2504
2505         /* don't re-probe hardware after each reset */
2506         if (!target_was_examined(target))
2507                 retval = aarch64_examine_first(target);
2508
2509         /* Configure core debug access */
2510         if (retval == ERROR_OK)
2511                 retval = aarch64_init_debug_access(target);
2512
2513         return retval;
2514 }
2515
2516 /*
2517  *      Cortex-A8 target creation and initialization
2518  */
2519
2520 static int aarch64_init_target(struct command_context *cmd_ctx,
2521         struct target *target)
2522 {
2523         /* examine_first() does a bunch of this */
2524         return ERROR_OK;
2525 }
2526
2527 static int aarch64_init_arch_info(struct target *target,
2528         struct aarch64_common *aarch64, struct jtag_tap *tap)
2529 {
2530         struct armv8_common *armv8 = &aarch64->armv8_common;
2531         struct adiv5_dap *dap = armv8->arm.dap;
2532
2533         armv8->arm.dap = dap;
2534
2535         /* Setup struct aarch64_common */
2536         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2537         /*  tap has no dap initialized */
2538         if (!tap->dap) {
2539                 tap->dap = dap_init();
2540
2541                 /* Leave (only) generic DAP stuff for debugport_init() */
2542                 tap->dap->tap = tap;
2543         }
2544
2545         armv8->arm.dap = tap->dap;
2546
2547         aarch64->fast_reg_read = 0;
2548
2549         /* register arch-specific functions */
2550         armv8->examine_debug_reason = NULL;
2551
2552         armv8->post_debug_entry = aarch64_post_debug_entry;
2553
2554         armv8->pre_restore_context = NULL;
2555
2556         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2557
2558         /* REVISIT v7a setup should be in a v7a-specific routine */
2559         armv8_init_arch_info(target, armv8);
2560         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2561
2562         return ERROR_OK;
2563 }
2564
2565 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2566 {
2567         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2568
2569         aarch64->armv8_common.is_armv7r = false;
2570
2571         return aarch64_init_arch_info(target, aarch64, target->tap);
2572 }
2573
2574 static int aarch64_mmu(struct target *target, int *enabled)
2575 {
2576         if (target->state != TARGET_HALTED) {
2577                 LOG_ERROR("%s: target not halted", __func__);
2578                 return ERROR_TARGET_INVALID;
2579         }
2580
2581         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2582         return ERROR_OK;
2583 }
2584
2585 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2586                              target_addr_t *phys)
2587 {
2588         int retval = ERROR_FAIL;
2589         struct armv8_common *armv8 = target_to_armv8(target);
2590         struct adiv5_dap *swjdp = armv8->arm.dap;
2591         uint8_t apsel = swjdp->apsel;
2592         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2593                 uint32_t ret;
2594                 retval = armv8_mmu_translate_va(target,
2595                                 virt, &ret);
2596                 if (retval != ERROR_OK)
2597                         goto done;
2598                 *phys = ret;
2599         } else {/*  use this method if armv8->memory_ap not selected
2600                  *  mmu must be enable in order to get a correct translation */
2601                 retval = aarch64_mmu_modify(target, 1);
2602                 if (retval != ERROR_OK)
2603                         goto done;
2604                 retval = armv8_mmu_translate_va_pa(target, virt,  phys, 1);
2605         }
2606 done:
2607         return retval;
2608 }
2609
2610 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2611 {
2612         struct target *target = get_current_target(CMD_CTX);
2613         struct armv8_common *armv8 = target_to_armv8(target);
2614
2615         return armv8_handle_cache_info_command(CMD_CTX,
2616                         &armv8->armv8_mmu.armv8_cache);
2617 }
2618
2619
2620 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2621 {
2622         struct target *target = get_current_target(CMD_CTX);
2623         if (!target_was_examined(target)) {
2624                 LOG_ERROR("target not examined yet");
2625                 return ERROR_FAIL;
2626         }
2627
2628         return aarch64_init_debug_access(target);
2629 }
2630 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2631 {
2632         struct target *target = get_current_target(CMD_CTX);
2633         /* check target is an smp target */
2634         struct target_list *head;
2635         struct target *curr;
2636         head = target->head;
2637         target->smp = 0;
2638         if (head != (struct target_list *)NULL) {
2639                 while (head != (struct target_list *)NULL) {
2640                         curr = head->target;
2641                         curr->smp = 0;
2642                         head = head->next;
2643                 }
2644                 /*  fixes the target display to the debugger */
2645                 target->gdb_service->target = target;
2646         }
2647         return ERROR_OK;
2648 }
2649
2650 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2651 {
2652         struct target *target = get_current_target(CMD_CTX);
2653         struct target_list *head;
2654         struct target *curr;
2655         head = target->head;
2656         if (head != (struct target_list *)NULL) {
2657                 target->smp = 1;
2658                 while (head != (struct target_list *)NULL) {
2659                         curr = head->target;
2660                         curr->smp = 1;
2661                         head = head->next;
2662                 }
2663         }
2664         return ERROR_OK;
2665 }
2666
2667 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2668 {
2669         struct target *target = get_current_target(CMD_CTX);
2670         int retval = ERROR_OK;
2671         struct target_list *head;
2672         head = target->head;
2673         if (head != (struct target_list *)NULL) {
2674                 if (CMD_ARGC == 1) {
2675                         int coreid = 0;
2676                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2677                         if (ERROR_OK != retval)
2678                                 return retval;
2679                         target->gdb_service->core[1] = coreid;
2680
2681                 }
2682                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2683                         , target->gdb_service->core[1]);
2684         }
2685         return ERROR_OK;
2686 }
2687
2688 static const struct command_registration aarch64_exec_command_handlers[] = {
2689         {
2690                 .name = "cache_info",
2691                 .handler = aarch64_handle_cache_info_command,
2692                 .mode = COMMAND_EXEC,
2693                 .help = "display information about target caches",
2694                 .usage = "",
2695         },
2696         {
2697                 .name = "dbginit",
2698                 .handler = aarch64_handle_dbginit_command,
2699                 .mode = COMMAND_EXEC,
2700                 .help = "Initialize core debug",
2701                 .usage = "",
2702         },
2703         {       .name = "smp_off",
2704                 .handler = aarch64_handle_smp_off_command,
2705                 .mode = COMMAND_EXEC,
2706                 .help = "Stop smp handling",
2707                 .usage = "",
2708         },
2709         {
2710                 .name = "smp_on",
2711                 .handler = aarch64_handle_smp_on_command,
2712                 .mode = COMMAND_EXEC,
2713                 .help = "Restart smp handling",
2714                 .usage = "",
2715         },
2716         {
2717                 .name = "smp_gdb",
2718                 .handler = aarch64_handle_smp_gdb_command,
2719                 .mode = COMMAND_EXEC,
2720                 .help = "display/fix current core played to gdb",
2721                 .usage = "",
2722         },
2723
2724
2725         COMMAND_REGISTRATION_DONE
2726 };
2727 static const struct command_registration aarch64_command_handlers[] = {
2728         {
2729                 .chain = arm_command_handlers,
2730         },
2731         {
2732                 .chain = armv8_command_handlers,
2733         },
2734         {
2735                 .name = "cortex_a",
2736                 .mode = COMMAND_ANY,
2737                 .help = "Cortex-A command group",
2738                 .usage = "",
2739                 .chain = aarch64_exec_command_handlers,
2740         },
2741         COMMAND_REGISTRATION_DONE
2742 };
2743
2744 struct target_type aarch64_target = {
2745         .name = "aarch64",
2746
2747         .poll = aarch64_poll,
2748         .arch_state = armv8_arch_state,
2749
2750         .halt = aarch64_halt,
2751         .resume = aarch64_resume,
2752         .step = aarch64_step,
2753
2754         .assert_reset = aarch64_assert_reset,
2755         .deassert_reset = aarch64_deassert_reset,
2756
2757         /* REVISIT allow exporting VFP3 registers ... */
2758         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2759
2760         .read_memory = aarch64_read_memory,
2761         .write_memory = aarch64_write_memory,
2762
2763         .checksum_memory = arm_checksum_memory,
2764         .blank_check_memory = arm_blank_check_memory,
2765
2766         .run_algorithm = armv4_5_run_algorithm,
2767
2768         .add_breakpoint = aarch64_add_breakpoint,
2769         .add_context_breakpoint = aarch64_add_context_breakpoint,
2770         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2771         .remove_breakpoint = aarch64_remove_breakpoint,
2772         .add_watchpoint = NULL,
2773         .remove_watchpoint = NULL,
2774
2775         .commands = aarch64_command_handlers,
2776         .target_create = aarch64_target_create,
2777         .init_target = aarch64_init_target,
2778         .examine = aarch64_examine,
2779
2780         .read_phys_memory = aarch64_read_phys_memory,
2781         .write_phys_memory = aarch64_write_phys_memory,
2782         .mmu = aarch64_mmu,
2783         .virt2phys = aarch64_virt2phys,
2784 };