]> git.sur5r.net Git - openocd/blob - src/target/aarch64.c
aarch64: make sure to enable HDE for all SMP PEs to be halted
[openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         int retval = ERROR_OK;
53
54         struct aarch64_common *aarch64 = target_to_aarch64(target);
55         struct armv8_common *armv8 = target_to_armv8(target);
56
57         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
58                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
59                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
60
61                 switch (armv8->arm.core_mode) {
62                         case ARMV8_64_EL0T:
63                         case ARMV8_64_EL1T:
64                         case ARMV8_64_EL1H:
65                                 retval = armv8->arm.msr(target, 3, /*op 0*/
66                                                 0, 1,   /* op1, op2 */
67                                                 0, 0,   /* CRn, CRm */
68                                                 aarch64->system_control_reg);
69                                 if (retval != ERROR_OK)
70                                         return retval;
71                         break;
72                         case ARMV8_64_EL2T:
73                         case ARMV8_64_EL2H:
74                                 retval = armv8->arm.msr(target, 3, /*op 0*/
75                                                 4, 1,   /* op1, op2 */
76                                                 0, 0,   /* CRn, CRm */
77                                                 aarch64->system_control_reg);
78                                 if (retval != ERROR_OK)
79                                         return retval;
80                         break;
81                         case ARMV8_64_EL3H:
82                         case ARMV8_64_EL3T:
83                                 retval = armv8->arm.msr(target, 3, /*op 0*/
84                                                 6, 1,   /* op1, op2 */
85                                                 0, 0,   /* CRn, CRm */
86                                                 aarch64->system_control_reg);
87                                 if (retval != ERROR_OK)
88                                         return retval;
89                         break;
90                         default:
91                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
92                                 if (retval != ERROR_OK)
93                                         return retval;
94                                 break;
95                         }
96         }
97         return retval;
98 }
99
100 /*  check address before aarch64_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int aarch64_check_address(struct target *target, uint32_t address)
103 {
104         /* TODO */
105         return ERROR_OK;
106 }
107 /*  modify system_control_reg in order to enable or disable mmu for :
108  *  - virt2phys address conversion
109  *  - read or write memory in phys or virt address */
110 static int aarch64_mmu_modify(struct target *target, int enable)
111 {
112         struct aarch64_common *aarch64 = target_to_aarch64(target);
113         struct armv8_common *armv8 = &aarch64->armv8_common;
114         int retval = ERROR_OK;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
123                         aarch64->system_control_reg_curr |= 0x1U;
124                         switch (armv8->arm.core_mode) {
125                                 case ARMV8_64_EL0T:
126                                 case ARMV8_64_EL1T:
127                                 case ARMV8_64_EL1H:
128                                         retval = armv8->arm.msr(target, 3, /*op 0*/
129                                                         0, 0,   /* op1, op2 */
130                                                         1, 0,   /* CRn, CRm */
131                                                         aarch64->system_control_reg_curr);
132                                         if (retval != ERROR_OK)
133                                                 return retval;
134                                 break;
135                                 case ARMV8_64_EL2T:
136                                 case ARMV8_64_EL2H:
137                                         retval = armv8->arm.msr(target, 3, /*op 0*/
138                                                         4, 0,   /* op1, op2 */
139                                                         1, 0,   /* CRn, CRm */
140                                                         aarch64->system_control_reg_curr);
141                                         if (retval != ERROR_OK)
142                                                 return retval;
143                                 break;
144                                 case ARMV8_64_EL3H:
145                                 case ARMV8_64_EL3T:
146                                         retval = armv8->arm.msr(target, 3, /*op 0*/
147                                                         6, 0,   /* op1, op2 */
148                                                         1, 0,   /* CRn, CRm */
149                                                         aarch64->system_control_reg_curr);
150                                         if (retval != ERROR_OK)
151                                                 return retval;
152                                 break;
153                                 default:
154                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
155                         }
156                 }
157         } else {
158                 if (aarch64->system_control_reg_curr & 0x4U) {
159                         /*  data cache is active */
160                         aarch64->system_control_reg_curr &= ~0x4U;
161                         /* flush data cache armv7 function to be called */
162                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
163                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
164                 }
165                 if ((aarch64->system_control_reg_curr & 0x1U)) {
166                         aarch64->system_control_reg_curr &= ~0x1U;
167                         switch (armv8->arm.core_mode) {
168                                 case ARMV8_64_EL0T:
169                                 case ARMV8_64_EL1T:
170                                 case ARMV8_64_EL1H:
171                                         retval = armv8->arm.msr(target, 3, /*op 0*/
172                                                         0, 0,   /* op1, op2 */
173                                                         1, 0,   /* CRn, CRm */
174                                                         aarch64->system_control_reg_curr);
175                                         if (retval != ERROR_OK)
176                                                 return retval;
177                                         break;
178                                 case ARMV8_64_EL2T:
179                                 case ARMV8_64_EL2H:
180                                         retval = armv8->arm.msr(target, 3, /*op 0*/
181                                                         4, 0,   /* op1, op2 */
182                                                         1, 0,   /* CRn, CRm */
183                                                         aarch64->system_control_reg_curr);
184                                         if (retval != ERROR_OK)
185                                                 return retval;
186                                         break;
187                                 case ARMV8_64_EL3H:
188                                 case ARMV8_64_EL3T:
189                                         retval = armv8->arm.msr(target, 3, /*op 0*/
190                                                         6, 0,   /* op1, op2 */
191                                                         1, 0,   /* CRn, CRm */
192                                                         aarch64->system_control_reg_curr);
193                                         if (retval != ERROR_OK)
194                                                 return retval;
195                                         break;
196                                 default:
197                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
198                                         break;
199                         }
200                 }
201         }
202         return retval;
203 }
204
205 /*
206  * Basic debug access, very low level assumes state is saved
207  */
208 static int aarch64_init_debug_access(struct target *target)
209 {
210         struct armv8_common *armv8 = target_to_armv8(target);
211         int retval;
212         uint32_t dummy;
213
214         LOG_DEBUG(" ");
215
216         /* Clear Sticky Power Down status Bit in PRSR to enable access to
217            the registers in the Core Power Domain */
218         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
219                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /*
224          * Static CTI configuration:
225          * Channel 0 -> trigger outputs HALT request to PE
226          * Channel 1 -> trigger outputs Resume request to PE
227          * Gate all channel trigger events from entering the CTM
228          */
229
230         /* Enable CTI */
231         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
232                         armv8->cti_base + CTI_CTR, 1);
233         /* By default, gate all channel triggers to and from the CTM */
234         if (retval == ERROR_OK)
235                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
236                                 armv8->cti_base + CTI_GATE, 0);
237         /* output halt requests to PE on channel 0 trigger */
238         if (retval == ERROR_OK)
239                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
240                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
241         /* output restart requests to PE on channel 1 trigger */
242         if (retval == ERROR_OK)
243                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
244                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return aarch64_poll(target);
252 }
253
254 /* Write to memory mapped registers directly with no cache or mmu handling */
255 static int aarch64_dap_write_memap_register_u32(struct target *target,
256         uint32_t address,
257         uint32_t value)
258 {
259         int retval;
260         struct armv8_common *armv8 = target_to_armv8(target);
261
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263
264         return retval;
265 }
266
267 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 {
269         struct arm_dpm *dpm = &a8->armv8_common.dpm;
270         int retval;
271
272         dpm->arm = &a8->armv8_common.arm;
273         dpm->didr = debug;
274
275         retval = armv8_dpm_setup(dpm);
276         if (retval == ERROR_OK)
277                 retval = armv8_dpm_initialize(dpm);
278
279         return retval;
280 }
281
282 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
283 {
284         struct armv8_common *armv8 = target_to_armv8(target);
285         uint32_t dscr;
286
287         /* Read DSCR */
288         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
289                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
290         if (ERROR_OK != retval)
291                 return retval;
292
293         /* clear bitfield */
294         dscr &= ~bit_mask;
295         /* put new value */
296         dscr |= value & bit_mask;
297
298         /* write new DSCR */
299         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
300                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
301         return retval;
302 }
303
304 static struct target *get_aarch64(struct target *target, int32_t coreid)
305 {
306         struct target_list *head;
307         struct target *curr;
308
309         head = target->head;
310         while (head != (struct target_list *)NULL) {
311                 curr = head->target;
312                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
313                         return curr;
314                 head = head->next;
315         }
316         return target;
317 }
318 static int aarch64_halt(struct target *target);
319
320 static int aarch64_halt_smp(struct target *target)
321 {
322         int retval = ERROR_OK;
323         struct target_list *head = target->head;
324
325         while (head != (struct target_list *)NULL) {
326                 struct target *curr = head->target;
327                 struct armv8_common *armv8 = target_to_armv8(curr);
328
329                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
330                 if (curr->smp) {
331                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
332                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
333                         if (retval == ERROR_OK)
334                                 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
335                 }
336                 if (retval != ERROR_OK)
337                         break;
338
339                 head = head->next;
340         }
341
342         /* halt the target PE */
343         if (retval == ERROR_OK)
344                 retval = aarch64_halt(target);
345
346         return retval;
347 }
348
349 static int update_halt_gdb(struct target *target)
350 {
351         int retval = 0;
352         if (target->gdb_service && target->gdb_service->core[0] == -1) {
353                 target->gdb_service->target = target;
354                 target->gdb_service->core[0] = target->coreid;
355                 retval += aarch64_halt_smp(target);
356         }
357         return retval;
358 }
359
360 /*
361  * Cortex-A8 Run control
362  */
363
364 static int aarch64_poll(struct target *target)
365 {
366         int retval = ERROR_OK;
367         uint32_t dscr;
368         struct aarch64_common *aarch64 = target_to_aarch64(target);
369         struct armv8_common *armv8 = &aarch64->armv8_common;
370         enum target_state prev_target_state = target->state;
371         /*  toggle to another core is done by gdb as follow */
372         /*  maint packet J core_id */
373         /*  continue */
374         /*  the next polling trigger an halt event sent to gdb */
375         if ((target->state == TARGET_HALTED) && (target->smp) &&
376                 (target->gdb_service) &&
377                 (target->gdb_service->target == NULL)) {
378                 target->gdb_service->target =
379                         get_aarch64(target, target->gdb_service->core[1]);
380                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
381                 return retval;
382         }
383         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
384                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
385         if (retval != ERROR_OK)
386                 return retval;
387         aarch64->cpudbg_dscr = dscr;
388
389         if (DSCR_RUN_MODE(dscr) == 0x3) {
390                 if (prev_target_state != TARGET_HALTED) {
391                         /* We have a halting debug event */
392                         LOG_DEBUG("Target halted");
393                         target->state = TARGET_HALTED;
394                         if ((prev_target_state == TARGET_RUNNING)
395                                 || (prev_target_state == TARGET_UNKNOWN)
396                                 || (prev_target_state == TARGET_RESET)) {
397                                 retval = aarch64_debug_entry(target);
398                                 if (retval != ERROR_OK)
399                                         return retval;
400                                 if (target->smp) {
401                                         retval = update_halt_gdb(target);
402                                         if (retval != ERROR_OK)
403                                                 return retval;
404                                 }
405                                 target_call_event_callbacks(target,
406                                         TARGET_EVENT_HALTED);
407                         }
408                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
409                                 LOG_DEBUG(" ");
410
411                                 retval = aarch64_debug_entry(target);
412                                 if (retval != ERROR_OK)
413                                         return retval;
414                                 if (target->smp) {
415                                         retval = update_halt_gdb(target);
416                                         if (retval != ERROR_OK)
417                                                 return retval;
418                                 }
419
420                                 target_call_event_callbacks(target,
421                                         TARGET_EVENT_DEBUG_HALTED);
422                         }
423                 }
424         } else
425                 target->state = TARGET_RUNNING;
426
427         return retval;
428 }
429
430 static int aarch64_halt(struct target *target)
431 {
432         int retval = ERROR_OK;
433         uint32_t dscr;
434         struct armv8_common *armv8 = target_to_armv8(target);
435
436         /*
437          * add HDE in halting debug mode
438          */
439         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
440         if (retval != ERROR_OK)
441                 return retval;
442
443         /* trigger an event on channel 0, this outputs a halt request to the PE */
444         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
445                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
446         if (retval != ERROR_OK)
447                 return retval;
448
449         long long then = timeval_ms();
450         for (;; ) {
451                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
452                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455                 if ((dscr & DSCRV8_HALT_MASK) != 0)
456                         break;
457                 if (timeval_ms() > then + 1000) {
458                         LOG_ERROR("Timeout waiting for halt");
459                         return ERROR_FAIL;
460                 }
461         }
462
463         target->debug_reason = DBG_REASON_DBGRQ;
464
465         return ERROR_OK;
466 }
467
468 static int aarch64_internal_restore(struct target *target, int current,
469         uint64_t *address, int handle_breakpoints, int debug_execution)
470 {
471         struct armv8_common *armv8 = target_to_armv8(target);
472         struct arm *arm = &armv8->arm;
473         int retval;
474         uint64_t resume_pc;
475
476         if (!debug_execution)
477                 target_free_all_working_areas(target);
478
479         /* current = 1: continue on current pc, otherwise continue at <address> */
480         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
481         if (!current)
482                 resume_pc = *address;
483         else
484                 *address = resume_pc;
485
486         /* Make sure that the Armv7 gdb thumb fixups does not
487          * kill the return address
488          */
489         switch (arm->core_state) {
490                 case ARM_STATE_ARM:
491                         resume_pc &= 0xFFFFFFFC;
492                         break;
493                 case ARM_STATE_AARCH64:
494                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
495                         break;
496                 case ARM_STATE_THUMB:
497                 case ARM_STATE_THUMB_EE:
498                         /* When the return address is loaded into PC
499                          * bit 0 must be 1 to stay in Thumb state
500                          */
501                         resume_pc |= 0x1;
502                         break;
503                 case ARM_STATE_JAZELLE:
504                         LOG_ERROR("How do I resume into Jazelle state??");
505                         return ERROR_FAIL;
506         }
507         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
508         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
509         arm->pc->dirty = 1;
510         arm->pc->valid = 1;
511         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
512
513         /* called it now before restoring context because it uses cpu
514          * register r0 for restoring system control register */
515         retval = aarch64_restore_system_control_reg(target);
516         if (retval != ERROR_OK)
517                 return retval;
518         retval = aarch64_restore_context(target, handle_breakpoints);
519         if (retval != ERROR_OK)
520                 return retval;
521         target->debug_reason = DBG_REASON_NOTHALTED;
522         target->state = TARGET_RUNNING;
523
524         /* registers are now invalid */
525         register_cache_invalidate(arm->core_cache);
526
527         return retval;
528 }
529
530 static int aarch64_internal_restart(struct target *target, bool slave_pe)
531 {
532         struct armv8_common *armv8 = target_to_armv8(target);
533         struct arm *arm = &armv8->arm;
534         int retval;
535         uint32_t dscr;
536         /*
537          * * Restart core and wait for it to be started.  Clear ITRen and sticky
538          * * exception flags: see ARMv7 ARM, C5.9.
539          *
540          * REVISIT: for single stepping, we probably want to
541          * disable IRQs by default, with optional override...
542          */
543
544         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
545                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
546         if (retval != ERROR_OK)
547                 return retval;
548
549         if ((dscr & DSCR_ITE) == 0)
550                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
551
552         /* make sure to acknowledge the halt event before resuming */
553         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
554                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
555
556         /*
557          * open the CTI gate for channel 1 so that the restart events
558          * get passed along to all PEs
559          */
560         if (retval == ERROR_OK)
561                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
562                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
563         if (retval != ERROR_OK)
564                 return retval;
565
566         if (!slave_pe) {
567                 /* trigger an event on channel 1, generates a restart request to the PE */
568                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
569                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
570                 if (retval != ERROR_OK)
571                         return retval;
572
573                 long long then = timeval_ms();
574                 for (;; ) {
575                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
576                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
577                         if (retval != ERROR_OK)
578                                 return retval;
579                         if ((dscr & DSCR_HDE) != 0)
580                                 break;
581                         if (timeval_ms() > then + 1000) {
582                                 LOG_ERROR("Timeout waiting for resume");
583                                 return ERROR_FAIL;
584                         }
585                 }
586         }
587
588         target->debug_reason = DBG_REASON_NOTHALTED;
589         target->state = TARGET_RUNNING;
590
591         /* registers are now invalid */
592         register_cache_invalidate(arm->core_cache);
593
594         return ERROR_OK;
595 }
596
597 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
598 {
599         int retval = 0;
600         struct target_list *head;
601         struct target *curr;
602         uint64_t address;
603         head = target->head;
604         while (head != (struct target_list *)NULL) {
605                 curr = head->target;
606                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
607                         /*  resume current address , not in step mode */
608                         retval += aarch64_internal_restore(curr, 1, &address,
609                                         handle_breakpoints, 0);
610                         retval += aarch64_internal_restart(curr, true);
611                 }
612                 head = head->next;
613
614         }
615         return retval;
616 }
617
618 static int aarch64_resume(struct target *target, int current,
619         target_addr_t address, int handle_breakpoints, int debug_execution)
620 {
621         int retval = 0;
622         uint64_t addr = address;
623
624         /* dummy resume for smp toggle in order to reduce gdb impact  */
625         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
626                 /*   simulate a start and halt of target */
627                 target->gdb_service->target = NULL;
628                 target->gdb_service->core[0] = target->gdb_service->core[1];
629                 /*  fake resume at next poll we play the  target core[1], see poll*/
630                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
631                 return 0;
632         }
633         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
634                                  debug_execution);
635         if (target->smp) {
636                 target->gdb_service->core[0] = -1;
637                 retval = aarch64_restore_smp(target, handle_breakpoints);
638                 if (retval != ERROR_OK)
639                         return retval;
640         }
641         aarch64_internal_restart(target, false);
642
643         if (!debug_execution) {
644                 target->state = TARGET_RUNNING;
645                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
646                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
647         } else {
648                 target->state = TARGET_DEBUG_RUNNING;
649                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
650                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
651         }
652
653         return ERROR_OK;
654 }
655
656 static int aarch64_debug_entry(struct target *target)
657 {
658         int retval = ERROR_OK;
659         struct aarch64_common *aarch64 = target_to_aarch64(target);
660         struct armv8_common *armv8 = target_to_armv8(target);
661         struct arm_dpm *dpm = &armv8->dpm;
662         enum arm_state core_state;
663
664         LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
665
666         dpm->dscr = aarch64->cpudbg_dscr;
667         core_state = armv8_dpm_get_core_state(dpm);
668         armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
669         armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
670
671         /* make sure to clear all sticky errors */
672         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
673                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
674         if (retval != ERROR_OK)
675                 return retval;
676
677         /* Examine debug reason */
678         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
679
680         /* save address of instruction that triggered the watchpoint? */
681         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
682                 uint32_t tmp;
683                 uint64_t wfar = 0;
684
685                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
686                                 armv8->debug_base + CPUV8_DBG_WFAR1,
687                                 &tmp);
688                 if (retval != ERROR_OK)
689                         return retval;
690                 wfar = tmp;
691                 wfar = (wfar << 32);
692                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
693                                 armv8->debug_base + CPUV8_DBG_WFAR0,
694                                 &tmp);
695                 if (retval != ERROR_OK)
696                         return retval;
697                 wfar |= tmp;
698                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
699         }
700
701         retval = armv8_dpm_read_current_registers(&armv8->dpm);
702
703         if (retval == ERROR_OK && armv8->post_debug_entry)
704                 retval = armv8->post_debug_entry(target);
705
706         return retval;
707 }
708
709 static int aarch64_post_debug_entry(struct target *target)
710 {
711         struct aarch64_common *aarch64 = target_to_aarch64(target);
712         struct armv8_common *armv8 = &aarch64->armv8_common;
713         int retval;
714
715         /* clear sticky errors */
716         mem_ap_write_atomic_u32(armv8->debug_ap,
717                                     armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
718
719         switch (armv8->arm.core_mode) {
720                 case ARMV8_64_EL0T:
721                         armv8_dpm_modeswitch(&armv8->dpm, ARMV8_64_EL1H);
722                         /* fall through */
723                 case ARMV8_64_EL1T:
724                 case ARMV8_64_EL1H:
725                         retval = armv8->arm.mrs(target, 3, /*op 0*/
726                                         0, 0,   /* op1, op2 */
727                                         1, 0,   /* CRn, CRm */
728                                         &aarch64->system_control_reg);
729                         if (retval != ERROR_OK)
730                                 return retval;
731                 break;
732                 case ARMV8_64_EL2T:
733                 case ARMV8_64_EL2H:
734                         retval = armv8->arm.mrs(target, 3, /*op 0*/
735                                         4, 0,   /* op1, op2 */
736                                         1, 0,   /* CRn, CRm */
737                                         &aarch64->system_control_reg);
738                         if (retval != ERROR_OK)
739                                 return retval;
740                 break;
741                 case ARMV8_64_EL3H:
742                 case ARMV8_64_EL3T:
743                         retval = armv8->arm.mrs(target, 3, /*op 0*/
744                                         6, 0,   /* op1, op2 */
745                                         1, 0,   /* CRn, CRm */
746                                         &aarch64->system_control_reg);
747                         if (retval != ERROR_OK)
748                                 return retval;
749                 break;
750
751                 case ARM_MODE_SVC:
752                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
753                         if (retval != ERROR_OK)
754                                 return retval;
755                         break;
756
757                 default:
758                         LOG_INFO("cannot read system control register in this mode");
759                         break;
760         }
761
762         armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
763
764         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
765         aarch64->system_control_reg_curr = aarch64->system_control_reg;
766
767         if (armv8->armv8_mmu.armv8_cache.info == -1) {
768                 armv8_identify_cache(armv8);
769                 armv8_read_mpidr(armv8);
770         }
771
772         armv8->armv8_mmu.mmu_enabled =
773                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
774         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
775                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
776         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
777                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
778         aarch64->curr_mode = armv8->arm.core_mode;
779         return ERROR_OK;
780 }
781
782 static int aarch64_step(struct target *target, int current, target_addr_t address,
783         int handle_breakpoints)
784 {
785         struct armv8_common *armv8 = target_to_armv8(target);
786         int retval;
787         uint32_t edecr;
788
789         if (target->state != TARGET_HALTED) {
790                 LOG_WARNING("target not halted");
791                 return ERROR_TARGET_NOT_HALTED;
792         }
793
794         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
795                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
796         if (retval != ERROR_OK)
797                 return retval;
798
799         /* make sure EDECR.SS is not set when restoring the register */
800         edecr &= ~0x4;
801
802         /* set EDECR.SS to enter hardware step mode */
803         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
804                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
805         if (retval != ERROR_OK)
806                 return retval;
807
808         /* disable interrupts while stepping */
809         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
810         if (retval != ERROR_OK)
811                 return ERROR_OK;
812
813         /* resume the target */
814         retval = aarch64_resume(target, current, address, 0, 0);
815         if (retval != ERROR_OK)
816                 return retval;
817
818         long long then = timeval_ms();
819         while (target->state != TARGET_HALTED) {
820                 retval = aarch64_poll(target);
821                 if (retval != ERROR_OK)
822                         return retval;
823                 if (timeval_ms() > then + 1000) {
824                         LOG_ERROR("timeout waiting for target halt");
825                         return ERROR_FAIL;
826                 }
827         }
828
829         /* restore EDECR */
830         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
831                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
832         if (retval != ERROR_OK)
833                 return retval;
834
835         /* restore interrupts */
836         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
837         if (retval != ERROR_OK)
838                 return ERROR_OK;
839
840         return ERROR_OK;
841 }
842
843 static int aarch64_restore_context(struct target *target, bool bpwp)
844 {
845         struct armv8_common *armv8 = target_to_armv8(target);
846
847         LOG_DEBUG(" ");
848
849         if (armv8->pre_restore_context)
850                 armv8->pre_restore_context(target);
851
852         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
853
854 }
855
856 /*
857  * Cortex-A8 Breakpoint and watchpoint functions
858  */
859
860 /* Setup hardware Breakpoint Register Pair */
861 static int aarch64_set_breakpoint(struct target *target,
862         struct breakpoint *breakpoint, uint8_t matchmode)
863 {
864         int retval;
865         int brp_i = 0;
866         uint32_t control;
867         uint8_t byte_addr_select = 0x0F;
868         struct aarch64_common *aarch64 = target_to_aarch64(target);
869         struct armv8_common *armv8 = &aarch64->armv8_common;
870         struct aarch64_brp *brp_list = aarch64->brp_list;
871
872         if (breakpoint->set) {
873                 LOG_WARNING("breakpoint already set");
874                 return ERROR_OK;
875         }
876
877         if (breakpoint->type == BKPT_HARD) {
878                 int64_t bpt_value;
879                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
880                         brp_i++;
881                 if (brp_i >= aarch64->brp_num) {
882                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
883                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
884                 }
885                 breakpoint->set = brp_i + 1;
886                 if (breakpoint->length == 2)
887                         byte_addr_select = (3 << (breakpoint->address & 0x02));
888                 control = ((matchmode & 0x7) << 20)
889                         | (1 << 13)
890                         | (byte_addr_select << 5)
891                         | (3 << 1) | 1;
892                 brp_list[brp_i].used = 1;
893                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
894                 brp_list[brp_i].control = control;
895                 bpt_value = brp_list[brp_i].value;
896
897                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
898                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
899                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
900                 if (retval != ERROR_OK)
901                         return retval;
902                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
903                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
904                                 (uint32_t)(bpt_value >> 32));
905                 if (retval != ERROR_OK)
906                         return retval;
907
908                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
909                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
910                                 brp_list[brp_i].control);
911                 if (retval != ERROR_OK)
912                         return retval;
913                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
914                         brp_list[brp_i].control,
915                         brp_list[brp_i].value);
916
917         } else if (breakpoint->type == BKPT_SOFT) {
918                 uint8_t code[4];
919
920                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
921                 retval = target_read_memory(target,
922                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
923                                 breakpoint->length, 1,
924                                 breakpoint->orig_instr);
925                 if (retval != ERROR_OK)
926                         return retval;
927
928                 armv8_cache_d_inner_flush_virt(armv8,
929                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
930                                 breakpoint->length);
931
932                 retval = target_write_memory(target,
933                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
934                                 breakpoint->length, 1, code);
935                 if (retval != ERROR_OK)
936                         return retval;
937
938                 armv8_cache_d_inner_flush_virt(armv8,
939                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
940                                 breakpoint->length);
941
942                 armv8_cache_i_inner_inval_virt(armv8,
943                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
944                                 breakpoint->length);
945
946                 breakpoint->set = 0x11; /* Any nice value but 0 */
947         }
948
949         /* Ensure that halting debug mode is enable */
950         retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
951         if (retval != ERROR_OK) {
952                 LOG_DEBUG("Failed to set DSCR.HDE");
953                 return retval;
954         }
955
956         return ERROR_OK;
957 }
958
959 static int aarch64_set_context_breakpoint(struct target *target,
960         struct breakpoint *breakpoint, uint8_t matchmode)
961 {
962         int retval = ERROR_FAIL;
963         int brp_i = 0;
964         uint32_t control;
965         uint8_t byte_addr_select = 0x0F;
966         struct aarch64_common *aarch64 = target_to_aarch64(target);
967         struct armv8_common *armv8 = &aarch64->armv8_common;
968         struct aarch64_brp *brp_list = aarch64->brp_list;
969
970         if (breakpoint->set) {
971                 LOG_WARNING("breakpoint already set");
972                 return retval;
973         }
974         /*check available context BRPs*/
975         while ((brp_list[brp_i].used ||
976                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
977                 brp_i++;
978
979         if (brp_i >= aarch64->brp_num) {
980                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
981                 return ERROR_FAIL;
982         }
983
984         breakpoint->set = brp_i + 1;
985         control = ((matchmode & 0x7) << 20)
986                 | (1 << 13)
987                 | (byte_addr_select << 5)
988                 | (3 << 1) | 1;
989         brp_list[brp_i].used = 1;
990         brp_list[brp_i].value = (breakpoint->asid);
991         brp_list[brp_i].control = control;
992         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
993                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
994                         brp_list[brp_i].value);
995         if (retval != ERROR_OK)
996                 return retval;
997         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
998                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
999                         brp_list[brp_i].control);
1000         if (retval != ERROR_OK)
1001                 return retval;
1002         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1003                 brp_list[brp_i].control,
1004                 brp_list[brp_i].value);
1005         return ERROR_OK;
1006
1007 }
1008
1009 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1010 {
1011         int retval = ERROR_FAIL;
1012         int brp_1 = 0;  /* holds the contextID pair */
1013         int brp_2 = 0;  /* holds the IVA pair */
1014         uint32_t control_CTX, control_IVA;
1015         uint8_t CTX_byte_addr_select = 0x0F;
1016         uint8_t IVA_byte_addr_select = 0x0F;
1017         uint8_t CTX_machmode = 0x03;
1018         uint8_t IVA_machmode = 0x01;
1019         struct aarch64_common *aarch64 = target_to_aarch64(target);
1020         struct armv8_common *armv8 = &aarch64->armv8_common;
1021         struct aarch64_brp *brp_list = aarch64->brp_list;
1022
1023         if (breakpoint->set) {
1024                 LOG_WARNING("breakpoint already set");
1025                 return retval;
1026         }
1027         /*check available context BRPs*/
1028         while ((brp_list[brp_1].used ||
1029                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1030                 brp_1++;
1031
1032         printf("brp(CTX) found num: %d\n", brp_1);
1033         if (brp_1 >= aarch64->brp_num) {
1034                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1035                 return ERROR_FAIL;
1036         }
1037
1038         while ((brp_list[brp_2].used ||
1039                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1040                 brp_2++;
1041
1042         printf("brp(IVA) found num: %d\n", brp_2);
1043         if (brp_2 >= aarch64->brp_num) {
1044                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1045                 return ERROR_FAIL;
1046         }
1047
1048         breakpoint->set = brp_1 + 1;
1049         breakpoint->linked_BRP = brp_2;
1050         control_CTX = ((CTX_machmode & 0x7) << 20)
1051                 | (brp_2 << 16)
1052                 | (0 << 14)
1053                 | (CTX_byte_addr_select << 5)
1054                 | (3 << 1) | 1;
1055         brp_list[brp_1].used = 1;
1056         brp_list[brp_1].value = (breakpoint->asid);
1057         brp_list[brp_1].control = control_CTX;
1058         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1059                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1060                         brp_list[brp_1].value);
1061         if (retval != ERROR_OK)
1062                 return retval;
1063         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1064                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1065                         brp_list[brp_1].control);
1066         if (retval != ERROR_OK)
1067                 return retval;
1068
1069         control_IVA = ((IVA_machmode & 0x7) << 20)
1070                 | (brp_1 << 16)
1071                 | (1 << 13)
1072                 | (IVA_byte_addr_select << 5)
1073                 | (3 << 1) | 1;
1074         brp_list[brp_2].used = 1;
1075         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1076         brp_list[brp_2].control = control_IVA;
1077         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1078                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1079                         brp_list[brp_2].value & 0xFFFFFFFF);
1080         if (retval != ERROR_OK)
1081                 return retval;
1082         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1083                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1084                         brp_list[brp_2].value >> 32);
1085         if (retval != ERROR_OK)
1086                 return retval;
1087         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1088                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1089                         brp_list[brp_2].control);
1090         if (retval != ERROR_OK)
1091                 return retval;
1092
1093         return ERROR_OK;
1094 }
1095
1096 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1097 {
1098         int retval;
1099         struct aarch64_common *aarch64 = target_to_aarch64(target);
1100         struct armv8_common *armv8 = &aarch64->armv8_common;
1101         struct aarch64_brp *brp_list = aarch64->brp_list;
1102
1103         if (!breakpoint->set) {
1104                 LOG_WARNING("breakpoint not set");
1105                 return ERROR_OK;
1106         }
1107
1108         if (breakpoint->type == BKPT_HARD) {
1109                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1110                         int brp_i = breakpoint->set - 1;
1111                         int brp_j = breakpoint->linked_BRP;
1112                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1113                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1114                                 return ERROR_OK;
1115                         }
1116                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1117                                 brp_list[brp_i].control, brp_list[brp_i].value);
1118                         brp_list[brp_i].used = 0;
1119                         brp_list[brp_i].value = 0;
1120                         brp_list[brp_i].control = 0;
1121                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1122                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1123                                         brp_list[brp_i].control);
1124                         if (retval != ERROR_OK)
1125                                 return retval;
1126                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1127                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1128                                         (uint32_t)brp_list[brp_i].value);
1129                         if (retval != ERROR_OK)
1130                                 return retval;
1131                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1132                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1133                                         (uint32_t)brp_list[brp_i].value);
1134                         if (retval != ERROR_OK)
1135                                 return retval;
1136                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1137                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1138                                 return ERROR_OK;
1139                         }
1140                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1141                                 brp_list[brp_j].control, brp_list[brp_j].value);
1142                         brp_list[brp_j].used = 0;
1143                         brp_list[brp_j].value = 0;
1144                         brp_list[brp_j].control = 0;
1145                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1146                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1147                                         brp_list[brp_j].control);
1148                         if (retval != ERROR_OK)
1149                                 return retval;
1150                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1151                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1152                                         (uint32_t)brp_list[brp_j].value);
1153                         if (retval != ERROR_OK)
1154                                 return retval;
1155                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1156                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1157                                         (uint32_t)brp_list[brp_j].value);
1158                         if (retval != ERROR_OK)
1159                                 return retval;
1160
1161                         breakpoint->linked_BRP = 0;
1162                         breakpoint->set = 0;
1163                         return ERROR_OK;
1164
1165                 } else {
1166                         int brp_i = breakpoint->set - 1;
1167                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1168                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1169                                 return ERROR_OK;
1170                         }
1171                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1172                                 brp_list[brp_i].control, brp_list[brp_i].value);
1173                         brp_list[brp_i].used = 0;
1174                         brp_list[brp_i].value = 0;
1175                         brp_list[brp_i].control = 0;
1176                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1177                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1178                                         brp_list[brp_i].control);
1179                         if (retval != ERROR_OK)
1180                                 return retval;
1181                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1182                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1183                                         brp_list[brp_i].value);
1184                         if (retval != ERROR_OK)
1185                                 return retval;
1186
1187                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1188                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1189                                         (uint32_t)brp_list[brp_i].value);
1190                         if (retval != ERROR_OK)
1191                                 return retval;
1192                         breakpoint->set = 0;
1193                         return ERROR_OK;
1194                 }
1195         } else {
1196                 /* restore original instruction (kept in target endianness) */
1197
1198                 armv8_cache_d_inner_flush_virt(armv8,
1199                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1200                                 breakpoint->length);
1201
1202                 if (breakpoint->length == 4) {
1203                         retval = target_write_memory(target,
1204                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1205                                         4, 1, breakpoint->orig_instr);
1206                         if (retval != ERROR_OK)
1207                                 return retval;
1208                 } else {
1209                         retval = target_write_memory(target,
1210                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1211                                         2, 1, breakpoint->orig_instr);
1212                         if (retval != ERROR_OK)
1213                                 return retval;
1214                 }
1215
1216                 armv8_cache_d_inner_flush_virt(armv8,
1217                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1218                                 breakpoint->length);
1219
1220                 armv8_cache_i_inner_inval_virt(armv8,
1221                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1222                                 breakpoint->length);
1223         }
1224         breakpoint->set = 0;
1225
1226         return ERROR_OK;
1227 }
1228
1229 static int aarch64_add_breakpoint(struct target *target,
1230         struct breakpoint *breakpoint)
1231 {
1232         struct aarch64_common *aarch64 = target_to_aarch64(target);
1233
1234         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1235                 LOG_INFO("no hardware breakpoint available");
1236                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1237         }
1238
1239         if (breakpoint->type == BKPT_HARD)
1240                 aarch64->brp_num_available--;
1241
1242         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1243 }
1244
1245 static int aarch64_add_context_breakpoint(struct target *target,
1246         struct breakpoint *breakpoint)
1247 {
1248         struct aarch64_common *aarch64 = target_to_aarch64(target);
1249
1250         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1251                 LOG_INFO("no hardware breakpoint available");
1252                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1253         }
1254
1255         if (breakpoint->type == BKPT_HARD)
1256                 aarch64->brp_num_available--;
1257
1258         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1259 }
1260
1261 static int aarch64_add_hybrid_breakpoint(struct target *target,
1262         struct breakpoint *breakpoint)
1263 {
1264         struct aarch64_common *aarch64 = target_to_aarch64(target);
1265
1266         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1267                 LOG_INFO("no hardware breakpoint available");
1268                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1269         }
1270
1271         if (breakpoint->type == BKPT_HARD)
1272                 aarch64->brp_num_available--;
1273
1274         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1275 }
1276
1277
1278 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1279 {
1280         struct aarch64_common *aarch64 = target_to_aarch64(target);
1281
1282 #if 0
1283 /* It is perfectly possible to remove breakpoints while the target is running */
1284         if (target->state != TARGET_HALTED) {
1285                 LOG_WARNING("target not halted");
1286                 return ERROR_TARGET_NOT_HALTED;
1287         }
1288 #endif
1289
1290         if (breakpoint->set) {
1291                 aarch64_unset_breakpoint(target, breakpoint);
1292                 if (breakpoint->type == BKPT_HARD)
1293                         aarch64->brp_num_available++;
1294         }
1295
1296         return ERROR_OK;
1297 }
1298
1299 /*
1300  * Cortex-A8 Reset functions
1301  */
1302
1303 static int aarch64_assert_reset(struct target *target)
1304 {
1305         struct armv8_common *armv8 = target_to_armv8(target);
1306
1307         LOG_DEBUG(" ");
1308
1309         /* FIXME when halt is requested, make it work somehow... */
1310
1311         /* Issue some kind of warm reset. */
1312         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1313                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1314         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1315                 /* REVISIT handle "pulls" cases, if there's
1316                  * hardware that needs them to work.
1317                  */
1318                 jtag_add_reset(0, 1);
1319         } else {
1320                 LOG_ERROR("%s: how to reset?", target_name(target));
1321                 return ERROR_FAIL;
1322         }
1323
1324         /* registers are now invalid */
1325         register_cache_invalidate(armv8->arm.core_cache);
1326
1327         target->state = TARGET_RESET;
1328
1329         return ERROR_OK;
1330 }
1331
1332 static int aarch64_deassert_reset(struct target *target)
1333 {
1334         int retval;
1335
1336         LOG_DEBUG(" ");
1337
1338         /* be certain SRST is off */
1339         jtag_add_reset(0, 0);
1340
1341         retval = aarch64_poll(target);
1342         if (retval != ERROR_OK)
1343                 return retval;
1344
1345         if (target->reset_halt) {
1346                 if (target->state != TARGET_HALTED) {
1347                         LOG_WARNING("%s: ran after reset and before halt ...",
1348                                 target_name(target));
1349                         retval = target_halt(target);
1350                         if (retval != ERROR_OK)
1351                                 return retval;
1352                 }
1353         }
1354
1355         return ERROR_OK;
1356 }
1357
1358 static int aarch64_write_apb_ap_memory(struct target *target,
1359         uint64_t address, uint32_t size,
1360         uint32_t count, const uint8_t *buffer)
1361 {
1362         /* write memory through APB-AP */
1363         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1364         struct armv8_common *armv8 = target_to_armv8(target);
1365         struct arm_dpm *dpm = &armv8->dpm;
1366         struct arm *arm = &armv8->arm;
1367         int total_bytes = count * size;
1368         int total_u32;
1369         int start_byte = address & 0x3;
1370         int end_byte   = (address + total_bytes) & 0x3;
1371         struct reg *reg;
1372         uint32_t dscr;
1373         uint8_t *tmp_buff = NULL;
1374
1375         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1376                           address, size, count);
1377         if (target->state != TARGET_HALTED) {
1378                 LOG_WARNING("target not halted");
1379                 return ERROR_TARGET_NOT_HALTED;
1380         }
1381
1382         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1383
1384         /* Mark register R0 as dirty, as it will be used
1385          * for transferring the data.
1386          * It will be restored automatically when exiting
1387          * debug mode
1388          */
1389         reg = armv8_reg_current(arm, 1);
1390         reg->dirty = true;
1391
1392         reg = armv8_reg_current(arm, 0);
1393         reg->dirty = true;
1394
1395         /*  clear any abort  */
1396         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1397                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1398         if (retval != ERROR_OK)
1399                 return retval;
1400
1401
1402         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1403
1404         /* The algorithm only copies 32 bit words, so the buffer
1405          * should be expanded to include the words at either end.
1406          * The first and last words will be read first to avoid
1407          * corruption if needed.
1408          */
1409         tmp_buff = malloc(total_u32 * 4);
1410
1411         if ((start_byte != 0) && (total_u32 > 1)) {
1412                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1413                  * the other bytes in the word.
1414                  */
1415                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1416                 if (retval != ERROR_OK)
1417                         goto error_free_buff_w;
1418         }
1419
1420         /* If end of write is not aligned, or the write is less than 4 bytes */
1421         if ((end_byte != 0) ||
1422                 ((total_u32 == 1) && (total_bytes != 4))) {
1423
1424                 /* Read the last word to avoid corruption during 32 bit write */
1425                 int mem_offset = (total_u32-1) * 4;
1426                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1427                 if (retval != ERROR_OK)
1428                         goto error_free_buff_w;
1429         }
1430
1431         /* Copy the write buffer over the top of the temporary buffer */
1432         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1433
1434         /* We now have a 32 bit aligned buffer that can be written */
1435
1436         /* Read DSCR */
1437         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1438                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1439         if (retval != ERROR_OK)
1440                 goto error_free_buff_w;
1441
1442         /* Set Normal access mode  */
1443         dscr = (dscr & ~DSCR_MA);
1444         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1445                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1446
1447         if (arm->core_state == ARM_STATE_AARCH64) {
1448                 /* Write X0 with value 'address' using write procedure */
1449                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1450                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1451                 retval = dpm->instr_write_data_dcc_64(dpm,
1452                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1453         } else {
1454                 /* Write R0 with value 'address' using write procedure */
1455                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1456                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1457                 dpm->instr_write_data_dcc(dpm,
1458                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1459
1460         }
1461         /* Step 1.d   - Change DCC to memory mode */
1462         dscr = dscr | DSCR_MA;
1463         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1464                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1465         if (retval != ERROR_OK)
1466                 goto error_unset_dtr_w;
1467
1468
1469         /* Step 2.a   - Do the write */
1470         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1471                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1472         if (retval != ERROR_OK)
1473                 goto error_unset_dtr_w;
1474
1475         /* Step 3.a   - Switch DTR mode back to Normal mode */
1476         dscr = (dscr & ~DSCR_MA);
1477         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1478                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1479         if (retval != ERROR_OK)
1480                 goto error_unset_dtr_w;
1481
1482         /* Check for sticky abort flags in the DSCR */
1483         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1484                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1485         if (retval != ERROR_OK)
1486                 goto error_free_buff_w;
1487
1488         dpm->dscr = dscr;
1489         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1490                 /* Abort occurred - clear it and exit */
1491                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1492                 mem_ap_write_atomic_u32(armv8->debug_ap,
1493                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1494                 armv8_dpm_handle_exception(dpm);
1495                 goto error_free_buff_w;
1496         }
1497
1498         /* Done */
1499         free(tmp_buff);
1500         return ERROR_OK;
1501
1502 error_unset_dtr_w:
1503         /* Unset DTR mode */
1504         mem_ap_read_atomic_u32(armv8->debug_ap,
1505                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1506         dscr = (dscr & ~DSCR_MA);
1507         mem_ap_write_atomic_u32(armv8->debug_ap,
1508                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1509 error_free_buff_w:
1510         LOG_ERROR("error");
1511         free(tmp_buff);
1512         return ERROR_FAIL;
1513 }
1514
1515 static int aarch64_read_apb_ap_memory(struct target *target,
1516         target_addr_t address, uint32_t size,
1517         uint32_t count, uint8_t *buffer)
1518 {
1519         /* read memory through APB-AP */
1520         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1521         struct armv8_common *armv8 = target_to_armv8(target);
1522         struct arm_dpm *dpm = &armv8->dpm;
1523         struct arm *arm = &armv8->arm;
1524         int total_bytes = count * size;
1525         int total_u32;
1526         int start_byte = address & 0x3;
1527         int end_byte   = (address + total_bytes) & 0x3;
1528         struct reg *reg;
1529         uint32_t dscr;
1530         uint8_t *tmp_buff = NULL;
1531         uint8_t *u8buf_ptr;
1532         uint32_t value;
1533
1534         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1535                           address, size, count);
1536         if (target->state != TARGET_HALTED) {
1537                 LOG_WARNING("target not halted");
1538                 return ERROR_TARGET_NOT_HALTED;
1539         }
1540
1541         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1542         /* Mark register X0, X1 as dirty, as it will be used
1543          * for transferring the data.
1544          * It will be restored automatically when exiting
1545          * debug mode
1546          */
1547         reg = armv8_reg_current(arm, 1);
1548         reg->dirty = true;
1549
1550         reg = armv8_reg_current(arm, 0);
1551         reg->dirty = true;
1552
1553         /*      clear any abort  */
1554         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1555                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1556         if (retval != ERROR_OK)
1557                 goto error_free_buff_r;
1558
1559         /* Read DSCR */
1560         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1561                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1562
1563         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1564
1565         /* Set Normal access mode  */
1566         dscr = (dscr & ~DSCR_MA);
1567         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1568                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1569
1570         if (arm->core_state == ARM_STATE_AARCH64) {
1571                 /* Write X0 with value 'address' using write procedure */
1572                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1573                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1574                 retval += dpm->instr_write_data_dcc_64(dpm,
1575                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1576                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1577                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1578                 /* Step 1.e - Change DCC to memory mode */
1579                 dscr = dscr | DSCR_MA;
1580                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1581                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1582                 /* Step 1.f - read DBGDTRTX and discard the value */
1583                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1584                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1585         } else {
1586                 /* Write R0 with value 'address' using write procedure */
1587                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1588                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1589                 retval += dpm->instr_write_data_dcc(dpm,
1590                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
1591                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1592                 retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
1593                 /* Step 1.e - Change DCC to memory mode */
1594                 dscr = dscr | DSCR_MA;
1595                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1596                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1597                 /* Step 1.f - read DBGDTRTX and discard the value */
1598                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1599                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1600
1601         }
1602         if (retval != ERROR_OK)
1603                 goto error_unset_dtr_r;
1604
1605         /* Optimize the read as much as we can, either way we read in a single pass  */
1606         if ((start_byte) || (end_byte)) {
1607                 /* The algorithm only copies 32 bit words, so the buffer
1608                  * should be expanded to include the words at either end.
1609                  * The first and last words will be read into a temp buffer
1610                  * to avoid corruption
1611                  */
1612                 tmp_buff = malloc(total_u32 * 4);
1613                 if (!tmp_buff)
1614                         goto error_unset_dtr_r;
1615
1616                 /* use the tmp buffer to read the entire data */
1617                 u8buf_ptr = tmp_buff;
1618         } else
1619                 /* address and read length are aligned so read directly into the passed buffer */
1620                 u8buf_ptr = buffer;
1621
1622         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1623          * Abort flags are sticky, so can be read at end of transactions
1624          *
1625          * This data is read in aligned to 32 bit boundary.
1626          */
1627
1628         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1629          * increments X0 by 4. */
1630         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1631                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1632         if (retval != ERROR_OK)
1633                         goto error_unset_dtr_r;
1634
1635         /* Step 3.a - set DTR access mode back to Normal mode   */
1636         dscr = (dscr & ~DSCR_MA);
1637         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1638                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1639         if (retval != ERROR_OK)
1640                 goto error_free_buff_r;
1641
1642         /* Step 3.b - read DBGDTRTX for the final value */
1643         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1644                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1645         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1646
1647         /* Check for sticky abort flags in the DSCR */
1648         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1649                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1650         if (retval != ERROR_OK)
1651                 goto error_free_buff_r;
1652
1653         dpm->dscr = dscr;
1654
1655         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1656                 /* Abort occurred - clear it and exit */
1657                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1658                 mem_ap_write_atomic_u32(armv8->debug_ap,
1659                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1660                 armv8_dpm_handle_exception(dpm);
1661                 goto error_free_buff_r;
1662         }
1663
1664         /* check if we need to copy aligned data by applying any shift necessary */
1665         if (tmp_buff) {
1666                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1667                 free(tmp_buff);
1668         }
1669
1670         /* Done */
1671         return ERROR_OK;
1672
1673 error_unset_dtr_r:
1674         /* Unset DTR mode */
1675         mem_ap_read_atomic_u32(armv8->debug_ap,
1676                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1677         dscr = (dscr & ~DSCR_MA);
1678         mem_ap_write_atomic_u32(armv8->debug_ap,
1679                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1680 error_free_buff_r:
1681         LOG_ERROR("error");
1682         free(tmp_buff);
1683         return ERROR_FAIL;
1684 }
1685
1686 static int aarch64_read_phys_memory(struct target *target,
1687         target_addr_t address, uint32_t size,
1688         uint32_t count, uint8_t *buffer)
1689 {
1690         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1691         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1692                 address, size, count);
1693
1694         if (count && buffer) {
1695                 /* read memory through APB-AP */
1696                 retval = aarch64_mmu_modify(target, 0);
1697                 if (retval != ERROR_OK)
1698                         return retval;
1699                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1700         }
1701         return retval;
1702 }
1703
1704 static int aarch64_read_memory(struct target *target, target_addr_t address,
1705         uint32_t size, uint32_t count, uint8_t *buffer)
1706 {
1707         int mmu_enabled = 0;
1708         int retval;
1709
1710         /* aarch64 handles unaligned memory access */
1711         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1712                 size, count);
1713
1714         /* determine if MMU was enabled on target stop */
1715         retval = aarch64_mmu(target, &mmu_enabled);
1716         if (retval != ERROR_OK)
1717                 return retval;
1718
1719         if (mmu_enabled) {
1720                 retval = aarch64_check_address(target, address);
1721                 if (retval != ERROR_OK)
1722                         return retval;
1723                 /* enable MMU as we could have disabled it for phys access */
1724                 retval = aarch64_mmu_modify(target, 1);
1725                 if (retval != ERROR_OK)
1726                         return retval;
1727         }
1728         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1729 }
1730
1731 static int aarch64_write_phys_memory(struct target *target,
1732         target_addr_t address, uint32_t size,
1733         uint32_t count, const uint8_t *buffer)
1734 {
1735         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1736
1737         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1738                 size, count);
1739
1740         if (count && buffer) {
1741                 /* write memory through APB-AP */
1742                 retval = aarch64_mmu_modify(target, 0);
1743                 if (retval != ERROR_OK)
1744                         return retval;
1745                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1746         }
1747
1748         return retval;
1749 }
1750
1751 static int aarch64_write_memory(struct target *target, target_addr_t address,
1752         uint32_t size, uint32_t count, const uint8_t *buffer)
1753 {
1754         int mmu_enabled = 0;
1755         int retval;
1756
1757         /* aarch64 handles unaligned memory access */
1758         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1759                   "; count %" PRId32, address, size, count);
1760
1761         /* determine if MMU was enabled on target stop */
1762         retval = aarch64_mmu(target, &mmu_enabled);
1763         if (retval != ERROR_OK)
1764                 return retval;
1765
1766         if (mmu_enabled) {
1767                 retval = aarch64_check_address(target, address);
1768                 if (retval != ERROR_OK)
1769                         return retval;
1770                 /* enable MMU as we could have disabled it for phys access */
1771                 retval = aarch64_mmu_modify(target, 1);
1772                 if (retval != ERROR_OK)
1773                         return retval;
1774         }
1775         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1776 }
1777
1778 static int aarch64_handle_target_request(void *priv)
1779 {
1780         struct target *target = priv;
1781         struct armv8_common *armv8 = target_to_armv8(target);
1782         int retval;
1783
1784         if (!target_was_examined(target))
1785                 return ERROR_OK;
1786         if (!target->dbg_msg_enabled)
1787                 return ERROR_OK;
1788
1789         if (target->state == TARGET_RUNNING) {
1790                 uint32_t request;
1791                 uint32_t dscr;
1792                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1793                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1794
1795                 /* check if we have data */
1796                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1797                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1798                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1799                         if (retval == ERROR_OK) {
1800                                 target_request(target, request);
1801                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1802                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1803                         }
1804                 }
1805         }
1806
1807         return ERROR_OK;
1808 }
1809
1810 static int aarch64_examine_first(struct target *target)
1811 {
1812         struct aarch64_common *aarch64 = target_to_aarch64(target);
1813         struct armv8_common *armv8 = &aarch64->armv8_common;
1814         struct adiv5_dap *swjdp = armv8->arm.dap;
1815         int i;
1816         int retval = ERROR_OK;
1817         uint64_t debug, ttypr;
1818         uint32_t cpuid;
1819         uint32_t tmp0, tmp1;
1820         debug = ttypr = cpuid = 0;
1821
1822         /* We do one extra read to ensure DAP is configured,
1823          * we call ahbap_debugport_init(swjdp) instead
1824          */
1825         retval = dap_dp_init(swjdp);
1826         if (retval != ERROR_OK)
1827                 return retval;
1828
1829         /* Search for the APB-AB - it is needed for access to debug registers */
1830         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1831         if (retval != ERROR_OK) {
1832                 LOG_ERROR("Could not find APB-AP for debug access");
1833                 return retval;
1834         }
1835
1836         retval = mem_ap_init(armv8->debug_ap);
1837         if (retval != ERROR_OK) {
1838                 LOG_ERROR("Could not initialize the APB-AP");
1839                 return retval;
1840         }
1841
1842         armv8->debug_ap->memaccess_tck = 80;
1843
1844         if (!target->dbgbase_set) {
1845                 uint32_t dbgbase;
1846                 /* Get ROM Table base */
1847                 uint32_t apid;
1848                 int32_t coreidx = target->coreid;
1849                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1850                 if (retval != ERROR_OK)
1851                         return retval;
1852                 /* Lookup 0x15 -- Processor DAP */
1853                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1854                                 &armv8->debug_base, &coreidx);
1855                 if (retval != ERROR_OK)
1856                         return retval;
1857                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1858                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1859         } else
1860                 armv8->debug_base = target->dbgbase;
1861
1862         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1863                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1864         if (retval != ERROR_OK) {
1865                 LOG_DEBUG("LOCK debug access fail");
1866                 return retval;
1867         }
1868
1869         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1870                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1871         if (retval != ERROR_OK) {
1872                 LOG_DEBUG("Examine %s failed", "oslock");
1873                 return retval;
1874         }
1875
1876         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1877                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1878         if (retval != ERROR_OK) {
1879                 LOG_DEBUG("Examine %s failed", "CPUID");
1880                 return retval;
1881         }
1882
1883         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1884                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1885         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1886                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1887         if (retval != ERROR_OK) {
1888                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1889                 return retval;
1890         }
1891         ttypr |= tmp1;
1892         ttypr = (ttypr << 32) | tmp0;
1893
1894         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1895                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1896         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1897                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1898         if (retval != ERROR_OK) {
1899                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1900                 return retval;
1901         }
1902         debug |= tmp1;
1903         debug = (debug << 32) | tmp0;
1904
1905         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1906         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1907         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1908
1909         if (target->ctibase == 0) {
1910                 /* assume a v8 rom table layout */
1911                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1912                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1913         } else
1914                 armv8->cti_base = target->ctibase;
1915
1916         armv8->arm.core_type = ARM_MODE_MON;
1917         retval = aarch64_dpm_setup(aarch64, debug);
1918         if (retval != ERROR_OK)
1919                 return retval;
1920
1921         /* Setup Breakpoint Register Pairs */
1922         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1923         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1924         aarch64->brp_num_available = aarch64->brp_num;
1925         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1926         for (i = 0; i < aarch64->brp_num; i++) {
1927                 aarch64->brp_list[i].used = 0;
1928                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1929                         aarch64->brp_list[i].type = BRP_NORMAL;
1930                 else
1931                         aarch64->brp_list[i].type = BRP_CONTEXT;
1932                 aarch64->brp_list[i].value = 0;
1933                 aarch64->brp_list[i].control = 0;
1934                 aarch64->brp_list[i].BRPn = i;
1935         }
1936
1937         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1938
1939         target_set_examined(target);
1940         return ERROR_OK;
1941 }
1942
1943 static int aarch64_examine(struct target *target)
1944 {
1945         int retval = ERROR_OK;
1946
1947         /* don't re-probe hardware after each reset */
1948         if (!target_was_examined(target))
1949                 retval = aarch64_examine_first(target);
1950
1951         /* Configure core debug access */
1952         if (retval == ERROR_OK)
1953                 retval = aarch64_init_debug_access(target);
1954
1955         return retval;
1956 }
1957
1958 /*
1959  *      Cortex-A8 target creation and initialization
1960  */
1961
1962 static int aarch64_init_target(struct command_context *cmd_ctx,
1963         struct target *target)
1964 {
1965         /* examine_first() does a bunch of this */
1966         return ERROR_OK;
1967 }
1968
1969 static int aarch64_init_arch_info(struct target *target,
1970         struct aarch64_common *aarch64, struct jtag_tap *tap)
1971 {
1972         struct armv8_common *armv8 = &aarch64->armv8_common;
1973         struct adiv5_dap *dap = armv8->arm.dap;
1974
1975         armv8->arm.dap = dap;
1976
1977         /* Setup struct aarch64_common */
1978         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1979         /*  tap has no dap initialized */
1980         if (!tap->dap) {
1981                 tap->dap = dap_init();
1982
1983                 /* Leave (only) generic DAP stuff for debugport_init() */
1984                 tap->dap->tap = tap;
1985         }
1986
1987         armv8->arm.dap = tap->dap;
1988
1989         aarch64->fast_reg_read = 0;
1990
1991         /* register arch-specific functions */
1992         armv8->examine_debug_reason = NULL;
1993
1994         armv8->post_debug_entry = aarch64_post_debug_entry;
1995
1996         armv8->pre_restore_context = NULL;
1997
1998         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1999
2000         /* REVISIT v7a setup should be in a v7a-specific routine */
2001         armv8_init_arch_info(target, armv8);
2002         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2003
2004         return ERROR_OK;
2005 }
2006
2007 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2008 {
2009         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2010
2011         return aarch64_init_arch_info(target, aarch64, target->tap);
2012 }
2013
2014 static int aarch64_mmu(struct target *target, int *enabled)
2015 {
2016         if (target->state != TARGET_HALTED) {
2017                 LOG_ERROR("%s: target not halted", __func__);
2018                 return ERROR_TARGET_INVALID;
2019         }
2020
2021         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2022         return ERROR_OK;
2023 }
2024
2025 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2026                              target_addr_t *phys)
2027 {
2028         return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2029 }
2030
2031 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2032 {
2033         struct target *target = get_current_target(CMD_CTX);
2034         struct armv8_common *armv8 = target_to_armv8(target);
2035
2036         return armv8_handle_cache_info_command(CMD_CTX,
2037                         &armv8->armv8_mmu.armv8_cache);
2038 }
2039
2040
2041 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2042 {
2043         struct target *target = get_current_target(CMD_CTX);
2044         if (!target_was_examined(target)) {
2045                 LOG_ERROR("target not examined yet");
2046                 return ERROR_FAIL;
2047         }
2048
2049         return aarch64_init_debug_access(target);
2050 }
2051 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2052 {
2053         struct target *target = get_current_target(CMD_CTX);
2054         /* check target is an smp target */
2055         struct target_list *head;
2056         struct target *curr;
2057         head = target->head;
2058         target->smp = 0;
2059         if (head != (struct target_list *)NULL) {
2060                 while (head != (struct target_list *)NULL) {
2061                         curr = head->target;
2062                         curr->smp = 0;
2063                         head = head->next;
2064                 }
2065                 /*  fixes the target display to the debugger */
2066                 target->gdb_service->target = target;
2067         }
2068         return ERROR_OK;
2069 }
2070
2071 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2072 {
2073         struct target *target = get_current_target(CMD_CTX);
2074         struct target_list *head;
2075         struct target *curr;
2076         head = target->head;
2077         if (head != (struct target_list *)NULL) {
2078                 target->smp = 1;
2079                 while (head != (struct target_list *)NULL) {
2080                         curr = head->target;
2081                         curr->smp = 1;
2082                         head = head->next;
2083                 }
2084         }
2085         return ERROR_OK;
2086 }
2087
2088 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2089 {
2090         struct target *target = get_current_target(CMD_CTX);
2091         int retval = ERROR_OK;
2092         struct target_list *head;
2093         head = target->head;
2094         if (head != (struct target_list *)NULL) {
2095                 if (CMD_ARGC == 1) {
2096                         int coreid = 0;
2097                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2098                         if (ERROR_OK != retval)
2099                                 return retval;
2100                         target->gdb_service->core[1] = coreid;
2101
2102                 }
2103                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2104                         , target->gdb_service->core[1]);
2105         }
2106         return ERROR_OK;
2107 }
2108
2109 static const struct command_registration aarch64_exec_command_handlers[] = {
2110         {
2111                 .name = "cache_info",
2112                 .handler = aarch64_handle_cache_info_command,
2113                 .mode = COMMAND_EXEC,
2114                 .help = "display information about target caches",
2115                 .usage = "",
2116         },
2117         {
2118                 .name = "dbginit",
2119                 .handler = aarch64_handle_dbginit_command,
2120                 .mode = COMMAND_EXEC,
2121                 .help = "Initialize core debug",
2122                 .usage = "",
2123         },
2124         {       .name = "smp_off",
2125                 .handler = aarch64_handle_smp_off_command,
2126                 .mode = COMMAND_EXEC,
2127                 .help = "Stop smp handling",
2128                 .usage = "",
2129         },
2130         {
2131                 .name = "smp_on",
2132                 .handler = aarch64_handle_smp_on_command,
2133                 .mode = COMMAND_EXEC,
2134                 .help = "Restart smp handling",
2135                 .usage = "",
2136         },
2137         {
2138                 .name = "smp_gdb",
2139                 .handler = aarch64_handle_smp_gdb_command,
2140                 .mode = COMMAND_EXEC,
2141                 .help = "display/fix current core played to gdb",
2142                 .usage = "",
2143         },
2144
2145
2146         COMMAND_REGISTRATION_DONE
2147 };
2148 static const struct command_registration aarch64_command_handlers[] = {
2149         {
2150                 .chain = arm_command_handlers,
2151         },
2152         {
2153                 .chain = armv8_command_handlers,
2154         },
2155         {
2156                 .name = "cortex_a",
2157                 .mode = COMMAND_ANY,
2158                 .help = "Cortex-A command group",
2159                 .usage = "",
2160                 .chain = aarch64_exec_command_handlers,
2161         },
2162         COMMAND_REGISTRATION_DONE
2163 };
2164
2165 struct target_type aarch64_target = {
2166         .name = "aarch64",
2167
2168         .poll = aarch64_poll,
2169         .arch_state = armv8_arch_state,
2170
2171         .halt = aarch64_halt,
2172         .resume = aarch64_resume,
2173         .step = aarch64_step,
2174
2175         .assert_reset = aarch64_assert_reset,
2176         .deassert_reset = aarch64_deassert_reset,
2177
2178         /* REVISIT allow exporting VFP3 registers ... */
2179         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2180
2181         .read_memory = aarch64_read_memory,
2182         .write_memory = aarch64_write_memory,
2183
2184         .checksum_memory = arm_checksum_memory,
2185         .blank_check_memory = arm_blank_check_memory,
2186
2187         .run_algorithm = armv4_5_run_algorithm,
2188
2189         .add_breakpoint = aarch64_add_breakpoint,
2190         .add_context_breakpoint = aarch64_add_context_breakpoint,
2191         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2192         .remove_breakpoint = aarch64_remove_breakpoint,
2193         .add_watchpoint = NULL,
2194         .remove_watchpoint = NULL,
2195
2196         .commands = aarch64_command_handlers,
2197         .target_create = aarch64_target_create,
2198         .init_target = aarch64_init_target,
2199         .examine = aarch64_examine,
2200
2201         .read_phys_memory = aarch64_read_phys_memory,
2202         .write_phys_memory = aarch64_write_phys_memory,
2203         .mmu = aarch64_mmu,
2204         .virt2phys = aarch64_virt2phys,
2205 };