]> git.sur5r.net Git - openocd/blob - src/target/arm7_9_common.c
Revert "cortex_m3: add auto maskisr"
[openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
30  ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48  * @file
49  * Hold common code supporting the ARM7 and ARM9 core generations.
50  *
51  * While the ARM core implementations evolved substantially during these
52  * two generations, they look quite similar from the JTAG perspective.
53  * Both have similar debug facilities, based on the same two scan chains
54  * providing access to the core and to an EmbeddedICE module.  Both can
55  * support similar ETM and ETB modules, for tracing.  And both expose
56  * what could be viewed as "ARM Classic", with multiple processor modes,
57  * shadowed registers, and support for the Thumb instruction set.
58  *
59  * Processor differences include things like presence or absence of MMU
60  * and cache, pipeline sizes, use of a modified Harvard Architecure
61  * (with separate instruction and data busses from the CPU), support
62  * for cpu clock gating during idle, and more.
63  */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68  * Clear watchpoints for an ARM7/9 target.
69  *
70  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71  * @return JTAG error status after executing queue
72  */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75         LOG_DEBUG("-");
76         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78         arm7_9->sw_breakpoint_count = 0;
79         arm7_9->sw_breakpoints_added = 0;
80         arm7_9->wp0_used = 0;
81         arm7_9->wp1_used = arm7_9->wp1_used_default;
82         arm7_9->wp_available = arm7_9->wp_available_max;
83
84         return jtag_execute_queue();
85 }
86
87 /**
88  * Assign a watchpoint to one of the two available hardware comparators in an
89  * ARM7 or ARM9 target.
90  *
91  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93  */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96         if (!arm7_9->wp0_used)
97         {
98                 arm7_9->wp0_used = 1;
99                 breakpoint->set = 1;
100                 arm7_9->wp_available--;
101         }
102         else if (!arm7_9->wp1_used)
103         {
104                 arm7_9->wp1_used = 1;
105                 breakpoint->set = 2;
106                 arm7_9->wp_available--;
107         }
108         else
109         {
110                 LOG_ERROR("BUG: no hardware comparator available");
111         }
112         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113                           breakpoint->unique_id,
114                           breakpoint->address,
115                           breakpoint->set );
116 }
117
118 /**
119  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120  *
121  * @param arm7_9 Pointer to common struct for ARM7/9 targets
122  * @return Error codes if there is a problem finding a watchpoint or the result
123  *         of executing the JTAG queue
124  */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127         if (arm7_9->sw_breakpoints_added)
128         {
129                 return ERROR_OK;
130         }
131         if (arm7_9->wp_available < 1)
132         {
133                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135         }
136         arm7_9->wp_available--;
137
138         /* pick a breakpoint unit */
139         if (!arm7_9->wp0_used)
140         {
141                 arm7_9->sw_breakpoints_added = 1;
142                 arm7_9->wp0_used = 3;
143         } else if (!arm7_9->wp1_used)
144         {
145                 arm7_9->sw_breakpoints_added = 2;
146                 arm7_9->wp1_used = 3;
147         }
148         else
149         {
150                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151                 return ERROR_FAIL;
152         }
153
154         if (arm7_9->sw_breakpoints_added == 1)
155         {
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161         }
162         else if (arm7_9->sw_breakpoints_added == 2)
163         {
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169         }
170         else
171         {
172                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173                 return ERROR_FAIL;
174         }
175         LOG_DEBUG("SW BP using hw wp: %d",
176                           arm7_9->sw_breakpoints_added );
177
178         return jtag_execute_queue();
179 }
180
181 /**
182  * Setup the common pieces for an ARM7/9 target after reset or on startup.
183  *
184  * @param target Pointer to an ARM7/9 target to setup
185  * @return Result of clearing the watchpoints on the target
186  */
187 static int arm7_9_setup(struct target *target)
188 {
189         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191         return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
196  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
197  * might have erased the values in Embedded ICE.
198  *
199  * @param target Pointer to the target device to set the breakpoints on
200  * @param breakpoint Pointer to the breakpoint to be set
201  * @return For hardware breakpoints, this is the result of executing the JTAG
202  *         queue.  For software breakpoints, this will be the status of the
203  *         required memory reads and writes
204  */
205 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208         int retval = ERROR_OK;
209
210         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211                           breakpoint->unique_id,
212                           breakpoint->address,
213                           breakpoint->type);
214
215         if (target->state != TARGET_HALTED)
216         {
217                 LOG_WARNING("target not halted");
218                 return ERROR_TARGET_NOT_HALTED;
219         }
220
221         if (breakpoint->type == BKPT_HARD)
222         {
223                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226                 /* reassign a hw breakpoint */
227                 if (breakpoint->set == 0)
228                 {
229                         arm7_9_assign_wp(arm7_9, breakpoint);
230                 }
231
232                 if (breakpoint->set == 1)
233                 {
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239                 }
240                 else if (breakpoint->set == 2)
241                 {
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247                 }
248                 else
249                 {
250                         LOG_ERROR("BUG: no hardware comparator available");
251                         return ERROR_OK;
252                 }
253
254                 retval = jtag_execute_queue();
255         }
256         else if (breakpoint->type == BKPT_SOFT)
257         {
258                 /* did we already set this breakpoint? */
259                 if (breakpoint->set)
260                         return ERROR_OK;
261
262                 if (breakpoint->length == 4)
263                 {
264                         uint32_t verify = 0xffffffff;
265                         /* keep the original instruction in target endianness */
266                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267                         {
268                                 return retval;
269                         }
270                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272                         {
273                                 return retval;
274                         }
275
276                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277                         {
278                                 return retval;
279                         }
280                         if (verify != arm7_9->arm_bkpt)
281                         {
282                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283                                 return ERROR_OK;
284                         }
285                 }
286                 else
287                 {
288                         uint16_t verify = 0xffff;
289                         /* keep the original instruction in target endianness */
290                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291                         {
292                                 return retval;
293                         }
294                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296                         {
297                                 return retval;
298                         }
299
300                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301                         {
302                                 return retval;
303                         }
304                         if (verify != arm7_9->thumb_bkpt)
305                         {
306                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307                                 return ERROR_OK;
308                         }
309                 }
310
311                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312                         return retval;
313
314                 arm7_9->sw_breakpoint_count++;
315
316                 breakpoint->set = 1;
317         }
318
319         return retval;
320 }
321
322 /**
323  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
324  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325  * will be updated.  Otherwise, the software breakpoint will be restored to its
326  * original instruction if it hasn't already been modified.
327  *
328  * @param target Pointer to ARM7/9 target to unset the breakpoint from
329  * @param breakpoint Pointer to breakpoint to be unset
330  * @return For hardware breakpoints, this is the result of executing the JTAG
331  *         queue.  For software breakpoints, this will be the status of the
332  *         required memory reads and writes
333  */
334 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336         int retval = ERROR_OK;
337         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340                           breakpoint->unique_id,
341                           breakpoint->address );
342
343         if (!breakpoint->set)
344         {
345                 LOG_WARNING("breakpoint not set");
346                 return ERROR_OK;
347         }
348
349         if (breakpoint->type == BKPT_HARD)
350         {
351                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352                                   breakpoint->unique_id,
353                                   breakpoint->set );
354                 if (breakpoint->set == 1)
355                 {
356                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357                         arm7_9->wp0_used = 0;
358                         arm7_9->wp_available++;
359                 }
360                 else if (breakpoint->set == 2)
361                 {
362                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363                         arm7_9->wp1_used = 0;
364                         arm7_9->wp_available++;
365                 }
366                 retval = jtag_execute_queue();
367                 breakpoint->set = 0;
368         }
369         else
370         {
371                 /* restore original instruction (kept in target endianness) */
372                 if (breakpoint->length == 4)
373                 {
374                         uint32_t current_instr;
375                         /* check that user program as not modified breakpoint instruction */
376                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377                         {
378                                 return retval;
379                         }
380                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
381                         if (current_instr == arm7_9->arm_bkpt)
382                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
383                                 {
384                                         return retval;
385                                 }
386                 }
387                 else
388                 {
389                         uint16_t current_instr;
390                         /* check that user program as not modified breakpoint instruction */
391                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
392                         {
393                                 return retval;
394                         }
395                         if (current_instr == arm7_9->thumb_bkpt)
396                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
397                                 {
398                                         return retval;
399                                 }
400                 }
401
402                 if (--arm7_9->sw_breakpoint_count==0)
403                 {
404                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
405                         if (arm7_9->sw_breakpoints_added == 1)
406                         {
407                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
408                         }
409                         else if (arm7_9->sw_breakpoints_added == 2)
410                         {
411                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
412                         }
413                 }
414
415                 breakpoint->set = 0;
416         }
417
418         return retval;
419 }
420
421 /**
422  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
423  * dangling breakpoints and that the desired breakpoint can be added.
424  *
425  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
426  * @param breakpoint Pointer to the breakpoint to be added
427  * @return An error status if there is a problem adding the breakpoint or the
428  *         result of setting the breakpoint
429  */
430 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
431 {
432         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
433
434         if (arm7_9->breakpoint_count == 0)
435         {
436                 /* make sure we don't have any dangling breakpoints. This is vital upon
437                  * GDB connect/disconnect
438                  */
439                 arm7_9_clear_watchpoints(arm7_9);
440         }
441
442         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
443         {
444                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
445                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
446         }
447
448         if ((breakpoint->length != 2) && (breakpoint->length != 4))
449         {
450                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
451                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
452         }
453
454         if (breakpoint->type == BKPT_HARD)
455         {
456                 arm7_9_assign_wp(arm7_9, breakpoint);
457         }
458
459         arm7_9->breakpoint_count++;
460
461         return arm7_9_set_breakpoint(target, breakpoint);
462 }
463
464 /**
465  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
466  * dangling breakpoints and updates available watchpoints if it is a hardware
467  * breakpoint.
468  *
469  * @param target Pointer to the target to have a breakpoint removed
470  * @param breakpoint Pointer to the breakpoint to be removed
471  * @return Error status if there was a problem unsetting the breakpoint or the
472  *         watchpoints could not be cleared
473  */
474 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
475 {
476         int retval = ERROR_OK;
477         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
478
479         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
480         {
481                 return retval;
482         }
483
484         if (breakpoint->type == BKPT_HARD)
485                 arm7_9->wp_available++;
486
487         arm7_9->breakpoint_count--;
488         if (arm7_9->breakpoint_count == 0)
489         {
490                 /* make sure we don't have any dangling breakpoints */
491                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
492                 {
493                         return retval;
494                 }
495         }
496
497         return ERROR_OK;
498 }
499
500 /**
501  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
502  * considered a bug to call this function when there are no available watchpoint
503  * units.
504  *
505  * @param target Pointer to an ARM7/9 target to set a watchpoint on
506  * @param watchpoint Pointer to the watchpoint to be set
507  * @return Error status if watchpoint set fails or the result of executing the
508  *         JTAG queue
509  */
510 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
511 {
512         int retval = ERROR_OK;
513         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
514         int rw_mask = 1;
515         uint32_t mask;
516
517         mask = watchpoint->length - 1;
518
519         if (target->state != TARGET_HALTED)
520         {
521                 LOG_WARNING("target not halted");
522                 return ERROR_TARGET_NOT_HALTED;
523         }
524
525         if (watchpoint->rw == WPT_ACCESS)
526                 rw_mask = 0;
527         else
528                 rw_mask = 1;
529
530         if (!arm7_9->wp0_used)
531         {
532                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
535                 if (watchpoint->mask != 0xffffffffu)
536                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
537                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
538                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
539
540                 if ((retval = jtag_execute_queue()) != ERROR_OK)
541                 {
542                         return retval;
543                 }
544                 watchpoint->set = 1;
545                 arm7_9->wp0_used = 2;
546         }
547         else if (!arm7_9->wp1_used)
548         {
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
552                 if (watchpoint->mask != 0xffffffffu)
553                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
554                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
555                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
556
557                 if ((retval = jtag_execute_queue()) != ERROR_OK)
558                 {
559                         return retval;
560                 }
561                 watchpoint->set = 2;
562                 arm7_9->wp1_used = 2;
563         }
564         else
565         {
566                 LOG_ERROR("BUG: no hardware comparator available");
567                 return ERROR_OK;
568         }
569
570         return ERROR_OK;
571 }
572
573 /**
574  * Unset an existing watchpoint and clear the used watchpoint unit.
575  *
576  * @param target Pointer to the target to have the watchpoint removed
577  * @param watchpoint Pointer to the watchpoint to be removed
578  * @return Error status while trying to unset the watchpoint or the result of
579  *         executing the JTAG queue
580  */
581 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
582 {
583         int retval = ERROR_OK;
584         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
585
586         if (target->state != TARGET_HALTED)
587         {
588                 LOG_WARNING("target not halted");
589                 return ERROR_TARGET_NOT_HALTED;
590         }
591
592         if (!watchpoint->set)
593         {
594                 LOG_WARNING("breakpoint not set");
595                 return ERROR_OK;
596         }
597
598         if (watchpoint->set == 1)
599         {
600                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
601                 if ((retval = jtag_execute_queue()) != ERROR_OK)
602                 {
603                         return retval;
604                 }
605                 arm7_9->wp0_used = 0;
606         }
607         else if (watchpoint->set == 2)
608         {
609                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
610                 if ((retval = jtag_execute_queue()) != ERROR_OK)
611                 {
612                         return retval;
613                 }
614                 arm7_9->wp1_used = 0;
615         }
616         watchpoint->set = 0;
617
618         return ERROR_OK;
619 }
620
621 /**
622  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
623  * available, an error response is returned.
624  *
625  * @param target Pointer to the ARM7/9 target to add a watchpoint to
626  * @param watchpoint Pointer to the watchpoint to be added
627  * @return Error status while trying to add the watchpoint
628  */
629 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
630 {
631         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
632
633         if (arm7_9->wp_available < 1)
634         {
635                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
636         }
637
638         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
639         {
640                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
641         }
642
643         arm7_9->wp_available--;
644
645         return ERROR_OK;
646 }
647
648 /**
649  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
650  * the used watchpoint unit will be reopened.
651  *
652  * @param target Pointer to the target to remove a watchpoint from
653  * @param watchpoint Pointer to the watchpoint to be removed
654  * @return Result of trying to unset the watchpoint
655  */
656 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
657 {
658         int retval = ERROR_OK;
659         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
660
661         if (watchpoint->set)
662         {
663                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
664                 {
665                         return retval;
666                 }
667         }
668
669         arm7_9->wp_available++;
670
671         return ERROR_OK;
672 }
673
674 /**
675  * Restarts the target by sending a RESTART instruction and moving the JTAG
676  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
677  * asserted by the processor.
678  *
679  * @param target Pointer to target to issue commands to
680  * @return Error status if there is a timeout or a problem while executing the
681  *         JTAG queue
682  */
683 int arm7_9_execute_sys_speed(struct target *target)
684 {
685         int retval;
686         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
687         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
688         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
689
690         /* set RESTART instruction */
691         if (arm7_9->need_bypass_before_restart) {
692                 arm7_9->need_bypass_before_restart = 0;
693                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
694                 if (retval != ERROR_OK)
695                         return retval;
696         }
697         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
698         if (retval != ERROR_OK)
699                 return retval;
700
701         long long then = timeval_ms();
702         int timeout;
703         while (!(timeout = ((timeval_ms()-then) > 1000)))
704         {
705                 /* read debug status register */
706                 embeddedice_read_reg(dbg_stat);
707                 if ((retval = jtag_execute_queue()) != ERROR_OK)
708                         return retval;
709                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
710                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
711                         break;
712                 if (debug_level >= 3)
713                 {
714                         alive_sleep(100);
715                 } else
716                 {
717                         keep_alive();
718                 }
719         }
720         if (timeout)
721         {
722                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
723                 return ERROR_TARGET_TIMEOUT;
724         }
725
726         return ERROR_OK;
727 }
728
729 /**
730  * Restarts the target by sending a RESTART instruction and moving the JTAG
731  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
732  * waiting until they are.
733  *
734  * @param target Pointer to the target to issue commands to
735  * @return Always ERROR_OK
736  */
737 static int arm7_9_execute_fast_sys_speed(struct target *target)
738 {
739         static int set = 0;
740         static uint8_t check_value[4], check_mask[4];
741
742         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
743         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
744         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
745         int retval;
746
747         /* set RESTART instruction */
748         if (arm7_9->need_bypass_before_restart) {
749                 arm7_9->need_bypass_before_restart = 0;
750                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
751                 if (retval != ERROR_OK)
752                         return retval;
753         }
754         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
755         if (retval != ERROR_OK)
756                 return retval;
757
758         if (!set)
759         {
760                 /* check for DBGACK and SYSCOMP set (others don't care) */
761
762                 /* NB! These are constants that must be available until after next jtag_execute() and
763                  * we evaluate the values upon first execution in lieu of setting up these constants
764                  * during early setup.
765                  * */
766                 buf_set_u32(check_value, 0, 32, 0x9);
767                 buf_set_u32(check_mask, 0, 32, 0x9);
768                 set = 1;
769         }
770
771         /* read debug status register */
772         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
773
774         return ERROR_OK;
775 }
776
777 /**
778  * Get some data from the ARM7/9 target.
779  *
780  * @param target Pointer to the ARM7/9 target to read data from
781  * @param size The number of 32bit words to be read
782  * @param buffer Pointer to the buffer that will hold the data
783  * @return The result of receiving data from the Embedded ICE unit
784  */
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
786 {
787         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789         uint32_t *data;
790         int retval = ERROR_OK;
791         uint32_t i;
792
793         data = malloc(size * (sizeof(uint32_t)));
794
795         retval = embeddedice_receive(jtag_info, data, size);
796
797         /* return the 32-bit ints in the 8-bit array */
798         for (i = 0; i < size; i++)
799         {
800                 h_u32_to_le(buffer + (i * 4), data[i]);
801         }
802
803         free(data);
804
805         return retval;
806 }
807
808 /**
809  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
810  * target is running and the DCC control register has the W bit high, this will
811  * execute the request on the target.
812  *
813  * @param priv Void pointer expected to be a struct target pointer
814  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815  *                  from the Embedded ICE unit
816  */
817 static int arm7_9_handle_target_request(void *priv)
818 {
819         int retval = ERROR_OK;
820         struct target *target = priv;
821         if (!target_was_examined(target))
822                 return ERROR_OK;
823         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
826
827         if (!target->dbg_msg_enabled)
828                 return ERROR_OK;
829
830         if (target->state == TARGET_RUNNING)
831         {
832                 /* read DCC control register */
833                 embeddedice_read_reg(dcc_control);
834                 if ((retval = jtag_execute_queue()) != ERROR_OK)
835                 {
836                         return retval;
837                 }
838
839                 /* check W bit */
840                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
841                 {
842                         uint32_t request;
843
844                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
845                         {
846                                 return retval;
847                         }
848                         if ((retval = target_request(target, request)) != ERROR_OK)
849                         {
850                                 return retval;
851                         }
852                 }
853         }
854
855         return ERROR_OK;
856 }
857
858 /**
859  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
860  * is manipulated to the right halted state based on its current state.  This is
861  * what happens:
862  *
863  * <table>
864  *              <tr><th > State</th><th > Action</th></tr>
865  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
866  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869  * </table>
870  *
871  * If the target does not end up in the halted state, a warning is produced.  If
872  * DBGACK is cleared, then the target is expected to either be running or
873  * running in debug.
874  *
875  * @param target Pointer to the ARM7/9 target to poll
876  * @return ERROR_OK or an error status if a command fails
877  */
878 int arm7_9_poll(struct target *target)
879 {
880         int retval;
881         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
883
884         /* read debug status register */
885         embeddedice_read_reg(dbg_stat);
886         if ((retval = jtag_execute_queue()) != ERROR_OK)
887         {
888                 return retval;
889         }
890
891         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
892         {
893 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894                 if (target->state == TARGET_UNKNOWN)
895                 {
896                         /* Starting OpenOCD with target in debug-halt */
897                         target->state = TARGET_RUNNING;
898                         LOG_DEBUG("DBGACK already set during server startup.");
899                 }
900                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
901                 {
902                         target->state = TARGET_HALTED;
903
904                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
905                                 return retval;
906
907                         if (arm_semihosting(target, &retval) != 0)
908                                 return retval;
909
910                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
911                         {
912                                 return retval;
913                         }
914                 }
915                 if (target->state == TARGET_DEBUG_RUNNING)
916                 {
917                         target->state = TARGET_HALTED;
918                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
919                                 return retval;
920
921                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
922                         {
923                                 return retval;
924                         }
925                 }
926                 if (target->state != TARGET_HALTED)
927                 {
928                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
929                 }
930         }
931         else
932         {
933                 if (target->state != TARGET_DEBUG_RUNNING)
934                         target->state = TARGET_RUNNING;
935         }
936
937         return ERROR_OK;
938 }
939
940 /**
941  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
942  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
943  * affected) completely stop the JTAG clock while the core is held in reset
944  * (SRST).  It isn't possible to program the halt condition once reset is
945  * asserted, hence a hook that allows the target to set up its reset-halt
946  * condition is setup prior to asserting reset.
947  *
948  * @param target Pointer to an ARM7/9 target to assert reset on
949  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
950  */
951 int arm7_9_assert_reset(struct target *target)
952 {
953         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
954         enum reset_types jtag_reset_config = jtag_get_reset_config();
955         bool use_event = false;
956
957         LOG_DEBUG("target->state: %s",
958                   target_state_name(target));
959
960         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
961                 use_event = true;
962         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
963                 LOG_ERROR("%s: how to reset?", target_name(target));
964                 return ERROR_FAIL;
965         }
966
967         /* At this point trst has been asserted/deasserted once. We would
968          * like to program EmbeddedICE while SRST is asserted, instead of
969          * depending on SRST to leave that module alone.  However, many CPUs
970          * gate the JTAG clock while SRST is asserted; or JTAG may need
971          * clock stability guarantees (adaptive clocking might help).
972          *
973          * So we assume JTAG access during SRST is off the menu unless it's
974          * been specifically enabled.
975          */
976         bool srst_asserted = false;
977
978         if (!use_event
979                         && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
980                         && (jtag_reset_config & RESET_SRST_NO_GATING))
981         {
982                 jtag_add_reset(0, 1);
983                 srst_asserted = true;
984         }
985
986         if (target->reset_halt)
987         {
988                 /*
989                  * For targets that don't support communication while SRST is
990                  * asserted, we need to set up the reset vector catch first.
991                  *
992                  * When we use TRST+SRST and that's equivalent to a power-up
993                  * reset, these settings may well be reset anyway; so setting
994                  * them here won't matter.
995                  */
996                 if (arm7_9->has_vector_catch)
997                 {
998                         /* program vector catch register to catch reset */
999                         embeddedice_write_reg(&arm7_9->eice_cache
1000                                         ->reg_list[EICE_VEC_CATCH], 0x1);
1001
1002                         /* extra runtest added as issues were found with
1003                          * certain ARM9 cores (maybe more) - AT91SAM9260
1004                          * and STR9
1005                          */
1006                         jtag_add_runtest(1, TAP_IDLE);
1007                 }
1008                 else
1009                 {
1010                         /* program watchpoint unit to match on reset vector
1011                          * address
1012                          */
1013                         embeddedice_write_reg(&arm7_9->eice_cache
1014                                         ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1015                         embeddedice_write_reg(&arm7_9->eice_cache
1016                                         ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1017                         embeddedice_write_reg(&arm7_9->eice_cache
1018                                         ->reg_list[EICE_W0_DATA_MASK],
1019                                                 0xffffffff);
1020                         embeddedice_write_reg(&arm7_9->eice_cache
1021                                         ->reg_list[EICE_W0_CONTROL_VALUE],
1022                                                 EICE_W_CTRL_ENABLE);
1023                         embeddedice_write_reg(&arm7_9->eice_cache
1024                                         ->reg_list[EICE_W0_CONTROL_MASK],
1025                                                 ~EICE_W_CTRL_nOPC & 0xff);
1026                 }
1027         }
1028
1029         if (use_event) {
1030                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1031         } else {
1032                 /* If we use SRST ... we'd like to issue just SRST, but the
1033                  * board or chip may be set up so we have to assert TRST as
1034                  * well.  On some chips that combination is equivalent to a
1035                  * power-up reset, and generally clobbers EICE state.
1036                  */
1037                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1038                         jtag_add_reset(1, 1);
1039                 else if (!srst_asserted)
1040                         jtag_add_reset(0, 1);
1041                 jtag_add_sleep(50000);
1042         }
1043
1044         target->state = TARGET_RESET;
1045         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1046
1047         /* REVISIT why isn't standard debug entry logic sufficient?? */
1048         if (target->reset_halt
1049                         && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1050                                 || use_event))
1051         {
1052                 /* debug entry was prepared above */
1053                 target->debug_reason = DBG_REASON_DBGRQ;
1054         }
1055
1056         return ERROR_OK;
1057 }
1058
1059 /**
1060  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1061  * and the target is being reset into a halt, a warning will be triggered
1062  * because it is not possible to reset into a halted mode in this case.  The
1063  * target is halted using the target's functions.
1064  *
1065  * @param target Pointer to the target to have the reset deasserted
1066  * @return ERROR_OK or an error from polling or halting the target
1067  */
1068 int arm7_9_deassert_reset(struct target *target)
1069 {
1070         int retval = ERROR_OK;
1071         LOG_DEBUG("target->state: %s",
1072                 target_state_name(target));
1073
1074         /* deassert reset lines */
1075         jtag_add_reset(0, 0);
1076
1077         /* In case polling is disabled, we need to examine the
1078          * target and poll here for this target to work correctly.
1079          *
1080          * Otherwise, e.g. halt will fail afterwards with bogus
1081          * error messages as halt will believe that reset is
1082          * still in effect.
1083          */
1084         if ((retval = target_examine_one(target)) != ERROR_OK)
1085                 return retval;
1086
1087         if ((retval = target_poll(target)) != ERROR_OK)
1088         {
1089                 return retval;
1090         }
1091
1092         enum reset_types jtag_reset_config = jtag_get_reset_config();
1093         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1094         {
1095                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1096                 if ((retval = target_halt(target)) != ERROR_OK)
1097                 {
1098                         return retval;
1099                 }
1100         }
1101         return retval;
1102 }
1103
1104 /**
1105  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1106  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1107  * vector catch was used, it is restored.  Otherwise, the control value is
1108  * restored and the watchpoint unit is restored if it was in use.
1109  *
1110  * @param target Pointer to the ARM7/9 target to have halt cleared
1111  * @return Always ERROR_OK
1112  */
1113 static int arm7_9_clear_halt(struct target *target)
1114 {
1115         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1116         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1117
1118         /* we used DBGRQ only if we didn't come out of reset */
1119         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1120         {
1121                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1122                  */
1123                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1124                 embeddedice_store_reg(dbg_ctrl);
1125         }
1126         else
1127         {
1128                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1129                 {
1130                         /* if we came out of reset, and vector catch is supported, we used
1131                          * vector catch to enter debug state
1132                          * restore the register in that case
1133                          */
1134                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1135                 }
1136                 else
1137                 {
1138                         /* restore registers if watchpoint unit 0 was in use
1139                          */
1140                         if (arm7_9->wp0_used)
1141                         {
1142                                 if (arm7_9->debug_entry_from_reset)
1143                                 {
1144                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1145                                 }
1146                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1147                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1148                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1149                         }
1150                         /* control value always has to be restored, as it was either disabled,
1151                          * or enabled with possibly different bits
1152                          */
1153                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1154                 }
1155         }
1156
1157         return ERROR_OK;
1158 }
1159
1160 /**
1161  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1162  * and then there is a wait until the processor shows the halt.  This wait can
1163  * timeout and results in an error being returned.  The software reset involves
1164  * clearing the halt, updating the debug control register, changing to ARM mode,
1165  * reset of the program counter, and reset of all of the registers.
1166  *
1167  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1168  * @return Error status if any of the commands fail, otherwise ERROR_OK
1169  */
1170 int arm7_9_soft_reset_halt(struct target *target)
1171 {
1172         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1173         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1174         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1175         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1176         int i;
1177         int retval;
1178
1179         /* FIX!!! replace some of this code with tcl commands
1180          *
1181          * halt # the halt command is synchronous
1182          * armv4_5 core_state arm
1183          *
1184          */
1185
1186         if ((retval = target_halt(target)) != ERROR_OK)
1187                 return retval;
1188
1189         long long then = timeval_ms();
1190         int timeout;
1191         while (!(timeout = ((timeval_ms()-then) > 1000)))
1192         {
1193                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1194                         break;
1195                 embeddedice_read_reg(dbg_stat);
1196                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1197                         return retval;
1198                 if (debug_level >= 3)
1199                 {
1200                         alive_sleep(100);
1201                 } else
1202                 {
1203                         keep_alive();
1204                 }
1205         }
1206         if (timeout)
1207         {
1208                 LOG_ERROR("Failed to halt CPU after 1 sec");
1209                 return ERROR_TARGET_TIMEOUT;
1210         }
1211         target->state = TARGET_HALTED;
1212
1213         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1214          * ensure that DBGRQ is cleared
1215          */
1216         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1217         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1218         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1219         embeddedice_store_reg(dbg_ctrl);
1220
1221         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1222         {
1223                 return retval;
1224         }
1225
1226         /* if the target is in Thumb state, change to ARM state */
1227         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1228         {
1229                 uint32_t r0_thumb, pc_thumb;
1230                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1231                 /* Entered debug from Thumb mode */
1232                 armv4_5->core_state = ARM_STATE_THUMB;
1233                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1234         }
1235
1236         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1237
1238         /* all register content is now invalid */
1239         register_cache_invalidate(armv4_5->core_cache);
1240
1241         /* SVC, ARM state, IRQ and FIQ disabled */
1242         uint32_t cpsr;
1243
1244         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1245         cpsr &= ~0xff;
1246         cpsr |= 0xd3;
1247         arm_set_cpsr(armv4_5, cpsr);
1248         armv4_5->cpsr->dirty = 1;
1249
1250         /* start fetching from 0x0 */
1251         buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
1252         armv4_5->pc->dirty = 1;
1253         armv4_5->pc->valid = 1;
1254
1255         /* reset registers */
1256         for (i = 0; i <= 14; i++)
1257         {
1258                 struct reg *r = arm_reg_current(armv4_5, i);
1259
1260                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1261                 r->dirty = 1;
1262                 r->valid = 1;
1263         }
1264
1265         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1266         {
1267                 return retval;
1268         }
1269
1270         return ERROR_OK;
1271 }
1272
1273 /**
1274  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1275  * line or by programming a watchpoint to trigger on any address.  It is
1276  * considered a bug to call this function while the target is in the
1277  * TARGET_RESET state.
1278  *
1279  * @param target Pointer to the ARM7/9 target to be halted
1280  * @return Always ERROR_OK
1281  */
1282 int arm7_9_halt(struct target *target)
1283 {
1284         if (target->state == TARGET_RESET)
1285         {
1286                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1287                 return ERROR_OK;
1288         }
1289
1290         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1291         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1292
1293         LOG_DEBUG("target->state: %s",
1294                   target_state_name(target));
1295
1296         if (target->state == TARGET_HALTED)
1297         {
1298                 LOG_DEBUG("target was already halted");
1299                 return ERROR_OK;
1300         }
1301
1302         if (target->state == TARGET_UNKNOWN)
1303         {
1304                 LOG_WARNING("target was in unknown state when halt was requested");
1305         }
1306
1307         if (arm7_9->use_dbgrq)
1308         {
1309                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1310                  */
1311                 if (arm7_9->set_special_dbgrq) {
1312                         arm7_9->set_special_dbgrq(target);
1313                 } else {
1314                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1315                         embeddedice_store_reg(dbg_ctrl);
1316                 }
1317         }
1318         else
1319         {
1320                 /* program watchpoint unit to match on any address
1321                  */
1322                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1323                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1324                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1325                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1326         }
1327
1328         target->debug_reason = DBG_REASON_DBGRQ;
1329
1330         return ERROR_OK;
1331 }
1332
1333 /**
1334  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1335  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1336  * examined.  Once done, the target is verified to be halted and the processor
1337  * is forced into ARM mode.  The core registers are saved for the current core
1338  * mode and the program counter (register 15) is updated as needed.  The core
1339  * registers and CPSR and SPSR are saved for restoration later.
1340  *
1341  * @param target Pointer to target that is entering debug mode
1342  * @return Error code if anything fails, otherwise ERROR_OK
1343  */
1344 static int arm7_9_debug_entry(struct target *target)
1345 {
1346         int i;
1347         uint32_t context[16];
1348         uint32_t* context_p[16];
1349         uint32_t r0_thumb, pc_thumb;
1350         uint32_t cpsr, cpsr_mask = 0;
1351         int retval;
1352         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1353         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1354         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1355         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1356
1357 #ifdef _DEBUG_ARM7_9_
1358         LOG_DEBUG("-");
1359 #endif
1360
1361         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1362          * ensure that DBGRQ is cleared
1363          */
1364         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1365         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1366         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1367         embeddedice_store_reg(dbg_ctrl);
1368
1369         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1370         {
1371                 return retval;
1372         }
1373
1374         if ((retval = jtag_execute_queue()) != ERROR_OK)
1375         {
1376                 return retval;
1377         }
1378
1379         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1380                 return retval;
1381
1382
1383         if (target->state != TARGET_HALTED)
1384         {
1385                 LOG_WARNING("target not halted");
1386                 return ERROR_TARGET_NOT_HALTED;
1387         }
1388
1389         /* if the target is in Thumb state, change to ARM state */
1390         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1391         {
1392                 LOG_DEBUG("target entered debug from Thumb state");
1393                 /* Entered debug from Thumb mode */
1394                 armv4_5->core_state = ARM_STATE_THUMB;
1395                 cpsr_mask = 1 << 5;
1396                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1397                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1398                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1399         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1400                 /* \todo Get some vaguely correct handling of Jazelle, if
1401                  * anyone ever uses it and full info becomes available.
1402                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1403                  * B.7.3 for the reverse.  That'd be the bare minimum...
1404                  */
1405                 LOG_DEBUG("target entered debug from Jazelle state");
1406                 armv4_5->core_state = ARM_STATE_JAZELLE;
1407                 cpsr_mask = 1 << 24;
1408                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1409         } else {
1410                 LOG_DEBUG("target entered debug from ARM state");
1411                 /* Entered debug from ARM mode */
1412                 armv4_5->core_state = ARM_STATE_ARM;
1413         }
1414
1415         for (i = 0; i < 16; i++)
1416                 context_p[i] = &context[i];
1417         /* save core registers (r0 - r15 of current core mode) */
1418         arm7_9->read_core_regs(target, 0xffff, context_p);
1419
1420         arm7_9->read_xpsr(target, &cpsr, 0);
1421
1422         if ((retval = jtag_execute_queue()) != ERROR_OK)
1423                 return retval;
1424
1425         /* Sync our CPSR copy with J or T bits EICE reported, but
1426          * which we then erased by putting the core into ARM mode.
1427          */
1428         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1429
1430         if (!is_arm_mode(armv4_5->core_mode))
1431         {
1432                 target->state = TARGET_UNKNOWN;
1433                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1434                 return ERROR_TARGET_FAILURE;
1435         }
1436
1437         LOG_DEBUG("target entered debug state in %s mode",
1438                          arm_mode_name(armv4_5->core_mode));
1439
1440         if (armv4_5->core_state == ARM_STATE_THUMB)
1441         {
1442                 LOG_DEBUG("thumb state, applying fixups");
1443                 context[0] = r0_thumb;
1444                 context[15] = pc_thumb;
1445         } else if (armv4_5->core_state == ARM_STATE_ARM)
1446         {
1447                 /* adjust value stored by STM */
1448                 context[15] -= 3 * 4;
1449         }
1450
1451         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1452                 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1453         else
1454                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1455
1456         for (i = 0; i <= 15; i++)
1457         {
1458                 struct reg *r = arm_reg_current(armv4_5, i);
1459
1460                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1461
1462                 buf_set_u32(r->value, 0, 32, context[i]);
1463                 /* r0 and r15 (pc) have to be restored later */
1464                 r->dirty = (i == 0) || (i == 15);
1465                 r->valid = 1;
1466         }
1467
1468         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1469
1470         /* exceptions other than USR & SYS have a saved program status register */
1471         if (armv4_5->spsr) {
1472                 uint32_t spsr;
1473                 arm7_9->read_xpsr(target, &spsr, 1);
1474                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1475                 {
1476                         return retval;
1477                 }
1478                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1479                 armv4_5->spsr->dirty = 0;
1480                 armv4_5->spsr->valid = 1;
1481         }
1482
1483         if ((retval = jtag_execute_queue()) != ERROR_OK)
1484                 return retval;
1485
1486         if (arm7_9->post_debug_entry)
1487         {
1488                 retval = arm7_9->post_debug_entry(target);
1489                 if (retval != ERROR_OK)
1490                         return retval;
1491         }
1492
1493         return ERROR_OK;
1494 }
1495
1496 /**
1497  * Validate the full context for an ARM7/9 target in all processor modes.  If
1498  * there are any invalid registers for the target, they will all be read.  This
1499  * includes the PSR.
1500  *
1501  * @param target Pointer to the ARM7/9 target to capture the full context from
1502  * @return Error if the target is not halted, has an invalid core mode, or if
1503  *         the JTAG queue fails to execute
1504  */
1505 static int arm7_9_full_context(struct target *target)
1506 {
1507         int i;
1508         int retval;
1509         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1510         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1511
1512         LOG_DEBUG("-");
1513
1514         if (target->state != TARGET_HALTED)
1515         {
1516                 LOG_WARNING("target not halted");
1517                 return ERROR_TARGET_NOT_HALTED;
1518         }
1519
1520         if (!is_arm_mode(armv4_5->core_mode))
1521         {
1522                 LOG_ERROR("not a valid arm core mode - communication failure?");
1523                 return ERROR_FAIL;
1524         }
1525
1526         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1527          * SYS shares registers with User, so we don't touch SYS
1528          */
1529         for (i = 0; i < 6; i++)
1530         {
1531                 uint32_t mask = 0;
1532                 uint32_t* reg_p[16];
1533                 int j;
1534                 int valid = 1;
1535
1536                 /* check if there are invalid registers in the current mode
1537                  */
1538                 for (j = 0; j <= 16; j++)
1539                 {
1540                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1541                                 valid = 0;
1542                 }
1543
1544                 if (!valid)
1545                 {
1546                         uint32_t tmp_cpsr;
1547
1548                         /* change processor mode (and mask T bit) */
1549                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1550                                         & 0xe0;
1551                         tmp_cpsr |= armv4_5_number_to_mode(i);
1552                         tmp_cpsr &= ~0x20;
1553                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1554
1555                         for (j = 0; j < 15; j++)
1556                         {
1557                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1558                                 {
1559                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1560                                         mask |= 1 << j;
1561                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1562                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1563                                 }
1564                         }
1565
1566                         /* if only the PSR is invalid, mask is all zeroes */
1567                         if (mask)
1568                                 arm7_9->read_core_regs(target, mask, reg_p);
1569
1570                         /* check if the PSR has to be read */
1571                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1572                         {
1573                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1574                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1575                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1576                         }
1577                 }
1578         }
1579
1580         /* restore processor mode (mask T bit) */
1581         arm7_9->write_xpsr_im8(target,
1582                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1583                         0, 0);
1584
1585         if ((retval = jtag_execute_queue()) != ERROR_OK)
1586         {
1587                 return retval;
1588         }
1589         return ERROR_OK;
1590 }
1591
1592 /**
1593  * Restore the processor context on an ARM7/9 target.  The full processor
1594  * context is analyzed to see if any of the registers are dirty on this end, but
1595  * have a valid new value.  If this is the case, the processor is changed to the
1596  * appropriate mode and the new register values are written out to the
1597  * processor.  If there happens to be a dirty register with an invalid value, an
1598  * error will be logged.
1599  *
1600  * @param target Pointer to the ARM7/9 target to have its context restored
1601  * @return Error status if the target is not halted or the core mode in the
1602  *         armv4_5 struct is invalid.
1603  */
1604 static int arm7_9_restore_context(struct target *target)
1605 {
1606         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1607         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1608         struct reg *reg;
1609         struct arm_reg *reg_arch_info;
1610         enum arm_mode current_mode = armv4_5->core_mode;
1611         int i, j;
1612         int dirty;
1613         int mode_change;
1614
1615         LOG_DEBUG("-");
1616
1617         if (target->state != TARGET_HALTED)
1618         {
1619                 LOG_WARNING("target not halted");
1620                 return ERROR_TARGET_NOT_HALTED;
1621         }
1622
1623         if (arm7_9->pre_restore_context)
1624                 arm7_9->pre_restore_context(target);
1625
1626         if (!is_arm_mode(armv4_5->core_mode))
1627         {
1628                 LOG_ERROR("not a valid arm core mode - communication failure?");
1629                 return ERROR_FAIL;
1630         }
1631
1632         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1633          * SYS shares registers with User, so we don't touch SYS
1634          */
1635         for (i = 0; i < 6; i++)
1636         {
1637                 LOG_DEBUG("examining %s mode",
1638                                 arm_mode_name(armv4_5->core_mode));
1639                 dirty = 0;
1640                 mode_change = 0;
1641                 /* check if there are dirty registers in the current mode
1642                 */
1643                 for (j = 0; j <= 16; j++)
1644                 {
1645                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1646                         reg_arch_info = reg->arch_info;
1647                         if (reg->dirty == 1)
1648                         {
1649                                 if (reg->valid == 1)
1650                                 {
1651                                         dirty = 1;
1652                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1653                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1654                                                 && (reg_arch_info->mode != current_mode)
1655                                                 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1656                                                 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1657                                         {
1658                                                 mode_change = 1;
1659                                                 LOG_DEBUG("require mode change");
1660                                         }
1661                                 }
1662                                 else
1663                                 {
1664                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1665                                 }
1666                         }
1667                 }
1668
1669                 if (dirty)
1670                 {
1671                         uint32_t mask = 0x0;
1672                         int num_regs = 0;
1673                         uint32_t regs[16];
1674
1675                         if (mode_change)
1676                         {
1677                                 uint32_t tmp_cpsr;
1678
1679                                 /* change processor mode (mask T bit) */
1680                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1681                                                 0, 8) & 0xe0;
1682                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1683                                 tmp_cpsr &= ~0x20;
1684                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1685                                 current_mode = armv4_5_number_to_mode(i);
1686                         }
1687
1688                         for (j = 0; j <= 14; j++)
1689                         {
1690                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1691                                 reg_arch_info = reg->arch_info;
1692
1693
1694                                 if (reg->dirty == 1)
1695                                 {
1696                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1697                                         mask |= 1 << j;
1698                                         num_regs++;
1699                                         reg->dirty = 0;
1700                                         reg->valid = 1;
1701                                         LOG_DEBUG("writing register %i mode %s "
1702                                                 "with value 0x%8.8" PRIx32, j,
1703                                                 arm_mode_name(armv4_5->core_mode),
1704                                                 regs[j]);
1705                                 }
1706                         }
1707
1708                         if (mask)
1709                         {
1710                                 arm7_9->write_core_regs(target, mask, regs);
1711                         }
1712
1713                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1714                         reg_arch_info = reg->arch_info;
1715                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1716                         {
1717                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1718                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1719                         }
1720                 }
1721         }
1722
1723         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1724         {
1725                 /* restore processor mode (mask T bit) */
1726                 uint32_t tmp_cpsr;
1727
1728                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1729                 tmp_cpsr |= armv4_5_number_to_mode(i);
1730                 tmp_cpsr &= ~0x20;
1731                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1732                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1733         }
1734         else if (armv4_5->cpsr->dirty)
1735         {
1736                 /* CPSR has been changed, full restore necessary (mask T bit) */
1737                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1738                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1739                 arm7_9->write_xpsr(target,
1740                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1741                                         & ~0x20, 0);
1742                 armv4_5->cpsr->dirty = 0;
1743                 armv4_5->cpsr->valid = 1;
1744         }
1745
1746         /* restore PC */
1747         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1748                         buf_get_u32(armv4_5->pc->value, 0, 32));
1749         arm7_9->write_pc(target, buf_get_u32(armv4_5->pc->value, 0, 32));
1750         armv4_5->pc->dirty = 0;
1751
1752         return ERROR_OK;
1753 }
1754
1755 /**
1756  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1757  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1758  * restart.
1759  *
1760  * @param target Pointer to the ARM7/9 target to be restarted
1761  * @return Result of executing the JTAG queue
1762  */
1763 static int arm7_9_restart_core(struct target *target)
1764 {
1765         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1766         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1767         int retval;
1768
1769         /* set RESTART instruction */
1770         if (arm7_9->need_bypass_before_restart) {
1771                 arm7_9->need_bypass_before_restart = 0;
1772
1773                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1774                 if (retval != ERROR_OK)
1775                         return retval;
1776         }
1777         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1778         if (retval != ERROR_OK)
1779                 return retval;
1780
1781         jtag_add_runtest(1, TAP_IDLE);
1782         return jtag_execute_queue();
1783 }
1784
1785 /**
1786  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1787  * iterated through and are set on the target if they aren't already set.
1788  *
1789  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1790  */
1791 static void arm7_9_enable_watchpoints(struct target *target)
1792 {
1793         struct watchpoint *watchpoint = target->watchpoints;
1794
1795         while (watchpoint)
1796         {
1797                 if (watchpoint->set == 0)
1798                         arm7_9_set_watchpoint(target, watchpoint);
1799                 watchpoint = watchpoint->next;
1800         }
1801 }
1802
1803 /**
1804  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1805  * iterated through and are set on the target.
1806  *
1807  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1808  */
1809 static void arm7_9_enable_breakpoints(struct target *target)
1810 {
1811         struct breakpoint *breakpoint = target->breakpoints;
1812
1813         /* set any pending breakpoints */
1814         while (breakpoint)
1815         {
1816                 arm7_9_set_breakpoint(target, breakpoint);
1817                 breakpoint = breakpoint->next;
1818         }
1819 }
1820
1821 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1822 {
1823         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1824         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1825         struct breakpoint *breakpoint = target->breakpoints;
1826         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1827         int err, retval = ERROR_OK;
1828
1829         LOG_DEBUG("-");
1830
1831         if (target->state != TARGET_HALTED)
1832         {
1833                 LOG_WARNING("target not halted");
1834                 return ERROR_TARGET_NOT_HALTED;
1835         }
1836
1837         if (!debug_execution)
1838         {
1839                 target_free_all_working_areas(target);
1840         }
1841
1842         /* current = 1: continue on current pc, otherwise continue at <address> */
1843         if (!current)
1844                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
1845
1846         uint32_t current_pc;
1847         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1848
1849         /* the front-end may request us not to handle breakpoints */
1850         if (handle_breakpoints)
1851         {
1852                 breakpoint = breakpoint_find(target,
1853                                 buf_get_u32(armv4_5->pc->value, 0, 32));
1854                 if (breakpoint != NULL)
1855                 {
1856                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1857                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1858                         {
1859                                 return retval;
1860                         }
1861
1862                         /* calculate PC of next instruction */
1863                         uint32_t next_pc;
1864                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1865                         {
1866                                 uint32_t current_opcode;
1867                                 target_read_u32(target, current_pc, &current_opcode);
1868                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1869                                 return retval;
1870                         }
1871
1872                         LOG_DEBUG("enable single-step");
1873                         arm7_9->enable_single_step(target, next_pc);
1874
1875                         target->debug_reason = DBG_REASON_SINGLESTEP;
1876
1877                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1878                         {
1879                                 return retval;
1880                         }
1881
1882                         if (armv4_5->core_state == ARM_STATE_ARM)
1883                                 arm7_9->branch_resume(target);
1884                         else if (armv4_5->core_state == ARM_STATE_THUMB)
1885                         {
1886                                 arm7_9->branch_resume_thumb(target);
1887                         }
1888                         else
1889                         {
1890                                 LOG_ERROR("unhandled core state");
1891                                 return ERROR_FAIL;
1892                         }
1893
1894                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1895                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1896                         err = arm7_9_execute_sys_speed(target);
1897
1898                         LOG_DEBUG("disable single-step");
1899                         arm7_9->disable_single_step(target);
1900
1901                         if (err != ERROR_OK)
1902                         {
1903                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1904                                 {
1905                                         return retval;
1906                                 }
1907                                 target->state = TARGET_UNKNOWN;
1908                                 return err;
1909                         }
1910
1911                         retval = arm7_9_debug_entry(target);
1912                         if (retval != ERROR_OK)
1913                                 return retval;
1914                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1915                                         buf_get_u32(armv4_5->pc->value, 0, 32));
1916
1917                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1918                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1919                         {
1920                                 return retval;
1921                         }
1922                 }
1923         }
1924
1925         /* enable any pending breakpoints and watchpoints */
1926         arm7_9_enable_breakpoints(target);
1927         arm7_9_enable_watchpoints(target);
1928
1929         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1930         {
1931                 return retval;
1932         }
1933
1934         if (armv4_5->core_state == ARM_STATE_ARM)
1935         {
1936                 arm7_9->branch_resume(target);
1937         }
1938         else if (armv4_5->core_state == ARM_STATE_THUMB)
1939         {
1940                 arm7_9->branch_resume_thumb(target);
1941         }
1942         else
1943         {
1944                 LOG_ERROR("unhandled core state");
1945                 return ERROR_FAIL;
1946         }
1947
1948         /* deassert DBGACK and INTDIS */
1949         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1950         /* INTDIS only when we really resume, not during debug execution */
1951         if (!debug_execution)
1952                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1953         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1954
1955         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1956         {
1957                 return retval;
1958         }
1959
1960         target->debug_reason = DBG_REASON_NOTHALTED;
1961
1962         if (!debug_execution)
1963         {
1964                 /* registers are now invalid */
1965                 register_cache_invalidate(armv4_5->core_cache);
1966                 target->state = TARGET_RUNNING;
1967                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1968                 {
1969                         return retval;
1970                 }
1971         }
1972         else
1973         {
1974                 target->state = TARGET_DEBUG_RUNNING;
1975                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1976                 {
1977                         return retval;
1978                 }
1979         }
1980
1981         LOG_DEBUG("target resumed");
1982
1983         return ERROR_OK;
1984 }
1985
1986 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1987 {
1988         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1989         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1990         uint32_t current_pc;
1991         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1992
1993         if (next_pc != current_pc)
1994         {
1995                 /* setup an inverse breakpoint on the current PC
1996                 * - comparator 1 matches the current address
1997                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1998                 * - comparator 0 matches any address, as long as rangein is low */
1999                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2000                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2001                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2002                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
2003                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
2004                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2005                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2006                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
2007                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2008         }
2009         else
2010         {
2011                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2012                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2013                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
2014                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
2015                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
2016                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2017                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2018                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2019                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2020         }
2021 }
2022
2023 void arm7_9_disable_eice_step(struct target *target)
2024 {
2025         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2026
2027         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2028         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2029         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2030         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2031         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2032         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2033         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2034         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2035         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2036 }
2037
2038 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2039 {
2040         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2041         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2042         struct breakpoint *breakpoint = NULL;
2043         int err, retval;
2044
2045         if (target->state != TARGET_HALTED)
2046         {
2047                 LOG_WARNING("target not halted");
2048                 return ERROR_TARGET_NOT_HALTED;
2049         }
2050
2051         /* current = 1: continue on current pc, otherwise continue at <address> */
2052         if (!current)
2053                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
2054
2055         uint32_t current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
2056
2057         /* the front-end may request us not to handle breakpoints */
2058         if (handle_breakpoints)
2059                 breakpoint = breakpoint_find(target, current_pc);
2060         if (breakpoint != NULL) {
2061                 retval = arm7_9_unset_breakpoint(target, breakpoint);
2062                 if (retval != ERROR_OK)
2063                         return retval;
2064         }
2065
2066         target->debug_reason = DBG_REASON_SINGLESTEP;
2067
2068         /* calculate PC of next instruction */
2069         uint32_t next_pc;
2070         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2071         {
2072                 uint32_t current_opcode;
2073                 target_read_u32(target, current_pc, &current_opcode);
2074                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2075                 return retval;
2076         }
2077
2078         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2079         {
2080                 return retval;
2081         }
2082
2083         arm7_9->enable_single_step(target, next_pc);
2084
2085         if (armv4_5->core_state == ARM_STATE_ARM)
2086         {
2087                 arm7_9->branch_resume(target);
2088         }
2089         else if (armv4_5->core_state == ARM_STATE_THUMB)
2090         {
2091                 arm7_9->branch_resume_thumb(target);
2092         }
2093         else
2094         {
2095                 LOG_ERROR("unhandled core state");
2096                 return ERROR_FAIL;
2097         }
2098
2099         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2100         {
2101                 return retval;
2102         }
2103
2104         err = arm7_9_execute_sys_speed(target);
2105         arm7_9->disable_single_step(target);
2106
2107         /* registers are now invalid */
2108         register_cache_invalidate(armv4_5->core_cache);
2109
2110         if (err != ERROR_OK)
2111         {
2112                 target->state = TARGET_UNKNOWN;
2113         } else {
2114                 retval = arm7_9_debug_entry(target);
2115                 if (retval != ERROR_OK)
2116                         return retval;
2117                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2118                 {
2119                         return retval;
2120                 }
2121                 LOG_DEBUG("target stepped");
2122         }
2123
2124         if (breakpoint)
2125                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2126                 {
2127                         return retval;
2128                 }
2129
2130         return err;
2131 }
2132
2133 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2134                 int num, enum arm_mode mode)
2135 {
2136         uint32_t* reg_p[16];
2137         uint32_t value;
2138         int retval;
2139         struct arm_reg *areg = r->arch_info;
2140         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2141         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2142
2143         if (!is_arm_mode(armv4_5->core_mode))
2144                 return ERROR_FAIL;
2145         if ((num < 0) || (num > 16))
2146                 return ERROR_INVALID_ARGUMENTS;
2147
2148         if ((mode != ARM_MODE_ANY)
2149                         && (mode != armv4_5->core_mode)
2150                         && (areg->mode != ARM_MODE_ANY))
2151         {
2152                 uint32_t tmp_cpsr;
2153
2154                 /* change processor mode (mask T bit) */
2155                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2156                 tmp_cpsr |= mode;
2157                 tmp_cpsr &= ~0x20;
2158                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2159         }
2160
2161         if ((num >= 0) && (num <= 15))
2162         {
2163                 /* read a normal core register */
2164                 reg_p[num] = &value;
2165
2166                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2167         }
2168         else
2169         {
2170                 /* read a program status register
2171                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2172                  */
2173                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2174         }
2175
2176         if ((retval = jtag_execute_queue()) != ERROR_OK)
2177         {
2178                 return retval;
2179         }
2180
2181         r->valid = 1;
2182         r->dirty = 0;
2183         buf_set_u32(r->value, 0, 32, value);
2184
2185         if ((mode != ARM_MODE_ANY)
2186                         && (mode != armv4_5->core_mode)
2187                         && (areg->mode != ARM_MODE_ANY))        {
2188                 /* restore processor mode (mask T bit) */
2189                 arm7_9->write_xpsr_im8(target,
2190                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2191                                         & ~0x20, 0, 0);
2192         }
2193
2194         return ERROR_OK;
2195 }
2196
2197 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2198                 int num, enum arm_mode mode, uint32_t value)
2199 {
2200         uint32_t reg[16];
2201         struct arm_reg *areg = r->arch_info;
2202         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2203         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2204
2205         if (!is_arm_mode(armv4_5->core_mode))
2206                 return ERROR_FAIL;
2207         if ((num < 0) || (num > 16))
2208                 return ERROR_INVALID_ARGUMENTS;
2209
2210         if ((mode != ARM_MODE_ANY)
2211                         && (mode != armv4_5->core_mode)
2212                         && (areg->mode != ARM_MODE_ANY))        {
2213                 uint32_t tmp_cpsr;
2214
2215                 /* change processor mode (mask T bit) */
2216                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2217                 tmp_cpsr |= mode;
2218                 tmp_cpsr &= ~0x20;
2219                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2220         }
2221
2222         if ((num >= 0) && (num <= 15))
2223         {
2224                 /* write a normal core register */
2225                 reg[num] = value;
2226
2227                 arm7_9->write_core_regs(target, 1 << num, reg);
2228         }
2229         else
2230         {
2231                 /* write a program status register
2232                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2233                 */
2234                 int spsr = (areg->mode != ARM_MODE_ANY);
2235
2236                 /* if we're writing the CPSR, mask the T bit */
2237                 if (!spsr)
2238                         value &= ~0x20;
2239
2240                 arm7_9->write_xpsr(target, value, spsr);
2241         }
2242
2243         r->valid = 1;
2244         r->dirty = 0;
2245
2246         if ((mode != ARM_MODE_ANY)
2247                         && (mode != armv4_5->core_mode)
2248                         && (areg->mode != ARM_MODE_ANY))        {
2249                 /* restore processor mode (mask T bit) */
2250                 arm7_9->write_xpsr_im8(target,
2251                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2252                                         & ~0x20, 0, 0);
2253         }
2254
2255         return jtag_execute_queue();
2256 }
2257
2258 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2259 {
2260         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2261         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2262         uint32_t reg[16];
2263         uint32_t num_accesses = 0;
2264         int thisrun_accesses;
2265         int i;
2266         uint32_t cpsr;
2267         int retval;
2268         int last_reg = 0;
2269
2270         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2271
2272         if (target->state != TARGET_HALTED)
2273         {
2274                 LOG_WARNING("target not halted");
2275                 return ERROR_TARGET_NOT_HALTED;
2276         }
2277
2278         /* sanitize arguments */
2279         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2280                 return ERROR_INVALID_ARGUMENTS;
2281
2282         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2283                 return ERROR_TARGET_UNALIGNED_ACCESS;
2284
2285         /* load the base register with the address of the first word */
2286         reg[0] = address;
2287         arm7_9->write_core_regs(target, 0x1, reg);
2288
2289         int j = 0;
2290
2291         switch (size)
2292         {
2293                 case 4:
2294                         while (num_accesses < count)
2295                         {
2296                                 uint32_t reg_list;
2297                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2298                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2299
2300                                 if (last_reg <= thisrun_accesses)
2301                                         last_reg = thisrun_accesses;
2302
2303                                 arm7_9->load_word_regs(target, reg_list);
2304
2305                                 /* fast memory reads are only safe when the target is running
2306                                  * from a sufficiently high clock (32 kHz is usually too slow)
2307                                  */
2308                                 if (arm7_9->fast_memory_access)
2309                                         retval = arm7_9_execute_fast_sys_speed(target);
2310                                 else
2311                                         retval = arm7_9_execute_sys_speed(target);
2312                                 if (retval != ERROR_OK)
2313                                         return retval;
2314
2315                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2316
2317                                 /* advance buffer, count number of accesses */
2318                                 buffer += thisrun_accesses * 4;
2319                                 num_accesses += thisrun_accesses;
2320
2321                                 if ((j++%1024) == 0)
2322                                 {
2323                                         keep_alive();
2324                                 }
2325                         }
2326                         break;
2327                 case 2:
2328                         while (num_accesses < count)
2329                         {
2330                                 uint32_t reg_list;
2331                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2332                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2333
2334                                 for (i = 1; i <= thisrun_accesses; i++)
2335                                 {
2336                                         if (i > last_reg)
2337                                                 last_reg = i;
2338                                         arm7_9->load_hword_reg(target, i);
2339                                         /* fast memory reads are only safe when the target is running
2340                                          * from a sufficiently high clock (32 kHz is usually too slow)
2341                                          */
2342                                         if (arm7_9->fast_memory_access)
2343                                                 retval = arm7_9_execute_fast_sys_speed(target);
2344                                         else
2345                                                 retval = arm7_9_execute_sys_speed(target);
2346                                         if (retval != ERROR_OK)
2347                                         {
2348                                                 return retval;
2349                                         }
2350
2351                                 }
2352
2353                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2354
2355                                 /* advance buffer, count number of accesses */
2356                                 buffer += thisrun_accesses * 2;
2357                                 num_accesses += thisrun_accesses;
2358
2359                                 if ((j++%1024) == 0)
2360                                 {
2361                                         keep_alive();
2362                                 }
2363                         }
2364                         break;
2365                 case 1:
2366                         while (num_accesses < count)
2367                         {
2368                                 uint32_t reg_list;
2369                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2370                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2371
2372                                 for (i = 1; i <= thisrun_accesses; i++)
2373                                 {
2374                                         if (i > last_reg)
2375                                                 last_reg = i;
2376                                         arm7_9->load_byte_reg(target, i);
2377                                         /* fast memory reads are only safe when the target is running
2378                                          * from a sufficiently high clock (32 kHz is usually too slow)
2379                                          */
2380                                         if (arm7_9->fast_memory_access)
2381                                                 retval = arm7_9_execute_fast_sys_speed(target);
2382                                         else
2383                                                 retval = arm7_9_execute_sys_speed(target);
2384                                         if (retval != ERROR_OK)
2385                                         {
2386                                                 return retval;
2387                                         }
2388                                 }
2389
2390                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2391
2392                                 /* advance buffer, count number of accesses */
2393                                 buffer += thisrun_accesses * 1;
2394                                 num_accesses += thisrun_accesses;
2395
2396                                 if ((j++%1024) == 0)
2397                                 {
2398                                         keep_alive();
2399                                 }
2400                         }
2401                         break;
2402         }
2403
2404         if (!is_arm_mode(armv4_5->core_mode))
2405                 return ERROR_FAIL;
2406
2407         for (i = 0; i <= last_reg; i++) {
2408                 struct reg *r = arm_reg_current(armv4_5, i);
2409
2410                 r->dirty = r->valid;
2411         }
2412
2413         arm7_9->read_xpsr(target, &cpsr, 0);
2414         if ((retval = jtag_execute_queue()) != ERROR_OK)
2415         {
2416                 LOG_ERROR("JTAG error while reading cpsr");
2417                 return ERROR_TARGET_DATA_ABORT;
2418         }
2419
2420         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2421         {
2422                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2423
2424                 arm7_9->write_xpsr_im8(target,
2425                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2426                                         & ~0x20, 0, 0);
2427
2428                 return ERROR_TARGET_DATA_ABORT;
2429         }
2430
2431         return ERROR_OK;
2432 }
2433
2434 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2435 {
2436         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2437         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2438         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2439
2440         uint32_t reg[16];
2441         uint32_t num_accesses = 0;
2442         int thisrun_accesses;
2443         int i;
2444         uint32_t cpsr;
2445         int retval;
2446         int last_reg = 0;
2447
2448 #ifdef _DEBUG_ARM7_9_
2449         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2450 #endif
2451
2452         if (target->state != TARGET_HALTED)
2453         {
2454                 LOG_WARNING("target not halted");
2455                 return ERROR_TARGET_NOT_HALTED;
2456         }
2457
2458         /* sanitize arguments */
2459         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2460                 return ERROR_INVALID_ARGUMENTS;
2461
2462         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2463                 return ERROR_TARGET_UNALIGNED_ACCESS;
2464
2465         /* load the base register with the address of the first word */
2466         reg[0] = address;
2467         arm7_9->write_core_regs(target, 0x1, reg);
2468
2469         /* Clear DBGACK, to make sure memory fetches work as expected */
2470         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2471         embeddedice_store_reg(dbg_ctrl);
2472
2473         switch (size)
2474         {
2475                 case 4:
2476                         while (num_accesses < count)
2477                         {
2478                                 uint32_t reg_list;
2479                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2480                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2481
2482                                 for (i = 1; i <= thisrun_accesses; i++)
2483                                 {
2484                                         if (i > last_reg)
2485                                                 last_reg = i;
2486                                         reg[i] = target_buffer_get_u32(target, buffer);
2487                                         buffer += 4;
2488                                 }
2489
2490                                 arm7_9->write_core_regs(target, reg_list, reg);
2491
2492                                 arm7_9->store_word_regs(target, reg_list);
2493
2494                                 /* fast memory writes are only safe when the target is running
2495                                  * from a sufficiently high clock (32 kHz is usually too slow)
2496                                  */
2497                                 if (arm7_9->fast_memory_access)
2498                                         retval = arm7_9_execute_fast_sys_speed(target);
2499                                 else
2500                                 {
2501                                         retval = arm7_9_execute_sys_speed(target);
2502
2503                                         /*
2504                                          * if memory writes are made when the clock is running slow
2505                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2506                                          * processor operations after a "reset halt" or "reset init",
2507                                          * need to immediately stroke the keep alive or will end up with
2508                                          * gdb "keep alive not sent error message" problem.
2509                                          */
2510
2511                                         keep_alive();
2512                                 }
2513
2514                                 if (retval != ERROR_OK)
2515                                 {
2516                                         return retval;
2517                                 }
2518
2519                                 num_accesses += thisrun_accesses;
2520                         }
2521                         break;
2522                 case 2:
2523                         while (num_accesses < count)
2524                         {
2525                                 uint32_t reg_list;
2526                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2527                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2528
2529                                 for (i = 1; i <= thisrun_accesses; i++)
2530                                 {
2531                                         if (i > last_reg)
2532                                                 last_reg = i;
2533                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2534                                         buffer += 2;
2535                                 }
2536
2537                                 arm7_9->write_core_regs(target, reg_list, reg);
2538
2539                                 for (i = 1; i <= thisrun_accesses; i++)
2540                                 {
2541                                         arm7_9->store_hword_reg(target, i);
2542
2543                                         /* fast memory writes are only safe when the target is running
2544                                          * from a sufficiently high clock (32 kHz is usually too slow)
2545                                          */
2546                                         if (arm7_9->fast_memory_access)
2547                                                 retval = arm7_9_execute_fast_sys_speed(target);
2548                                         else
2549                                         {
2550                                                 retval = arm7_9_execute_sys_speed(target);
2551
2552                                                 /*
2553                                                  * if memory writes are made when the clock is running slow
2554                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2555                                                  * processor operations after a "reset halt" or "reset init",
2556                                                  * need to immediately stroke the keep alive or will end up with
2557                                                  * gdb "keep alive not sent error message" problem.
2558                                                  */     
2559
2560                                                 keep_alive();
2561                                         }
2562
2563                                         if (retval != ERROR_OK)
2564                                         {
2565                                                 return retval;
2566                                         }
2567                                 }
2568
2569                                 num_accesses += thisrun_accesses;
2570                         }
2571                         break;
2572                 case 1:
2573                         while (num_accesses < count)
2574                         {
2575                                 uint32_t reg_list;
2576                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2577                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2578
2579                                 for (i = 1; i <= thisrun_accesses; i++)
2580                                 {
2581                                         if (i > last_reg)
2582                                                 last_reg = i;
2583                                         reg[i] = *buffer++ & 0xff;
2584                                 }
2585
2586                                 arm7_9->write_core_regs(target, reg_list, reg);
2587
2588                                 for (i = 1; i <= thisrun_accesses; i++)
2589                                 {
2590                                         arm7_9->store_byte_reg(target, i);
2591                                         /* fast memory writes are only safe when the target is running
2592                                          * from a sufficiently high clock (32 kHz is usually too slow)
2593                                          */
2594                                         if (arm7_9->fast_memory_access)
2595                                                 retval = arm7_9_execute_fast_sys_speed(target);
2596                                         else
2597                                         {
2598                                                 retval = arm7_9_execute_sys_speed(target);
2599
2600                                                 /*
2601                                                  * if memory writes are made when the clock is running slow
2602                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2603                                                  * processor operations after a "reset halt" or "reset init",
2604                                                  * need to immediately stroke the keep alive or will end up with
2605                                                  * gdb "keep alive not sent error message" problem.
2606                                                  */
2607
2608                                                 keep_alive();
2609                                         }
2610
2611                                         if (retval != ERROR_OK)
2612                                         {
2613                                                 return retval;
2614                                         }
2615
2616                                 }
2617
2618                                 num_accesses += thisrun_accesses;
2619                         }
2620                         break;
2621         }
2622
2623         /* Re-Set DBGACK */
2624         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2625         embeddedice_store_reg(dbg_ctrl);
2626
2627         if (!is_arm_mode(armv4_5->core_mode))
2628                 return ERROR_FAIL;
2629
2630         for (i = 0; i <= last_reg; i++) {
2631                 struct reg *r = arm_reg_current(armv4_5, i);
2632
2633                 r->dirty = r->valid;
2634         }
2635
2636         arm7_9->read_xpsr(target, &cpsr, 0);
2637         if ((retval = jtag_execute_queue()) != ERROR_OK)
2638         {
2639                 LOG_ERROR("JTAG error while reading cpsr");
2640                 return ERROR_TARGET_DATA_ABORT;
2641         }
2642
2643         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2644         {
2645                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2646
2647                 arm7_9->write_xpsr_im8(target,
2648                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2649                                         & ~0x20, 0, 0);
2650
2651                 return ERROR_TARGET_DATA_ABORT;
2652         }
2653
2654         return ERROR_OK;
2655 }
2656
2657 static int dcc_count;
2658 static const uint8_t *dcc_buffer;
2659
2660 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2661 {
2662         int retval = ERROR_OK;
2663         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2664
2665         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2666                 return retval;
2667
2668         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2669         int count = dcc_count;
2670         const uint8_t *buffer = dcc_buffer;
2671         if (count > 2)
2672         {
2673                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2674                  * core function repeated. */
2675                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2676                 buffer += 4;
2677
2678                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2679                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2680                 struct jtag_tap *tap;
2681                 tap = ice_reg->jtag_info->tap;
2682
2683                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2684                 buffer += (count-2)*4;
2685
2686                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2687         } else
2688         {
2689                 int i;
2690                 for (i = 0; i < count; i++)
2691                 {
2692                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2693                         buffer += 4;
2694                 }
2695         }
2696
2697         if ((retval = target_halt(target))!= ERROR_OK)
2698         {
2699                 return retval;
2700         }
2701         return target_wait_state(target, TARGET_HALTED, 500);
2702 }
2703
2704 static const uint32_t dcc_code[] =
2705 {
2706         /* r0 == input, points to memory buffer
2707          * r1 == scratch
2708          */
2709
2710         /* spin until DCC control (c0) reports data arrived */
2711         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2712         0xe3110001,     /*    tst r1, #1              */
2713         0x0afffffc,     /*    bne w                   */
2714
2715         /* read word from DCC (c1), write to memory */
2716         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2717         0xe4801004,     /*    str r1, [r0], #4        */
2718
2719         /* repeat */
2720         0xeafffff9      /*    b   w                   */
2721 };
2722
2723 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2724 {
2725         int retval;
2726         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2727         int i;
2728
2729         if (!arm7_9->dcc_downloads)
2730                 return target_write_memory(target, address, 4, count, buffer);
2731
2732         /* regrab previously allocated working_area, or allocate a new one */
2733         if (!arm7_9->dcc_working_area)
2734         {
2735                 uint8_t dcc_code_buf[6 * 4];
2736
2737                 /* make sure we have a working area */
2738                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2739                 {
2740                         LOG_INFO("no working area available, falling back to memory writes");
2741                         return target_write_memory(target, address, 4, count, buffer);
2742                 }
2743
2744                 /* copy target instructions to target endianness */
2745                 for (i = 0; i < 6; i++)
2746                 {
2747                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2748                 }
2749
2750                 /* write DCC code to working area */
2751                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2752                 {
2753                         return retval;
2754                 }
2755         }
2756
2757         struct arm_algorithm armv4_5_info;
2758         struct reg_param reg_params[1];
2759
2760         armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2761         armv4_5_info.core_mode = ARM_MODE_SVC;
2762         armv4_5_info.core_state = ARM_STATE_ARM;
2763
2764         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2765
2766         buf_set_u32(reg_params[0].value, 0, 32, address);
2767
2768         dcc_count = count;
2769         dcc_buffer = buffer;
2770         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2771                         arm7_9->dcc_working_area->address,
2772                                 arm7_9->dcc_working_area->address + 6*4,
2773                         20*1000, &armv4_5_info, arm7_9_dcc_completion);
2774
2775         if (retval == ERROR_OK)
2776         {
2777                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2778                 if (endaddress != (address + count*4))
2779                 {
2780                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2781                         retval = ERROR_FAIL;
2782                 }
2783         }
2784
2785         destroy_reg_param(&reg_params[0]);
2786
2787         return retval;
2788 }
2789
2790 /**
2791  * Perform per-target setup that requires JTAG access.
2792  */
2793 int arm7_9_examine(struct target *target)
2794 {
2795         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2796         int retval;
2797
2798         if (!target_was_examined(target)) {
2799                 struct reg_cache *t, **cache_p;
2800
2801                 t = embeddedice_build_reg_cache(target, arm7_9);
2802                 if (t == NULL)
2803                         return ERROR_FAIL;
2804
2805                 cache_p = register_get_last_cache_p(&target->reg_cache);
2806                 (*cache_p) = t;
2807                 arm7_9->eice_cache = (*cache_p);
2808
2809                 if (arm7_9->armv4_5_common.etm)
2810                         (*cache_p)->next = etm_build_reg_cache(target,
2811                                         &arm7_9->jtag_info,
2812                                         arm7_9->armv4_5_common.etm);
2813
2814                 target_set_examined(target);
2815         }
2816
2817         retval = embeddedice_setup(target);
2818         if (retval == ERROR_OK)
2819                 retval = arm7_9_setup(target);
2820         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2821                 retval = etm_setup(target);
2822         return retval;
2823 }
2824
2825
2826 int arm7_9_check_reset(struct target *target)
2827 {
2828         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2829
2830         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2831         {
2832                 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2833         }
2834
2835         if (get_target_reset_nag() && (target->working_area_size == 0))
2836         {
2837                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2838         }
2839
2840         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2841         {
2842                 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2843         }
2844
2845         return ERROR_OK;
2846 }
2847
2848 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2849 {
2850         struct target *target = get_current_target(CMD_CTX);
2851         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2852
2853         if (!is_arm7_9(arm7_9))
2854         {
2855                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2856                 return ERROR_TARGET_INVALID;
2857         }
2858
2859         if (CMD_ARGC > 0)
2860                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2861
2862         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2863
2864         return ERROR_OK;
2865 }
2866
2867 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2868 {
2869         struct target *target = get_current_target(CMD_CTX);
2870         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2871
2872         if (!is_arm7_9(arm7_9))
2873         {
2874                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2875                 return ERROR_TARGET_INVALID;
2876         }
2877
2878         if (CMD_ARGC > 0)
2879                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2880
2881         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2882
2883         return ERROR_OK;
2884 }
2885
2886 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2887 {
2888         struct target *target = get_current_target(CMD_CTX);
2889         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2890
2891         if (!is_arm7_9(arm7_9))
2892         {
2893                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2894                 return ERROR_TARGET_INVALID;
2895         }
2896
2897         if (CMD_ARGC > 0)
2898                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2899
2900         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2901
2902         return ERROR_OK;
2903 }
2904
2905 static int arm7_9_setup_semihosting(struct target *target, int enable)
2906 {
2907         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2908
2909         if (!is_arm7_9(arm7_9))
2910         {
2911                 LOG_USER("current target isn't an ARM7/ARM9 target");
2912                 return ERROR_TARGET_INVALID;
2913         }
2914
2915         if (arm7_9->has_vector_catch) {
2916                 struct reg *vector_catch = &arm7_9->eice_cache
2917                                 ->reg_list[EICE_VEC_CATCH];
2918
2919                 if (!vector_catch->valid)
2920                         embeddedice_read_reg(vector_catch);
2921                 buf_set_u32(vector_catch->value, 2, 1, enable);
2922                 embeddedice_store_reg(vector_catch);
2923         } else {
2924                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2925                 if (enable)
2926                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2927                 else
2928                         breakpoint_remove(target, 8);
2929         }
2930
2931         return ERROR_OK;
2932 }
2933
2934 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2935 {
2936         int retval = ERROR_OK;
2937         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2938
2939         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2940
2941         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2942                 return retval;
2943
2944         /* caller must have allocated via calloc(), so everything's zeroed */
2945
2946         arm7_9->wp_available_max = 2;
2947
2948         arm7_9->fast_memory_access = false;
2949         arm7_9->dcc_downloads = false;
2950
2951         armv4_5->arch_info = arm7_9;
2952         armv4_5->read_core_reg = arm7_9_read_core_reg;
2953         armv4_5->write_core_reg = arm7_9_write_core_reg;
2954         armv4_5->full_context = arm7_9_full_context;
2955         armv4_5->setup_semihosting = arm7_9_setup_semihosting;
2956
2957         retval = arm_init_arch_info(target, armv4_5);
2958         if (retval != ERROR_OK)
2959                 return retval;
2960
2961         return target_register_timer_callback(arm7_9_handle_target_request,
2962                         1, 1, target);
2963 }
2964
2965 static const struct command_registration arm7_9_any_command_handlers[] = {
2966         {
2967                 "dbgrq",
2968                 .handler = handle_arm7_9_dbgrq_command,
2969                 .mode = COMMAND_ANY,
2970                 .usage = "['enable'|'disable']",
2971                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2972                         "for target halt requests",
2973         },
2974         {
2975                 "fast_memory_access",
2976                 .handler = handle_arm7_9_fast_memory_access_command,
2977                 .mode = COMMAND_ANY,
2978                 .usage = "['enable'|'disable']",
2979                 .help = "use fast memory accesses instead of slower "
2980                         "but potentially safer accesses",
2981         },
2982         {
2983                 "dcc_downloads",
2984                 .handler = handle_arm7_9_dcc_downloads_command,
2985                 .mode = COMMAND_ANY,
2986                 .usage = "['enable'|'disable']",
2987                 .help = "use DCC downloads for larger memory writes",
2988         },
2989         COMMAND_REGISTRATION_DONE
2990 };
2991 const struct command_registration arm7_9_command_handlers[] = {
2992         {
2993                 .chain = arm_command_handlers,
2994         },
2995         {
2996                 .chain = etm_command_handlers,
2997         },
2998         {
2999                 .name = "arm7_9",
3000                 .mode = COMMAND_ANY,
3001                 .help = "arm7/9 specific commands",
3002                 .chain = arm7_9_any_command_handlers,
3003         },
3004         COMMAND_REGISTRATION_DONE
3005 };