]> git.sur5r.net Git - openocd/blob - src/target/arm7_9_common.c
Remove bogus "BUG:". If the PC is pointing to an invalid instruction, then simulation...
[openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(target_t *target);
41 int arm7_9_enable_sw_bkpts(struct target_s *target);
42
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52
53 /**
54  * Clear watchpoints for an ARM7/9 target.
55  *
56  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57  * @return JTAG error status after executing queue
58  */
59 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
60 {
61         LOG_DEBUG("-");
62         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
63         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
64         arm7_9->sw_breakpoints_added = 0;
65         arm7_9->wp0_used = 0;
66         arm7_9->wp1_used = arm7_9->wp1_used_default;
67         arm7_9->wp_available = arm7_9->wp_available_max;
68
69         return jtag_execute_queue();
70 }
71
72 /**
73  * Assign a watchpoint to one of the two available hardware comparators in an
74  * ARM7 or ARM9 target.
75  *
76  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
77  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
78  */
79 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
80 {
81         if (!arm7_9->wp0_used)
82         {
83                 arm7_9->wp0_used = 1;
84                 breakpoint->set = 1;
85                 arm7_9->wp_available--;
86         }
87         else if (!arm7_9->wp1_used)
88         {
89                 arm7_9->wp1_used = 1;
90                 breakpoint->set = 2;
91                 arm7_9->wp_available--;
92         }
93         else
94         {
95                 LOG_ERROR("BUG: no hardware comparator available");
96         }
97         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d", 
98                           breakpoint->unique_id,
99                           breakpoint->address,
100                           breakpoint->set );
101 }
102
103 /**
104  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
105  *
106  * @param arm7_9 Pointer to common struct for ARM7/9 targets
107  * @return Error codes if there is a problem finding a watchpoint or the result
108  *         of executing the JTAG queue
109  */
110 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
111 {
112         if (arm7_9->sw_breakpoints_added)
113         {
114                 return ERROR_OK;
115         }
116         if (arm7_9->wp_available < 1)
117         {
118                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
119                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
120         }
121         arm7_9->wp_available--;
122
123         /* pick a breakpoint unit */
124         if (!arm7_9->wp0_used)
125         {
126                 arm7_9->sw_breakpoints_added = 1;
127                 arm7_9->wp0_used = 3;
128         } else if (!arm7_9->wp1_used)
129         {
130                 arm7_9->sw_breakpoints_added = 2;
131                 arm7_9->wp1_used = 3;
132         }
133         else
134         {
135                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
136                 return ERROR_FAIL;
137         }
138
139         if (arm7_9->sw_breakpoints_added == 1)
140         {
141                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
146         }
147         else if (arm7_9->sw_breakpoints_added == 2)
148         {
149                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
154         }
155         else
156         {
157                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
158                 return ERROR_FAIL;
159         }
160         LOG_DEBUG("SW BP using hw wp: %d", 
161                           arm7_9->sw_breakpoints_added );
162
163         return jtag_execute_queue();
164 }
165
166 /**
167  * Setup the common pieces for an ARM7/9 target after reset or on startup.
168  *
169  * @param target Pointer to an ARM7/9 target to setup
170  * @return Result of clearing the watchpoints on the target
171  */
172 int arm7_9_setup(target_t *target)
173 {
174         armv4_5_common_t *armv4_5 = target->arch_info;
175         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
176
177         return arm7_9_clear_watchpoints(arm7_9);
178 }
179
180 /**
181  * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
182  * targets.  A return of ERROR_OK signifies that the target is a valid target
183  * and that the pointers have been set properly.
184  *
185  * @param target Pointer to the target device to get the pointers from
186  * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
187  *                  targets
188  * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
189  *                 targets
190  * @return ERROR_OK if successful
191  */
192 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
193 {
194         armv4_5_common_t *armv4_5 = target->arch_info;
195         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
196
197         if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
198         {
199                 return -1;
200         }
201
202         if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
203         {
204                 return -1;
205         }
206
207         *armv4_5_p = armv4_5;
208         *arm7_9_p = arm7_9;
209
210         return ERROR_OK;
211 }
212
213 /**
214  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
215  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
216  * might have erased the values in Embedded ICE.
217  *
218  * @param target Pointer to the target device to set the breakpoints on
219  * @param breakpoint Pointer to the breakpoint to be set
220  * @return For hardware breakpoints, this is the result of executing the JTAG
221  *         queue.  For software breakpoints, this will be the status of the
222  *         required memory reads and writes
223  */
224 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
225 {
226         armv4_5_common_t *armv4_5 = target->arch_info;
227         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
228         int retval = ERROR_OK;
229
230         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
231                           breakpoint->unique_id,
232                           breakpoint->address );
233
234         if (target->state != TARGET_HALTED)
235         {
236                 LOG_WARNING("target not halted");
237                 return ERROR_TARGET_NOT_HALTED;
238         }
239
240         if (breakpoint->type == BKPT_HARD)
241         {
242                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
243                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
244
245                 /* reassign a hw breakpoint */
246                 if (breakpoint->set == 0)
247                 {
248                         arm7_9_assign_wp(arm7_9, breakpoint);
249                 }
250
251                 if (breakpoint->set == 1)
252                 {
253                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
254                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
255                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
256                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
257                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
258                 }
259                 else if (breakpoint->set == 2)
260                 {
261                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
262                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
263                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
264                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
265                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
266                 }
267                 else
268                 {
269                         LOG_ERROR("BUG: no hardware comparator available");
270                         return ERROR_OK;
271                 }
272
273                 retval = jtag_execute_queue();
274         }
275         else if (breakpoint->type == BKPT_SOFT)
276         {
277                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
278                         return retval;
279
280                 /* did we already set this breakpoint? */
281                 if (breakpoint->set)
282                         return ERROR_OK;
283
284                 if (breakpoint->length == 4)
285                 {
286                         uint32_t verify = 0xffffffff;
287                         /* keep the original instruction in target endianness */
288                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
289                         {
290                                 return retval;
291                         }
292                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
293                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
294                         {
295                                 return retval;
296                         }
297
298                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
299                         {
300                                 return retval;
301                         }
302                         if (verify != arm7_9->arm_bkpt)
303                         {
304                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
305                                 return ERROR_OK;
306                         }
307                 }
308                 else
309                 {
310                         uint16_t verify = 0xffff;
311                         /* keep the original instruction in target endianness */
312                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
313                         {
314                                 return retval;
315                         }
316                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
317                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
318                         {
319                                 return retval;
320                         }
321
322                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
323                         {
324                                 return retval;
325                         }
326                         if (verify != arm7_9->thumb_bkpt)
327                         {
328                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
329                                 return ERROR_OK;
330                         }
331                 }
332                 breakpoint->set = 1;
333         }
334
335         return retval;
336 }
337
338 /**
339  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
340  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
341  * will be updated.  Otherwise, the software breakpoint will be restored to its
342  * original instruction if it hasn't already been modified.
343  *
344  * @param target Pointer to ARM7/9 target to unset the breakpoint from
345  * @param breakpoint Pointer to breakpoint to be unset
346  * @return For hardware breakpoints, this is the result of executing the JTAG
347  *         queue.  For software breakpoints, this will be the status of the
348  *         required memory reads and writes
349  */
350 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
351 {
352         int retval = ERROR_OK;
353
354         armv4_5_common_t *armv4_5 = target->arch_info;
355         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
356
357         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
358                           breakpoint->unique_id,
359                           breakpoint->address );
360
361         if (!breakpoint->set)
362         {
363                 LOG_WARNING("breakpoint not set");
364                 return ERROR_OK;
365         }
366
367         if (breakpoint->type == BKPT_HARD)
368         {
369                 LOG_DEBUG("BPID: %d Releasing hw wp: %d", 
370                                   breakpoint->unique_id,
371                                   breakpoint->set );
372                 if (breakpoint->set == 1)
373                 {
374                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
375                         arm7_9->wp0_used = 0;
376                         arm7_9->wp_available++;
377                 }
378                 else if (breakpoint->set == 2)
379                 {
380                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
381                         arm7_9->wp1_used = 0;
382                         arm7_9->wp_available++;
383                 }
384                 retval = jtag_execute_queue();
385                 breakpoint->set = 0;
386         }
387         else
388         {
389                 /* restore original instruction (kept in target endianness) */
390                 if (breakpoint->length == 4)
391                 {
392                         uint32_t current_instr;
393                         /* check that user program as not modified breakpoint instruction */
394                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
395                         {
396                                 return retval;
397                         }
398                         if (current_instr == arm7_9->arm_bkpt)
399                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
400                                 {
401                                         return retval;
402                                 }
403                 }
404                 else
405                 {
406                         uint16_t current_instr;
407                         /* check that user program as not modified breakpoint instruction */
408                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
409                         {
410                                 return retval;
411                         }
412                         if (current_instr == arm7_9->thumb_bkpt)
413                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
414                                 {
415                                         return retval;
416                                 }
417                 }
418                 breakpoint->set = 0;
419         }
420
421         return retval;
422 }
423
424 /**
425  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
426  * dangling breakpoints and that the desired breakpoint can be added.
427  *
428  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
429  * @param breakpoint Pointer to the breakpoint to be added
430  * @return An error status if there is a problem adding the breakpoint or the
431  *         result of setting the breakpoint
432  */
433 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
434 {
435         armv4_5_common_t *armv4_5 = target->arch_info;
436         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
437
438         if (target->state != TARGET_HALTED)
439         {
440                 LOG_WARNING("target not halted");
441                 return ERROR_TARGET_NOT_HALTED;
442         }
443
444         if (arm7_9->breakpoint_count == 0)
445         {
446                 /* make sure we don't have any dangling breakpoints. This is vital upon
447                  * GDB connect/disconnect
448                  */
449                 arm7_9_clear_watchpoints(arm7_9);
450         }
451
452         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
453         {
454                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
455                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
456         }
457
458         if ((breakpoint->length != 2) && (breakpoint->length != 4))
459         {
460                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
461                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
462         }
463
464         if (breakpoint->type == BKPT_HARD)
465         {
466                 arm7_9_assign_wp(arm7_9, breakpoint);
467         }
468
469         arm7_9->breakpoint_count++;
470
471         return arm7_9_set_breakpoint(target, breakpoint);
472 }
473
474 /**
475  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
476  * dangling breakpoints and updates available watchpoints if it is a hardware
477  * breakpoint.
478  *
479  * @param target Pointer to the target to have a breakpoint removed
480  * @param breakpoint Pointer to the breakpoint to be removed
481  * @return Error status if there was a problem unsetting the breakpoint or the
482  *         watchpoints could not be cleared
483  */
484 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
485 {
486         int retval = ERROR_OK;
487         armv4_5_common_t *armv4_5 = target->arch_info;
488         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
489
490         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
491         {
492                 return retval;
493         }
494
495         if (breakpoint->type == BKPT_HARD)
496                 arm7_9->wp_available++;
497
498         arm7_9->breakpoint_count--;
499         if (arm7_9->breakpoint_count == 0)
500         {
501                 /* make sure we don't have any dangling breakpoints */
502                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
503                 {
504                         return retval;
505                 }
506         }
507
508         return ERROR_OK;
509 }
510
511 /**
512  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
513  * considered a bug to call this function when there are no available watchpoint
514  * units.
515  *
516  * @param target Pointer to an ARM7/9 target to set a watchpoint on
517  * @param watchpoint Pointer to the watchpoint to be set
518  * @return Error status if watchpoint set fails or the result of executing the
519  *         JTAG queue
520  */
521 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
522 {
523         int retval = ERROR_OK;
524         armv4_5_common_t *armv4_5 = target->arch_info;
525         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
526         int rw_mask = 1;
527         uint32_t mask;
528
529         mask = watchpoint->length - 1;
530
531         if (target->state != TARGET_HALTED)
532         {
533                 LOG_WARNING("target not halted");
534                 return ERROR_TARGET_NOT_HALTED;
535         }
536
537         if (watchpoint->rw == WPT_ACCESS)
538                 rw_mask = 0;
539         else
540                 rw_mask = 1;
541
542         if (!arm7_9->wp0_used)
543         {
544                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
545                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
546                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
547                 if (watchpoint->mask != 0xffffffffu)
548                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
551
552                 if ((retval = jtag_execute_queue()) != ERROR_OK)
553                 {
554                         return retval;
555                 }
556                 watchpoint->set = 1;
557                 arm7_9->wp0_used = 2;
558         }
559         else if (!arm7_9->wp1_used)
560         {
561                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
562                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
563                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
564                 if (watchpoint->mask != 0xffffffffu)
565                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
566                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
567                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
568
569                 if ((retval = jtag_execute_queue()) != ERROR_OK)
570                 {
571                         return retval;
572                 }
573                 watchpoint->set = 2;
574                 arm7_9->wp1_used = 2;
575         }
576         else
577         {
578                 LOG_ERROR("BUG: no hardware comparator available");
579                 return ERROR_OK;
580         }
581
582         return ERROR_OK;
583 }
584
585 /**
586  * Unset an existing watchpoint and clear the used watchpoint unit.
587  *
588  * @param target Pointer to the target to have the watchpoint removed
589  * @param watchpoint Pointer to the watchpoint to be removed
590  * @return Error status while trying to unset the watchpoint or the result of
591  *         executing the JTAG queue
592  */
593 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
594 {
595         int retval = ERROR_OK;
596         armv4_5_common_t *armv4_5 = target->arch_info;
597         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
598
599         if (target->state != TARGET_HALTED)
600         {
601                 LOG_WARNING("target not halted");
602                 return ERROR_TARGET_NOT_HALTED;
603         }
604
605         if (!watchpoint->set)
606         {
607                 LOG_WARNING("breakpoint not set");
608                 return ERROR_OK;
609         }
610
611         if (watchpoint->set == 1)
612         {
613                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
614                 if ((retval = jtag_execute_queue()) != ERROR_OK)
615                 {
616                         return retval;
617                 }
618                 arm7_9->wp0_used = 0;
619         }
620         else if (watchpoint->set == 2)
621         {
622                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
623                 if ((retval = jtag_execute_queue()) != ERROR_OK)
624                 {
625                         return retval;
626                 }
627                 arm7_9->wp1_used = 0;
628         }
629         watchpoint->set = 0;
630
631         return ERROR_OK;
632 }
633
634 /**
635  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
636  * available, an error response is returned.
637  *
638  * @param target Pointer to the ARM7/9 target to add a watchpoint to
639  * @param watchpoint Pointer to the watchpoint to be added
640  * @return Error status while trying to add the watchpoint
641  */
642 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
643 {
644         armv4_5_common_t *armv4_5 = target->arch_info;
645         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
646
647         if (target->state != TARGET_HALTED)
648         {
649                 LOG_WARNING("target not halted");
650                 return ERROR_TARGET_NOT_HALTED;
651         }
652
653         if (arm7_9->wp_available < 1)
654         {
655                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
656         }
657
658         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
659         {
660                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
661         }
662
663         arm7_9->wp_available--;
664
665         return ERROR_OK;
666 }
667
668 /**
669  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
670  * the used watchpoint unit will be reopened.
671  *
672  * @param target Pointer to the target to remove a watchpoint from
673  * @param watchpoint Pointer to the watchpoint to be removed
674  * @return Result of trying to unset the watchpoint
675  */
676 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
677 {
678         int retval = ERROR_OK;
679         armv4_5_common_t *armv4_5 = target->arch_info;
680         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
681
682         if (watchpoint->set)
683         {
684                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
685                 {
686                         return retval;
687                 }
688         }
689
690         arm7_9->wp_available++;
691
692         return ERROR_OK;
693 }
694
695 /**
696  * Restarts the target by sending a RESTART instruction and moving the JTAG
697  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
698  * asserted by the processor.
699  *
700  * @param target Pointer to target to issue commands to
701  * @return Error status if there is a timeout or a problem while executing the
702  *         JTAG queue
703  */
704 int arm7_9_execute_sys_speed(struct target_s *target)
705 {
706         int retval;
707
708         armv4_5_common_t *armv4_5 = target->arch_info;
709         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
710         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
711         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
712
713         /* set RESTART instruction */
714         jtag_set_end_state(TAP_IDLE);
715         if (arm7_9->need_bypass_before_restart) {
716                 arm7_9->need_bypass_before_restart = 0;
717                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
718         }
719         arm_jtag_set_instr(jtag_info, 0x4, NULL);
720
721         long long then = timeval_ms();
722         int timeout;
723         while (!(timeout = ((timeval_ms()-then) > 1000)))
724         {
725                 /* read debug status register */
726                 embeddedice_read_reg(dbg_stat);
727                 if ((retval = jtag_execute_queue()) != ERROR_OK)
728                         return retval;
729                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
730                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
731                         break;
732                 if (debug_level >= 3)
733                 {
734                         alive_sleep(100);
735                 } else
736                 {
737                         keep_alive();
738                 }
739         }
740         if (timeout)
741         {
742                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
743                 return ERROR_TARGET_TIMEOUT;
744         }
745
746         return ERROR_OK;
747 }
748
749 /**
750  * Restarts the target by sending a RESTART instruction and moving the JTAG
751  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
752  * waiting until they are.
753  *
754  * @param target Pointer to the target to issue commands to
755  * @return Always ERROR_OK
756  */
757 int arm7_9_execute_fast_sys_speed(struct target_s *target)
758 {
759         static int set = 0;
760         static uint8_t check_value[4], check_mask[4];
761
762         armv4_5_common_t *armv4_5 = target->arch_info;
763         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
764         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
765         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
766
767         /* set RESTART instruction */
768         jtag_set_end_state(TAP_IDLE);
769         if (arm7_9->need_bypass_before_restart) {
770                 arm7_9->need_bypass_before_restart = 0;
771                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
772         }
773         arm_jtag_set_instr(jtag_info, 0x4, NULL);
774
775         if (!set)
776         {
777                 /* check for DBGACK and SYSCOMP set (others don't care) */
778
779                 /* NB! These are constants that must be available until after next jtag_execute() and
780                  * we evaluate the values upon first execution in lieu of setting up these constants
781                  * during early setup.
782                  * */
783                 buf_set_u32(check_value, 0, 32, 0x9);
784                 buf_set_u32(check_mask, 0, 32, 0x9);
785                 set = 1;
786         }
787
788         /* read debug status register */
789         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
790
791         return ERROR_OK;
792 }
793
794 /**
795  * Get some data from the ARM7/9 target.
796  *
797  * @param target Pointer to the ARM7/9 target to read data from
798  * @param size The number of 32bit words to be read
799  * @param buffer Pointer to the buffer that will hold the data
800  * @return The result of receiving data from the Embedded ICE unit
801  */
802 int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer)
803 {
804         armv4_5_common_t *armv4_5 = target->arch_info;
805         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
806         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
807         uint32_t *data;
808         int retval = ERROR_OK;
809         uint32_t i;
810
811         data = malloc(size * (sizeof(uint32_t)));
812
813         retval = embeddedice_receive(jtag_info, data, size);
814
815         /* return the 32-bit ints in the 8-bit array */
816         for (i = 0; i < size; i++)
817         {
818                 h_u32_to_le(buffer + (i * 4), data[i]);
819         }
820
821         free(data);
822
823         return retval;
824 }
825
826 /**
827  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
828  * target is running and the DCC control register has the W bit high, this will
829  * execute the request on the target.
830  *
831  * @param priv Void pointer expected to be a target_t pointer
832  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
833  *                  from the Embedded ICE unit
834  */
835 int arm7_9_handle_target_request(void *priv)
836 {
837         int retval = ERROR_OK;
838         target_t *target = priv;
839         if (!target_was_examined(target))
840                 return ERROR_OK;
841         armv4_5_common_t *armv4_5 = target->arch_info;
842         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
843         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
844         reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
845
846         if (!target->dbg_msg_enabled)
847                 return ERROR_OK;
848
849         if (target->state == TARGET_RUNNING)
850         {
851                 /* read DCC control register */
852                 embeddedice_read_reg(dcc_control);
853                 if ((retval = jtag_execute_queue()) != ERROR_OK)
854                 {
855                         return retval;
856                 }
857
858                 /* check W bit */
859                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
860                 {
861                         uint32_t request;
862
863                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
864                         {
865                                 return retval;
866                         }
867                         if ((retval = target_request(target, request)) != ERROR_OK)
868                         {
869                                 return retval;
870                         }
871                 }
872         }
873
874         return ERROR_OK;
875 }
876
877 /**
878  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
879  * is manipulated to the right halted state based on its current state.  This is
880  * what happens:
881  *
882  * <table>
883  *              <tr><th > State</th><th > Action</th></tr>
884  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
885  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
886  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
887  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
888  * </table>
889  *
890  * If the target does not end up in the halted state, a warning is produced.  If
891  * DBGACK is cleared, then the target is expected to either be running or
892  * running in debug.
893  *
894  * @param target Pointer to the ARM7/9 target to poll
895  * @return ERROR_OK or an error status if a command fails
896  */
897 int arm7_9_poll(target_t *target)
898 {
899         int retval;
900         armv4_5_common_t *armv4_5 = target->arch_info;
901         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
902         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
903
904         /* read debug status register */
905         embeddedice_read_reg(dbg_stat);
906         if ((retval = jtag_execute_queue()) != ERROR_OK)
907         {
908                 return retval;
909         }
910
911         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
912         {
913 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
914                 if (target->state == TARGET_UNKNOWN)
915                 {
916                         /* Starting OpenOCD with target in debug-halt */
917                         target->state = TARGET_RUNNING;
918                         LOG_DEBUG("DBGACK already set during server startup.");
919                 }
920                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
921                 {
922                         int check_pc = 0;
923                         if (target->state == TARGET_RESET)
924                         {
925                                 if (target->reset_halt)
926                                 {
927                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
928                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
929                                         {
930                                                 check_pc = 1;
931                                         }
932                                 }
933                         }
934
935                         target->state = TARGET_HALTED;
936
937                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
938                                 return retval;
939
940                         if (check_pc)
941                         {
942                                 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
943                                 uint32_t t=*((uint32_t *)reg->value);
944                                 if (t != 0)
945                                 {
946                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
947                                 }
948                         }
949
950                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
951                         {
952                                 return retval;
953                         }
954                 }
955                 if (target->state == TARGET_DEBUG_RUNNING)
956                 {
957                         target->state = TARGET_HALTED;
958                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
959                                 return retval;
960
961                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
962                         {
963                                 return retval;
964                         }
965                 }
966                 if (target->state != TARGET_HALTED)
967                 {
968                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
969                 }
970         }
971         else
972         {
973                 if (target->state != TARGET_DEBUG_RUNNING)
974                         target->state = TARGET_RUNNING;
975         }
976
977         return ERROR_OK;
978 }
979
980 /**
981  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
982  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
983  * affected) completely stop the JTAG clock while the core is held in reset
984  * (SRST).  It isn't possible to program the halt condition once reset is
985  * asserted, hence a hook that allows the target to set up its reset-halt
986  * condition is setup prior to asserting reset.
987  *
988  * @param target Pointer to an ARM7/9 target to assert reset on
989  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
990  */
991 int arm7_9_assert_reset(target_t *target)
992 {
993         armv4_5_common_t *armv4_5 = target->arch_info;
994         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
995         LOG_DEBUG("target->state: %s",
996                   target_state_name(target));
997
998         enum reset_types jtag_reset_config = jtag_get_reset_config();
999         if (!(jtag_reset_config & RESET_HAS_SRST))
1000         {
1001                 LOG_ERROR("Can't assert SRST");
1002                 return ERROR_FAIL;
1003         }
1004
1005         if (target->reset_halt)
1006         {
1007                 /*
1008                  * Some targets do not support communication while SRST is asserted. We need to
1009                  * set up the reset vector catch here.
1010                  *
1011                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1012                  * here is harmless.
1013                  */
1014                 if (arm7_9->has_vector_catch)
1015                 {
1016                         /* program vector catch register to catch reset vector */
1017                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1018
1019                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1020                         jtag_add_runtest(1, jtag_get_end_state());
1021                 }
1022                 else
1023                 {
1024                         /* program watchpoint unit to match on reset vector address */
1025                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1026                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1027                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1028                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1029                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1030                 }
1031         }
1032
1033         /* here we should issue an SRST only, but we may have to assert TRST as well */
1034         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1035         {
1036                 jtag_add_reset(1, 1);
1037         } else
1038         {
1039                 jtag_add_reset(0, 1);
1040         }
1041
1042         target->state = TARGET_RESET;
1043         jtag_add_sleep(50000);
1044
1045         armv4_5_invalidate_core_regs(target);
1046
1047         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1048         {
1049                 /* debug entry was already prepared in arm7_9_assert_reset() */
1050                 target->debug_reason = DBG_REASON_DBGRQ;
1051         }
1052
1053         return ERROR_OK;
1054 }
1055
1056 /**
1057  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1058  * and the target is being reset into a halt, a warning will be triggered
1059  * because it is not possible to reset into a halted mode in this case.  The
1060  * target is halted using the target's functions.
1061  *
1062  * @param target Pointer to the target to have the reset deasserted
1063  * @return ERROR_OK or an error from polling or halting the target
1064  */
1065 int arm7_9_deassert_reset(target_t *target)
1066 {
1067         int retval = ERROR_OK;
1068         LOG_DEBUG("target->state: %s",
1069                 target_state_name(target));
1070
1071         /* deassert reset lines */
1072         jtag_add_reset(0, 0);
1073
1074         enum reset_types jtag_reset_config = jtag_get_reset_config();
1075         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1076         {
1077                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1078                 /* set up embedded ice registers again */
1079                 if ((retval = target_examine_one(target)) != ERROR_OK)
1080                         return retval;
1081
1082                 if ((retval = target_poll(target)) != ERROR_OK)
1083                 {
1084                         return retval;
1085                 }
1086
1087                 if ((retval = target_halt(target)) != ERROR_OK)
1088                 {
1089                         return retval;
1090                 }
1091
1092         }
1093         return retval;
1094 }
1095
1096 /**
1097  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1098  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1099  * vector catch was used, it is restored.  Otherwise, the control value is
1100  * restored and the watchpoint unit is restored if it was in use.
1101  *
1102  * @param target Pointer to the ARM7/9 target to have halt cleared
1103  * @return Always ERROR_OK
1104  */
1105 int arm7_9_clear_halt(target_t *target)
1106 {
1107         armv4_5_common_t *armv4_5 = target->arch_info;
1108         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1109         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1110
1111         /* we used DBGRQ only if we didn't come out of reset */
1112         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1113         {
1114                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1115                  */
1116                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1117                 embeddedice_store_reg(dbg_ctrl);
1118         }
1119         else
1120         {
1121                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1122                 {
1123                         /* if we came out of reset, and vector catch is supported, we used
1124                          * vector catch to enter debug state
1125                          * restore the register in that case
1126                          */
1127                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1128                 }
1129                 else
1130                 {
1131                         /* restore registers if watchpoint unit 0 was in use
1132                          */
1133                         if (arm7_9->wp0_used)
1134                         {
1135                                 if (arm7_9->debug_entry_from_reset)
1136                                 {
1137                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1138                                 }
1139                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1140                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1141                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1142                         }
1143                         /* control value always has to be restored, as it was either disabled,
1144                          * or enabled with possibly different bits
1145                          */
1146                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1147                 }
1148         }
1149
1150         return ERROR_OK;
1151 }
1152
1153 /**
1154  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1155  * and then there is a wait until the processor shows the halt.  This wait can
1156  * timeout and results in an error being returned.  The software reset involves
1157  * clearing the halt, updating the debug control register, changing to ARM mode,
1158  * reset of the program counter, and reset of all of the registers.
1159  *
1160  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1161  * @return Error status if any of the commands fail, otherwise ERROR_OK
1162  */
1163 int arm7_9_soft_reset_halt(struct target_s *target)
1164 {
1165         armv4_5_common_t *armv4_5 = target->arch_info;
1166         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1167         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1168         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1169         int i;
1170         int retval;
1171
1172         if ((retval = target_halt(target)) != ERROR_OK)
1173                 return retval;
1174
1175         long long then = timeval_ms();
1176         int timeout;
1177         while (!(timeout = ((timeval_ms()-then) > 1000)))
1178         {
1179                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1180                         break;
1181                 embeddedice_read_reg(dbg_stat);
1182                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1183                         return retval;
1184                 if (debug_level >= 3)
1185                 {
1186                         alive_sleep(100);
1187                 } else
1188                 {
1189                         keep_alive();
1190                 }
1191         }
1192         if (timeout)
1193         {
1194                 LOG_ERROR("Failed to halt CPU after 1 sec");
1195                 return ERROR_TARGET_TIMEOUT;
1196         }
1197         target->state = TARGET_HALTED;
1198
1199         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1200          * ensure that DBGRQ is cleared
1201          */
1202         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1203         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1204         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1205         embeddedice_store_reg(dbg_ctrl);
1206
1207         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1208         {
1209                 return retval;
1210         }
1211
1212         /* if the target is in Thumb state, change to ARM state */
1213         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1214         {
1215                 uint32_t r0_thumb, pc_thumb;
1216                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1217                 /* Entered debug from Thumb mode */
1218                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1219                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1220         }
1221
1222         /* all register content is now invalid */
1223         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1224         {
1225                 return retval;
1226         }
1227
1228         /* SVC, ARM state, IRQ and FIQ disabled */
1229         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1230         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1231         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1232
1233         /* start fetching from 0x0 */
1234         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1235         armv4_5->core_cache->reg_list[15].dirty = 1;
1236         armv4_5->core_cache->reg_list[15].valid = 1;
1237
1238         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1239         armv4_5->core_state = ARMV4_5_STATE_ARM;
1240
1241         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1242                 return ERROR_FAIL;
1243
1244         /* reset registers */
1245         for (i = 0; i <= 14; i++)
1246         {
1247                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1248                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1249                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1250         }
1251
1252         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1253         {
1254                 return retval;
1255         }
1256
1257         return ERROR_OK;
1258 }
1259
1260 /**
1261  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1262  * line or by programming a watchpoint to trigger on any address.  It is
1263  * considered a bug to call this function while the target is in the
1264  * TARGET_RESET state.
1265  *
1266  * @param target Pointer to the ARM7/9 target to be halted
1267  * @return Always ERROR_OK
1268  */
1269 int arm7_9_halt(target_t *target)
1270 {
1271         if (target->state == TARGET_RESET)
1272         {
1273                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1274                 return ERROR_OK;
1275         }
1276
1277         armv4_5_common_t *armv4_5 = target->arch_info;
1278         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1279         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1280
1281         LOG_DEBUG("target->state: %s",
1282                   target_state_name(target));
1283
1284         if (target->state == TARGET_HALTED)
1285         {
1286                 LOG_DEBUG("target was already halted");
1287                 return ERROR_OK;
1288         }
1289
1290         if (target->state == TARGET_UNKNOWN)
1291         {
1292                 LOG_WARNING("target was in unknown state when halt was requested");
1293         }
1294
1295         if (arm7_9->use_dbgrq)
1296         {
1297                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1298                  */
1299                 if (arm7_9->set_special_dbgrq) {
1300                         arm7_9->set_special_dbgrq(target);
1301                 } else {
1302                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1303                         embeddedice_store_reg(dbg_ctrl);
1304                 }
1305         }
1306         else
1307         {
1308                 /* program watchpoint unit to match on any address
1309                  */
1310                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1311                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1312                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1313                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1314         }
1315
1316         target->debug_reason = DBG_REASON_DBGRQ;
1317
1318         return ERROR_OK;
1319 }
1320
1321 /**
1322  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1323  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1324  * examined.  Once done, the target is verified to be halted and the processor
1325  * is forced into ARM mode.  The core registers are saved for the current core
1326  * mode and the program counter (register 15) is updated as needed.  The core
1327  * registers and CPSR and SPSR are saved for restoration later.
1328  *
1329  * @param target Pointer to target that is entering debug mode
1330  * @return Error code if anything fails, otherwise ERROR_OK
1331  */
1332 int arm7_9_debug_entry(target_t *target)
1333 {
1334         int i;
1335         uint32_t context[16];
1336         uint32_t* context_p[16];
1337         uint32_t r0_thumb, pc_thumb;
1338         uint32_t cpsr;
1339         int retval;
1340         /* get pointers to arch-specific information */
1341         armv4_5_common_t *armv4_5 = target->arch_info;
1342         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1343         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1344         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1345
1346 #ifdef _DEBUG_ARM7_9_
1347         LOG_DEBUG("-");
1348 #endif
1349
1350         if (arm7_9->pre_debug_entry)
1351                 arm7_9->pre_debug_entry(target);
1352
1353         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1354          * ensure that DBGRQ is cleared
1355          */
1356         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1357         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1358         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1359         embeddedice_store_reg(dbg_ctrl);
1360
1361         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1362         {
1363                 return retval;
1364         }
1365
1366         if ((retval = jtag_execute_queue()) != ERROR_OK)
1367         {
1368                 return retval;
1369         }
1370
1371         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1372                 return retval;
1373
1374
1375         if (target->state != TARGET_HALTED)
1376         {
1377                 LOG_WARNING("target not halted");
1378                 return ERROR_TARGET_NOT_HALTED;
1379         }
1380
1381         /* if the target is in Thumb state, change to ARM state */
1382         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1383         {
1384                 LOG_DEBUG("target entered debug from Thumb state");
1385                 /* Entered debug from Thumb mode */
1386                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1387                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1388                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1389         }
1390         else
1391         {
1392                 LOG_DEBUG("target entered debug from ARM state");
1393                 /* Entered debug from ARM mode */
1394                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1395         }
1396
1397         for (i = 0; i < 16; i++)
1398                 context_p[i] = &context[i];
1399         /* save core registers (r0 - r15 of current core mode) */
1400         arm7_9->read_core_regs(target, 0xffff, context_p);
1401
1402         arm7_9->read_xpsr(target, &cpsr, 0);
1403
1404         if ((retval = jtag_execute_queue()) != ERROR_OK)
1405                 return retval;
1406
1407         /* if the core has been executing in Thumb state, set the T bit */
1408         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1409                 cpsr |= 0x20;
1410
1411         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1412         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1413         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1414
1415         armv4_5->core_mode = cpsr & 0x1f;
1416
1417         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1418         {
1419                 target->state = TARGET_UNKNOWN;
1420                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1421                 return ERROR_TARGET_FAILURE;
1422         }
1423
1424         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1425
1426         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1427         {
1428                 LOG_DEBUG("thumb state, applying fixups");
1429                 context[0] = r0_thumb;
1430                 context[15] = pc_thumb;
1431         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1432         {
1433                 /* adjust value stored by STM */
1434                 context[15] -= 3 * 4;
1435         }
1436
1437         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1438                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1439         else
1440                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1441
1442         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1443                 return ERROR_FAIL;
1444
1445         for (i = 0; i <= 15; i++)
1446         {
1447                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1448                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1449                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1450                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1451         }
1452
1453         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1454
1455         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1456                 return ERROR_FAIL;
1457
1458         /* exceptions other than USR & SYS have a saved program status register */
1459         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1460         {
1461                 uint32_t spsr;
1462                 arm7_9->read_xpsr(target, &spsr, 1);
1463                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1464                 {
1465                         return retval;
1466                 }
1467                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1468                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1469                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1470         }
1471
1472         /* r0 and r15 (pc) have to be restored later */
1473         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1474         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1475
1476         if ((retval = jtag_execute_queue()) != ERROR_OK)
1477                 return retval;
1478
1479         if (arm7_9->post_debug_entry)
1480                 arm7_9->post_debug_entry(target);
1481
1482         return ERROR_OK;
1483 }
1484
1485 /**
1486  * Validate the full context for an ARM7/9 target in all processor modes.  If
1487  * there are any invalid registers for the target, they will all be read.  This
1488  * includes the PSR.
1489  *
1490  * @param target Pointer to the ARM7/9 target to capture the full context from
1491  * @return Error if the target is not halted, has an invalid core mode, or if
1492  *         the JTAG queue fails to execute
1493  */
1494 int arm7_9_full_context(target_t *target)
1495 {
1496         int i;
1497         int retval;
1498         armv4_5_common_t *armv4_5 = target->arch_info;
1499         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1500
1501         LOG_DEBUG("-");
1502
1503         if (target->state != TARGET_HALTED)
1504         {
1505                 LOG_WARNING("target not halted");
1506                 return ERROR_TARGET_NOT_HALTED;
1507         }
1508
1509         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1510                 return ERROR_FAIL;
1511
1512         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1513          * SYS shares registers with User, so we don't touch SYS
1514          */
1515         for (i = 0; i < 6; i++)
1516         {
1517                 uint32_t mask = 0;
1518                 uint32_t* reg_p[16];
1519                 int j;
1520                 int valid = 1;
1521
1522                 /* check if there are invalid registers in the current mode
1523                  */
1524                 for (j = 0; j <= 16; j++)
1525                 {
1526                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1527                                 valid = 0;
1528                 }
1529
1530                 if (!valid)
1531                 {
1532                         uint32_t tmp_cpsr;
1533
1534                         /* change processor mode (and mask T bit) */
1535                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1536                         tmp_cpsr |= armv4_5_number_to_mode(i);
1537                         tmp_cpsr &= ~0x20;
1538                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1539
1540                         for (j = 0; j < 15; j++)
1541                         {
1542                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1543                                 {
1544                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1545                                         mask |= 1 << j;
1546                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1547                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1548                                 }
1549                         }
1550
1551                         /* if only the PSR is invalid, mask is all zeroes */
1552                         if (mask)
1553                                 arm7_9->read_core_regs(target, mask, reg_p);
1554
1555                         /* check if the PSR has to be read */
1556                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1557                         {
1558                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1559                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1560                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1561                         }
1562                 }
1563         }
1564
1565         /* restore processor mode (mask T bit) */
1566         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1567
1568         if ((retval = jtag_execute_queue()) != ERROR_OK)
1569         {
1570                 return retval;
1571         }
1572         return ERROR_OK;
1573 }
1574
1575 /**
1576  * Restore the processor context on an ARM7/9 target.  The full processor
1577  * context is analyzed to see if any of the registers are dirty on this end, but
1578  * have a valid new value.  If this is the case, the processor is changed to the
1579  * appropriate mode and the new register values are written out to the
1580  * processor.  If there happens to be a dirty register with an invalid value, an
1581  * error will be logged.
1582  *
1583  * @param target Pointer to the ARM7/9 target to have its context restored
1584  * @return Error status if the target is not halted or the core mode in the
1585  *         armv4_5 struct is invalid.
1586  */
1587 int arm7_9_restore_context(target_t *target)
1588 {
1589         armv4_5_common_t *armv4_5 = target->arch_info;
1590         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1591         reg_t *reg;
1592         armv4_5_core_reg_t *reg_arch_info;
1593         enum armv4_5_mode current_mode = armv4_5->core_mode;
1594         int i, j;
1595         int dirty;
1596         int mode_change;
1597
1598         LOG_DEBUG("-");
1599
1600         if (target->state != TARGET_HALTED)
1601         {
1602                 LOG_WARNING("target not halted");
1603                 return ERROR_TARGET_NOT_HALTED;
1604         }
1605
1606         if (arm7_9->pre_restore_context)
1607                 arm7_9->pre_restore_context(target);
1608
1609         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1610                 return ERROR_FAIL;
1611
1612         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1613          * SYS shares registers with User, so we don't touch SYS
1614          */
1615         for (i = 0; i < 6; i++)
1616         {
1617                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1618                 dirty = 0;
1619                 mode_change = 0;
1620                 /* check if there are dirty registers in the current mode
1621                 */
1622                 for (j = 0; j <= 16; j++)
1623                 {
1624                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1625                         reg_arch_info = reg->arch_info;
1626                         if (reg->dirty == 1)
1627                         {
1628                                 if (reg->valid == 1)
1629                                 {
1630                                         dirty = 1;
1631                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1632                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1633                                                 && (reg_arch_info->mode != current_mode)
1634                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1635                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1636                                         {
1637                                                 mode_change = 1;
1638                                                 LOG_DEBUG("require mode change");
1639                                         }
1640                                 }
1641                                 else
1642                                 {
1643                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1644                                 }
1645                         }
1646                 }
1647
1648                 if (dirty)
1649                 {
1650                         uint32_t mask = 0x0;
1651                         int num_regs = 0;
1652                         uint32_t regs[16];
1653
1654                         if (mode_change)
1655                         {
1656                                 uint32_t tmp_cpsr;
1657
1658                                 /* change processor mode (mask T bit) */
1659                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1660                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1661                                 tmp_cpsr &= ~0x20;
1662                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1663                                 current_mode = armv4_5_number_to_mode(i);
1664                         }
1665
1666                         for (j = 0; j <= 14; j++)
1667                         {
1668                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1669                                 reg_arch_info = reg->arch_info;
1670
1671
1672                                 if (reg->dirty == 1)
1673                                 {
1674                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1675                                         mask |= 1 << j;
1676                                         num_regs++;
1677                                         reg->dirty = 0;
1678                                         reg->valid = 1;
1679                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1680                                 }
1681                         }
1682
1683                         if (mask)
1684                         {
1685                                 arm7_9->write_core_regs(target, mask, regs);
1686                         }
1687
1688                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1689                         reg_arch_info = reg->arch_info;
1690                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1691                         {
1692                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1693                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1694                         }
1695                 }
1696         }
1697
1698         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1699         {
1700                 /* restore processor mode (mask T bit) */
1701                 uint32_t tmp_cpsr;
1702
1703                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1704                 tmp_cpsr |= armv4_5_number_to_mode(i);
1705                 tmp_cpsr &= ~0x20;
1706                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1707                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1708         }
1709         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1710         {
1711                 /* CPSR has been changed, full restore necessary (mask T bit) */
1712                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1713                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1714                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1715                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1716         }
1717
1718         /* restore PC */
1719         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1720         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1721         armv4_5->core_cache->reg_list[15].dirty = 0;
1722
1723         if (arm7_9->post_restore_context)
1724                 arm7_9->post_restore_context(target);
1725
1726         return ERROR_OK;
1727 }
1728
1729 /**
1730  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1731  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1732  * restart.
1733  *
1734  * @param target Pointer to the ARM7/9 target to be restarted
1735  * @return Result of executing the JTAG queue
1736  */
1737 int arm7_9_restart_core(struct target_s *target)
1738 {
1739         armv4_5_common_t *armv4_5 = target->arch_info;
1740         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1741         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1742
1743         /* set RESTART instruction */
1744         jtag_set_end_state(TAP_IDLE);
1745         if (arm7_9->need_bypass_before_restart) {
1746                 arm7_9->need_bypass_before_restart = 0;
1747                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1748         }
1749         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1750
1751         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1752         return jtag_execute_queue();
1753 }
1754
1755 /**
1756  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1757  * iterated through and are set on the target if they aren't already set.
1758  *
1759  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1760  */
1761 void arm7_9_enable_watchpoints(struct target_s *target)
1762 {
1763         watchpoint_t *watchpoint = target->watchpoints;
1764
1765         while (watchpoint)
1766         {
1767                 if (watchpoint->set == 0)
1768                         arm7_9_set_watchpoint(target, watchpoint);
1769                 watchpoint = watchpoint->next;
1770         }
1771 }
1772
1773 /**
1774  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1775  * iterated through and are set on the target.
1776  *
1777  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1778  */
1779 void arm7_9_enable_breakpoints(struct target_s *target)
1780 {
1781         breakpoint_t *breakpoint = target->breakpoints;
1782
1783         /* set any pending breakpoints */
1784         while (breakpoint)
1785         {
1786                 arm7_9_set_breakpoint(target, breakpoint);
1787                 breakpoint = breakpoint->next;
1788         }
1789 }
1790
1791 int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1792 {
1793         armv4_5_common_t *armv4_5 = target->arch_info;
1794         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1795         breakpoint_t *breakpoint = target->breakpoints;
1796         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1797         int err, retval = ERROR_OK;
1798
1799         LOG_DEBUG("-");
1800
1801         if (target->state != TARGET_HALTED)
1802         {
1803                 LOG_WARNING("target not halted");
1804                 return ERROR_TARGET_NOT_HALTED;
1805         }
1806
1807         if (!debug_execution)
1808         {
1809                 target_free_all_working_areas(target);
1810         }
1811
1812         /* current = 1: continue on current pc, otherwise continue at <address> */
1813         if (!current)
1814                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1815
1816         uint32_t current_pc;
1817         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1818
1819         /* the front-end may request us not to handle breakpoints */
1820         if (handle_breakpoints)
1821         {
1822                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1823                 {
1824                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1825                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1826                         {
1827                                 return retval;
1828                         }
1829
1830                         /* calculate PC of next instruction */
1831                         uint32_t next_pc;
1832                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1833                         {
1834                                 uint32_t current_opcode;
1835                                 target_read_u32(target, current_pc, &current_opcode);
1836                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1837                                 return retval;
1838                         }
1839
1840                         LOG_DEBUG("enable single-step");
1841                         arm7_9->enable_single_step(target, next_pc);
1842
1843                         target->debug_reason = DBG_REASON_SINGLESTEP;
1844
1845                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1846                         {
1847                                 return retval;
1848                         }
1849
1850                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1851                                 arm7_9->branch_resume(target);
1852                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1853                         {
1854                                 arm7_9->branch_resume_thumb(target);
1855                         }
1856                         else
1857                         {
1858                                 LOG_ERROR("unhandled core state");
1859                                 return ERROR_FAIL;
1860                         }
1861
1862                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1863                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1864                         err = arm7_9_execute_sys_speed(target);
1865
1866                         LOG_DEBUG("disable single-step");
1867                         arm7_9->disable_single_step(target);
1868
1869                         if (err != ERROR_OK)
1870                         {
1871                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1872                                 {
1873                                         return retval;
1874                                 }
1875                                 target->state = TARGET_UNKNOWN;
1876                                 return err;
1877                         }
1878
1879                         arm7_9_debug_entry(target);
1880                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1881
1882                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1883                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1884                         {
1885                                 return retval;
1886                         }
1887                 }
1888         }
1889
1890         /* enable any pending breakpoints and watchpoints */
1891         arm7_9_enable_breakpoints(target);
1892         arm7_9_enable_watchpoints(target);
1893
1894         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1895         {
1896                 return retval;
1897         }
1898
1899         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1900         {
1901                 arm7_9->branch_resume(target);
1902         }
1903         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1904         {
1905                 arm7_9->branch_resume_thumb(target);
1906         }
1907         else
1908         {
1909                 LOG_ERROR("unhandled core state");
1910                 return ERROR_FAIL;
1911         }
1912
1913         /* deassert DBGACK and INTDIS */
1914         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1915         /* INTDIS only when we really resume, not during debug execution */
1916         if (!debug_execution)
1917                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1918         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1919
1920         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1921         {
1922                 return retval;
1923         }
1924
1925         target->debug_reason = DBG_REASON_NOTHALTED;
1926
1927         if (!debug_execution)
1928         {
1929                 /* registers are now invalid */
1930                 armv4_5_invalidate_core_regs(target);
1931                 target->state = TARGET_RUNNING;
1932                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1933                 {
1934                         return retval;
1935                 }
1936         }
1937         else
1938         {
1939                 target->state = TARGET_DEBUG_RUNNING;
1940                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1941                 {
1942                         return retval;
1943                 }
1944         }
1945
1946         LOG_DEBUG("target resumed");
1947
1948         return ERROR_OK;
1949 }
1950
1951 void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc)
1952 {
1953         armv4_5_common_t *armv4_5 = target->arch_info;
1954         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1955
1956         uint32_t current_pc;
1957         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1958
1959         if (next_pc != current_pc)
1960         {
1961                 /* setup an inverse breakpoint on the current PC
1962                 * - comparator 1 matches the current address
1963                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1964                 * - comparator 0 matches any address, as long as rangein is low */
1965                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1968                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1969                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1970                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1971                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1972                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1973                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1974         }
1975         else
1976         {
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1980                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1981                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1982                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1983                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1984                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1985                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1986         }
1987 }
1988
1989 void arm7_9_disable_eice_step(target_t *target)
1990 {
1991         armv4_5_common_t *armv4_5 = target->arch_info;
1992         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1993
1994         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1995         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1996         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1997         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1998         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1999         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2000         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2001         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2002         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2003 }
2004
2005 int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints)
2006 {
2007         armv4_5_common_t *armv4_5 = target->arch_info;
2008         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2009         breakpoint_t *breakpoint = NULL;
2010         int err, retval;
2011
2012         if (target->state != TARGET_HALTED)
2013         {
2014                 LOG_WARNING("target not halted");
2015                 return ERROR_TARGET_NOT_HALTED;
2016         }
2017
2018         /* current = 1: continue on current pc, otherwise continue at <address> */
2019         if (!current)
2020                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2021
2022         uint32_t current_pc;
2023         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2024
2025         /* the front-end may request us not to handle breakpoints */
2026         if (handle_breakpoints)
2027                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2028                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2029                         {
2030                                 return retval;
2031                         }
2032
2033         target->debug_reason = DBG_REASON_SINGLESTEP;
2034
2035         /* calculate PC of next instruction */
2036         uint32_t next_pc;
2037         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2038         {
2039                 uint32_t current_opcode;
2040                 target_read_u32(target, current_pc, &current_opcode);
2041                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2042                 return retval;
2043         }
2044
2045         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2046         {
2047                 return retval;
2048         }
2049
2050         arm7_9->enable_single_step(target, next_pc);
2051
2052         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2053         {
2054                 arm7_9->branch_resume(target);
2055         }
2056         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2057         {
2058                 arm7_9->branch_resume_thumb(target);
2059         }
2060         else
2061         {
2062                 LOG_ERROR("unhandled core state");
2063                 return ERROR_FAIL;
2064         }
2065
2066         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2067         {
2068                 return retval;
2069         }
2070
2071         err = arm7_9_execute_sys_speed(target);
2072         arm7_9->disable_single_step(target);
2073
2074         /* registers are now invalid */
2075         armv4_5_invalidate_core_regs(target);
2076
2077         if (err != ERROR_OK)
2078         {
2079                 target->state = TARGET_UNKNOWN;
2080         } else {
2081                 arm7_9_debug_entry(target);
2082                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2083                 {
2084                         return retval;
2085                 }
2086                 LOG_DEBUG("target stepped");
2087         }
2088
2089         if (breakpoint)
2090                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2091                 {
2092                         return retval;
2093                 }
2094
2095         return err;
2096 }
2097
2098 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2099 {
2100         uint32_t* reg_p[16];
2101         uint32_t value;
2102         int retval;
2103         armv4_5_common_t *armv4_5 = target->arch_info;
2104         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2105
2106         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2107                 return ERROR_FAIL;
2108
2109         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2110
2111         if ((num < 0) || (num > 16))
2112                 return ERROR_INVALID_ARGUMENTS;
2113
2114         if ((mode != ARMV4_5_MODE_ANY)
2115                         && (mode != armv4_5->core_mode)
2116                         && (reg_mode != ARMV4_5_MODE_ANY))
2117         {
2118                 uint32_t tmp_cpsr;
2119
2120                 /* change processor mode (mask T bit) */
2121                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2122                 tmp_cpsr |= mode;
2123                 tmp_cpsr &= ~0x20;
2124                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2125         }
2126
2127         if ((num >= 0) && (num <= 15))
2128         {
2129                 /* read a normal core register */
2130                 reg_p[num] = &value;
2131
2132                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2133         }
2134         else
2135         {
2136                 /* read a program status register
2137                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2138                  */
2139                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2140                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2141
2142                 arm7_9->read_xpsr(target, &value, spsr);
2143         }
2144
2145         if ((retval = jtag_execute_queue()) != ERROR_OK)
2146         {
2147                 return retval;
2148         }
2149
2150         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2151         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2152         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2153
2154         if ((mode != ARMV4_5_MODE_ANY)
2155                         && (mode != armv4_5->core_mode)
2156                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2157                 /* restore processor mode (mask T bit) */
2158                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2159         }
2160
2161         return ERROR_OK;
2162 }
2163
2164 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value)
2165 {
2166         uint32_t reg[16];
2167         armv4_5_common_t *armv4_5 = target->arch_info;
2168         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2169
2170         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2171                 return ERROR_FAIL;
2172
2173         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2174
2175         if ((num < 0) || (num > 16))
2176                 return ERROR_INVALID_ARGUMENTS;
2177
2178         if ((mode != ARMV4_5_MODE_ANY)
2179                         && (mode != armv4_5->core_mode)
2180                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2181                 uint32_t tmp_cpsr;
2182
2183                 /* change processor mode (mask T bit) */
2184                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2185                 tmp_cpsr |= mode;
2186                 tmp_cpsr &= ~0x20;
2187                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2188         }
2189
2190         if ((num >= 0) && (num <= 15))
2191         {
2192                 /* write a normal core register */
2193                 reg[num] = value;
2194
2195                 arm7_9->write_core_regs(target, 1 << num, reg);
2196         }
2197         else
2198         {
2199                 /* write a program status register
2200                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2201                 */
2202                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2203                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2204
2205                 /* if we're writing the CPSR, mask the T bit */
2206                 if (!spsr)
2207                         value &= ~0x20;
2208
2209                 arm7_9->write_xpsr(target, value, spsr);
2210         }
2211
2212         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2213         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2214
2215         if ((mode != ARMV4_5_MODE_ANY)
2216                         && (mode != armv4_5->core_mode)
2217                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2218                 /* restore processor mode (mask T bit) */
2219                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2220         }
2221
2222         return jtag_execute_queue();
2223 }
2224
2225 int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2226 {
2227         armv4_5_common_t *armv4_5 = target->arch_info;
2228         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2229
2230         uint32_t reg[16];
2231         uint32_t num_accesses = 0;
2232         int thisrun_accesses;
2233         int i;
2234         uint32_t cpsr;
2235         int retval;
2236         int last_reg = 0;
2237
2238         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2239
2240         if (target->state != TARGET_HALTED)
2241         {
2242                 LOG_WARNING("target not halted");
2243                 return ERROR_TARGET_NOT_HALTED;
2244         }
2245
2246         /* sanitize arguments */
2247         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2248                 return ERROR_INVALID_ARGUMENTS;
2249
2250         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2251                 return ERROR_TARGET_UNALIGNED_ACCESS;
2252
2253         /* load the base register with the address of the first word */
2254         reg[0] = address;
2255         arm7_9->write_core_regs(target, 0x1, reg);
2256
2257         int j = 0;
2258
2259         switch (size)
2260         {
2261                 case 4:
2262                         while (num_accesses < count)
2263                         {
2264                                 uint32_t reg_list;
2265                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2266                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2267
2268                                 if (last_reg <= thisrun_accesses)
2269                                         last_reg = thisrun_accesses;
2270
2271                                 arm7_9->load_word_regs(target, reg_list);
2272
2273                                 /* fast memory reads are only safe when the target is running
2274                                  * from a sufficiently high clock (32 kHz is usually too slow)
2275                                  */
2276                                 if (arm7_9->fast_memory_access)
2277                                         retval = arm7_9_execute_fast_sys_speed(target);
2278                                 else
2279                                         retval = arm7_9_execute_sys_speed(target);
2280                                 if (retval != ERROR_OK)
2281                                         return retval;
2282
2283                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2284
2285                                 /* advance buffer, count number of accesses */
2286                                 buffer += thisrun_accesses * 4;
2287                                 num_accesses += thisrun_accesses;
2288
2289                                 if ((j++%1024) == 0)
2290                                 {
2291                                         keep_alive();
2292                                 }
2293                         }
2294                         break;
2295                 case 2:
2296                         while (num_accesses < count)
2297                         {
2298                                 uint32_t reg_list;
2299                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2300                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2301
2302                                 for (i = 1; i <= thisrun_accesses; i++)
2303                                 {
2304                                         if (i > last_reg)
2305                                                 last_reg = i;
2306                                         arm7_9->load_hword_reg(target, i);
2307                                         /* fast memory reads are only safe when the target is running
2308                                          * from a sufficiently high clock (32 kHz is usually too slow)
2309                                          */
2310                                         if (arm7_9->fast_memory_access)
2311                                                 retval = arm7_9_execute_fast_sys_speed(target);
2312                                         else
2313                                                 retval = arm7_9_execute_sys_speed(target);
2314                                         if (retval != ERROR_OK)
2315                                         {
2316                                                 return retval;
2317                                         }
2318
2319                                 }
2320
2321                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2322
2323                                 /* advance buffer, count number of accesses */
2324                                 buffer += thisrun_accesses * 2;
2325                                 num_accesses += thisrun_accesses;
2326
2327                                 if ((j++%1024) == 0)
2328                                 {
2329                                         keep_alive();
2330                                 }
2331                         }
2332                         break;
2333                 case 1:
2334                         while (num_accesses < count)
2335                         {
2336                                 uint32_t reg_list;
2337                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2338                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2339
2340                                 for (i = 1; i <= thisrun_accesses; i++)
2341                                 {
2342                                         if (i > last_reg)
2343                                                 last_reg = i;
2344                                         arm7_9->load_byte_reg(target, i);
2345                                         /* fast memory reads are only safe when the target is running
2346                                          * from a sufficiently high clock (32 kHz is usually too slow)
2347                                          */
2348                                         if (arm7_9->fast_memory_access)
2349                                                 retval = arm7_9_execute_fast_sys_speed(target);
2350                                         else
2351                                                 retval = arm7_9_execute_sys_speed(target);
2352                                         if (retval != ERROR_OK)
2353                                         {
2354                                                 return retval;
2355                                         }
2356                                 }
2357
2358                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2359
2360                                 /* advance buffer, count number of accesses */
2361                                 buffer += thisrun_accesses * 1;
2362                                 num_accesses += thisrun_accesses;
2363
2364                                 if ((j++%1024) == 0)
2365                                 {
2366                                         keep_alive();
2367                                 }
2368                         }
2369                         break;
2370                 default:
2371                         LOG_ERROR("BUG: we shouldn't get here");
2372                         exit(-1);
2373                         break;
2374         }
2375
2376         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2377                 return ERROR_FAIL;
2378
2379         for (i = 0; i <= last_reg; i++)
2380                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2381
2382         arm7_9->read_xpsr(target, &cpsr, 0);
2383         if ((retval = jtag_execute_queue()) != ERROR_OK)
2384         {
2385                 LOG_ERROR("JTAG error while reading cpsr");
2386                 return ERROR_TARGET_DATA_ABORT;
2387         }
2388
2389         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2390         {
2391                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2392
2393                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2394
2395                 return ERROR_TARGET_DATA_ABORT;
2396         }
2397
2398         return ERROR_OK;
2399 }
2400
2401 int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2402 {
2403         armv4_5_common_t *armv4_5 = target->arch_info;
2404         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2405         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2406
2407         uint32_t reg[16];
2408         uint32_t num_accesses = 0;
2409         int thisrun_accesses;
2410         int i;
2411         uint32_t cpsr;
2412         int retval;
2413         int last_reg = 0;
2414
2415 #ifdef _DEBUG_ARM7_9_
2416         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2417 #endif
2418
2419         if (target->state != TARGET_HALTED)
2420         {
2421                 LOG_WARNING("target not halted");
2422                 return ERROR_TARGET_NOT_HALTED;
2423         }
2424
2425         /* sanitize arguments */
2426         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2427                 return ERROR_INVALID_ARGUMENTS;
2428
2429         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2430                 return ERROR_TARGET_UNALIGNED_ACCESS;
2431
2432         /* load the base register with the address of the first word */
2433         reg[0] = address;
2434         arm7_9->write_core_regs(target, 0x1, reg);
2435
2436         /* Clear DBGACK, to make sure memory fetches work as expected */
2437         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2438         embeddedice_store_reg(dbg_ctrl);
2439
2440         switch (size)
2441         {
2442                 case 4:
2443                         while (num_accesses < count)
2444                         {
2445                                 uint32_t reg_list;
2446                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2447                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2448
2449                                 for (i = 1; i <= thisrun_accesses; i++)
2450                                 {
2451                                         if (i > last_reg)
2452                                                 last_reg = i;
2453                                         reg[i] = target_buffer_get_u32(target, buffer);
2454                                         buffer += 4;
2455                                 }
2456
2457                                 arm7_9->write_core_regs(target, reg_list, reg);
2458
2459                                 arm7_9->store_word_regs(target, reg_list);
2460
2461                                 /* fast memory writes are only safe when the target is running
2462                                  * from a sufficiently high clock (32 kHz is usually too slow)
2463                                  */
2464                                 if (arm7_9->fast_memory_access)
2465                                         retval = arm7_9_execute_fast_sys_speed(target);
2466                                 else
2467                                         retval = arm7_9_execute_sys_speed(target);
2468                                 if (retval != ERROR_OK)
2469                                 {
2470                                         return retval;
2471                                 }
2472
2473                                 num_accesses += thisrun_accesses;
2474                         }
2475                         break;
2476                 case 2:
2477                         while (num_accesses < count)
2478                         {
2479                                 uint32_t reg_list;
2480                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2481                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2482
2483                                 for (i = 1; i <= thisrun_accesses; i++)
2484                                 {
2485                                         if (i > last_reg)
2486                                                 last_reg = i;
2487                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2488                                         buffer += 2;
2489                                 }
2490
2491                                 arm7_9->write_core_regs(target, reg_list, reg);
2492
2493                                 for (i = 1; i <= thisrun_accesses; i++)
2494                                 {
2495                                         arm7_9->store_hword_reg(target, i);
2496
2497                                         /* fast memory writes are only safe when the target is running
2498                                          * from a sufficiently high clock (32 kHz is usually too slow)
2499                                          */
2500                                         if (arm7_9->fast_memory_access)
2501                                                 retval = arm7_9_execute_fast_sys_speed(target);
2502                                         else
2503                                                 retval = arm7_9_execute_sys_speed(target);
2504                                         if (retval != ERROR_OK)
2505                                         {
2506                                                 return retval;
2507                                         }
2508                                 }
2509
2510                                 num_accesses += thisrun_accesses;
2511                         }
2512                         break;
2513                 case 1:
2514                         while (num_accesses < count)
2515                         {
2516                                 uint32_t reg_list;
2517                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2518                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2519
2520                                 for (i = 1; i <= thisrun_accesses; i++)
2521                                 {
2522                                         if (i > last_reg)
2523                                                 last_reg = i;
2524                                         reg[i] = *buffer++ & 0xff;
2525                                 }
2526
2527                                 arm7_9->write_core_regs(target, reg_list, reg);
2528
2529                                 for (i = 1; i <= thisrun_accesses; i++)
2530                                 {
2531                                         arm7_9->store_byte_reg(target, i);
2532                                         /* fast memory writes are only safe when the target is running
2533                                          * from a sufficiently high clock (32 kHz is usually too slow)
2534                                          */
2535                                         if (arm7_9->fast_memory_access)
2536                                                 retval = arm7_9_execute_fast_sys_speed(target);
2537                                         else
2538                                                 retval = arm7_9_execute_sys_speed(target);
2539                                         if (retval != ERROR_OK)
2540                                         {
2541                                                 return retval;
2542                                         }
2543
2544                                 }
2545
2546                                 num_accesses += thisrun_accesses;
2547                         }
2548                         break;
2549                 default:
2550                         LOG_ERROR("BUG: we shouldn't get here");
2551                         exit(-1);
2552                         break;
2553         }
2554
2555         /* Re-Set DBGACK */
2556         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2557         embeddedice_store_reg(dbg_ctrl);
2558
2559         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2560                 return ERROR_FAIL;
2561
2562         for (i = 0; i <= last_reg; i++)
2563                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2564
2565         arm7_9->read_xpsr(target, &cpsr, 0);
2566         if ((retval = jtag_execute_queue()) != ERROR_OK)
2567         {
2568                 LOG_ERROR("JTAG error while reading cpsr");
2569                 return ERROR_TARGET_DATA_ABORT;
2570         }
2571
2572         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2573         {
2574                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2575
2576                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2577
2578                 return ERROR_TARGET_DATA_ABORT;
2579         }
2580
2581         return ERROR_OK;
2582 }
2583
2584 static int dcc_count;
2585 static uint8_t *dcc_buffer;
2586
2587 static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2588 {
2589         int retval = ERROR_OK;
2590         armv4_5_common_t *armv4_5 = target->arch_info;
2591         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2592
2593         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2594                 return retval;
2595
2596         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2597         int count = dcc_count;
2598         uint8_t *buffer = dcc_buffer;
2599         if (count > 2)
2600         {
2601                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2602                  * core function repeated. */
2603                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2604                 buffer += 4;
2605
2606                 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2607                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2608                 jtag_tap_t *tap;
2609                 tap = ice_reg->jtag_info->tap;
2610
2611                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2612                 buffer += (count-2)*4;
2613
2614                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2615         } else
2616         {
2617                 int i;
2618                 for (i = 0; i < count; i++)
2619                 {
2620                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2621                         buffer += 4;
2622                 }
2623         }
2624
2625         if ((retval = target_halt(target))!= ERROR_OK)
2626         {
2627                 return retval;
2628         }
2629         return target_wait_state(target, TARGET_HALTED, 500);
2630 }
2631
2632 static const uint32_t dcc_code[] =
2633 {
2634         /* MRC      TST         BNE         MRC         STR         B */
2635         0xee101e10, 0xe3110001, 0x0afffffc, 0xee111e10, 0xe4801004, 0xeafffff9
2636 };
2637
2638 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2639
2640 int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer)
2641 {
2642         int retval;
2643         armv4_5_common_t *armv4_5 = target->arch_info;
2644         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2645         int i;
2646
2647         if (!arm7_9->dcc_downloads)
2648                 return target_write_memory(target, address, 4, count, buffer);
2649
2650         /* regrab previously allocated working_area, or allocate a new one */
2651         if (!arm7_9->dcc_working_area)
2652         {
2653                 uint8_t dcc_code_buf[6 * 4];
2654
2655                 /* make sure we have a working area */
2656                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2657                 {
2658                         LOG_INFO("no working area available, falling back to memory writes");
2659                         return target_write_memory(target, address, 4, count, buffer);
2660                 }
2661
2662                 /* copy target instructions to target endianness */
2663                 for (i = 0; i < 6; i++)
2664                 {
2665                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2666                 }
2667
2668                 /* write DCC code to working area */
2669                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2670                 {
2671                         return retval;
2672                 }
2673         }
2674
2675         armv4_5_algorithm_t armv4_5_info;
2676         reg_param_t reg_params[1];
2677
2678         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2679         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2680         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2681
2682         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2683
2684         buf_set_u32(reg_params[0].value, 0, 32, address);
2685
2686         dcc_count = count;
2687         dcc_buffer = buffer;
2688         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2689                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2690
2691         if (retval == ERROR_OK)
2692         {
2693                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2694                 if (endaddress != (address + count*4))
2695                 {
2696                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2697                         retval = ERROR_FAIL;
2698                 }
2699         }
2700
2701         destroy_reg_param(&reg_params[0]);
2702
2703         return retval;
2704 }
2705
2706 int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
2707 {
2708         working_area_t *crc_algorithm;
2709         armv4_5_algorithm_t armv4_5_info;
2710         reg_param_t reg_params[2];
2711         int retval;
2712
2713         uint32_t arm7_9_crc_code[] = {
2714                 0xE1A02000,                             /* mov          r2, r0 */
2715                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2716                 0xE1A03001,                             /* mov          r3, r1 */
2717                 0xE3A04000,                             /* mov          r4, #0 */
2718                 0xEA00000B,                             /* b            ncomp */
2719                                                                 /* nbyte: */
2720                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2721                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2722                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2723                 0xE3A05000,                             /* mov          r5, #0 */
2724                                                                 /* loop: */
2725                 0xE3500000,                             /* cmp          r0, #0 */
2726                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2727                 0xE2855001,                             /* add          r5, r5, #1 */
2728                 0xE1A00006,                             /* mov          r0, r6 */
2729                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2730                 0xE3550008,                             /* cmp          r5, #8 */
2731                 0x1AFFFFF8,                             /* bne          loop */
2732                 0xE2844001,                             /* add          r4, r4, #1 */
2733                                                                 /* ncomp: */
2734                 0xE1540003,                             /* cmp          r4, r3 */
2735                 0x1AFFFFF1,                             /* bne          nbyte */
2736                                                                 /* end: */
2737                 0xEAFFFFFE,                             /* b            end */
2738                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2739         };
2740
2741         uint32_t i;
2742
2743         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2744         {
2745                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2746         }
2747
2748         /* convert flash writing code into a buffer in target endianness */
2749         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2750         {
2751                 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2752                 {
2753                         return retval;
2754                 }
2755         }
2756
2757         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2758         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2759         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2760
2761         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2762         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2763
2764         buf_set_u32(reg_params[0].value, 0, 32, address);
2765         buf_set_u32(reg_params[1].value, 0, 32, count);
2766
2767         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2768                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), 20000, &armv4_5_info)) != ERROR_OK)
2769         {
2770                 LOG_ERROR("error executing arm7_9 crc algorithm");
2771                 destroy_reg_param(&reg_params[0]);
2772                 destroy_reg_param(&reg_params[1]);
2773                 target_free_working_area(target, crc_algorithm);
2774                 return retval;
2775         }
2776
2777         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2778
2779         destroy_reg_param(&reg_params[0]);
2780         destroy_reg_param(&reg_params[1]);
2781
2782         target_free_working_area(target, crc_algorithm);
2783
2784         return ERROR_OK;
2785 }
2786
2787 int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
2788 {
2789         working_area_t *erase_check_algorithm;
2790         reg_param_t reg_params[3];
2791         armv4_5_algorithm_t armv4_5_info;
2792         int retval;
2793         uint32_t i;
2794
2795         uint32_t erase_check_code[] =
2796         {
2797                                                 /* loop: */
2798                 0xe4d03001,             /* ldrb r3, [r0], #1    */
2799                 0xe0022003,             /* and r2, r2, r3               */
2800                 0xe2511001,     /* subs r1, r1, #1              */
2801                 0x1afffffb,             /* bne loop                             */
2802                                                 /* end: */
2803                 0xeafffffe              /* b end                                */
2804         };
2805
2806         /* make sure we have a working area */
2807         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2808         {
2809                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2810         }
2811
2812         /* convert flash writing code into a buffer in target endianness */
2813         for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2814                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2815                 {
2816                         return retval;
2817                 }
2818
2819         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2820         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2821         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2822
2823         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2824         buf_set_u32(reg_params[0].value, 0, 32, address);
2825
2826         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2827         buf_set_u32(reg_params[1].value, 0, 32, count);
2828
2829         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2830         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2831
2832         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2833                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2834         {
2835                 destroy_reg_param(&reg_params[0]);
2836                 destroy_reg_param(&reg_params[1]);
2837                 destroy_reg_param(&reg_params[2]);
2838                 target_free_working_area(target, erase_check_algorithm);
2839                 return 0;
2840         }
2841
2842         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2843
2844         destroy_reg_param(&reg_params[0]);
2845         destroy_reg_param(&reg_params[1]);
2846         destroy_reg_param(&reg_params[2]);
2847
2848         target_free_working_area(target, erase_check_algorithm);
2849
2850         return ERROR_OK;
2851 }
2852
2853 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
2854 {
2855         command_t *arm7_9_cmd;
2856
2857         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
2858
2859         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr | spsr>");
2860         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr | spsr>");
2861
2862         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
2863
2864         register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
2865                 COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable | disable>");
2866         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
2867                  COMMAND_ANY, "use fast memory accesses instead of slower but potentially safer accesses <enable | disable>");
2868         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
2869                 COMMAND_ANY, "use DCC downloads for larger memory writes <enable | disable>");
2870
2871         armv4_5_register_commands(cmd_ctx);
2872
2873         etm_register_commands(cmd_ctx);
2874
2875         return ERROR_OK;
2876 }
2877
2878 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2879 {
2880         uint32_t value;
2881         int spsr;
2882         int retval;
2883         target_t *target = get_current_target(cmd_ctx);
2884         armv4_5_common_t *armv4_5;
2885         arm7_9_common_t *arm7_9;
2886
2887         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2888         {
2889                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2890                 return ERROR_OK;
2891         }
2892
2893         if (target->state != TARGET_HALTED)
2894         {
2895                 command_print(cmd_ctx, "can't write registers while running");
2896                 return ERROR_OK;
2897         }
2898
2899         if (argc < 2)
2900         {
2901                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2902                 return ERROR_OK;
2903         }
2904
2905         value = strtoul(args[0], NULL, 0);
2906         spsr = strtol(args[1], NULL, 0);
2907
2908         /* if we're writing the CPSR, mask the T bit */
2909         if (!spsr)
2910                 value &= ~0x20;
2911
2912         arm7_9->write_xpsr(target, value, spsr);
2913         if ((retval = jtag_execute_queue()) != ERROR_OK)
2914         {
2915                 LOG_ERROR("JTAG error while writing to xpsr");
2916                 return retval;
2917         }
2918
2919         return ERROR_OK;
2920 }
2921
2922 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2923 {
2924         uint32_t value;
2925         int rotate;
2926         int spsr;
2927         int retval;
2928         target_t *target = get_current_target(cmd_ctx);
2929         armv4_5_common_t *armv4_5;
2930         arm7_9_common_t *arm7_9;
2931
2932         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2933         {
2934                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2935                 return ERROR_OK;
2936         }
2937
2938         if (target->state != TARGET_HALTED)
2939         {
2940                 command_print(cmd_ctx, "can't write registers while running");
2941                 return ERROR_OK;
2942         }
2943
2944         if (argc < 3)
2945         {
2946                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2947                 return ERROR_OK;
2948         }
2949
2950         value = strtoul(args[0], NULL, 0);
2951         rotate = strtol(args[1], NULL, 0);
2952         spsr = strtol(args[2], NULL, 0);
2953
2954         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2955         if ((retval = jtag_execute_queue()) != ERROR_OK)
2956         {
2957                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2958                 return retval;
2959         }
2960
2961         return ERROR_OK;
2962 }
2963
2964 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2965 {
2966         uint32_t value;
2967         uint32_t mode;
2968         int num;
2969         target_t *target = get_current_target(cmd_ctx);
2970         armv4_5_common_t *armv4_5;
2971         arm7_9_common_t *arm7_9;
2972
2973         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2974         {
2975                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2976                 return ERROR_OK;
2977         }
2978
2979         if (target->state != TARGET_HALTED)
2980         {
2981                 command_print(cmd_ctx, "can't write registers while running");
2982                 return ERROR_OK;
2983         }
2984
2985         if (argc < 3)
2986         {
2987                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
2988                 return ERROR_OK;
2989         }
2990
2991         num = strtol(args[0], NULL, 0);
2992         mode = strtoul(args[1], NULL, 0);
2993         value = strtoul(args[2], NULL, 0);
2994
2995         return arm7_9_write_core_reg(target, num, mode, value);
2996 }
2997
2998 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2999 {
3000         target_t *target = get_current_target(cmd_ctx);
3001         armv4_5_common_t *armv4_5;
3002         arm7_9_common_t *arm7_9;
3003
3004         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3005         {
3006                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3007                 return ERROR_OK;
3008         }
3009
3010         if (argc > 0)
3011         {
3012                 if (strcmp("enable", args[0]) == 0)
3013                 {
3014                         arm7_9->use_dbgrq = 1;
3015                 }
3016                 else if (strcmp("disable", args[0]) == 0)
3017                 {
3018                         arm7_9->use_dbgrq = 0;
3019                 }
3020                 else
3021                 {
3022                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
3023                 }
3024         }
3025
3026         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3027
3028         return ERROR_OK;
3029 }
3030
3031 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3032 {
3033         target_t *target = get_current_target(cmd_ctx);
3034         armv4_5_common_t *armv4_5;
3035         arm7_9_common_t *arm7_9;
3036
3037         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3038         {
3039                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3040                 return ERROR_OK;
3041         }
3042
3043         if (argc > 0)
3044         {
3045                 if (strcmp("enable", args[0]) == 0)
3046                 {
3047                         arm7_9->fast_memory_access = 1;
3048                 }
3049                 else if (strcmp("disable", args[0]) == 0)
3050                 {
3051                         arm7_9->fast_memory_access = 0;
3052                 }
3053                 else
3054                 {
3055                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3056                 }
3057         }
3058
3059         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3060
3061         return ERROR_OK;
3062 }
3063
3064 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3065 {
3066         target_t *target = get_current_target(cmd_ctx);
3067         armv4_5_common_t *armv4_5;
3068         arm7_9_common_t *arm7_9;
3069
3070         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3071         {
3072                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3073                 return ERROR_OK;
3074         }
3075
3076         if (argc > 0)
3077         {
3078                 if (strcmp("enable", args[0]) == 0)
3079                 {
3080                         arm7_9->dcc_downloads = 1;
3081                 }
3082                 else if (strcmp("disable", args[0]) == 0)
3083                 {
3084                         arm7_9->dcc_downloads = 0;
3085                 }
3086                 else
3087                 {
3088                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3089                 }
3090         }
3091
3092         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3093
3094         return ERROR_OK;
3095 }
3096
3097 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3098 {
3099         int retval = ERROR_OK;
3100         armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3101
3102         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3103
3104         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3105         {
3106                 return retval;
3107         }
3108
3109         arm7_9->wp_available = 0; /* this is set up in arm7_9_clear_watchpoints() */
3110         arm7_9->wp_available_max = 2;
3111         arm7_9->sw_breakpoints_added = 0;
3112         arm7_9->breakpoint_count = 0;
3113         arm7_9->wp0_used = 0;
3114         arm7_9->wp1_used = 0;
3115         arm7_9->wp1_used_default = 0;
3116         arm7_9->use_dbgrq = 0;
3117
3118         arm7_9->etm_ctx = NULL;
3119         arm7_9->has_single_step = 0;
3120         arm7_9->has_monitor_mode = 0;
3121         arm7_9->has_vector_catch = 0;
3122
3123         arm7_9->debug_entry_from_reset = 0;
3124
3125         arm7_9->dcc_working_area = NULL;
3126
3127         arm7_9->fast_memory_access = fast_and_dangerous;
3128         arm7_9->dcc_downloads = fast_and_dangerous;
3129
3130         arm7_9->need_bypass_before_restart = 0;
3131
3132         armv4_5->arch_info = arm7_9;
3133         armv4_5->read_core_reg = arm7_9_read_core_reg;
3134         armv4_5->write_core_reg = arm7_9_write_core_reg;
3135         armv4_5->full_context = arm7_9_full_context;
3136
3137         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3138         {
3139                 return retval;
3140         }
3141
3142         if ((retval = target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target)) != ERROR_OK)
3143         {
3144                 return retval;
3145         }
3146
3147         return ERROR_OK;
3148 }