]> git.sur5r.net Git - openocd/blob - src/target/arm7_9_common.c
arm7/9: fix "reset run + halt"
[openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
30  ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48  * @file
49  * Hold common code supporting the ARM7 and ARM9 core generations.
50  *
51  * While the ARM core implementations evolved substantially during these
52  * two generations, they look quite similar from the JTAG perspective.
53  * Both have similar debug facilities, based on the same two scan chains
54  * providing access to the core and to an EmbeddedICE module.  Both can
55  * support similar ETM and ETB modules, for tracing.  And both expose
56  * what could be viewed as "ARM Classic", with multiple processor modes,
57  * shadowed registers, and support for the Thumb instruction set.
58  *
59  * Processor differences include things like presence or absence of MMU
60  * and cache, pipeline sizes, use of a modified Harvard Architecure
61  * (with separate instruction and data busses from the CPU), support
62  * for cpu clock gating during idle, and more.
63  */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68  * Clear watchpoints for an ARM7/9 target.
69  *
70  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71  * @return JTAG error status after executing queue
72  */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75         LOG_DEBUG("-");
76         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78         arm7_9->sw_breakpoint_count = 0;
79         arm7_9->sw_breakpoints_added = 0;
80         arm7_9->wp0_used = 0;
81         arm7_9->wp1_used = arm7_9->wp1_used_default;
82         arm7_9->wp_available = arm7_9->wp_available_max;
83
84         return jtag_execute_queue();
85 }
86
87 /**
88  * Assign a watchpoint to one of the two available hardware comparators in an
89  * ARM7 or ARM9 target.
90  *
91  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93  */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96         if (!arm7_9->wp0_used)
97         {
98                 arm7_9->wp0_used = 1;
99                 breakpoint->set = 1;
100                 arm7_9->wp_available--;
101         }
102         else if (!arm7_9->wp1_used)
103         {
104                 arm7_9->wp1_used = 1;
105                 breakpoint->set = 2;
106                 arm7_9->wp_available--;
107         }
108         else
109         {
110                 LOG_ERROR("BUG: no hardware comparator available");
111         }
112         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113                           breakpoint->unique_id,
114                           breakpoint->address,
115                           breakpoint->set );
116 }
117
118 /**
119  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120  *
121  * @param arm7_9 Pointer to common struct for ARM7/9 targets
122  * @return Error codes if there is a problem finding a watchpoint or the result
123  *         of executing the JTAG queue
124  */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127         if (arm7_9->sw_breakpoints_added)
128         {
129                 return ERROR_OK;
130         }
131         if (arm7_9->wp_available < 1)
132         {
133                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135         }
136         arm7_9->wp_available--;
137
138         /* pick a breakpoint unit */
139         if (!arm7_9->wp0_used)
140         {
141                 arm7_9->sw_breakpoints_added = 1;
142                 arm7_9->wp0_used = 3;
143         } else if (!arm7_9->wp1_used)
144         {
145                 arm7_9->sw_breakpoints_added = 2;
146                 arm7_9->wp1_used = 3;
147         }
148         else
149         {
150                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151                 return ERROR_FAIL;
152         }
153
154         if (arm7_9->sw_breakpoints_added == 1)
155         {
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161         }
162         else if (arm7_9->sw_breakpoints_added == 2)
163         {
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169         }
170         else
171         {
172                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173                 return ERROR_FAIL;
174         }
175         LOG_DEBUG("SW BP using hw wp: %d",
176                           arm7_9->sw_breakpoints_added );
177
178         return jtag_execute_queue();
179 }
180
181 /**
182  * Setup the common pieces for an ARM7/9 target after reset or on startup.
183  *
184  * @param target Pointer to an ARM7/9 target to setup
185  * @return Result of clearing the watchpoints on the target
186  */
187 static int arm7_9_setup(struct target *target)
188 {
189         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191         return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
196  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
197  * might have erased the values in Embedded ICE.
198  *
199  * @param target Pointer to the target device to set the breakpoints on
200  * @param breakpoint Pointer to the breakpoint to be set
201  * @return For hardware breakpoints, this is the result of executing the JTAG
202  *         queue.  For software breakpoints, this will be the status of the
203  *         required memory reads and writes
204  */
205 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208         int retval = ERROR_OK;
209
210         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211                           breakpoint->unique_id,
212                           breakpoint->address,
213                           breakpoint->type);
214
215         if (target->state != TARGET_HALTED)
216         {
217                 LOG_WARNING("target not halted");
218                 return ERROR_TARGET_NOT_HALTED;
219         }
220
221         if (breakpoint->type == BKPT_HARD)
222         {
223                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226                 /* reassign a hw breakpoint */
227                 if (breakpoint->set == 0)
228                 {
229                         arm7_9_assign_wp(arm7_9, breakpoint);
230                 }
231
232                 if (breakpoint->set == 1)
233                 {
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239                 }
240                 else if (breakpoint->set == 2)
241                 {
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247                 }
248                 else
249                 {
250                         LOG_ERROR("BUG: no hardware comparator available");
251                         return ERROR_OK;
252                 }
253
254                 retval = jtag_execute_queue();
255         }
256         else if (breakpoint->type == BKPT_SOFT)
257         {
258                 /* did we already set this breakpoint? */
259                 if (breakpoint->set)
260                         return ERROR_OK;
261
262                 if (breakpoint->length == 4)
263                 {
264                         uint32_t verify = 0xffffffff;
265                         /* keep the original instruction in target endianness */
266                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267                         {
268                                 return retval;
269                         }
270                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272                         {
273                                 return retval;
274                         }
275
276                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277                         {
278                                 return retval;
279                         }
280                         if (verify != arm7_9->arm_bkpt)
281                         {
282                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283                                 return ERROR_OK;
284                         }
285                 }
286                 else
287                 {
288                         uint16_t verify = 0xffff;
289                         /* keep the original instruction in target endianness */
290                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291                         {
292                                 return retval;
293                         }
294                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296                         {
297                                 return retval;
298                         }
299
300                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301                         {
302                                 return retval;
303                         }
304                         if (verify != arm7_9->thumb_bkpt)
305                         {
306                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307                                 return ERROR_OK;
308                         }
309                 }
310
311                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312                         return retval;
313
314                 arm7_9->sw_breakpoint_count++;
315
316                 breakpoint->set = 1;
317         }
318
319         return retval;
320 }
321
322 /**
323  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
324  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325  * will be updated.  Otherwise, the software breakpoint will be restored to its
326  * original instruction if it hasn't already been modified.
327  *
328  * @param target Pointer to ARM7/9 target to unset the breakpoint from
329  * @param breakpoint Pointer to breakpoint to be unset
330  * @return For hardware breakpoints, this is the result of executing the JTAG
331  *         queue.  For software breakpoints, this will be the status of the
332  *         required memory reads and writes
333  */
334 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336         int retval = ERROR_OK;
337         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340                           breakpoint->unique_id,
341                           breakpoint->address );
342
343         if (!breakpoint->set)
344         {
345                 LOG_WARNING("breakpoint not set");
346                 return ERROR_OK;
347         }
348
349         if (breakpoint->type == BKPT_HARD)
350         {
351                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352                                   breakpoint->unique_id,
353                                   breakpoint->set );
354                 if (breakpoint->set == 1)
355                 {
356                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357                         arm7_9->wp0_used = 0;
358                         arm7_9->wp_available++;
359                 }
360                 else if (breakpoint->set == 2)
361                 {
362                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363                         arm7_9->wp1_used = 0;
364                         arm7_9->wp_available++;
365                 }
366                 retval = jtag_execute_queue();
367                 breakpoint->set = 0;
368         }
369         else
370         {
371                 /* restore original instruction (kept in target endianness) */
372                 if (breakpoint->length == 4)
373                 {
374                         uint32_t current_instr;
375                         /* check that user program as not modified breakpoint instruction */
376                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377                         {
378                                 return retval;
379                         }
380                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
381                         if (current_instr == arm7_9->arm_bkpt)
382                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
383                                 {
384                                         return retval;
385                                 }
386                 }
387                 else
388                 {
389                         uint16_t current_instr;
390                         /* check that user program as not modified breakpoint instruction */
391                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
392                         {
393                                 return retval;
394                         }
395                         if (current_instr == arm7_9->thumb_bkpt)
396                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
397                                 {
398                                         return retval;
399                                 }
400                 }
401
402                 if (--arm7_9->sw_breakpoint_count==0)
403                 {
404                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
405                         if (arm7_9->sw_breakpoints_added == 1)
406                         {
407                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
408                         }
409                         else if (arm7_9->sw_breakpoints_added == 2)
410                         {
411                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
412                         }
413                 }
414
415                 breakpoint->set = 0;
416         }
417
418         return retval;
419 }
420
421 /**
422  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
423  * dangling breakpoints and that the desired breakpoint can be added.
424  *
425  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
426  * @param breakpoint Pointer to the breakpoint to be added
427  * @return An error status if there is a problem adding the breakpoint or the
428  *         result of setting the breakpoint
429  */
430 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
431 {
432         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
433
434         if (arm7_9->breakpoint_count == 0)
435         {
436                 /* make sure we don't have any dangling breakpoints. This is vital upon
437                  * GDB connect/disconnect
438                  */
439                 arm7_9_clear_watchpoints(arm7_9);
440         }
441
442         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
443         {
444                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
445                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
446         }
447
448         if ((breakpoint->length != 2) && (breakpoint->length != 4))
449         {
450                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
451                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
452         }
453
454         if (breakpoint->type == BKPT_HARD)
455         {
456                 arm7_9_assign_wp(arm7_9, breakpoint);
457         }
458
459         arm7_9->breakpoint_count++;
460
461         return arm7_9_set_breakpoint(target, breakpoint);
462 }
463
464 /**
465  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
466  * dangling breakpoints and updates available watchpoints if it is a hardware
467  * breakpoint.
468  *
469  * @param target Pointer to the target to have a breakpoint removed
470  * @param breakpoint Pointer to the breakpoint to be removed
471  * @return Error status if there was a problem unsetting the breakpoint or the
472  *         watchpoints could not be cleared
473  */
474 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
475 {
476         int retval = ERROR_OK;
477         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
478
479         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
480         {
481                 return retval;
482         }
483
484         if (breakpoint->type == BKPT_HARD)
485                 arm7_9->wp_available++;
486
487         arm7_9->breakpoint_count--;
488         if (arm7_9->breakpoint_count == 0)
489         {
490                 /* make sure we don't have any dangling breakpoints */
491                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
492                 {
493                         return retval;
494                 }
495         }
496
497         return ERROR_OK;
498 }
499
500 /**
501  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
502  * considered a bug to call this function when there are no available watchpoint
503  * units.
504  *
505  * @param target Pointer to an ARM7/9 target to set a watchpoint on
506  * @param watchpoint Pointer to the watchpoint to be set
507  * @return Error status if watchpoint set fails or the result of executing the
508  *         JTAG queue
509  */
510 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
511 {
512         int retval = ERROR_OK;
513         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
514         int rw_mask = 1;
515         uint32_t mask;
516
517         mask = watchpoint->length - 1;
518
519         if (target->state != TARGET_HALTED)
520         {
521                 LOG_WARNING("target not halted");
522                 return ERROR_TARGET_NOT_HALTED;
523         }
524
525         if (watchpoint->rw == WPT_ACCESS)
526                 rw_mask = 0;
527         else
528                 rw_mask = 1;
529
530         if (!arm7_9->wp0_used)
531         {
532                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
535                 if (watchpoint->mask != 0xffffffffu)
536                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
537                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
538                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
539
540                 if ((retval = jtag_execute_queue()) != ERROR_OK)
541                 {
542                         return retval;
543                 }
544                 watchpoint->set = 1;
545                 arm7_9->wp0_used = 2;
546         }
547         else if (!arm7_9->wp1_used)
548         {
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
552                 if (watchpoint->mask != 0xffffffffu)
553                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
554                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
555                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
556
557                 if ((retval = jtag_execute_queue()) != ERROR_OK)
558                 {
559                         return retval;
560                 }
561                 watchpoint->set = 2;
562                 arm7_9->wp1_used = 2;
563         }
564         else
565         {
566                 LOG_ERROR("BUG: no hardware comparator available");
567                 return ERROR_OK;
568         }
569
570         return ERROR_OK;
571 }
572
573 /**
574  * Unset an existing watchpoint and clear the used watchpoint unit.
575  *
576  * @param target Pointer to the target to have the watchpoint removed
577  * @param watchpoint Pointer to the watchpoint to be removed
578  * @return Error status while trying to unset the watchpoint or the result of
579  *         executing the JTAG queue
580  */
581 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
582 {
583         int retval = ERROR_OK;
584         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
585
586         if (target->state != TARGET_HALTED)
587         {
588                 LOG_WARNING("target not halted");
589                 return ERROR_TARGET_NOT_HALTED;
590         }
591
592         if (!watchpoint->set)
593         {
594                 LOG_WARNING("breakpoint not set");
595                 return ERROR_OK;
596         }
597
598         if (watchpoint->set == 1)
599         {
600                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
601                 if ((retval = jtag_execute_queue()) != ERROR_OK)
602                 {
603                         return retval;
604                 }
605                 arm7_9->wp0_used = 0;
606         }
607         else if (watchpoint->set == 2)
608         {
609                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
610                 if ((retval = jtag_execute_queue()) != ERROR_OK)
611                 {
612                         return retval;
613                 }
614                 arm7_9->wp1_used = 0;
615         }
616         watchpoint->set = 0;
617
618         return ERROR_OK;
619 }
620
621 /**
622  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
623  * available, an error response is returned.
624  *
625  * @param target Pointer to the ARM7/9 target to add a watchpoint to
626  * @param watchpoint Pointer to the watchpoint to be added
627  * @return Error status while trying to add the watchpoint
628  */
629 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
630 {
631         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
632
633         if (arm7_9->wp_available < 1)
634         {
635                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
636         }
637
638         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
639         {
640                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
641         }
642
643         arm7_9->wp_available--;
644
645         return ERROR_OK;
646 }
647
648 /**
649  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
650  * the used watchpoint unit will be reopened.
651  *
652  * @param target Pointer to the target to remove a watchpoint from
653  * @param watchpoint Pointer to the watchpoint to be removed
654  * @return Result of trying to unset the watchpoint
655  */
656 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
657 {
658         int retval = ERROR_OK;
659         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
660
661         if (watchpoint->set)
662         {
663                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
664                 {
665                         return retval;
666                 }
667         }
668
669         arm7_9->wp_available++;
670
671         return ERROR_OK;
672 }
673
674 /**
675  * Restarts the target by sending a RESTART instruction and moving the JTAG
676  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
677  * asserted by the processor.
678  *
679  * @param target Pointer to target to issue commands to
680  * @return Error status if there is a timeout or a problem while executing the
681  *         JTAG queue
682  */
683 int arm7_9_execute_sys_speed(struct target *target)
684 {
685         int retval;
686         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
687         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
688         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
689
690         /* set RESTART instruction */
691         if (arm7_9->need_bypass_before_restart) {
692                 arm7_9->need_bypass_before_restart = 0;
693                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
694                 if (retval != ERROR_OK)
695                         return retval;
696         }
697         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
698         if (retval != ERROR_OK)
699                 return retval;
700
701         long long then = timeval_ms();
702         int timeout;
703         while (!(timeout = ((timeval_ms()-then) > 1000)))
704         {
705                 /* read debug status register */
706                 embeddedice_read_reg(dbg_stat);
707                 if ((retval = jtag_execute_queue()) != ERROR_OK)
708                         return retval;
709                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
710                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
711                         break;
712                 if (debug_level >= 3)
713                 {
714                         alive_sleep(100);
715                 } else
716                 {
717                         keep_alive();
718                 }
719         }
720         if (timeout)
721         {
722                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
723                 return ERROR_TARGET_TIMEOUT;
724         }
725
726         return ERROR_OK;
727 }
728
729 /**
730  * Restarts the target by sending a RESTART instruction and moving the JTAG
731  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
732  * waiting until they are.
733  *
734  * @param target Pointer to the target to issue commands to
735  * @return Always ERROR_OK
736  */
737 static int arm7_9_execute_fast_sys_speed(struct target *target)
738 {
739         static int set = 0;
740         static uint8_t check_value[4], check_mask[4];
741
742         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
743         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
744         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
745         int retval;
746
747         /* set RESTART instruction */
748         if (arm7_9->need_bypass_before_restart) {
749                 arm7_9->need_bypass_before_restart = 0;
750                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
751                 if (retval != ERROR_OK)
752                         return retval;
753         }
754         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
755         if (retval != ERROR_OK)
756                 return retval;
757
758         if (!set)
759         {
760                 /* check for DBGACK and SYSCOMP set (others don't care) */
761
762                 /* NB! These are constants that must be available until after next jtag_execute() and
763                  * we evaluate the values upon first execution in lieu of setting up these constants
764                  * during early setup.
765                  * */
766                 buf_set_u32(check_value, 0, 32, 0x9);
767                 buf_set_u32(check_mask, 0, 32, 0x9);
768                 set = 1;
769         }
770
771         /* read debug status register */
772         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
773
774         return ERROR_OK;
775 }
776
777 /**
778  * Get some data from the ARM7/9 target.
779  *
780  * @param target Pointer to the ARM7/9 target to read data from
781  * @param size The number of 32bit words to be read
782  * @param buffer Pointer to the buffer that will hold the data
783  * @return The result of receiving data from the Embedded ICE unit
784  */
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
786 {
787         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789         uint32_t *data;
790         int retval = ERROR_OK;
791         uint32_t i;
792
793         data = malloc(size * (sizeof(uint32_t)));
794
795         retval = embeddedice_receive(jtag_info, data, size);
796
797         /* return the 32-bit ints in the 8-bit array */
798         for (i = 0; i < size; i++)
799         {
800                 h_u32_to_le(buffer + (i * 4), data[i]);
801         }
802
803         free(data);
804
805         return retval;
806 }
807
808 /**
809  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
810  * target is running and the DCC control register has the W bit high, this will
811  * execute the request on the target.
812  *
813  * @param priv Void pointer expected to be a struct target pointer
814  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815  *                  from the Embedded ICE unit
816  */
817 static int arm7_9_handle_target_request(void *priv)
818 {
819         int retval = ERROR_OK;
820         struct target *target = priv;
821         if (!target_was_examined(target))
822                 return ERROR_OK;
823         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
826
827         if (!target->dbg_msg_enabled)
828                 return ERROR_OK;
829
830         if (target->state == TARGET_RUNNING)
831         {
832                 /* read DCC control register */
833                 embeddedice_read_reg(dcc_control);
834                 if ((retval = jtag_execute_queue()) != ERROR_OK)
835                 {
836                         return retval;
837                 }
838
839                 /* check W bit */
840                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
841                 {
842                         uint32_t request;
843
844                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
845                         {
846                                 return retval;
847                         }
848                         if ((retval = target_request(target, request)) != ERROR_OK)
849                         {
850                                 return retval;
851                         }
852                 }
853         }
854
855         return ERROR_OK;
856 }
857
858 /**
859  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
860  * is manipulated to the right halted state based on its current state.  This is
861  * what happens:
862  *
863  * <table>
864  *              <tr><th > State</th><th > Action</th></tr>
865  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
866  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869  * </table>
870  *
871  * If the target does not end up in the halted state, a warning is produced.  If
872  * DBGACK is cleared, then the target is expected to either be running or
873  * running in debug.
874  *
875  * @param target Pointer to the ARM7/9 target to poll
876  * @return ERROR_OK or an error status if a command fails
877  */
878 int arm7_9_poll(struct target *target)
879 {
880         int retval;
881         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
883
884         /* read debug status register */
885         embeddedice_read_reg(dbg_stat);
886         if ((retval = jtag_execute_queue()) != ERROR_OK)
887         {
888                 return retval;
889         }
890
891         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
892         {
893 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894                 if (target->state == TARGET_UNKNOWN)
895                 {
896                         /* Starting OpenOCD with target in debug-halt */
897                         target->state = TARGET_RUNNING;
898                         LOG_DEBUG("DBGACK already set during server startup.");
899                 }
900                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
901                 {
902                         target->state = TARGET_HALTED;
903
904                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
905                                 return retval;
906
907                         if (arm_semihosting(target, &retval) != 0)
908                                 return retval;
909
910                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
911                         {
912                                 return retval;
913                         }
914                 }
915                 if (target->state == TARGET_DEBUG_RUNNING)
916                 {
917                         target->state = TARGET_HALTED;
918                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
919                                 return retval;
920
921                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
922                         {
923                                 return retval;
924                         }
925                 }
926                 if (target->state != TARGET_HALTED)
927                 {
928                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
929                 }
930         }
931         else
932         {
933                 if (target->state != TARGET_DEBUG_RUNNING)
934                         target->state = TARGET_RUNNING;
935         }
936
937         return ERROR_OK;
938 }
939
940 /**
941  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
942  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
943  * affected) completely stop the JTAG clock while the core is held in reset
944  * (SRST).  It isn't possible to program the halt condition once reset is
945  * asserted, hence a hook that allows the target to set up its reset-halt
946  * condition is setup prior to asserting reset.
947  *
948  * @param target Pointer to an ARM7/9 target to assert reset on
949  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
950  */
951 int arm7_9_assert_reset(struct target *target)
952 {
953         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
954         enum reset_types jtag_reset_config = jtag_get_reset_config();
955         bool use_event = false;
956
957         LOG_DEBUG("target->state: %s",
958                   target_state_name(target));
959
960         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
961                 use_event = true;
962         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
963                 LOG_ERROR("%s: how to reset?", target_name(target));
964                 return ERROR_FAIL;
965         }
966
967         /* At this point trst has been asserted/deasserted once. We would
968          * like to program EmbeddedICE while SRST is asserted, instead of
969          * depending on SRST to leave that module alone.  However, many CPUs
970          * gate the JTAG clock while SRST is asserted; or JTAG may need
971          * clock stability guarantees (adaptive clocking might help).
972          *
973          * So we assume JTAG access during SRST is off the menu unless it's
974          * been specifically enabled.
975          */
976         bool srst_asserted = false;
977
978         if (!use_event
979                         && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
980                         && (jtag_reset_config & RESET_SRST_NO_GATING))
981         {
982                 jtag_add_reset(0, 1);
983                 srst_asserted = true;
984         }
985
986         if (target->reset_halt)
987         {
988                 /*
989                  * For targets that don't support communication while SRST is
990                  * asserted, we need to set up the reset vector catch first.
991                  *
992                  * When we use TRST+SRST and that's equivalent to a power-up
993                  * reset, these settings may well be reset anyway; so setting
994                  * them here won't matter.
995                  */
996                 if (arm7_9->has_vector_catch)
997                 {
998                         /* program vector catch register to catch reset */
999                         embeddedice_write_reg(&arm7_9->eice_cache
1000                                         ->reg_list[EICE_VEC_CATCH], 0x1);
1001
1002                         /* extra runtest added as issues were found with
1003                          * certain ARM9 cores (maybe more) - AT91SAM9260
1004                          * and STR9
1005                          */
1006                         jtag_add_runtest(1, TAP_IDLE);
1007                 }
1008                 else
1009                 {
1010                         /* program watchpoint unit to match on reset vector
1011                          * address
1012                          */
1013                         embeddedice_write_reg(&arm7_9->eice_cache
1014                                         ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1015                         embeddedice_write_reg(&arm7_9->eice_cache
1016                                         ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1017                         embeddedice_write_reg(&arm7_9->eice_cache
1018                                         ->reg_list[EICE_W0_DATA_MASK],
1019                                                 0xffffffff);
1020                         embeddedice_write_reg(&arm7_9->eice_cache
1021                                         ->reg_list[EICE_W0_CONTROL_VALUE],
1022                                                 EICE_W_CTRL_ENABLE);
1023                         embeddedice_write_reg(&arm7_9->eice_cache
1024                                         ->reg_list[EICE_W0_CONTROL_MASK],
1025                                                 ~EICE_W_CTRL_nOPC & 0xff);
1026                 }
1027         }
1028
1029         if (use_event) {
1030                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1031         } else {
1032                 /* If we use SRST ... we'd like to issue just SRST, but the
1033                  * board or chip may be set up so we have to assert TRST as
1034                  * well.  On some chips that combination is equivalent to a
1035                  * power-up reset, and generally clobbers EICE state.
1036                  */
1037                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1038                         jtag_add_reset(1, 1);
1039                 else if (!srst_asserted)
1040                         jtag_add_reset(0, 1);
1041                 jtag_add_sleep(50000);
1042         }
1043
1044         target->state = TARGET_RESET;
1045         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1046
1047         /* REVISIT why isn't standard debug entry logic sufficient?? */
1048         if (target->reset_halt
1049                         && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1050                                 || use_event))
1051         {
1052                 /* debug entry was prepared above */
1053                 target->debug_reason = DBG_REASON_DBGRQ;
1054         }
1055
1056         return ERROR_OK;
1057 }
1058
1059 /**
1060  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1061  * and the target is being reset into a halt, a warning will be triggered
1062  * because it is not possible to reset into a halted mode in this case.  The
1063  * target is halted using the target's functions.
1064  *
1065  * @param target Pointer to the target to have the reset deasserted
1066  * @return ERROR_OK or an error from polling or halting the target
1067  */
1068 int arm7_9_deassert_reset(struct target *target)
1069 {
1070         int retval = ERROR_OK;
1071         LOG_DEBUG("target->state: %s",
1072                 target_state_name(target));
1073
1074         /* deassert reset lines */
1075         jtag_add_reset(0, 0);
1076
1077         /* In case polling is disabled, we need to examine the
1078          * target and poll here for this target to work correctly.
1079          *
1080          * Otherwise, e.g. halt will fail afterwards with bogus
1081          * error messages as halt will believe that reset is
1082          * still in effect.
1083          */
1084         if ((retval = target_examine_one(target)) != ERROR_OK)
1085                 return retval;
1086
1087         if ((retval = target_poll(target)) != ERROR_OK)
1088         {
1089                 return retval;
1090         }
1091
1092         enum reset_types jtag_reset_config = jtag_get_reset_config();
1093         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1094         {
1095                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1096                 if ((retval = target_halt(target)) != ERROR_OK)
1097                 {
1098                         return retval;
1099                 }
1100         }
1101         return retval;
1102 }
1103
1104 /**
1105  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1106  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1107  * vector catch was used, it is restored.  Otherwise, the control value is
1108  * restored and the watchpoint unit is restored if it was in use.
1109  *
1110  * @param target Pointer to the ARM7/9 target to have halt cleared
1111  * @return Always ERROR_OK
1112  */
1113 static int arm7_9_clear_halt(struct target *target)
1114 {
1115         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1116         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1117
1118         /* we used DBGRQ only if we didn't come out of reset */
1119         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1120         {
1121                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1122                  */
1123                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1124                 embeddedice_store_reg(dbg_ctrl);
1125         }
1126         else
1127         {
1128                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1129                 {
1130                         /* if we came out of reset, and vector catch is supported, we used
1131                          * vector catch to enter debug state
1132                          * restore the register in that case
1133                          */
1134                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1135                 }
1136                 else
1137                 {
1138                         /* restore registers if watchpoint unit 0 was in use
1139                          */
1140                         if (arm7_9->wp0_used)
1141                         {
1142                                 if (arm7_9->debug_entry_from_reset)
1143                                 {
1144                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1145                                 }
1146                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1147                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1148                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1149                         }
1150                         /* control value always has to be restored, as it was either disabled,
1151                          * or enabled with possibly different bits
1152                          */
1153                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1154                 }
1155         }
1156
1157         return ERROR_OK;
1158 }
1159
1160 /**
1161  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1162  * and then there is a wait until the processor shows the halt.  This wait can
1163  * timeout and results in an error being returned.  The software reset involves
1164  * clearing the halt, updating the debug control register, changing to ARM mode,
1165  * reset of the program counter, and reset of all of the registers.
1166  *
1167  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1168  * @return Error status if any of the commands fail, otherwise ERROR_OK
1169  */
1170 int arm7_9_soft_reset_halt(struct target *target)
1171 {
1172         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1173         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1174         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1175         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1176         int i;
1177         int retval;
1178
1179         /* FIX!!! replace some of this code with tcl commands
1180          *
1181          * halt # the halt command is synchronous
1182          * armv4_5 core_state arm
1183          *
1184          */
1185
1186         if ((retval = target_halt(target)) != ERROR_OK)
1187                 return retval;
1188
1189         long long then = timeval_ms();
1190         int timeout;
1191         while (!(timeout = ((timeval_ms()-then) > 1000)))
1192         {
1193                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1194                         break;
1195                 embeddedice_read_reg(dbg_stat);
1196                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1197                         return retval;
1198                 if (debug_level >= 3)
1199                 {
1200                         alive_sleep(100);
1201                 } else
1202                 {
1203                         keep_alive();
1204                 }
1205         }
1206         if (timeout)
1207         {
1208                 LOG_ERROR("Failed to halt CPU after 1 sec");
1209                 return ERROR_TARGET_TIMEOUT;
1210         }
1211         target->state = TARGET_HALTED;
1212
1213         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1214          * ensure that DBGRQ is cleared
1215          */
1216         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1217         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1218         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1219         embeddedice_store_reg(dbg_ctrl);
1220
1221         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1222         {
1223                 return retval;
1224         }
1225
1226         /* if the target is in Thumb state, change to ARM state */
1227         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1228         {
1229                 uint32_t r0_thumb, pc_thumb;
1230                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1231                 /* Entered debug from Thumb mode */
1232                 armv4_5->core_state = ARM_STATE_THUMB;
1233                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1234         }
1235
1236         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1237
1238         /* all register content is now invalid */
1239         register_cache_invalidate(armv4_5->core_cache);
1240
1241         /* SVC, ARM state, IRQ and FIQ disabled */
1242         uint32_t cpsr;
1243
1244         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1245         cpsr &= ~0xff;
1246         cpsr |= 0xd3;
1247         arm_set_cpsr(armv4_5, cpsr);
1248         armv4_5->cpsr->dirty = 1;
1249
1250         /* start fetching from 0x0 */
1251         buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
1252         armv4_5->pc->dirty = 1;
1253         armv4_5->pc->valid = 1;
1254
1255         /* reset registers */
1256         for (i = 0; i <= 14; i++)
1257         {
1258                 struct reg *r = arm_reg_current(armv4_5, i);
1259
1260                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1261                 r->dirty = 1;
1262                 r->valid = 1;
1263         }
1264
1265         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1266         {
1267                 return retval;
1268         }
1269
1270         return ERROR_OK;
1271 }
1272
1273 /**
1274  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1275  * line or by programming a watchpoint to trigger on any address.  It is
1276  * considered a bug to call this function while the target is in the
1277  * TARGET_RESET state.
1278  *
1279  * @param target Pointer to the ARM7/9 target to be halted
1280  * @return Always ERROR_OK
1281  */
1282 int arm7_9_halt(struct target *target)
1283 {
1284         if (target->state == TARGET_RESET)
1285         {
1286                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1287                 return ERROR_OK;
1288         }
1289
1290         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1291         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1292
1293         LOG_DEBUG("target->state: %s",
1294                   target_state_name(target));
1295
1296         if (target->state == TARGET_HALTED)
1297         {
1298                 LOG_DEBUG("target was already halted");
1299                 return ERROR_OK;
1300         }
1301
1302         if (target->state == TARGET_UNKNOWN)
1303         {
1304                 LOG_WARNING("target was in unknown state when halt was requested");
1305         }
1306
1307         if (arm7_9->use_dbgrq)
1308         {
1309                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1310                  */
1311                 if (arm7_9->set_special_dbgrq) {
1312                         arm7_9->set_special_dbgrq(target);
1313                 } else {
1314                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1315                         embeddedice_store_reg(dbg_ctrl);
1316                 }
1317         }
1318         else
1319         {
1320                 /* program watchpoint unit to match on any address
1321                  */
1322                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1323                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1324                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1325                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1326         }
1327
1328         target->debug_reason = DBG_REASON_DBGRQ;
1329
1330         return ERROR_OK;
1331 }
1332
1333 /**
1334  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1335  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1336  * examined.  Once done, the target is verified to be halted and the processor
1337  * is forced into ARM mode.  The core registers are saved for the current core
1338  * mode and the program counter (register 15) is updated as needed.  The core
1339  * registers and CPSR and SPSR are saved for restoration later.
1340  *
1341  * @param target Pointer to target that is entering debug mode
1342  * @return Error code if anything fails, otherwise ERROR_OK
1343  */
1344 static int arm7_9_debug_entry(struct target *target)
1345 {
1346         int i;
1347         uint32_t context[16];
1348         uint32_t* context_p[16];
1349         uint32_t r0_thumb, pc_thumb;
1350         uint32_t cpsr, cpsr_mask = 0;
1351         int retval;
1352         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1353         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1354         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1355         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1356
1357 #ifdef _DEBUG_ARM7_9_
1358         LOG_DEBUG("-");
1359 #endif
1360
1361         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1362          * ensure that DBGRQ is cleared
1363          */
1364         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1365         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1366         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1367         embeddedice_store_reg(dbg_ctrl);
1368
1369         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1370         {
1371                 return retval;
1372         }
1373
1374         if ((retval = jtag_execute_queue()) != ERROR_OK)
1375         {
1376                 return retval;
1377         }
1378
1379         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1380                 return retval;
1381
1382
1383         if (target->state != TARGET_HALTED)
1384         {
1385                 LOG_WARNING("target not halted");
1386                 return ERROR_TARGET_NOT_HALTED;
1387         }
1388
1389         /* if the target is in Thumb state, change to ARM state */
1390         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1391         {
1392                 LOG_DEBUG("target entered debug from Thumb state");
1393                 /* Entered debug from Thumb mode */
1394                 armv4_5->core_state = ARM_STATE_THUMB;
1395                 cpsr_mask = 1 << 5;
1396                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1397                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1398                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1399         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1400                 /* \todo Get some vaguely correct handling of Jazelle, if
1401                  * anyone ever uses it and full info becomes available.
1402                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1403                  * B.7.3 for the reverse.  That'd be the bare minimum...
1404                  */
1405                 LOG_DEBUG("target entered debug from Jazelle state");
1406                 armv4_5->core_state = ARM_STATE_JAZELLE;
1407                 cpsr_mask = 1 << 24;
1408                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1409         } else {
1410                 LOG_DEBUG("target entered debug from ARM state");
1411                 /* Entered debug from ARM mode */
1412                 armv4_5->core_state = ARM_STATE_ARM;
1413         }
1414
1415         for (i = 0; i < 16; i++)
1416                 context_p[i] = &context[i];
1417         /* save core registers (r0 - r15 of current core mode) */
1418         arm7_9->read_core_regs(target, 0xffff, context_p);
1419
1420         arm7_9->read_xpsr(target, &cpsr, 0);
1421
1422         if ((retval = jtag_execute_queue()) != ERROR_OK)
1423                 return retval;
1424
1425         /* Sync our CPSR copy with J or T bits EICE reported, but
1426          * which we then erased by putting the core into ARM mode.
1427          */
1428         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1429
1430         if (!is_arm_mode(armv4_5->core_mode))
1431         {
1432                 target->state = TARGET_UNKNOWN;
1433                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1434                 return ERROR_TARGET_FAILURE;
1435         }
1436
1437         LOG_DEBUG("target entered debug state in %s mode",
1438                          arm_mode_name(armv4_5->core_mode));
1439
1440         if (armv4_5->core_state == ARM_STATE_THUMB)
1441         {
1442                 LOG_DEBUG("thumb state, applying fixups");
1443                 context[0] = r0_thumb;
1444                 context[15] = pc_thumb;
1445         } else if (armv4_5->core_state == ARM_STATE_ARM)
1446         {
1447                 /* adjust value stored by STM */
1448                 context[15] -= 3 * 4;
1449         }
1450
1451         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1452                 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1453         else
1454                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1455
1456         for (i = 0; i <= 15; i++)
1457         {
1458                 struct reg *r = arm_reg_current(armv4_5, i);
1459
1460                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1461
1462                 buf_set_u32(r->value, 0, 32, context[i]);
1463                 /* r0 and r15 (pc) have to be restored later */
1464                 r->dirty = (i == 0) || (i == 15);
1465                 r->valid = 1;
1466         }
1467
1468         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1469
1470         /* exceptions other than USR & SYS have a saved program status register */
1471         if (armv4_5->spsr) {
1472                 uint32_t spsr;
1473                 arm7_9->read_xpsr(target, &spsr, 1);
1474                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1475                 {
1476                         return retval;
1477                 }
1478                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1479                 armv4_5->spsr->dirty = 0;
1480                 armv4_5->spsr->valid = 1;
1481         }
1482
1483         if ((retval = jtag_execute_queue()) != ERROR_OK)
1484                 return retval;
1485
1486         if (arm7_9->post_debug_entry)
1487         {
1488                 retval = arm7_9->post_debug_entry(target);
1489                 if (retval != ERROR_OK)
1490                         return retval;
1491         }
1492
1493         return ERROR_OK;
1494 }
1495
1496 /**
1497  * Validate the full context for an ARM7/9 target in all processor modes.  If
1498  * there are any invalid registers for the target, they will all be read.  This
1499  * includes the PSR.
1500  *
1501  * @param target Pointer to the ARM7/9 target to capture the full context from
1502  * @return Error if the target is not halted, has an invalid core mode, or if
1503  *         the JTAG queue fails to execute
1504  */
1505 static int arm7_9_full_context(struct target *target)
1506 {
1507         int i;
1508         int retval;
1509         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1510         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1511
1512         LOG_DEBUG("-");
1513
1514         if (target->state != TARGET_HALTED)
1515         {
1516                 LOG_WARNING("target not halted");
1517                 return ERROR_TARGET_NOT_HALTED;
1518         }
1519
1520         if (!is_arm_mode(armv4_5->core_mode))
1521                 return ERROR_FAIL;
1522
1523         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1524          * SYS shares registers with User, so we don't touch SYS
1525          */
1526         for (i = 0; i < 6; i++)
1527         {
1528                 uint32_t mask = 0;
1529                 uint32_t* reg_p[16];
1530                 int j;
1531                 int valid = 1;
1532
1533                 /* check if there are invalid registers in the current mode
1534                  */
1535                 for (j = 0; j <= 16; j++)
1536                 {
1537                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1538                                 valid = 0;
1539                 }
1540
1541                 if (!valid)
1542                 {
1543                         uint32_t tmp_cpsr;
1544
1545                         /* change processor mode (and mask T bit) */
1546                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1547                                         & 0xe0;
1548                         tmp_cpsr |= armv4_5_number_to_mode(i);
1549                         tmp_cpsr &= ~0x20;
1550                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1551
1552                         for (j = 0; j < 15; j++)
1553                         {
1554                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1555                                 {
1556                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1557                                         mask |= 1 << j;
1558                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1559                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1560                                 }
1561                         }
1562
1563                         /* if only the PSR is invalid, mask is all zeroes */
1564                         if (mask)
1565                                 arm7_9->read_core_regs(target, mask, reg_p);
1566
1567                         /* check if the PSR has to be read */
1568                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1569                         {
1570                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1571                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1572                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1573                         }
1574                 }
1575         }
1576
1577         /* restore processor mode (mask T bit) */
1578         arm7_9->write_xpsr_im8(target,
1579                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1580                         0, 0);
1581
1582         if ((retval = jtag_execute_queue()) != ERROR_OK)
1583         {
1584                 return retval;
1585         }
1586         return ERROR_OK;
1587 }
1588
1589 /**
1590  * Restore the processor context on an ARM7/9 target.  The full processor
1591  * context is analyzed to see if any of the registers are dirty on this end, but
1592  * have a valid new value.  If this is the case, the processor is changed to the
1593  * appropriate mode and the new register values are written out to the
1594  * processor.  If there happens to be a dirty register with an invalid value, an
1595  * error will be logged.
1596  *
1597  * @param target Pointer to the ARM7/9 target to have its context restored
1598  * @return Error status if the target is not halted or the core mode in the
1599  *         armv4_5 struct is invalid.
1600  */
1601 static int arm7_9_restore_context(struct target *target)
1602 {
1603         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1604         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1605         struct reg *reg;
1606         struct arm_reg *reg_arch_info;
1607         enum arm_mode current_mode = armv4_5->core_mode;
1608         int i, j;
1609         int dirty;
1610         int mode_change;
1611
1612         LOG_DEBUG("-");
1613
1614         if (target->state != TARGET_HALTED)
1615         {
1616                 LOG_WARNING("target not halted");
1617                 return ERROR_TARGET_NOT_HALTED;
1618         }
1619
1620         if (arm7_9->pre_restore_context)
1621                 arm7_9->pre_restore_context(target);
1622
1623         if (!is_arm_mode(armv4_5->core_mode))
1624                 return ERROR_FAIL;
1625
1626         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1627          * SYS shares registers with User, so we don't touch SYS
1628          */
1629         for (i = 0; i < 6; i++)
1630         {
1631                 LOG_DEBUG("examining %s mode",
1632                                 arm_mode_name(armv4_5->core_mode));
1633                 dirty = 0;
1634                 mode_change = 0;
1635                 /* check if there are dirty registers in the current mode
1636                 */
1637                 for (j = 0; j <= 16; j++)
1638                 {
1639                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1640                         reg_arch_info = reg->arch_info;
1641                         if (reg->dirty == 1)
1642                         {
1643                                 if (reg->valid == 1)
1644                                 {
1645                                         dirty = 1;
1646                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1647                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1648                                                 && (reg_arch_info->mode != current_mode)
1649                                                 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1650                                                 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1651                                         {
1652                                                 mode_change = 1;
1653                                                 LOG_DEBUG("require mode change");
1654                                         }
1655                                 }
1656                                 else
1657                                 {
1658                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1659                                 }
1660                         }
1661                 }
1662
1663                 if (dirty)
1664                 {
1665                         uint32_t mask = 0x0;
1666                         int num_regs = 0;
1667                         uint32_t regs[16];
1668
1669                         if (mode_change)
1670                         {
1671                                 uint32_t tmp_cpsr;
1672
1673                                 /* change processor mode (mask T bit) */
1674                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1675                                                 0, 8) & 0xe0;
1676                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1677                                 tmp_cpsr &= ~0x20;
1678                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1679                                 current_mode = armv4_5_number_to_mode(i);
1680                         }
1681
1682                         for (j = 0; j <= 14; j++)
1683                         {
1684                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1685                                 reg_arch_info = reg->arch_info;
1686
1687
1688                                 if (reg->dirty == 1)
1689                                 {
1690                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1691                                         mask |= 1 << j;
1692                                         num_regs++;
1693                                         reg->dirty = 0;
1694                                         reg->valid = 1;
1695                                         LOG_DEBUG("writing register %i mode %s "
1696                                                 "with value 0x%8.8" PRIx32, j,
1697                                                 arm_mode_name(armv4_5->core_mode),
1698                                                 regs[j]);
1699                                 }
1700                         }
1701
1702                         if (mask)
1703                         {
1704                                 arm7_9->write_core_regs(target, mask, regs);
1705                         }
1706
1707                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1708                         reg_arch_info = reg->arch_info;
1709                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1710                         {
1711                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1712                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1713                         }
1714                 }
1715         }
1716
1717         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1718         {
1719                 /* restore processor mode (mask T bit) */
1720                 uint32_t tmp_cpsr;
1721
1722                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1723                 tmp_cpsr |= armv4_5_number_to_mode(i);
1724                 tmp_cpsr &= ~0x20;
1725                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1726                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1727         }
1728         else if (armv4_5->cpsr->dirty)
1729         {
1730                 /* CPSR has been changed, full restore necessary (mask T bit) */
1731                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1732                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1733                 arm7_9->write_xpsr(target,
1734                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1735                                         & ~0x20, 0);
1736                 armv4_5->cpsr->dirty = 0;
1737                 armv4_5->cpsr->valid = 1;
1738         }
1739
1740         /* restore PC */
1741         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1742                         buf_get_u32(armv4_5->pc->value, 0, 32));
1743         arm7_9->write_pc(target, buf_get_u32(armv4_5->pc->value, 0, 32));
1744         armv4_5->pc->dirty = 0;
1745
1746         return ERROR_OK;
1747 }
1748
1749 /**
1750  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1751  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1752  * restart.
1753  *
1754  * @param target Pointer to the ARM7/9 target to be restarted
1755  * @return Result of executing the JTAG queue
1756  */
1757 static int arm7_9_restart_core(struct target *target)
1758 {
1759         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1760         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1761         int retval;
1762
1763         /* set RESTART instruction */
1764         if (arm7_9->need_bypass_before_restart) {
1765                 arm7_9->need_bypass_before_restart = 0;
1766
1767                 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1768                 if (retval != ERROR_OK)
1769                         return retval;
1770         }
1771         retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1772         if (retval != ERROR_OK)
1773                 return retval;
1774
1775         jtag_add_runtest(1, TAP_IDLE);
1776         return jtag_execute_queue();
1777 }
1778
1779 /**
1780  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1781  * iterated through and are set on the target if they aren't already set.
1782  *
1783  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1784  */
1785 static void arm7_9_enable_watchpoints(struct target *target)
1786 {
1787         struct watchpoint *watchpoint = target->watchpoints;
1788
1789         while (watchpoint)
1790         {
1791                 if (watchpoint->set == 0)
1792                         arm7_9_set_watchpoint(target, watchpoint);
1793                 watchpoint = watchpoint->next;
1794         }
1795 }
1796
1797 /**
1798  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1799  * iterated through and are set on the target.
1800  *
1801  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1802  */
1803 static void arm7_9_enable_breakpoints(struct target *target)
1804 {
1805         struct breakpoint *breakpoint = target->breakpoints;
1806
1807         /* set any pending breakpoints */
1808         while (breakpoint)
1809         {
1810                 arm7_9_set_breakpoint(target, breakpoint);
1811                 breakpoint = breakpoint->next;
1812         }
1813 }
1814
1815 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1816 {
1817         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1818         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1819         struct breakpoint *breakpoint = target->breakpoints;
1820         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1821         int err, retval = ERROR_OK;
1822
1823         LOG_DEBUG("-");
1824
1825         if (target->state != TARGET_HALTED)
1826         {
1827                 LOG_WARNING("target not halted");
1828                 return ERROR_TARGET_NOT_HALTED;
1829         }
1830
1831         if (!debug_execution)
1832         {
1833                 target_free_all_working_areas(target);
1834         }
1835
1836         /* current = 1: continue on current pc, otherwise continue at <address> */
1837         if (!current)
1838                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
1839
1840         uint32_t current_pc;
1841         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1842
1843         /* the front-end may request us not to handle breakpoints */
1844         if (handle_breakpoints)
1845         {
1846                 breakpoint = breakpoint_find(target,
1847                                 buf_get_u32(armv4_5->pc->value, 0, 32));
1848                 if (breakpoint != NULL)
1849                 {
1850                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1851                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1852                         {
1853                                 return retval;
1854                         }
1855
1856                         /* calculate PC of next instruction */
1857                         uint32_t next_pc;
1858                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1859                         {
1860                                 uint32_t current_opcode;
1861                                 target_read_u32(target, current_pc, &current_opcode);
1862                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1863                                 return retval;
1864                         }
1865
1866                         LOG_DEBUG("enable single-step");
1867                         arm7_9->enable_single_step(target, next_pc);
1868
1869                         target->debug_reason = DBG_REASON_SINGLESTEP;
1870
1871                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1872                         {
1873                                 return retval;
1874                         }
1875
1876                         if (armv4_5->core_state == ARM_STATE_ARM)
1877                                 arm7_9->branch_resume(target);
1878                         else if (armv4_5->core_state == ARM_STATE_THUMB)
1879                         {
1880                                 arm7_9->branch_resume_thumb(target);
1881                         }
1882                         else
1883                         {
1884                                 LOG_ERROR("unhandled core state");
1885                                 return ERROR_FAIL;
1886                         }
1887
1888                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1889                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1890                         err = arm7_9_execute_sys_speed(target);
1891
1892                         LOG_DEBUG("disable single-step");
1893                         arm7_9->disable_single_step(target);
1894
1895                         if (err != ERROR_OK)
1896                         {
1897                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1898                                 {
1899                                         return retval;
1900                                 }
1901                                 target->state = TARGET_UNKNOWN;
1902                                 return err;
1903                         }
1904
1905                         retval = arm7_9_debug_entry(target);
1906                         if (retval != ERROR_OK)
1907                                 return retval;
1908                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1909                                         buf_get_u32(armv4_5->pc->value, 0, 32));
1910
1911                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1912                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1913                         {
1914                                 return retval;
1915                         }
1916                 }
1917         }
1918
1919         /* enable any pending breakpoints and watchpoints */
1920         arm7_9_enable_breakpoints(target);
1921         arm7_9_enable_watchpoints(target);
1922
1923         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1924         {
1925                 return retval;
1926         }
1927
1928         if (armv4_5->core_state == ARM_STATE_ARM)
1929         {
1930                 arm7_9->branch_resume(target);
1931         }
1932         else if (armv4_5->core_state == ARM_STATE_THUMB)
1933         {
1934                 arm7_9->branch_resume_thumb(target);
1935         }
1936         else
1937         {
1938                 LOG_ERROR("unhandled core state");
1939                 return ERROR_FAIL;
1940         }
1941
1942         /* deassert DBGACK and INTDIS */
1943         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1944         /* INTDIS only when we really resume, not during debug execution */
1945         if (!debug_execution)
1946                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1947         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1948
1949         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1950         {
1951                 return retval;
1952         }
1953
1954         target->debug_reason = DBG_REASON_NOTHALTED;
1955
1956         if (!debug_execution)
1957         {
1958                 /* registers are now invalid */
1959                 register_cache_invalidate(armv4_5->core_cache);
1960                 target->state = TARGET_RUNNING;
1961                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1962                 {
1963                         return retval;
1964                 }
1965         }
1966         else
1967         {
1968                 target->state = TARGET_DEBUG_RUNNING;
1969                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1970                 {
1971                         return retval;
1972                 }
1973         }
1974
1975         LOG_DEBUG("target resumed");
1976
1977         return ERROR_OK;
1978 }
1979
1980 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1981 {
1982         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1983         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1984         uint32_t current_pc;
1985         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1986
1987         if (next_pc != current_pc)
1988         {
1989                 /* setup an inverse breakpoint on the current PC
1990                 * - comparator 1 matches the current address
1991                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1992                 * - comparator 0 matches any address, as long as rangein is low */
1993                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1994                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1995                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1996                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1997                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1998                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1999                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2000                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
2001                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2002         }
2003         else
2004         {
2005                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2006                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2007                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
2008                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
2009                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
2010                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2011                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2012                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2013                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2014         }
2015 }
2016
2017 void arm7_9_disable_eice_step(struct target *target)
2018 {
2019         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2020
2021         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2022         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2023         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2024         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2025         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2026         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2027         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2028         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2029         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2030 }
2031
2032 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2033 {
2034         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2035         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2036         struct breakpoint *breakpoint = NULL;
2037         int err, retval;
2038
2039         if (target->state != TARGET_HALTED)
2040         {
2041                 LOG_WARNING("target not halted");
2042                 return ERROR_TARGET_NOT_HALTED;
2043         }
2044
2045         /* current = 1: continue on current pc, otherwise continue at <address> */
2046         if (!current)
2047                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
2048
2049         uint32_t current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
2050
2051         /* the front-end may request us not to handle breakpoints */
2052         if (handle_breakpoints)
2053                 breakpoint = breakpoint_find(target, current_pc);
2054         if (breakpoint != NULL) {
2055                 retval = arm7_9_unset_breakpoint(target, breakpoint);
2056                 if (retval != ERROR_OK)
2057                         return retval;
2058         }
2059
2060         target->debug_reason = DBG_REASON_SINGLESTEP;
2061
2062         /* calculate PC of next instruction */
2063         uint32_t next_pc;
2064         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2065         {
2066                 uint32_t current_opcode;
2067                 target_read_u32(target, current_pc, &current_opcode);
2068                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2069                 return retval;
2070         }
2071
2072         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2073         {
2074                 return retval;
2075         }
2076
2077         arm7_9->enable_single_step(target, next_pc);
2078
2079         if (armv4_5->core_state == ARM_STATE_ARM)
2080         {
2081                 arm7_9->branch_resume(target);
2082         }
2083         else if (armv4_5->core_state == ARM_STATE_THUMB)
2084         {
2085                 arm7_9->branch_resume_thumb(target);
2086         }
2087         else
2088         {
2089                 LOG_ERROR("unhandled core state");
2090                 return ERROR_FAIL;
2091         }
2092
2093         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2094         {
2095                 return retval;
2096         }
2097
2098         err = arm7_9_execute_sys_speed(target);
2099         arm7_9->disable_single_step(target);
2100
2101         /* registers are now invalid */
2102         register_cache_invalidate(armv4_5->core_cache);
2103
2104         if (err != ERROR_OK)
2105         {
2106                 target->state = TARGET_UNKNOWN;
2107         } else {
2108                 retval = arm7_9_debug_entry(target);
2109                 if (retval != ERROR_OK)
2110                         return retval;
2111                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2112                 {
2113                         return retval;
2114                 }
2115                 LOG_DEBUG("target stepped");
2116         }
2117
2118         if (breakpoint)
2119                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2120                 {
2121                         return retval;
2122                 }
2123
2124         return err;
2125 }
2126
2127 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2128                 int num, enum arm_mode mode)
2129 {
2130         uint32_t* reg_p[16];
2131         uint32_t value;
2132         int retval;
2133         struct arm_reg *areg = r->arch_info;
2134         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2135         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2136
2137         if (!is_arm_mode(armv4_5->core_mode))
2138                 return ERROR_FAIL;
2139         if ((num < 0) || (num > 16))
2140                 return ERROR_INVALID_ARGUMENTS;
2141
2142         if ((mode != ARM_MODE_ANY)
2143                         && (mode != armv4_5->core_mode)
2144                         && (areg->mode != ARM_MODE_ANY))
2145         {
2146                 uint32_t tmp_cpsr;
2147
2148                 /* change processor mode (mask T bit) */
2149                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2150                 tmp_cpsr |= mode;
2151                 tmp_cpsr &= ~0x20;
2152                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2153         }
2154
2155         if ((num >= 0) && (num <= 15))
2156         {
2157                 /* read a normal core register */
2158                 reg_p[num] = &value;
2159
2160                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2161         }
2162         else
2163         {
2164                 /* read a program status register
2165                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2166                  */
2167                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2168         }
2169
2170         if ((retval = jtag_execute_queue()) != ERROR_OK)
2171         {
2172                 return retval;
2173         }
2174
2175         r->valid = 1;
2176         r->dirty = 0;
2177         buf_set_u32(r->value, 0, 32, value);
2178
2179         if ((mode != ARM_MODE_ANY)
2180                         && (mode != armv4_5->core_mode)
2181                         && (areg->mode != ARM_MODE_ANY))        {
2182                 /* restore processor mode (mask T bit) */
2183                 arm7_9->write_xpsr_im8(target,
2184                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2185                                         & ~0x20, 0, 0);
2186         }
2187
2188         return ERROR_OK;
2189 }
2190
2191 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2192                 int num, enum arm_mode mode, uint32_t value)
2193 {
2194         uint32_t reg[16];
2195         struct arm_reg *areg = r->arch_info;
2196         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2197         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2198
2199         if (!is_arm_mode(armv4_5->core_mode))
2200                 return ERROR_FAIL;
2201         if ((num < 0) || (num > 16))
2202                 return ERROR_INVALID_ARGUMENTS;
2203
2204         if ((mode != ARM_MODE_ANY)
2205                         && (mode != armv4_5->core_mode)
2206                         && (areg->mode != ARM_MODE_ANY))        {
2207                 uint32_t tmp_cpsr;
2208
2209                 /* change processor mode (mask T bit) */
2210                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2211                 tmp_cpsr |= mode;
2212                 tmp_cpsr &= ~0x20;
2213                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2214         }
2215
2216         if ((num >= 0) && (num <= 15))
2217         {
2218                 /* write a normal core register */
2219                 reg[num] = value;
2220
2221                 arm7_9->write_core_regs(target, 1 << num, reg);
2222         }
2223         else
2224         {
2225                 /* write a program status register
2226                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2227                 */
2228                 int spsr = (areg->mode != ARM_MODE_ANY);
2229
2230                 /* if we're writing the CPSR, mask the T bit */
2231                 if (!spsr)
2232                         value &= ~0x20;
2233
2234                 arm7_9->write_xpsr(target, value, spsr);
2235         }
2236
2237         r->valid = 1;
2238         r->dirty = 0;
2239
2240         if ((mode != ARM_MODE_ANY)
2241                         && (mode != armv4_5->core_mode)
2242                         && (areg->mode != ARM_MODE_ANY))        {
2243                 /* restore processor mode (mask T bit) */
2244                 arm7_9->write_xpsr_im8(target,
2245                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2246                                         & ~0x20, 0, 0);
2247         }
2248
2249         return jtag_execute_queue();
2250 }
2251
2252 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2253 {
2254         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2255         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2256         uint32_t reg[16];
2257         uint32_t num_accesses = 0;
2258         int thisrun_accesses;
2259         int i;
2260         uint32_t cpsr;
2261         int retval;
2262         int last_reg = 0;
2263
2264         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2265
2266         if (target->state != TARGET_HALTED)
2267         {
2268                 LOG_WARNING("target not halted");
2269                 return ERROR_TARGET_NOT_HALTED;
2270         }
2271
2272         /* sanitize arguments */
2273         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2274                 return ERROR_INVALID_ARGUMENTS;
2275
2276         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2277                 return ERROR_TARGET_UNALIGNED_ACCESS;
2278
2279         /* load the base register with the address of the first word */
2280         reg[0] = address;
2281         arm7_9->write_core_regs(target, 0x1, reg);
2282
2283         int j = 0;
2284
2285         switch (size)
2286         {
2287                 case 4:
2288                         while (num_accesses < count)
2289                         {
2290                                 uint32_t reg_list;
2291                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2292                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2293
2294                                 if (last_reg <= thisrun_accesses)
2295                                         last_reg = thisrun_accesses;
2296
2297                                 arm7_9->load_word_regs(target, reg_list);
2298
2299                                 /* fast memory reads are only safe when the target is running
2300                                  * from a sufficiently high clock (32 kHz is usually too slow)
2301                                  */
2302                                 if (arm7_9->fast_memory_access)
2303                                         retval = arm7_9_execute_fast_sys_speed(target);
2304                                 else
2305                                         retval = arm7_9_execute_sys_speed(target);
2306                                 if (retval != ERROR_OK)
2307                                         return retval;
2308
2309                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2310
2311                                 /* advance buffer, count number of accesses */
2312                                 buffer += thisrun_accesses * 4;
2313                                 num_accesses += thisrun_accesses;
2314
2315                                 if ((j++%1024) == 0)
2316                                 {
2317                                         keep_alive();
2318                                 }
2319                         }
2320                         break;
2321                 case 2:
2322                         while (num_accesses < count)
2323                         {
2324                                 uint32_t reg_list;
2325                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2326                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2327
2328                                 for (i = 1; i <= thisrun_accesses; i++)
2329                                 {
2330                                         if (i > last_reg)
2331                                                 last_reg = i;
2332                                         arm7_9->load_hword_reg(target, i);
2333                                         /* fast memory reads are only safe when the target is running
2334                                          * from a sufficiently high clock (32 kHz is usually too slow)
2335                                          */
2336                                         if (arm7_9->fast_memory_access)
2337                                                 retval = arm7_9_execute_fast_sys_speed(target);
2338                                         else
2339                                                 retval = arm7_9_execute_sys_speed(target);
2340                                         if (retval != ERROR_OK)
2341                                         {
2342                                                 return retval;
2343                                         }
2344
2345                                 }
2346
2347                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2348
2349                                 /* advance buffer, count number of accesses */
2350                                 buffer += thisrun_accesses * 2;
2351                                 num_accesses += thisrun_accesses;
2352
2353                                 if ((j++%1024) == 0)
2354                                 {
2355                                         keep_alive();
2356                                 }
2357                         }
2358                         break;
2359                 case 1:
2360                         while (num_accesses < count)
2361                         {
2362                                 uint32_t reg_list;
2363                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2364                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2365
2366                                 for (i = 1; i <= thisrun_accesses; i++)
2367                                 {
2368                                         if (i > last_reg)
2369                                                 last_reg = i;
2370                                         arm7_9->load_byte_reg(target, i);
2371                                         /* fast memory reads are only safe when the target is running
2372                                          * from a sufficiently high clock (32 kHz is usually too slow)
2373                                          */
2374                                         if (arm7_9->fast_memory_access)
2375                                                 retval = arm7_9_execute_fast_sys_speed(target);
2376                                         else
2377                                                 retval = arm7_9_execute_sys_speed(target);
2378                                         if (retval != ERROR_OK)
2379                                         {
2380                                                 return retval;
2381                                         }
2382                                 }
2383
2384                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2385
2386                                 /* advance buffer, count number of accesses */
2387                                 buffer += thisrun_accesses * 1;
2388                                 num_accesses += thisrun_accesses;
2389
2390                                 if ((j++%1024) == 0)
2391                                 {
2392                                         keep_alive();
2393                                 }
2394                         }
2395                         break;
2396         }
2397
2398         if (!is_arm_mode(armv4_5->core_mode))
2399                 return ERROR_FAIL;
2400
2401         for (i = 0; i <= last_reg; i++) {
2402                 struct reg *r = arm_reg_current(armv4_5, i);
2403
2404                 r->dirty = r->valid;
2405         }
2406
2407         arm7_9->read_xpsr(target, &cpsr, 0);
2408         if ((retval = jtag_execute_queue()) != ERROR_OK)
2409         {
2410                 LOG_ERROR("JTAG error while reading cpsr");
2411                 return ERROR_TARGET_DATA_ABORT;
2412         }
2413
2414         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2415         {
2416                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2417
2418                 arm7_9->write_xpsr_im8(target,
2419                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2420                                         & ~0x20, 0, 0);
2421
2422                 return ERROR_TARGET_DATA_ABORT;
2423         }
2424
2425         return ERROR_OK;
2426 }
2427
2428 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2429 {
2430         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2431         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2432         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2433
2434         uint32_t reg[16];
2435         uint32_t num_accesses = 0;
2436         int thisrun_accesses;
2437         int i;
2438         uint32_t cpsr;
2439         int retval;
2440         int last_reg = 0;
2441
2442 #ifdef _DEBUG_ARM7_9_
2443         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2444 #endif
2445
2446         if (target->state != TARGET_HALTED)
2447         {
2448                 LOG_WARNING("target not halted");
2449                 return ERROR_TARGET_NOT_HALTED;
2450         }
2451
2452         /* sanitize arguments */
2453         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2454                 return ERROR_INVALID_ARGUMENTS;
2455
2456         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2457                 return ERROR_TARGET_UNALIGNED_ACCESS;
2458
2459         /* load the base register with the address of the first word */
2460         reg[0] = address;
2461         arm7_9->write_core_regs(target, 0x1, reg);
2462
2463         /* Clear DBGACK, to make sure memory fetches work as expected */
2464         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2465         embeddedice_store_reg(dbg_ctrl);
2466
2467         switch (size)
2468         {
2469                 case 4:
2470                         while (num_accesses < count)
2471                         {
2472                                 uint32_t reg_list;
2473                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2474                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2475
2476                                 for (i = 1; i <= thisrun_accesses; i++)
2477                                 {
2478                                         if (i > last_reg)
2479                                                 last_reg = i;
2480                                         reg[i] = target_buffer_get_u32(target, buffer);
2481                                         buffer += 4;
2482                                 }
2483
2484                                 arm7_9->write_core_regs(target, reg_list, reg);
2485
2486                                 arm7_9->store_word_regs(target, reg_list);
2487
2488                                 /* fast memory writes are only safe when the target is running
2489                                  * from a sufficiently high clock (32 kHz is usually too slow)
2490                                  */
2491                                 if (arm7_9->fast_memory_access)
2492                                         retval = arm7_9_execute_fast_sys_speed(target);
2493                                 else
2494                                 {
2495                                         retval = arm7_9_execute_sys_speed(target);
2496
2497                                         /*
2498                                          * if memory writes are made when the clock is running slow
2499                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2500                                          * processor operations after a "reset halt" or "reset init",
2501                                          * need to immediately stroke the keep alive or will end up with
2502                                          * gdb "keep alive not sent error message" problem.
2503                                          */
2504
2505                                         keep_alive();
2506                                 }
2507
2508                                 if (retval != ERROR_OK)
2509                                 {
2510                                         return retval;
2511                                 }
2512
2513                                 num_accesses += thisrun_accesses;
2514                         }
2515                         break;
2516                 case 2:
2517                         while (num_accesses < count)
2518                         {
2519                                 uint32_t reg_list;
2520                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2521                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2522
2523                                 for (i = 1; i <= thisrun_accesses; i++)
2524                                 {
2525                                         if (i > last_reg)
2526                                                 last_reg = i;
2527                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2528                                         buffer += 2;
2529                                 }
2530
2531                                 arm7_9->write_core_regs(target, reg_list, reg);
2532
2533                                 for (i = 1; i <= thisrun_accesses; i++)
2534                                 {
2535                                         arm7_9->store_hword_reg(target, i);
2536
2537                                         /* fast memory writes are only safe when the target is running
2538                                          * from a sufficiently high clock (32 kHz is usually too slow)
2539                                          */
2540                                         if (arm7_9->fast_memory_access)
2541                                                 retval = arm7_9_execute_fast_sys_speed(target);
2542                                         else
2543                                         {
2544                                                 retval = arm7_9_execute_sys_speed(target);
2545
2546                                                 /*
2547                                                  * if memory writes are made when the clock is running slow
2548                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2549                                                  * processor operations after a "reset halt" or "reset init",
2550                                                  * need to immediately stroke the keep alive or will end up with
2551                                                  * gdb "keep alive not sent error message" problem.
2552                                                  */     
2553
2554                                                 keep_alive();
2555                                         }
2556
2557                                         if (retval != ERROR_OK)
2558                                         {
2559                                                 return retval;
2560                                         }
2561                                 }
2562
2563                                 num_accesses += thisrun_accesses;
2564                         }
2565                         break;
2566                 case 1:
2567                         while (num_accesses < count)
2568                         {
2569                                 uint32_t reg_list;
2570                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2571                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2572
2573                                 for (i = 1; i <= thisrun_accesses; i++)
2574                                 {
2575                                         if (i > last_reg)
2576                                                 last_reg = i;
2577                                         reg[i] = *buffer++ & 0xff;
2578                                 }
2579
2580                                 arm7_9->write_core_regs(target, reg_list, reg);
2581
2582                                 for (i = 1; i <= thisrun_accesses; i++)
2583                                 {
2584                                         arm7_9->store_byte_reg(target, i);
2585                                         /* fast memory writes are only safe when the target is running
2586                                          * from a sufficiently high clock (32 kHz is usually too slow)
2587                                          */
2588                                         if (arm7_9->fast_memory_access)
2589                                                 retval = arm7_9_execute_fast_sys_speed(target);
2590                                         else
2591                                         {
2592                                                 retval = arm7_9_execute_sys_speed(target);
2593
2594                                                 /*
2595                                                  * if memory writes are made when the clock is running slow
2596                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2597                                                  * processor operations after a "reset halt" or "reset init",
2598                                                  * need to immediately stroke the keep alive or will end up with
2599                                                  * gdb "keep alive not sent error message" problem.
2600                                                  */
2601
2602                                                 keep_alive();
2603                                         }
2604
2605                                         if (retval != ERROR_OK)
2606                                         {
2607                                                 return retval;
2608                                         }
2609
2610                                 }
2611
2612                                 num_accesses += thisrun_accesses;
2613                         }
2614                         break;
2615         }
2616
2617         /* Re-Set DBGACK */
2618         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2619         embeddedice_store_reg(dbg_ctrl);
2620
2621         if (!is_arm_mode(armv4_5->core_mode))
2622                 return ERROR_FAIL;
2623
2624         for (i = 0; i <= last_reg; i++) {
2625                 struct reg *r = arm_reg_current(armv4_5, i);
2626
2627                 r->dirty = r->valid;
2628         }
2629
2630         arm7_9->read_xpsr(target, &cpsr, 0);
2631         if ((retval = jtag_execute_queue()) != ERROR_OK)
2632         {
2633                 LOG_ERROR("JTAG error while reading cpsr");
2634                 return ERROR_TARGET_DATA_ABORT;
2635         }
2636
2637         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2638         {
2639                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2640
2641                 arm7_9->write_xpsr_im8(target,
2642                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2643                                         & ~0x20, 0, 0);
2644
2645                 return ERROR_TARGET_DATA_ABORT;
2646         }
2647
2648         return ERROR_OK;
2649 }
2650
2651 static int dcc_count;
2652 static uint8_t *dcc_buffer;
2653
2654 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2655 {
2656         int retval = ERROR_OK;
2657         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2658
2659         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2660                 return retval;
2661
2662         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2663         int count = dcc_count;
2664         uint8_t *buffer = dcc_buffer;
2665         if (count > 2)
2666         {
2667                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2668                  * core function repeated. */
2669                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2670                 buffer += 4;
2671
2672                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2673                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2674                 struct jtag_tap *tap;
2675                 tap = ice_reg->jtag_info->tap;
2676
2677                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2678                 buffer += (count-2)*4;
2679
2680                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2681         } else
2682         {
2683                 int i;
2684                 for (i = 0; i < count; i++)
2685                 {
2686                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2687                         buffer += 4;
2688                 }
2689         }
2690
2691         if ((retval = target_halt(target))!= ERROR_OK)
2692         {
2693                 return retval;
2694         }
2695         return target_wait_state(target, TARGET_HALTED, 500);
2696 }
2697
2698 static const uint32_t dcc_code[] =
2699 {
2700         /* r0 == input, points to memory buffer
2701          * r1 == scratch
2702          */
2703
2704         /* spin until DCC control (c0) reports data arrived */
2705         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2706         0xe3110001,     /*    tst r1, #1              */
2707         0x0afffffc,     /*    bne w                   */
2708
2709         /* read word from DCC (c1), write to memory */
2710         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2711         0xe4801004,     /*    str r1, [r0], #4        */
2712
2713         /* repeat */
2714         0xeafffff9      /*    b   w                   */
2715 };
2716
2717 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2718 {
2719         int retval;
2720         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2721         int i;
2722
2723         if (!arm7_9->dcc_downloads)
2724                 return target_write_memory(target, address, 4, count, buffer);
2725
2726         /* regrab previously allocated working_area, or allocate a new one */
2727         if (!arm7_9->dcc_working_area)
2728         {
2729                 uint8_t dcc_code_buf[6 * 4];
2730
2731                 /* make sure we have a working area */
2732                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2733                 {
2734                         LOG_INFO("no working area available, falling back to memory writes");
2735                         return target_write_memory(target, address, 4, count, buffer);
2736                 }
2737
2738                 /* copy target instructions to target endianness */
2739                 for (i = 0; i < 6; i++)
2740                 {
2741                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2742                 }
2743
2744                 /* write DCC code to working area */
2745                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2746                 {
2747                         return retval;
2748                 }
2749         }
2750
2751         struct arm_algorithm armv4_5_info;
2752         struct reg_param reg_params[1];
2753
2754         armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2755         armv4_5_info.core_mode = ARM_MODE_SVC;
2756         armv4_5_info.core_state = ARM_STATE_ARM;
2757
2758         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2759
2760         buf_set_u32(reg_params[0].value, 0, 32, address);
2761
2762         dcc_count = count;
2763         dcc_buffer = buffer;
2764         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2765                         arm7_9->dcc_working_area->address,
2766                                 arm7_9->dcc_working_area->address + 6*4,
2767                         20*1000, &armv4_5_info, arm7_9_dcc_completion);
2768
2769         if (retval == ERROR_OK)
2770         {
2771                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2772                 if (endaddress != (address + count*4))
2773                 {
2774                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2775                         retval = ERROR_FAIL;
2776                 }
2777         }
2778
2779         destroy_reg_param(&reg_params[0]);
2780
2781         return retval;
2782 }
2783
2784 /**
2785  * Perform per-target setup that requires JTAG access.
2786  */
2787 int arm7_9_examine(struct target *target)
2788 {
2789         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2790         int retval;
2791
2792         if (!target_was_examined(target)) {
2793                 struct reg_cache *t, **cache_p;
2794
2795                 t = embeddedice_build_reg_cache(target, arm7_9);
2796                 if (t == NULL)
2797                         return ERROR_FAIL;
2798
2799                 cache_p = register_get_last_cache_p(&target->reg_cache);
2800                 (*cache_p) = t;
2801                 arm7_9->eice_cache = (*cache_p);
2802
2803                 if (arm7_9->armv4_5_common.etm)
2804                         (*cache_p)->next = etm_build_reg_cache(target,
2805                                         &arm7_9->jtag_info,
2806                                         arm7_9->armv4_5_common.etm);
2807
2808                 target_set_examined(target);
2809         }
2810
2811         retval = embeddedice_setup(target);
2812         if (retval == ERROR_OK)
2813                 retval = arm7_9_setup(target);
2814         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2815                 retval = etm_setup(target);
2816         return retval;
2817 }
2818
2819
2820 int arm7_9_check_reset(struct target *target)
2821 {
2822         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2823
2824         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2825         {
2826                 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2827         }
2828
2829         if (get_target_reset_nag() && (target->working_area_size == 0))
2830         {
2831                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2832         }
2833
2834         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2835         {
2836                 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2837         }
2838
2839         return ERROR_OK;
2840 }
2841
2842 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2843 {
2844         struct target *target = get_current_target(CMD_CTX);
2845         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2846
2847         if (!is_arm7_9(arm7_9))
2848         {
2849                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2850                 return ERROR_TARGET_INVALID;
2851         }
2852
2853         if (CMD_ARGC > 0)
2854                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2855
2856         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2857
2858         return ERROR_OK;
2859 }
2860
2861 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2862 {
2863         struct target *target = get_current_target(CMD_CTX);
2864         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2865
2866         if (!is_arm7_9(arm7_9))
2867         {
2868                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2869                 return ERROR_TARGET_INVALID;
2870         }
2871
2872         if (CMD_ARGC > 0)
2873                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2874
2875         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2876
2877         return ERROR_OK;
2878 }
2879
2880 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2881 {
2882         struct target *target = get_current_target(CMD_CTX);
2883         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2884
2885         if (!is_arm7_9(arm7_9))
2886         {
2887                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2888                 return ERROR_TARGET_INVALID;
2889         }
2890
2891         if (CMD_ARGC > 0)
2892                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2893
2894         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2895
2896         return ERROR_OK;
2897 }
2898
2899 static int arm7_9_setup_semihosting(struct target *target, int enable)
2900 {
2901         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2902
2903         if (!is_arm7_9(arm7_9))
2904         {
2905                 LOG_USER("current target isn't an ARM7/ARM9 target");
2906                 return ERROR_TARGET_INVALID;
2907         }
2908
2909         if (arm7_9->has_vector_catch) {
2910                 struct reg *vector_catch = &arm7_9->eice_cache
2911                                 ->reg_list[EICE_VEC_CATCH];
2912
2913                 if (!vector_catch->valid)
2914                         embeddedice_read_reg(vector_catch);
2915                 buf_set_u32(vector_catch->value, 2, 1, enable);
2916                 embeddedice_store_reg(vector_catch);
2917         } else {
2918                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2919                 if (enable)
2920                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2921                 else
2922                         breakpoint_remove(target, 8);
2923         }
2924
2925         return ERROR_OK;
2926 }
2927
2928 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2929 {
2930         int retval = ERROR_OK;
2931         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2932
2933         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2934
2935         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2936                 return retval;
2937
2938         /* caller must have allocated via calloc(), so everything's zeroed */
2939
2940         arm7_9->wp_available_max = 2;
2941
2942         arm7_9->fast_memory_access = false;
2943         arm7_9->dcc_downloads = false;
2944
2945         armv4_5->arch_info = arm7_9;
2946         armv4_5->read_core_reg = arm7_9_read_core_reg;
2947         armv4_5->write_core_reg = arm7_9_write_core_reg;
2948         armv4_5->full_context = arm7_9_full_context;
2949         armv4_5->setup_semihosting = arm7_9_setup_semihosting;
2950
2951         retval = arm_init_arch_info(target, armv4_5);
2952         if (retval != ERROR_OK)
2953                 return retval;
2954
2955         return target_register_timer_callback(arm7_9_handle_target_request,
2956                         1, 1, target);
2957 }
2958
2959 static const struct command_registration arm7_9_any_command_handlers[] = {
2960         {
2961                 "dbgrq",
2962                 .handler = handle_arm7_9_dbgrq_command,
2963                 .mode = COMMAND_ANY,
2964                 .usage = "['enable'|'disable']",
2965                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2966                         "for target halt requests",
2967         },
2968         {
2969                 "fast_memory_access",
2970                 .handler = handle_arm7_9_fast_memory_access_command,
2971                 .mode = COMMAND_ANY,
2972                 .usage = "['enable'|'disable']",
2973                 .help = "use fast memory accesses instead of slower "
2974                         "but potentially safer accesses",
2975         },
2976         {
2977                 "dcc_downloads",
2978                 .handler = handle_arm7_9_dcc_downloads_command,
2979                 .mode = COMMAND_ANY,
2980                 .usage = "['enable'|'disable']",
2981                 .help = "use DCC downloads for larger memory writes",
2982         },
2983         COMMAND_REGISTRATION_DONE
2984 };
2985 const struct command_registration arm7_9_command_handlers[] = {
2986         {
2987                 .chain = arm_command_handlers,
2988         },
2989         {
2990                 .chain = etm_command_handlers,
2991         },
2992         {
2993                 .name = "arm7_9",
2994                 .mode = COMMAND_ANY,
2995                 .help = "arm7/9 specific commands",
2996                 .chain = arm7_9_any_command_handlers,
2997         },
2998         COMMAND_REGISTRATION_DONE
2999 };