]> git.sur5r.net Git - openocd/blob - src/target/arm_adi_v5.c
cortex_a : multiple target on the same dap
[openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
78
79 /*
80         uint32_t tar_block_size(uint32_t address)
81         Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89  *                                                                         *
90  * DP and MEM-AP  register access  through APACC and DPACC                 *
91  *                                                                         *
92 ***************************************************************************/
93
94 /**
95  * Select one of the APs connected to the specified DAP.  The
96  * selection is implicitly used with future AP transactions.
97  * This is a NOP if the specified AP is already selected.
98  *
99  * @param dap The DAP
100  * @param apsel Number of the AP to (implicitly) use with further
101  *      transactions.  This normally identifies a MEM-AP.
102  */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
104 {
105         uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107         if (new_ap != dap->ap_current)
108         {
109                 dap->ap_current = new_ap;
110                 /* Switching AP invalidates cached values.
111                  * Values MUST BE UPDATED BEFORE AP ACCESS.
112                  */
113                 dap->ap_bank_value = -1;
114                 dap->ap_csw_value = -1;
115                 dap->ap_tar_value = -1;
116         }
117 }
118
119 /**
120  * Queue transactions setting up transfer parameters for the
121  * currently selected MEM-AP.
122  *
123  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124  * initiate data reads or writes using memory or peripheral addresses.
125  * If the CSW is configured for it, the TAR may be automatically
126  * incremented after each transfer.
127  *
128  * @todo Rename to reflect it being specifically a MEM-AP function.
129  *
130  * @param dap The DAP connected to the MEM-AP.
131  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
132  *      matches the cached value, the register is not changed.
133  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
134  *      matches the cached address, the register is not changed.
135  *
136  * @return ERROR_OK if the transaction was properly queued, else a fault code.
137  */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140         int retval;
141
142         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143         if (csw != dap->ap_csw_value)
144         {
145                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147                 if (retval != ERROR_OK)
148                         return retval;
149                 dap->ap_csw_value = csw;
150         }
151         if (tar != dap->ap_tar_value)
152         {
153                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155                 if (retval != ERROR_OK)
156                         return retval;
157                 dap->ap_tar_value = tar;
158         }
159         /* Disable TAR cache when autoincrementing */
160         if (csw & CSW_ADDRINC_MASK)
161                 dap->ap_tar_value = -1;
162         return ERROR_OK;
163 }
164
165 /**
166  * Asynchronous (queued) read of a word from memory or a system register.
167  *
168  * @param dap The DAP connected to the MEM-AP performing the read.
169  * @param address Address of the 32-bit word to read; it must be
170  *      readable by the currently selected MEM-AP.
171  * @param value points to where the word will be stored when the
172  *      transaction queue is flushed (assuming no errors).
173  *
174  * @return ERROR_OK for success.  Otherwise a fault code.
175  */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177                 uint32_t *value)
178 {
179         int retval;
180
181         /* Use banked addressing (REG_BDx) to avoid some link traffic
182          * (updating TAR) when reading several consecutive addresses.
183          */
184         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185                         address & 0xFFFFFFF0);
186         if (retval != ERROR_OK)
187                 return retval;
188
189         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193  * Synchronous read of a word from memory or a system register.
194  * As a side effect, this flushes any queued transactions.
195  *
196  * @param dap The DAP connected to the MEM-AP performing the read.
197  * @param address Address of the 32-bit word to read; it must be
198  *      readable by the currently selected MEM-AP.
199  * @param value points to where the result will be stored.
200  *
201  * @return ERROR_OK for success; *value holds the result.
202  * Otherwise a fault code.
203  */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205                 uint32_t *value)
206 {
207         int retval;
208
209         retval = mem_ap_read_u32(dap, address, value);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         return dap_run(dap);
214 }
215
216 /**
217  * Asynchronous (queued) write of a word to memory or a system register.
218  *
219  * @param dap The DAP connected to the MEM-AP.
220  * @param address Address to be written; it must be writable by
221  *      the currently selected MEM-AP.
222  * @param value Word that will be written to the address when transaction
223  *      queue is flushed (assuming no errors).
224  *
225  * @return ERROR_OK for success.  Otherwise a fault code.
226  */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228                 uint32_t value)
229 {
230         int retval;
231
232         /* Use banked addressing (REG_BDx) to avoid some link traffic
233          * (updating TAR) when writing several consecutive addresses.
234          */
235         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236                         address & 0xFFFFFFF0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241                         value);
242 }
243
244 /**
245  * Synchronous write of a word to memory or a system register.
246  * As a side effect, this flushes any queued transactions.
247  *
248  * @param dap The DAP connected to the MEM-AP.
249  * @param address Address to be written; it must be writable by
250  *      the currently selected MEM-AP.
251  * @param value Word that will be written.
252  *
253  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
254  */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256                 uint32_t value)
257 {
258         int retval = mem_ap_write_u32(dap, address, value);
259
260         if (retval != ERROR_OK)
261                 return retval;
262
263         return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 *                                                                            *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 *                                                                            *
270 * Write a buffer in target order (little endian)                             *
271 *                                                                            *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
274 {
275         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276         uint32_t adr = address;
277         const uint8_t* pBuffer = buffer;
278
279         count >>= 2;
280         wcount = count;
281
282         /* if we have an unaligned access - reorder data */
283         if (adr & 0x3u)
284         {
285                 for (writecount = 0; writecount < count; writecount++)
286                 {
287                         int i;
288                         uint32_t outvalue;
289                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291                         for (i = 0; i < 4; i++)
292                         {
293                                 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294                                 outvalue >>= 8;
295                                 adr++;
296                         }
297                         pBuffer += sizeof(uint32_t);
298                 }
299         }
300
301         while (wcount > 0)
302         {
303                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305                 if (wcount < blocksize)
306                         blocksize = wcount;
307
308                 /* handle unaligned data at 4k boundary */
309                 if (blocksize == 0)
310                         blocksize = 1;
311
312                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313                 if (retval != ERROR_OK)
314                         return retval;
315
316                 for (writecount = 0; writecount < blocksize; writecount++)
317                 {
318                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
319                                 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320                         if (retval != ERROR_OK)
321                                 break;
322                 }
323
324                 if ((retval = dap_run(dap)) == ERROR_OK)
325                 {
326                         wcount = wcount - blocksize;
327                         address = address + 4 * blocksize;
328                         buffer = buffer + 4 * blocksize;
329                 }
330                 else
331                 {
332                         errorcount++;
333                 }
334
335                 if (errorcount > 1)
336                 {
337                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338                         return retval;
339                 }
340         }
341
342         return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346                 const uint8_t *buffer, int count, uint32_t address)
347 {
348         int retval = ERROR_OK;
349         int wcount, blocksize, writecount, i;
350
351         wcount = count >> 1;
352
353         while (wcount > 0)
354         {
355                 int nbytes;
356
357                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360                 if (wcount < blocksize)
361                         blocksize = wcount;
362
363                 /* handle unaligned data at 4k boundary */
364                 if (blocksize == 0)
365                         blocksize = 1;
366
367                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368                 if (retval != ERROR_OK)
369                         return retval;
370                 writecount = blocksize;
371
372                 do
373                 {
374                         nbytes = MIN((writecount << 1), 4);
375
376                         if (nbytes < 4)
377                         {
378                                 retval = mem_ap_write_buf_u16(dap, buffer,
379                                                 nbytes, address);
380                                 if (retval != ERROR_OK)
381                                 {
382                                         LOG_WARNING("Block write error address "
383                                                 "0x%" PRIx32 ", count 0x%x",
384                                                 address, count);
385                                         return retval;
386                                 }
387
388                                 address += nbytes >> 1;
389                         }
390                         else
391                         {
392                                 uint32_t outvalue;
393                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395                                 for (i = 0; i < nbytes; i++)
396                                 {
397                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398                                         outvalue >>= 8;
399                                         address++;
400                                 }
401
402                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
403                                 retval = dap_queue_ap_write(dap,
404                                                 AP_REG_DRW, outvalue);
405                                 if (retval != ERROR_OK)
406                                         break;
407
408                                 if ((retval = dap_run(dap)) != ERROR_OK)
409                                 {
410                                         LOG_WARNING("Block write error address "
411                                                 "0x%" PRIx32 ", count 0x%x",
412                                                 address, count);
413                                         return retval;
414                                 }
415                         }
416
417                         buffer += nbytes >> 1;
418                         writecount -= nbytes >> 1;
419
420                 } while (writecount);
421                 wcount -= blocksize;
422         }
423
424         return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
428 {
429         int retval = ERROR_OK;
430
431         if (count >= 4)
432                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434         while (count > 0)
435         {
436                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437                 if (retval != ERROR_OK)
438                         return retval;
439                 uint16_t svalue;
440                 memcpy(&svalue, buffer, sizeof(uint16_t));
441                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443                 if (retval != ERROR_OK)
444                         break;
445
446                 retval = dap_run(dap);
447                 if (retval != ERROR_OK)
448                         break;
449
450                 count -= 2;
451                 address += 2;
452                 buffer += 2;
453         }
454
455         return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459                 const uint8_t *buffer, int count, uint32_t address)
460 {
461         int retval = ERROR_OK;
462         int wcount, blocksize, writecount, i;
463
464         wcount = count;
465
466         while (wcount > 0)
467         {
468                 int nbytes;
469
470                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473                 if (wcount < blocksize)
474                         blocksize = wcount;
475
476                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 writecount = blocksize;
480
481                 do
482                 {
483                         nbytes = MIN(writecount, 4);
484
485                         if (nbytes < 4)
486                         {
487                                 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488                                 if (retval != ERROR_OK)
489                                 {
490                                         LOG_WARNING("Block write error address "
491                                                 "0x%" PRIx32 ", count 0x%x",
492                                                 address, count);
493                                         return retval;
494                                 }
495
496                                 address += nbytes;
497                         }
498                         else
499                         {
500                                 uint32_t outvalue;
501                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503                                 for (i = 0; i < nbytes; i++)
504                                 {
505                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506                                         outvalue >>= 8;
507                                         address++;
508                                 }
509
510                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
511                                 retval = dap_queue_ap_write(dap,
512                                                 AP_REG_DRW, outvalue);
513                                 if (retval != ERROR_OK)
514                                         break;
515
516                                 if ((retval = dap_run(dap)) != ERROR_OK)
517                                 {
518                                         LOG_WARNING("Block write error address "
519                                                 "0x%" PRIx32 ", count 0x%x",
520                                                 address, count);
521                                         return retval;
522                                 }
523                         }
524
525                         buffer += nbytes;
526                         writecount -= nbytes;
527
528                 } while (writecount);
529                 wcount -= blocksize;
530         }
531
532         return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
536 {
537         int retval = ERROR_OK;
538
539         if (count >= 4)
540                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542         while (count > 0)
543         {
544                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545                 if (retval != ERROR_OK)
546                         return retval;
547                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549                 if (retval != ERROR_OK)
550                         break;
551
552                 retval = dap_run(dap);
553                 if (retval != ERROR_OK)
554                         break;
555
556                 count--;
557                 address++;
558                 buffer++;
559         }
560
561         return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566  */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572  * Synchronously read a block of 32-bit words into a buffer
573  * @param dap The DAP connected to the MEM-AP.
574  * @param buffer where the words will be stored (in host byte order).
575  * @param count How many words to read.
576  * @param address Memory address from which to read words; all the
577  *      words must be readable by the currently selected MEM-AP.
578  */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580                 int count, uint32_t address)
581 {
582         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583         uint32_t adr = address;
584         uint8_t* pBuffer = buffer;
585
586         count >>= 2;
587         wcount = count;
588
589         while (wcount > 0)
590         {
591                 /* Adjust to read blocks within boundaries aligned to the
592                  * TAR autoincrement size (at least 2^10).  Autoincrement
593                  * mode avoids an extra per-word roundtrip to update TAR.
594                  */
595                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596                                 address);
597                 if (wcount < blocksize)
598                         blocksize = wcount;
599
600                 /* handle unaligned data at 4k boundary */
601                 if (blocksize == 0)
602                         blocksize = 1;
603
604                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605                                 address);
606                 if (retval != ERROR_OK)
607                         return retval;
608
609                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610                  * so this routine becomes transport-neutral.  Be careful
611                  * not to cause performance problems with JTAG; would it
612                  * suffice to loop over dap_queue_ap_read(), or would that
613                  * be slower when JTAG is the chosen transport?
614                  */
615
616                 /* Scan out first read */
617                 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618                                 DPAP_READ, 0, NULL, NULL);
619                 if (retval != ERROR_OK)
620                         return retval;
621                 for (readcount = 0; readcount < blocksize - 1; readcount++)
622                 {
623                         /* Scan out next read; scan in posted value for the
624                          * previous one.  Assumes read is acked "OK/FAULT",
625                          * and CTRL_STAT says that meant "OK".
626                          */
627                         retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628                                         DPAP_READ, 0, buffer + 4 * readcount,
629                                         &dap->ack);
630                         if (retval != ERROR_OK)
631                                 return retval;
632                 }
633
634                 /* Scan in last posted value; RDBUFF has no other effect,
635                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636                  */
637                 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638                                 DPAP_READ, 0, buffer + 4 * readcount,
639                                 &dap->ack);
640                 if (retval != ERROR_OK)
641                         return retval;
642
643                 retval = dap_run(dap);
644                 if (retval != ERROR_OK)
645                 {
646                         errorcount++;
647                         if (errorcount <= 1)
648                         {
649                                 /* try again */
650                                 continue;
651                         }
652                         LOG_WARNING("Block read error address 0x%" PRIx32, address);
653                         return retval;
654                 }
655                 wcount = wcount - blocksize;
656                 address += 4 * blocksize;
657                 buffer += 4 * blocksize;
658         }
659
660         /* if we have an unaligned access - reorder data */
661         if (adr & 0x3u)
662         {
663                 for (readcount = 0; readcount < count; readcount++)
664                 {
665                         int i;
666                         uint32_t data;
667                         memcpy(&data, pBuffer, sizeof(uint32_t));
668
669                         for (i = 0; i < 4; i++)
670                         {
671                                 *((uint8_t*)pBuffer) =
672                                                 (data >> 8 * (adr & 0x3));
673                                 pBuffer++;
674                                 adr++;
675                         }
676                 }
677         }
678
679         return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683                 uint8_t *buffer, int count, uint32_t address)
684 {
685         uint32_t invalue;
686         int retval = ERROR_OK;
687         int wcount, blocksize, readcount, i;
688
689         wcount = count >> 1;
690
691         while (wcount > 0)
692         {
693                 int nbytes;
694
695                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697                 if (wcount < blocksize)
698                         blocksize = wcount;
699
700                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701                 if (retval != ERROR_OK)
702                         return retval;
703
704                 /* handle unaligned data at 4k boundary */
705                 if (blocksize == 0)
706                         blocksize = 1;
707                 readcount = blocksize;
708
709                 do
710                 {
711                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712                         if (retval != ERROR_OK)
713                                 return retval;
714                         if ((retval = dap_run(dap)) != ERROR_OK)
715                         {
716                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717                                 return retval;
718                         }
719
720                         nbytes = MIN((readcount << 1), 4);
721
722                         for (i = 0; i < nbytes; i++)
723                         {
724                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725                                 buffer++;
726                                 address++;
727                         }
728
729                         readcount -= (nbytes >> 1);
730                 } while (readcount);
731                 wcount -= blocksize;
732         }
733
734         return retval;
735 }
736
737 /**
738  * Synchronously read a block of 16-bit halfwords into a buffer
739  * @param dap The DAP connected to the MEM-AP.
740  * @param buffer where the halfwords will be stored (in host byte order).
741  * @param count How many halfwords to read.
742  * @param address Memory address from which to read words; all the
743  *      words must be readable by the currently selected MEM-AP.
744  */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746                 int count, uint32_t address)
747 {
748         uint32_t invalue, i;
749         int retval = ERROR_OK;
750
751         if (count >= 4)
752                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754         while (count > 0)
755         {
756                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757                 if (retval != ERROR_OK)
758                         return retval;
759                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760                 if (retval != ERROR_OK)
761                         break;
762
763                 retval = dap_run(dap);
764                 if (retval != ERROR_OK)
765                         break;
766
767                 if (address & 0x1)
768                 {
769                         for (i = 0; i < 2; i++)
770                         {
771                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772                                 buffer++;
773                                 address++;
774                         }
775                 }
776                 else
777                 {
778                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
779                         memcpy(buffer, &svalue, sizeof(uint16_t));
780                         address += 2;
781                         buffer += 2;
782                 }
783                 count -= 2;
784         }
785
786         return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791  *
792  * The solution is to arrange for a large out/in scan in this loop and
793  * and convert data afterwards.
794  */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796                 uint8_t *buffer, int count, uint32_t address)
797 {
798         uint32_t invalue;
799         int retval = ERROR_OK;
800         int wcount, blocksize, readcount, i;
801
802         wcount = count;
803
804         while (wcount > 0)
805         {
806                 int nbytes;
807
808                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811                 if (wcount < blocksize)
812                         blocksize = wcount;
813
814                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815                 if (retval != ERROR_OK)
816                         return retval;
817                 readcount = blocksize;
818
819                 do
820                 {
821                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822                         if (retval != ERROR_OK)
823                                 return retval;
824                         if ((retval = dap_run(dap)) != ERROR_OK)
825                         {
826                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827                                 return retval;
828                         }
829
830                         nbytes = MIN(readcount, 4);
831
832                         for (i = 0; i < nbytes; i++)
833                         {
834                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835                                 buffer++;
836                                 address++;
837                         }
838
839                         readcount -= nbytes;
840                 } while (readcount);
841                 wcount -= blocksize;
842         }
843
844         return retval;
845 }
846
847 /**
848  * Synchronously read a block of bytes into a buffer
849  * @param dap The DAP connected to the MEM-AP.
850  * @param buffer where the bytes will be stored.
851  * @param count How many bytes to read.
852  * @param address Memory address from which to read data; all the
853  *      data must be readable by the currently selected MEM-AP.
854  */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856                 int count, uint32_t address)
857 {
858         uint32_t invalue;
859         int retval = ERROR_OK;
860
861         if (count >= 4)
862                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864         while (count > 0)
865         {
866                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867                 if (retval != ERROR_OK)
868                         return retval;
869                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870                 if (retval != ERROR_OK)
871                         return retval;
872                 retval = dap_run(dap);
873                 if (retval != ERROR_OK)
874                         break;
875
876                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877                 count--;
878                 address++;
879                 buffer++;
880         }
881
882         return retval;
883 }
884
885 /*--------------------------------------------------------------------*/
886 /*          Wrapping function with selection of AP                    */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889                 uint32_t address, uint32_t *value)
890 {
891         dap_ap_select(swjdp, ap);
892         return mem_ap_read_u32(swjdp, address, value);
893 }
894
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896                 uint32_t address, uint32_t value)
897 {
898         dap_ap_select(swjdp, ap);
899         return mem_ap_write_u32(swjdp, address, value);
900 }
901
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903                 uint32_t address, uint32_t *value)
904 {
905         dap_ap_select(swjdp, ap);
906         return mem_ap_read_atomic_u32(swjdp, address, value);
907 }
908
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910                 uint32_t address, uint32_t value)
911 {
912         dap_ap_select(swjdp, ap);
913         return mem_ap_write_atomic_u32(swjdp, address, value);
914 }
915
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917                 uint8_t *buffer, int count, uint32_t address)
918 {
919         dap_ap_select(swjdp, ap);
920         return mem_ap_read_buf_u8(swjdp, buffer, count, address);
921 }
922
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924                 uint8_t *buffer, int count, uint32_t address)
925 {
926         dap_ap_select(swjdp, ap);
927         return mem_ap_read_buf_u16(swjdp, buffer, count, address);
928 }
929
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931                 uint8_t *buffer, int count, uint32_t address)
932 {
933         dap_ap_select(swjdp, ap);
934         return mem_ap_read_buf_u32(swjdp, buffer, count, address);
935 }
936
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938                 const uint8_t *buffer, int count, uint32_t address)
939 {
940         dap_ap_select(swjdp, ap);
941         return mem_ap_write_buf_u8(swjdp, buffer, count, address);
942 }
943
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945                 const uint8_t *buffer, int count, uint32_t address)
946 {
947         dap_ap_select(swjdp, ap);
948         return mem_ap_write_buf_u16(swjdp, buffer, count, address);
949 }
950
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952                 const uint8_t *buffer, int count, uint32_t address)
953 {
954         dap_ap_select(swjdp, ap);
955         return mem_ap_write_buf_u32(swjdp, buffer, count, address);
956 }
957
958
959 /*--------------------------------------------------------------------------*/
960
961
962 /* FIXME don't import ... just initialize as
963  * part of DAP transport setup
964 */
965 extern const struct dap_ops jtag_dp_ops;
966
967 /*--------------------------------------------------------------------------*/
968
969 /**
970  * Initialize a DAP.  This sets up the power domains, prepares the DP
971  * for further use, and arranges to use AP #0 for all AP operations
972  * until dap_ap-select() changes that policy.
973  *
974  * @param dap The DAP being initialized.
975  *
976  * @todo Rename this.  We also need an initialization scheme which account
977  * for SWD transports not just JTAG; that will need to address differences
978  * in layering.  (JTAG is useful without any debug target; but not SWD.)
979  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
980  */
981 int ahbap_debugport_init(struct adiv5_dap *dap)
982 {
983         uint32_t ctrlstat;
984         int cnt = 0;
985         int retval;
986
987         LOG_DEBUG(" ");
988
989         /* JTAG-DP or SWJ-DP, in JTAG mode
990          * ... for SWD mode this is patched as part
991          * of link switchover
992          */
993         if (!dap->ops)
994                 dap->ops = &jtag_dp_ops;
995
996         /* Default MEM-AP setup.
997          *
998          * REVISIT AP #0 may be an inappropriate default for this.
999          * Should we probe, or take a hint from the caller?
1000          * Presumably we can ignore the possibility of multiple APs.
1001          */
1002         dap->ap_current = !0;
1003         dap_ap_select(dap, 0);
1004
1005         /* DP initialization */
1006
1007         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008         if (retval != ERROR_OK)
1009                 return retval;
1010
1011         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012         if (retval != ERROR_OK)
1013                 return retval;
1014
1015         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016         if (retval != ERROR_OK)
1017                 return retval;
1018
1019         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021         if (retval != ERROR_OK)
1022                 return retval;
1023
1024         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025         if (retval != ERROR_OK)
1026                 return retval;
1027         if ((retval = dap_run(dap)) != ERROR_OK)
1028                 return retval;
1029
1030         /* Check that we have debug power domains activated */
1031         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1032         {
1033                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035                 if (retval != ERROR_OK)
1036                         return retval;
1037                 if ((retval = dap_run(dap)) != ERROR_OK)
1038                         return retval;
1039                 alive_sleep(10);
1040         }
1041
1042         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1043         {
1044                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046                 if (retval != ERROR_OK)
1047                         return retval;
1048                 if ((retval = dap_run(dap)) != ERROR_OK)
1049                         return retval;
1050                 alive_sleep(10);
1051         }
1052
1053         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054         if (retval != ERROR_OK)
1055                 return retval;
1056         /* With debug power on we can activate OVERRUN checking */
1057         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059         if (retval != ERROR_OK)
1060                 return retval;
1061         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062         if (retval != ERROR_OK)
1063                 return retval;
1064
1065         return ERROR_OK;
1066 }
1067
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069  * and ARM IHI 0031A table 13-3.
1070  */
1071 static const char *class_description[16] ={
1072         "Reserved", "ROM table", "Reserved", "Reserved",
1073         "Reserved", "Reserved", "Reserved", "Reserved",
1074         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075         "Reserved", "OptimoDE DESS",
1076                 "Generic IP component", "PrimeCell or System component"
1077 };
1078
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1081 {
1082         return cid3 == 0xb1 && cid2 == 0x05
1083                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1084 }
1085
1086 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1087                         uint32_t *out_dbgbase, uint32_t *out_apid)
1088 {
1089         uint32_t ap_old;
1090         int retval;
1091         uint32_t dbgbase, apid, idcode;
1092
1093         /* AP address is in bits 31:24 of DP_SELECT */
1094         if (ap >= 256)
1095                 return ERROR_INVALID_ARGUMENTS;
1096
1097         ap_old = dap->ap_current;
1098         dap_ap_select(dap, ap);
1099
1100         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1101         if (retval != ERROR_OK)
1102                 return retval;
1103         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1104         if (retval != ERROR_OK)
1105                 return retval;
1106         retval = dap_run(dap);
1107         if (retval != ERROR_OK)
1108                 return retval;
1109
1110         /* Excavate the device ID code */
1111         struct jtag_tap *tap = dap->jtag_info->tap;
1112         while (tap != NULL) {
1113                 if (tap->hasidcode) {
1114                         idcode = tap->idcode;
1115                         break;
1116                 }
1117                 tap = tap->next_tap;
1118         }
1119         if (tap == NULL || !tap->hasidcode)
1120                 return ERROR_OK;
1121
1122         dap_ap_select(dap, ap_old);
1123
1124         /* The asignment happens only here to prevent modification of these
1125          * values before they are certain. */
1126         *out_dbgbase = dbgbase;
1127         *out_apid = apid;
1128
1129         return ERROR_OK;
1130 }
1131
1132 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1133                         uint32_t dbgbase, uint8_t type, uint32_t *addr)
1134 {
1135         uint32_t ap_old;
1136         uint32_t romentry, entry_offset = 0, component_base, devtype;
1137         int retval = ERROR_FAIL;
1138
1139         if (ap >= 256)
1140                 return ERROR_INVALID_ARGUMENTS;
1141
1142         ap_old = dap->ap_current;
1143         dap_ap_select(dap, ap);
1144
1145         do
1146         {
1147                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1148                                                 entry_offset, &romentry);
1149                 if (retval != ERROR_OK)
1150                         return retval;
1151
1152                 component_base = (dbgbase & 0xFFFFF000)
1153                         + (romentry & 0xFFFFF000);
1154
1155                 if (romentry & 0x1) {
1156                         retval = mem_ap_read_atomic_u32(dap,
1157                                         (component_base & 0xfffff000) | 0xfcc,
1158                                         &devtype);
1159                         if ((devtype & 0xff) == type) {
1160                                 *addr = component_base;
1161                                 retval = ERROR_OK;
1162                                 break;
1163                         }
1164                 }
1165                 entry_offset += 4;
1166         } while (romentry > 0);
1167
1168         dap_ap_select(dap, ap_old);
1169
1170         return retval;
1171 }
1172
1173 static int dap_info_command(struct command_context *cmd_ctx,
1174                 struct adiv5_dap *dap, int ap)
1175 {
1176         int retval;
1177         uint32_t dbgbase, apid;
1178         int romtable_present = 0;
1179         uint8_t mem_ap;
1180         uint32_t ap_old;
1181
1182         retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1183         if (retval != ERROR_OK)
1184                 return retval;
1185
1186         ap_old = dap->ap_current;
1187         dap_ap_select(dap, ap);
1188
1189         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1190         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1191         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1192         if (apid)
1193         {
1194                 switch (apid&0x0F)
1195                 {
1196                         case 0:
1197                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1198                                 break;
1199                         case 1:
1200                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1201                                 break;
1202                         case 2:
1203                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1204                                 break;
1205                         default:
1206                                 command_print(cmd_ctx, "\tUnknown AP type");
1207                                 break;
1208                 }
1209
1210                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1211                  * not a ROM table ... or have no such components at all.
1212                  */
1213                 if (mem_ap)
1214                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1215                                         dbgbase);
1216         }
1217         else
1218         {
1219                 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1220         }
1221
1222         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1223         if (romtable_present)
1224         {
1225                 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1226                 uint16_t entry_offset;
1227
1228                 /* bit 16 of apid indicates a memory access port */
1229                 if (dbgbase & 0x02)
1230                         command_print(cmd_ctx, "\tValid ROM table present");
1231                 else
1232                         command_print(cmd_ctx, "\tROM table in legacy format");
1233
1234                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1235                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1236                 if (retval != ERROR_OK)
1237                         return retval;
1238                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1239                 if (retval != ERROR_OK)
1240                         return retval;
1241                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1242                 if (retval != ERROR_OK)
1243                         return retval;
1244                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1245                 if (retval != ERROR_OK)
1246                         return retval;
1247                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1248                 if (retval != ERROR_OK)
1249                         return retval;
1250                 retval = dap_run(dap);
1251                 if (retval != ERROR_OK)
1252                         return retval;
1253
1254                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1255                         command_print(cmd_ctx, "\tCID3 0x%2.2x"
1256                                         ", CID2 0x%2.2x"
1257                                         ", CID1 0x%2.2x"
1258                                         ", CID0 0x%2.2x",
1259                                         (unsigned) cid3, (unsigned)cid2,
1260                                         (unsigned) cid1, (unsigned) cid0);
1261                 if (memtype & 0x01)
1262                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1263                 else
1264                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1265                                         "Dedicated debug bus.");
1266
1267                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1268                 entry_offset = 0;
1269                 do
1270                 {
1271                         retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1272                         if (retval != ERROR_OK)
1273                                 return retval;
1274                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1275                         if (romentry&0x01)
1276                         {
1277                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1278                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1279                                 uint32_t component_base;
1280                                 unsigned part_num;
1281                                 char *type, *full;
1282
1283                                 component_base = (dbgbase & 0xFFFFF000)
1284                                                 + (romentry & 0xFFFFF000);
1285
1286                                 /* IDs are in last 4K section */
1287
1288
1289                                 retval = mem_ap_read_atomic_u32(dap,
1290                                         component_base + 0xFE0, &c_pid0);
1291                                 if (retval != ERROR_OK)
1292                                         return retval;
1293                                 c_pid0 &= 0xff;
1294                                 retval = mem_ap_read_atomic_u32(dap,
1295                                         component_base + 0xFE4, &c_pid1);
1296                                 if (retval != ERROR_OK)
1297                                         return retval;
1298                                 c_pid1 &= 0xff;
1299                                 retval = mem_ap_read_atomic_u32(dap,
1300                                         component_base + 0xFE8, &c_pid2);
1301                                 if (retval != ERROR_OK)
1302                                         return retval;
1303                                 c_pid2 &= 0xff;
1304                                 retval = mem_ap_read_atomic_u32(dap,
1305                                         component_base + 0xFEC, &c_pid3);
1306                                 if (retval != ERROR_OK)
1307                                         return retval;
1308                                 c_pid3 &= 0xff;
1309                                 retval = mem_ap_read_atomic_u32(dap,
1310                                         component_base + 0xFD0, &c_pid4);
1311                                 if (retval != ERROR_OK)
1312                                         return retval;
1313                                 c_pid4 &= 0xff;
1314
1315                                 retval = mem_ap_read_atomic_u32(dap,
1316                                         component_base + 0xFF0, &c_cid0);
1317                                 if (retval != ERROR_OK)
1318                                         return retval;
1319                                 c_cid0 &= 0xff;
1320                                 retval = mem_ap_read_atomic_u32(dap,
1321                                         component_base + 0xFF4, &c_cid1);
1322                                 if (retval != ERROR_OK)
1323                                         return retval;
1324                                 c_cid1 &= 0xff;
1325                                 retval = mem_ap_read_atomic_u32(dap,
1326                                         component_base + 0xFF8, &c_cid2);
1327                                 if (retval != ERROR_OK)
1328                                         return retval;
1329                                 c_cid2 &= 0xff;
1330                                 retval = mem_ap_read_atomic_u32(dap,
1331                                         component_base + 0xFFC, &c_cid3);
1332                                 if (retval != ERROR_OK)
1333                                         return retval;
1334                                 c_cid3 &= 0xff;
1335
1336
1337                                 command_print(cmd_ctx,
1338                                 "\t\tComponent base address 0x%" PRIx32
1339                                         ", start address 0x%" PRIx32,
1340                                                 component_base,
1341                                 /* component may take multiple 4K pages */
1342                                 component_base - 0x1000*(c_pid4 >> 4));
1343                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1344                                                 (int) (c_cid1 >> 4) & 0xf,
1345                                                 /* See ARM IHI 0029B Table 3-3 */
1346                                                 class_description[(c_cid1 >> 4) & 0xf]);
1347
1348                                 /* CoreSight component? */
1349                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1350                                         uint32_t devtype;
1351                                         unsigned minor;
1352                                         char *major = "Reserved", *subtype = "Reserved";
1353
1354                                         retval = mem_ap_read_atomic_u32(dap,
1355                                                         (component_base & 0xfffff000) | 0xfcc,
1356                                                         &devtype);
1357                                         if (retval != ERROR_OK)
1358                                                 return retval;
1359                                         minor = (devtype >> 4) & 0x0f;
1360                                         switch (devtype & 0x0f) {
1361                                         case 0:
1362                                                 major = "Miscellaneous";
1363                                                 switch (minor) {
1364                                                 case 0:
1365                                                         subtype = "other";
1366                                                         break;
1367                                                 case 4:
1368                                                         subtype = "Validation component";
1369                                                         break;
1370                                                 }
1371                                                 break;
1372                                         case 1:
1373                                                 major = "Trace Sink";
1374                                                 switch (minor) {
1375                                                 case 0:
1376                                                         subtype = "other";
1377                                                         break;
1378                                                 case 1:
1379                                                         subtype = "Port";
1380                                                         break;
1381                                                 case 2:
1382                                                         subtype = "Buffer";
1383                                                         break;
1384                                                 }
1385                                                 break;
1386                                         case 2:
1387                                                 major = "Trace Link";
1388                                                 switch (minor) {
1389                                                 case 0:
1390                                                         subtype = "other";
1391                                                         break;
1392                                                 case 1:
1393                                                         subtype = "Funnel, router";
1394                                                         break;
1395                                                 case 2:
1396                                                         subtype = "Filter";
1397                                                         break;
1398                                                 case 3:
1399                                                         subtype = "FIFO, buffer";
1400                                                         break;
1401                                                 }
1402                                                 break;
1403                                         case 3:
1404                                                 major = "Trace Source";
1405                                                 switch (minor) {
1406                                                 case 0:
1407                                                         subtype = "other";
1408                                                         break;
1409                                                 case 1:
1410                                                         subtype = "Processor";
1411                                                         break;
1412                                                 case 2:
1413                                                         subtype = "DSP";
1414                                                         break;
1415                                                 case 3:
1416                                                         subtype = "Engine/Coprocessor";
1417                                                         break;
1418                                                 case 4:
1419                                                         subtype = "Bus";
1420                                                         break;
1421                                                 }
1422                                                 break;
1423                                         case 4:
1424                                                 major = "Debug Control";
1425                                                 switch (minor) {
1426                                                 case 0:
1427                                                         subtype = "other";
1428                                                         break;
1429                                                 case 1:
1430                                                         subtype = "Trigger Matrix";
1431                                                         break;
1432                                                 case 2:
1433                                                         subtype = "Debug Auth";
1434                                                         break;
1435                                                 }
1436                                                 break;
1437                                         case 5:
1438                                                 major = "Debug Logic";
1439                                                 switch (minor) {
1440                                                 case 0:
1441                                                         subtype = "other";
1442                                                         break;
1443                                                 case 1:
1444                                                         subtype = "Processor";
1445                                                         break;
1446                                                 case 2:
1447                                                         subtype = "DSP";
1448                                                         break;
1449                                                 case 3:
1450                                                         subtype = "Engine/Coprocessor";
1451                                                         break;
1452                                                 }
1453                                                 break;
1454                                         }
1455                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1456                                                         (unsigned) (devtype & 0xff),
1457                                                         major, subtype);
1458                                         /* REVISIT also show 0xfc8 DevId */
1459                                 }
1460
1461                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1462                                         command_print(cmd_ctx,
1463                                                       "\t\tCID3 0%2.2x"
1464                                                         ", CID2 0%2.2x"
1465                                                         ", CID1 0%2.2x"
1466                                                         ", CID0 0%2.2x",
1467                                                         (int) c_cid3,
1468                                                         (int) c_cid2,
1469                                                         (int)c_cid1,
1470                                                         (int)c_cid0);
1471                                 command_print(cmd_ctx,
1472                                 "\t\tPeripheral ID[4..0] = hex "
1473                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1474                                 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1475                                 (int) c_pid1, (int) c_pid0);
1476
1477                                 /* Part number interpretations are from Cortex
1478                                  * core specs, the CoreSight components TRM
1479                                  * (ARM DDI 0314H), CoreSight System Design
1480                                  * Guide (ARM DGI 0012D) and ETM specs; also
1481                                  * from chip observation (e.g. TI SDTI).
1482                                  */
1483                                 part_num = (c_pid0 & 0xff);
1484                                 part_num |= (c_pid1 & 0x0f) << 8;
1485                                 switch (part_num) {
1486                                 case 0x000:
1487                                         type = "Cortex-M3 NVIC";
1488                                         full = "(Interrupt Controller)";
1489                                         break;
1490                                 case 0x001:
1491                                         type = "Cortex-M3 ITM";
1492                                         full = "(Instrumentation Trace Module)";
1493                                         break;
1494                                 case 0x002:
1495                                         type = "Cortex-M3 DWT";
1496                                         full = "(Data Watchpoint and Trace)";
1497                                         break;
1498                                 case 0x003:
1499                                         type = "Cortex-M3 FBP";
1500                                         full = "(Flash Patch and Breakpoint)";
1501                                         break;
1502                                 case 0x00d:
1503                                         type = "CoreSight ETM11";
1504                                         full = "(Embedded Trace)";
1505                                         break;
1506                                 // case 0x113: what?
1507                                 case 0x120:             /* from OMAP3 memmap */
1508                                         type = "TI SDTI";
1509                                         full = "(System Debug Trace Interface)";
1510                                         break;
1511                                 case 0x343:             /* from OMAP3 memmap */
1512                                         type = "TI DAPCTL";
1513                                         full = "";
1514                                         break;
1515                                 case 0x906:
1516                                         type = "Coresight CTI";
1517                                         full = "(Cross Trigger)";
1518                                         break;
1519                                 case 0x907:
1520                                         type = "Coresight ETB";
1521                                         full = "(Trace Buffer)";
1522                                         break;
1523                                 case 0x908:
1524                                         type = "Coresight CSTF";
1525                                         full = "(Trace Funnel)";
1526                                         break;
1527                                 case 0x910:
1528                                         type = "CoreSight ETM9";
1529                                         full = "(Embedded Trace)";
1530                                         break;
1531                                 case 0x912:
1532                                         type = "Coresight TPIU";
1533                                         full = "(Trace Port Interface Unit)";
1534                                         break;
1535                                 case 0x921:
1536                                         type = "Cortex-A8 ETM";
1537                                         full = "(Embedded Trace)";
1538                                         break;
1539                                 case 0x922:
1540                                         type = "Cortex-A8 CTI";
1541                                         full = "(Cross Trigger)";
1542                                         break;
1543                                 case 0x923:
1544                                         type = "Cortex-M3 TPIU";
1545                                         full = "(Trace Port Interface Unit)";
1546                                         break;
1547                                 case 0x924:
1548                                         type = "Cortex-M3 ETM";
1549                                         full = "(Embedded Trace)";
1550                                         break;
1551                                 case 0x930:
1552                                         type = "Cortex-R4 ETM";
1553                                         full = "(Embedded Trace)";
1554                                         break;
1555                                 case 0xc08:
1556                                         type = "Cortex-A8 Debug";
1557                                         full = "(Debug Unit)";
1558                                         break;
1559                                 default:
1560                                         type = "-*- unrecognized -*-";
1561                                         full = "";
1562                                         break;
1563                                 }
1564                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1565                                                 type, full);
1566                         }
1567                         else
1568                         {
1569                                 if (romentry)
1570                                         command_print(cmd_ctx, "\t\tComponent not present");
1571                                 else
1572                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1573                         }
1574                         entry_offset += 4;
1575                 } while (romentry > 0);
1576         }
1577         else
1578         {
1579                 command_print(cmd_ctx, "\tNo ROM table present");
1580         }
1581         dap_ap_select(dap, ap_old);
1582
1583         return ERROR_OK;
1584 }
1585
1586 COMMAND_HANDLER(handle_dap_info_command)
1587 {
1588         struct target *target = get_current_target(CMD_CTX);
1589         struct arm *arm = target_to_arm(target);
1590         struct adiv5_dap *dap = arm->dap;
1591         uint32_t apsel;
1592
1593         switch (CMD_ARGC) {
1594         case 0:
1595                 apsel = dap->apsel;
1596                 break;
1597         case 1:
1598                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1599                 break;
1600         default:
1601                 return ERROR_COMMAND_SYNTAX_ERROR;
1602         }
1603
1604         return dap_info_command(CMD_CTX, dap, apsel);
1605 }
1606
1607 COMMAND_HANDLER(dap_baseaddr_command)
1608 {
1609         struct target *target = get_current_target(CMD_CTX);
1610         struct arm *arm = target_to_arm(target);
1611         struct adiv5_dap *dap = arm->dap;
1612
1613         uint32_t apsel, baseaddr;
1614         int retval;
1615
1616         switch (CMD_ARGC) {
1617         case 0:
1618                 apsel = dap->apsel;
1619                 break;
1620         case 1:
1621                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1622                 /* AP address is in bits 31:24 of DP_SELECT */
1623                 if (apsel >= 256)
1624                         return ERROR_INVALID_ARGUMENTS;
1625                 break;
1626         default:
1627                 return ERROR_COMMAND_SYNTAX_ERROR;
1628         }
1629
1630         dap_ap_select(dap, apsel);
1631
1632         /* NOTE:  assumes we're talking to a MEM-AP, which
1633          * has a base address.  There are other kinds of AP,
1634          * though they're not common for now.  This should
1635          * use the ID register to verify it's a MEM-AP.
1636          */
1637         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1638         if (retval != ERROR_OK)
1639                 return retval;
1640         retval = dap_run(dap);
1641         if (retval != ERROR_OK)
1642                 return retval;
1643
1644         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1645
1646         return retval;
1647 }
1648
1649 COMMAND_HANDLER(dap_memaccess_command)
1650 {
1651         struct target *target = get_current_target(CMD_CTX);
1652         struct arm *arm = target_to_arm(target);
1653         struct adiv5_dap *dap = arm->dap;
1654
1655         uint32_t memaccess_tck;
1656
1657         switch (CMD_ARGC) {
1658         case 0:
1659                 memaccess_tck = dap->memaccess_tck;
1660                 break;
1661         case 1:
1662                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1663                 break;
1664         default:
1665                 return ERROR_COMMAND_SYNTAX_ERROR;
1666         }
1667         dap->memaccess_tck = memaccess_tck;
1668
1669         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1670                         dap->memaccess_tck);
1671
1672         return ERROR_OK;
1673 }
1674
1675 COMMAND_HANDLER(dap_apsel_command)
1676 {
1677         struct target *target = get_current_target(CMD_CTX);
1678         struct arm *arm = target_to_arm(target);
1679         struct adiv5_dap *dap = arm->dap;
1680
1681         uint32_t apsel, apid;
1682         int retval;
1683
1684         switch (CMD_ARGC) {
1685         case 0:
1686                 apsel = 0;
1687                 break;
1688         case 1:
1689                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1690                 /* AP address is in bits 31:24 of DP_SELECT */
1691                 if (apsel >= 256)
1692                         return ERROR_INVALID_ARGUMENTS;
1693                 break;
1694         default:
1695                 return ERROR_COMMAND_SYNTAX_ERROR;
1696         }
1697
1698         dap->apsel = apsel;
1699         dap_ap_select(dap, apsel);
1700
1701         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1702         if (retval != ERROR_OK)
1703                 return retval;
1704         retval = dap_run(dap);
1705         if (retval != ERROR_OK)
1706                 return retval;
1707
1708         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1709                         apsel, apid);
1710
1711         return retval;
1712 }
1713
1714 COMMAND_HANDLER(dap_apid_command)
1715 {
1716         struct target *target = get_current_target(CMD_CTX);
1717         struct arm *arm = target_to_arm(target);
1718         struct adiv5_dap *dap = arm->dap;
1719
1720         uint32_t apsel, apid;
1721         int retval;
1722
1723         switch (CMD_ARGC) {
1724         case 0:
1725                 apsel = dap->apsel;
1726                 break;
1727         case 1:
1728                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1729                 /* AP address is in bits 31:24 of DP_SELECT */
1730                 if (apsel >= 256)
1731                         return ERROR_INVALID_ARGUMENTS;
1732                 break;
1733         default:
1734                 return ERROR_COMMAND_SYNTAX_ERROR;
1735         }
1736
1737         dap_ap_select(dap, apsel);
1738
1739         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1740         if (retval != ERROR_OK)
1741                 return retval;
1742         retval = dap_run(dap);
1743         if (retval != ERROR_OK)
1744                 return retval;
1745
1746         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1747
1748         return retval;
1749 }
1750
1751 static const struct command_registration dap_commands[] = {
1752         {
1753                 .name = "info",
1754                 .handler = handle_dap_info_command,
1755                 .mode = COMMAND_EXEC,
1756                 .help = "display ROM table for MEM-AP "
1757                         "(default currently selected AP)",
1758                 .usage = "[ap_num]",
1759         },
1760         {
1761                 .name = "apsel",
1762                 .handler = dap_apsel_command,
1763                 .mode = COMMAND_EXEC,
1764                 .help = "Set the currently selected AP (default 0) "
1765                         "and display the result",
1766                 .usage = "[ap_num]",
1767         },
1768         {
1769                 .name = "apid",
1770                 .handler = dap_apid_command,
1771                 .mode = COMMAND_EXEC,
1772                 .help = "return ID register from AP "
1773                         "(default currently selected AP)",
1774                 .usage = "[ap_num]",
1775         },
1776         {
1777                 .name = "baseaddr",
1778                 .handler = dap_baseaddr_command,
1779                 .mode = COMMAND_EXEC,
1780                 .help = "return debug base address from MEM-AP "
1781                         "(default currently selected AP)",
1782                 .usage = "[ap_num]",
1783         },
1784         {
1785                 .name = "memaccess",
1786                 .handler = dap_memaccess_command,
1787                 .mode = COMMAND_EXEC,
1788                 .help = "set/get number of extra tck for MEM-AP memory "
1789                         "bus access [0-255]",
1790                 .usage = "[cycles]",
1791         },
1792         COMMAND_REGISTRATION_DONE
1793 };
1794
1795 const struct command_registration dap_command_handlers[] = {
1796         {
1797                 .name = "dap",
1798                 .mode = COMMAND_EXEC,
1799                 .help = "DAP command group",
1800                 .chain = dap_commands,
1801         },
1802         COMMAND_REGISTRATION_DONE
1803 };
1804
1805