1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
11 * Copyright (C) 2009-2010 by David Brownell *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
88 /***************************************************************************
90 * DP and MEM-AP register access through APACC and DPACC *
92 ***************************************************************************/
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
107 if (new_ap != dap->ap_current)
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
128 * @todo Rename to reflect it being specifically a MEM-AP function.
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
149 dap->ap_csw_value = csw;
151 if (tar != dap->ap_tar_value)
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
157 dap->ap_tar_value = tar;
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
166 * Asynchronous (queued) read of a word from memory or a system register.
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
174 * @return ERROR_OK for success. Otherwise a fault code.
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
217 * Asynchronous (queued) write of a word to memory or a system register.
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
225 * @return ERROR_OK for success. Otherwise a fault code.
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
258 int retval = mem_ap_write_u32(dap, address, value);
260 if (retval != ERROR_OK)
266 /*****************************************************************************
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
270 * Write a buffer in target order (little endian) *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 const uint8_t* pBuffer = buffer;
282 /* if we have an unaligned access - reorder data */
285 for (writecount = 0; writecount < count; writecount++)
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
291 for (i = 0; i < 4; i++)
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
297 pBuffer += sizeof(uint32_t);
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
308 /* handle unaligned data at 4k boundary */
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
316 for (writecount = 0; writecount < blocksize; writecount++)
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
324 if ((retval = dap_run(dap)) == ERROR_OK)
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 const uint8_t *buffer, int count, uint32_t address)
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
360 if (wcount < blocksize)
363 /* handle unaligned data at 4k boundary */
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
370 writecount = blocksize;
374 nbytes = MIN((writecount << 1), 4);
378 retval = mem_ap_write_buf_u16(dap, buffer,
380 if (retval != ERROR_OK)
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
388 address += nbytes >> 1;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
395 for (i = 0; i < nbytes; i++)
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
408 if ((retval = dap_run(dap)) != ERROR_OK)
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
420 } while (writecount);
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
429 int retval = ERROR_OK;
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 const uint8_t *buffer, int count, uint32_t address)
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
473 if (wcount < blocksize)
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
479 writecount = blocksize;
483 nbytes = MIN(writecount, 4);
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 for (i = 0; i < nbytes; i++)
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
516 if ((retval = dap_run(dap)) != ERROR_OK)
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
526 writecount -= nbytes;
528 } while (writecount);
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
537 int retval = ERROR_OK;
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
597 if (wcount < blocksize)
600 /* handle unaligned data at 4k boundary */
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
606 if (retval != ERROR_OK)
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
630 if (retval != ERROR_OK)
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
640 if (retval != ERROR_OK)
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
660 /* if we have an unaligned access - reorder data */
663 for (readcount = 0; readcount < count; readcount++)
667 memcpy(&data, pBuffer, sizeof(uint32_t));
669 for (i = 0; i < 4; i++)
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
704 /* handle unaligned data at 4k boundary */
707 readcount = blocksize;
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
714 if ((retval = dap_run(dap)) != ERROR_OK)
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
720 nbytes = MIN((readcount << 1), 4);
722 for (i = 0; i < nbytes; i++)
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
729 readcount -= (nbytes >> 1);
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
749 int retval = ERROR_OK;
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
769 for (i = 0; i < 2; i++)
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
811 if (wcount < blocksize)
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
817 readcount = blocksize;
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
824 if ((retval = dap_run(dap)) != ERROR_OK)
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
830 nbytes = MIN(readcount, 4);
832 for (i = 0; i < nbytes; i++)
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
859 int retval = ERROR_OK;
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 const uint8_t *buffer, int count, uint32_t address)
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 const uint8_t *buffer, int count, uint32_t address)
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 const uint8_t *buffer, int count, uint32_t address)
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
959 /*--------------------------------------------------------------------------*/
962 /* FIXME don't import ... just initialize as
963 * part of DAP transport setup
965 extern const struct dap_ops jtag_dp_ops;
967 /*--------------------------------------------------------------------------*/
970 * Initialize a DAP. This sets up the power domains, prepares the DP
971 * for further use, and arranges to use AP #0 for all AP operations
972 * until dap_ap-select() changes that policy.
974 * @param dap The DAP being initialized.
976 * @todo Rename this. We also need an initialization scheme which account
977 * for SWD transports not just JTAG; that will need to address differences
978 * in layering. (JTAG is useful without any debug target; but not SWD.)
979 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
981 int ahbap_debugport_init(struct adiv5_dap *dap)
989 /* JTAG-DP or SWJ-DP, in JTAG mode
990 * ... for SWD mode this is patched as part
994 dap->ops = &jtag_dp_ops;
996 /* Default MEM-AP setup.
998 * REVISIT AP #0 may be an inappropriate default for this.
999 * Should we probe, or take a hint from the caller?
1000 * Presumably we can ignore the possibility of multiple APs.
1002 dap->ap_current = !0;
1003 dap_ap_select(dap, 0);
1005 /* DP initialization */
1007 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008 if (retval != ERROR_OK)
1011 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012 if (retval != ERROR_OK)
1015 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016 if (retval != ERROR_OK)
1019 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021 if (retval != ERROR_OK)
1024 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025 if (retval != ERROR_OK)
1027 if ((retval = dap_run(dap)) != ERROR_OK)
1030 /* Check that we have debug power domains activated */
1031 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1033 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035 if (retval != ERROR_OK)
1037 if ((retval = dap_run(dap)) != ERROR_OK)
1042 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1044 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046 if (retval != ERROR_OK)
1048 if ((retval = dap_run(dap)) != ERROR_OK)
1053 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054 if (retval != ERROR_OK)
1056 /* With debug power on we can activate OVERRUN checking */
1057 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059 if (retval != ERROR_OK)
1061 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062 if (retval != ERROR_OK)
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069 * and ARM IHI 0031A table 13-3.
1071 static const char *class_description[16] ={
1072 "Reserved", "ROM table", "Reserved", "Reserved",
1073 "Reserved", "Reserved", "Reserved", "Reserved",
1074 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075 "Reserved", "OptimoDE DESS",
1076 "Generic IP component", "PrimeCell or System component"
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1082 return cid3 == 0xb1 && cid2 == 0x05
1083 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1086 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1087 uint32_t *out_dbgbase, uint32_t *out_apid)
1091 uint32_t dbgbase, apid;
1093 /* AP address is in bits 31:24 of DP_SELECT */
1095 return ERROR_INVALID_ARGUMENTS;
1097 ap_old = dap->ap_current;
1098 dap_ap_select(dap, ap);
1100 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1101 if (retval != ERROR_OK)
1103 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1104 if (retval != ERROR_OK)
1106 retval = dap_run(dap);
1107 if (retval != ERROR_OK)
1110 /* Excavate the device ID code */
1111 struct jtag_tap *tap = dap->jtag_info->tap;
1112 while (tap != NULL) {
1115 tap = tap->next_tap;
1117 if (tap == NULL || !tap->hasidcode)
1120 dap_ap_select(dap, ap_old);
1122 /* The asignment happens only here to prevent modification of these
1123 * values before they are certain. */
1124 *out_dbgbase = dbgbase;
1130 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1131 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1134 uint32_t romentry, entry_offset = 0, component_base, devtype;
1135 int retval = ERROR_FAIL;
1138 return ERROR_INVALID_ARGUMENTS;
1140 ap_old = dap->ap_current;
1141 dap_ap_select(dap, ap);
1145 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1146 entry_offset, &romentry);
1147 if (retval != ERROR_OK)
1150 component_base = (dbgbase & 0xFFFFF000)
1151 + (romentry & 0xFFFFF000);
1153 if (romentry & 0x1) {
1154 retval = mem_ap_read_atomic_u32(dap,
1155 (component_base & 0xfffff000) | 0xfcc,
1157 if ((devtype & 0xff) == type) {
1158 *addr = component_base;
1164 } while (romentry > 0);
1166 dap_ap_select(dap, ap_old);
1171 static int dap_info_command(struct command_context *cmd_ctx,
1172 struct adiv5_dap *dap, int ap)
1175 uint32_t dbgbase, apid;
1176 int romtable_present = 0;
1180 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1181 if (retval != ERROR_OK)
1184 ap_old = dap->ap_current;
1185 dap_ap_select(dap, ap);
1187 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1188 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1189 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1195 command_print(cmd_ctx, "\tType is JTAG-AP");
1198 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1201 command_print(cmd_ctx, "\tType is MEM-AP APB");
1204 command_print(cmd_ctx, "\tUnknown AP type");
1208 /* NOTE: a MEM-AP may have a single CoreSight component that's
1209 * not a ROM table ... or have no such components at all.
1212 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1217 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1220 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1221 if (romtable_present)
1223 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1224 uint16_t entry_offset;
1226 /* bit 16 of apid indicates a memory access port */
1228 command_print(cmd_ctx, "\tValid ROM table present");
1230 command_print(cmd_ctx, "\tROM table in legacy format");
1232 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1233 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1234 if (retval != ERROR_OK)
1236 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1237 if (retval != ERROR_OK)
1239 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1240 if (retval != ERROR_OK)
1242 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1243 if (retval != ERROR_OK)
1245 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1246 if (retval != ERROR_OK)
1248 retval = dap_run(dap);
1249 if (retval != ERROR_OK)
1252 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1253 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1257 (unsigned) cid3, (unsigned)cid2,
1258 (unsigned) cid1, (unsigned) cid0);
1260 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1262 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1263 "Dedicated debug bus.");
1265 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1269 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1270 if (retval != ERROR_OK)
1272 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1275 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1276 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1277 uint32_t component_base;
1281 component_base = (dbgbase & 0xFFFFF000)
1282 + (romentry & 0xFFFFF000);
1284 /* IDs are in last 4K section */
1287 retval = mem_ap_read_atomic_u32(dap,
1288 component_base + 0xFE0, &c_pid0);
1289 if (retval != ERROR_OK)
1292 retval = mem_ap_read_atomic_u32(dap,
1293 component_base + 0xFE4, &c_pid1);
1294 if (retval != ERROR_OK)
1297 retval = mem_ap_read_atomic_u32(dap,
1298 component_base + 0xFE8, &c_pid2);
1299 if (retval != ERROR_OK)
1302 retval = mem_ap_read_atomic_u32(dap,
1303 component_base + 0xFEC, &c_pid3);
1304 if (retval != ERROR_OK)
1307 retval = mem_ap_read_atomic_u32(dap,
1308 component_base + 0xFD0, &c_pid4);
1309 if (retval != ERROR_OK)
1313 retval = mem_ap_read_atomic_u32(dap,
1314 component_base + 0xFF0, &c_cid0);
1315 if (retval != ERROR_OK)
1318 retval = mem_ap_read_atomic_u32(dap,
1319 component_base + 0xFF4, &c_cid1);
1320 if (retval != ERROR_OK)
1323 retval = mem_ap_read_atomic_u32(dap,
1324 component_base + 0xFF8, &c_cid2);
1325 if (retval != ERROR_OK)
1328 retval = mem_ap_read_atomic_u32(dap,
1329 component_base + 0xFFC, &c_cid3);
1330 if (retval != ERROR_OK)
1335 command_print(cmd_ctx,
1336 "\t\tComponent base address 0x%" PRIx32
1337 ", start address 0x%" PRIx32,
1339 /* component may take multiple 4K pages */
1340 component_base - 0x1000*(c_pid4 >> 4));
1341 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1342 (int) (c_cid1 >> 4) & 0xf,
1343 /* See ARM IHI 0029B Table 3-3 */
1344 class_description[(c_cid1 >> 4) & 0xf]);
1346 /* CoreSight component? */
1347 if (((c_cid1 >> 4) & 0x0f) == 9) {
1350 char *major = "Reserved", *subtype = "Reserved";
1352 retval = mem_ap_read_atomic_u32(dap,
1353 (component_base & 0xfffff000) | 0xfcc,
1355 if (retval != ERROR_OK)
1357 minor = (devtype >> 4) & 0x0f;
1358 switch (devtype & 0x0f) {
1360 major = "Miscellaneous";
1366 subtype = "Validation component";
1371 major = "Trace Sink";
1385 major = "Trace Link";
1391 subtype = "Funnel, router";
1397 subtype = "FIFO, buffer";
1402 major = "Trace Source";
1408 subtype = "Processor";
1414 subtype = "Engine/Coprocessor";
1422 major = "Debug Control";
1428 subtype = "Trigger Matrix";
1431 subtype = "Debug Auth";
1436 major = "Debug Logic";
1442 subtype = "Processor";
1448 subtype = "Engine/Coprocessor";
1453 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1454 (unsigned) (devtype & 0xff),
1456 /* REVISIT also show 0xfc8 DevId */
1459 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1460 command_print(cmd_ctx,
1469 command_print(cmd_ctx,
1470 "\t\tPeripheral ID[4..0] = hex "
1471 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1472 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1473 (int) c_pid1, (int) c_pid0);
1475 /* Part number interpretations are from Cortex
1476 * core specs, the CoreSight components TRM
1477 * (ARM DDI 0314H), CoreSight System Design
1478 * Guide (ARM DGI 0012D) and ETM specs; also
1479 * from chip observation (e.g. TI SDTI).
1481 part_num = (c_pid0 & 0xff);
1482 part_num |= (c_pid1 & 0x0f) << 8;
1485 type = "Cortex-M3 NVIC";
1486 full = "(Interrupt Controller)";
1489 type = "Cortex-M3 ITM";
1490 full = "(Instrumentation Trace Module)";
1493 type = "Cortex-M3 DWT";
1494 full = "(Data Watchpoint and Trace)";
1497 type = "Cortex-M3 FBP";
1498 full = "(Flash Patch and Breakpoint)";
1501 type = "CoreSight ETM11";
1502 full = "(Embedded Trace)";
1504 // case 0x113: what?
1505 case 0x120: /* from OMAP3 memmap */
1507 full = "(System Debug Trace Interface)";
1509 case 0x343: /* from OMAP3 memmap */
1514 type = "Coresight CTI";
1515 full = "(Cross Trigger)";
1518 type = "Coresight ETB";
1519 full = "(Trace Buffer)";
1522 type = "Coresight CSTF";
1523 full = "(Trace Funnel)";
1526 type = "CoreSight ETM9";
1527 full = "(Embedded Trace)";
1530 type = "Coresight TPIU";
1531 full = "(Trace Port Interface Unit)";
1534 type = "Cortex-A8 ETM";
1535 full = "(Embedded Trace)";
1538 type = "Cortex-A8 CTI";
1539 full = "(Cross Trigger)";
1542 type = "Cortex-M3 TPIU";
1543 full = "(Trace Port Interface Unit)";
1546 type = "Cortex-M3 ETM";
1547 full = "(Embedded Trace)";
1550 type = "Cortex-R4 ETM";
1551 full = "(Embedded Trace)";
1554 type = "Cortex-A8 Debug";
1555 full = "(Debug Unit)";
1558 type = "-*- unrecognized -*-";
1562 command_print(cmd_ctx, "\t\tPart is %s %s",
1568 command_print(cmd_ctx, "\t\tComponent not present");
1570 command_print(cmd_ctx, "\t\tEnd of ROM table");
1573 } while (romentry > 0);
1577 command_print(cmd_ctx, "\tNo ROM table present");
1579 dap_ap_select(dap, ap_old);
1584 COMMAND_HANDLER(handle_dap_info_command)
1586 struct target *target = get_current_target(CMD_CTX);
1587 struct arm *arm = target_to_arm(target);
1588 struct adiv5_dap *dap = arm->dap;
1596 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1599 return ERROR_COMMAND_SYNTAX_ERROR;
1602 return dap_info_command(CMD_CTX, dap, apsel);
1605 COMMAND_HANDLER(dap_baseaddr_command)
1607 struct target *target = get_current_target(CMD_CTX);
1608 struct arm *arm = target_to_arm(target);
1609 struct adiv5_dap *dap = arm->dap;
1611 uint32_t apsel, baseaddr;
1619 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1620 /* AP address is in bits 31:24 of DP_SELECT */
1622 return ERROR_INVALID_ARGUMENTS;
1625 return ERROR_COMMAND_SYNTAX_ERROR;
1628 dap_ap_select(dap, apsel);
1630 /* NOTE: assumes we're talking to a MEM-AP, which
1631 * has a base address. There are other kinds of AP,
1632 * though they're not common for now. This should
1633 * use the ID register to verify it's a MEM-AP.
1635 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1636 if (retval != ERROR_OK)
1638 retval = dap_run(dap);
1639 if (retval != ERROR_OK)
1642 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1647 COMMAND_HANDLER(dap_memaccess_command)
1649 struct target *target = get_current_target(CMD_CTX);
1650 struct arm *arm = target_to_arm(target);
1651 struct adiv5_dap *dap = arm->dap;
1653 uint32_t memaccess_tck;
1657 memaccess_tck = dap->memaccess_tck;
1660 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1663 return ERROR_COMMAND_SYNTAX_ERROR;
1665 dap->memaccess_tck = memaccess_tck;
1667 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1668 dap->memaccess_tck);
1673 COMMAND_HANDLER(dap_apsel_command)
1675 struct target *target = get_current_target(CMD_CTX);
1676 struct arm *arm = target_to_arm(target);
1677 struct adiv5_dap *dap = arm->dap;
1679 uint32_t apsel, apid;
1687 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1688 /* AP address is in bits 31:24 of DP_SELECT */
1690 return ERROR_INVALID_ARGUMENTS;
1693 return ERROR_COMMAND_SYNTAX_ERROR;
1697 dap_ap_select(dap, apsel);
1699 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1700 if (retval != ERROR_OK)
1702 retval = dap_run(dap);
1703 if (retval != ERROR_OK)
1706 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1712 COMMAND_HANDLER(dap_apid_command)
1714 struct target *target = get_current_target(CMD_CTX);
1715 struct arm *arm = target_to_arm(target);
1716 struct adiv5_dap *dap = arm->dap;
1718 uint32_t apsel, apid;
1726 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1727 /* AP address is in bits 31:24 of DP_SELECT */
1729 return ERROR_INVALID_ARGUMENTS;
1732 return ERROR_COMMAND_SYNTAX_ERROR;
1735 dap_ap_select(dap, apsel);
1737 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1738 if (retval != ERROR_OK)
1740 retval = dap_run(dap);
1741 if (retval != ERROR_OK)
1744 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1749 static const struct command_registration dap_commands[] = {
1752 .handler = handle_dap_info_command,
1753 .mode = COMMAND_EXEC,
1754 .help = "display ROM table for MEM-AP "
1755 "(default currently selected AP)",
1756 .usage = "[ap_num]",
1760 .handler = dap_apsel_command,
1761 .mode = COMMAND_EXEC,
1762 .help = "Set the currently selected AP (default 0) "
1763 "and display the result",
1764 .usage = "[ap_num]",
1768 .handler = dap_apid_command,
1769 .mode = COMMAND_EXEC,
1770 .help = "return ID register from AP "
1771 "(default currently selected AP)",
1772 .usage = "[ap_num]",
1776 .handler = dap_baseaddr_command,
1777 .mode = COMMAND_EXEC,
1778 .help = "return debug base address from MEM-AP "
1779 "(default currently selected AP)",
1780 .usage = "[ap_num]",
1783 .name = "memaccess",
1784 .handler = dap_memaccess_command,
1785 .mode = COMMAND_EXEC,
1786 .help = "set/get number of extra tck for MEM-AP memory "
1787 "bus access [0-255]",
1788 .usage = "[cycles]",
1790 COMMAND_REGISTRATION_DONE
1793 const struct command_registration dap_command_handlers[] = {
1796 .mode = COMMAND_EXEC,
1797 .help = "DAP command group",
1798 .chain = dap_commands,
1800 COMMAND_REGISTRATION_DONE