]> git.sur5r.net Git - openocd/blob - src/target/arm_adi_v5.c
Fix load_image for ELF with all p_paddr set to zero
[openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
78
79 /*
80         uint32_t tar_block_size(uint32_t address)
81         Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89  *                                                                         *
90  * DP and MEM-AP  register access  through APACC and DPACC                 *
91  *                                                                         *
92 ***************************************************************************/
93
94 /**
95  * Select one of the APs connected to the specified DAP.  The
96  * selection is implicitly used with future AP transactions.
97  * This is a NOP if the specified AP is already selected.
98  *
99  * @param dap The DAP
100  * @param apsel Number of the AP to (implicitly) use with further
101  *      transactions.  This normally identifies a MEM-AP.
102  */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
104 {
105         uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107         if (new_ap != dap->ap_current)
108         {
109                 dap->ap_current = new_ap;
110                 /* Switching AP invalidates cached values.
111                  * Values MUST BE UPDATED BEFORE AP ACCESS.
112                  */
113                 dap->ap_bank_value = -1;
114                 dap->ap_csw_value = -1;
115                 dap->ap_tar_value = -1;
116         }
117 }
118
119 /**
120  * Queue transactions setting up transfer parameters for the
121  * currently selected MEM-AP.
122  *
123  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124  * initiate data reads or writes using memory or peripheral addresses.
125  * If the CSW is configured for it, the TAR may be automatically
126  * incremented after each transfer.
127  *
128  * @todo Rename to reflect it being specifically a MEM-AP function.
129  *
130  * @param dap The DAP connected to the MEM-AP.
131  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
132  *      matches the cached value, the register is not changed.
133  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
134  *      matches the cached address, the register is not changed.
135  *
136  * @return ERROR_OK if the transaction was properly queued, else a fault code.
137  */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140         int retval;
141
142         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143         if (csw != dap->ap_csw_value)
144         {
145                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147                 if (retval != ERROR_OK)
148                         return retval;
149                 dap->ap_csw_value = csw;
150         }
151         if (tar != dap->ap_tar_value)
152         {
153                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155                 if (retval != ERROR_OK)
156                         return retval;
157                 dap->ap_tar_value = tar;
158         }
159         /* Disable TAR cache when autoincrementing */
160         if (csw & CSW_ADDRINC_MASK)
161                 dap->ap_tar_value = -1;
162         return ERROR_OK;
163 }
164
165 /**
166  * Asynchronous (queued) read of a word from memory or a system register.
167  *
168  * @param dap The DAP connected to the MEM-AP performing the read.
169  * @param address Address of the 32-bit word to read; it must be
170  *      readable by the currently selected MEM-AP.
171  * @param value points to where the word will be stored when the
172  *      transaction queue is flushed (assuming no errors).
173  *
174  * @return ERROR_OK for success.  Otherwise a fault code.
175  */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177                 uint32_t *value)
178 {
179         int retval;
180
181         /* Use banked addressing (REG_BDx) to avoid some link traffic
182          * (updating TAR) when reading several consecutive addresses.
183          */
184         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185                         address & 0xFFFFFFF0);
186         if (retval != ERROR_OK)
187                 return retval;
188
189         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193  * Synchronous read of a word from memory or a system register.
194  * As a side effect, this flushes any queued transactions.
195  *
196  * @param dap The DAP connected to the MEM-AP performing the read.
197  * @param address Address of the 32-bit word to read; it must be
198  *      readable by the currently selected MEM-AP.
199  * @param value points to where the result will be stored.
200  *
201  * @return ERROR_OK for success; *value holds the result.
202  * Otherwise a fault code.
203  */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205                 uint32_t *value)
206 {
207         int retval;
208
209         retval = mem_ap_read_u32(dap, address, value);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         return dap_run(dap);
214 }
215
216 /**
217  * Asynchronous (queued) write of a word to memory or a system register.
218  *
219  * @param dap The DAP connected to the MEM-AP.
220  * @param address Address to be written; it must be writable by
221  *      the currently selected MEM-AP.
222  * @param value Word that will be written to the address when transaction
223  *      queue is flushed (assuming no errors).
224  *
225  * @return ERROR_OK for success.  Otherwise a fault code.
226  */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228                 uint32_t value)
229 {
230         int retval;
231
232         /* Use banked addressing (REG_BDx) to avoid some link traffic
233          * (updating TAR) when writing several consecutive addresses.
234          */
235         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236                         address & 0xFFFFFFF0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241                         value);
242 }
243
244 /**
245  * Synchronous write of a word to memory or a system register.
246  * As a side effect, this flushes any queued transactions.
247  *
248  * @param dap The DAP connected to the MEM-AP.
249  * @param address Address to be written; it must be writable by
250  *      the currently selected MEM-AP.
251  * @param value Word that will be written.
252  *
253  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
254  */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256                 uint32_t value)
257 {
258         int retval = mem_ap_write_u32(dap, address, value);
259
260         if (retval != ERROR_OK)
261                 return retval;
262
263         return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 *                                                                            *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 *                                                                            *
270 * Write a buffer in target order (little endian)                             *
271 *                                                                            *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
274 {
275         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276         uint32_t adr = address;
277         const uint8_t* pBuffer = buffer;
278
279         count >>= 2;
280         wcount = count;
281
282         /* if we have an unaligned access - reorder data */
283         if (adr & 0x3u)
284         {
285                 for (writecount = 0; writecount < count; writecount++)
286                 {
287                         int i;
288                         uint32_t outvalue;
289                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291                         for (i = 0; i < 4; i++)
292                         {
293                                 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294                                 outvalue >>= 8;
295                                 adr++;
296                         }
297                         pBuffer += sizeof(uint32_t);
298                 }
299         }
300
301         while (wcount > 0)
302         {
303                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305                 if (wcount < blocksize)
306                         blocksize = wcount;
307
308                 /* handle unaligned data at 4k boundary */
309                 if (blocksize == 0)
310                         blocksize = 1;
311
312                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313                 if (retval != ERROR_OK)
314                         return retval;
315
316                 for (writecount = 0; writecount < blocksize; writecount++)
317                 {
318                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
319                                 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320                         if (retval != ERROR_OK)
321                                 break;
322                 }
323
324                 if ((retval = dap_run(dap)) == ERROR_OK)
325                 {
326                         wcount = wcount - blocksize;
327                         address = address + 4 * blocksize;
328                         buffer = buffer + 4 * blocksize;
329                 }
330                 else
331                 {
332                         errorcount++;
333                 }
334
335                 if (errorcount > 1)
336                 {
337                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338                         return retval;
339                 }
340         }
341
342         return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346                 const uint8_t *buffer, int count, uint32_t address)
347 {
348         int retval = ERROR_OK;
349         int wcount, blocksize, writecount, i;
350
351         wcount = count >> 1;
352
353         while (wcount > 0)
354         {
355                 int nbytes;
356
357                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360                 if (wcount < blocksize)
361                         blocksize = wcount;
362
363                 /* handle unaligned data at 4k boundary */
364                 if (blocksize == 0)
365                         blocksize = 1;
366
367                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368                 if (retval != ERROR_OK)
369                         return retval;
370                 writecount = blocksize;
371
372                 do
373                 {
374                         nbytes = MIN((writecount << 1), 4);
375
376                         if (nbytes < 4)
377                         {
378                                 retval = mem_ap_write_buf_u16(dap, buffer,
379                                                 nbytes, address);
380                                 if (retval != ERROR_OK)
381                                 {
382                                         LOG_WARNING("Block write error address "
383                                                 "0x%" PRIx32 ", count 0x%x",
384                                                 address, count);
385                                         return retval;
386                                 }
387
388                                 address += nbytes >> 1;
389                         }
390                         else
391                         {
392                                 uint32_t outvalue;
393                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395                                 for (i = 0; i < nbytes; i++)
396                                 {
397                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398                                         outvalue >>= 8;
399                                         address++;
400                                 }
401
402                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
403                                 retval = dap_queue_ap_write(dap,
404                                                 AP_REG_DRW, outvalue);
405                                 if (retval != ERROR_OK)
406                                         break;
407
408                                 if ((retval = dap_run(dap)) != ERROR_OK)
409                                 {
410                                         LOG_WARNING("Block write error address "
411                                                 "0x%" PRIx32 ", count 0x%x",
412                                                 address, count);
413                                         return retval;
414                                 }
415                         }
416
417                         buffer += nbytes >> 1;
418                         writecount -= nbytes >> 1;
419
420                 } while (writecount);
421                 wcount -= blocksize;
422         }
423
424         return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
428 {
429         int retval = ERROR_OK;
430
431         if (count >= 4)
432                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434         while (count > 0)
435         {
436                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437                 if (retval != ERROR_OK)
438                         return retval;
439                 uint16_t svalue;
440                 memcpy(&svalue, buffer, sizeof(uint16_t));
441                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443                 if (retval != ERROR_OK)
444                         break;
445
446                 retval = dap_run(dap);
447                 if (retval != ERROR_OK)
448                         break;
449
450                 count -= 2;
451                 address += 2;
452                 buffer += 2;
453         }
454
455         return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459                 const uint8_t *buffer, int count, uint32_t address)
460 {
461         int retval = ERROR_OK;
462         int wcount, blocksize, writecount, i;
463
464         wcount = count;
465
466         while (wcount > 0)
467         {
468                 int nbytes;
469
470                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473                 if (wcount < blocksize)
474                         blocksize = wcount;
475
476                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 writecount = blocksize;
480
481                 do
482                 {
483                         nbytes = MIN(writecount, 4);
484
485                         if (nbytes < 4)
486                         {
487                                 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488                                 if (retval != ERROR_OK)
489                                 {
490                                         LOG_WARNING("Block write error address "
491                                                 "0x%" PRIx32 ", count 0x%x",
492                                                 address, count);
493                                         return retval;
494                                 }
495
496                                 address += nbytes;
497                         }
498                         else
499                         {
500                                 uint32_t outvalue;
501                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503                                 for (i = 0; i < nbytes; i++)
504                                 {
505                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506                                         outvalue >>= 8;
507                                         address++;
508                                 }
509
510                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
511                                 retval = dap_queue_ap_write(dap,
512                                                 AP_REG_DRW, outvalue);
513                                 if (retval != ERROR_OK)
514                                         break;
515
516                                 if ((retval = dap_run(dap)) != ERROR_OK)
517                                 {
518                                         LOG_WARNING("Block write error address "
519                                                 "0x%" PRIx32 ", count 0x%x",
520                                                 address, count);
521                                         return retval;
522                                 }
523                         }
524
525                         buffer += nbytes;
526                         writecount -= nbytes;
527
528                 } while (writecount);
529                 wcount -= blocksize;
530         }
531
532         return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
536 {
537         int retval = ERROR_OK;
538
539         if (count >= 4)
540                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542         while (count > 0)
543         {
544                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545                 if (retval != ERROR_OK)
546                         return retval;
547                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549                 if (retval != ERROR_OK)
550                         break;
551
552                 retval = dap_run(dap);
553                 if (retval != ERROR_OK)
554                         break;
555
556                 count--;
557                 address++;
558                 buffer++;
559         }
560
561         return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566  */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572  * Synchronously read a block of 32-bit words into a buffer
573  * @param dap The DAP connected to the MEM-AP.
574  * @param buffer where the words will be stored (in host byte order).
575  * @param count How many words to read.
576  * @param address Memory address from which to read words; all the
577  *      words must be readable by the currently selected MEM-AP.
578  */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580                 int count, uint32_t address)
581 {
582         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583         uint32_t adr = address;
584         uint8_t* pBuffer = buffer;
585
586         count >>= 2;
587         wcount = count;
588
589         while (wcount > 0)
590         {
591                 /* Adjust to read blocks within boundaries aligned to the
592                  * TAR autoincrement size (at least 2^10).  Autoincrement
593                  * mode avoids an extra per-word roundtrip to update TAR.
594                  */
595                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596                                 address);
597                 if (wcount < blocksize)
598                         blocksize = wcount;
599
600                 /* handle unaligned data at 4k boundary */
601                 if (blocksize == 0)
602                         blocksize = 1;
603
604                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605                                 address);
606                 if (retval != ERROR_OK)
607                         return retval;
608
609                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610                  * so this routine becomes transport-neutral.  Be careful
611                  * not to cause performance problems with JTAG; would it
612                  * suffice to loop over dap_queue_ap_read(), or would that
613                  * be slower when JTAG is the chosen transport?
614                  */
615
616                 /* Scan out first read */
617                 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618                                 DPAP_READ, 0, NULL, NULL);
619                 if (retval != ERROR_OK)
620                         return retval;
621                 for (readcount = 0; readcount < blocksize - 1; readcount++)
622                 {
623                         /* Scan out next read; scan in posted value for the
624                          * previous one.  Assumes read is acked "OK/FAULT",
625                          * and CTRL_STAT says that meant "OK".
626                          */
627                         retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628                                         DPAP_READ, 0, buffer + 4 * readcount,
629                                         &dap->ack);
630                         if (retval != ERROR_OK)
631                                 return retval;
632                 }
633
634                 /* Scan in last posted value; RDBUFF has no other effect,
635                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636                  */
637                 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638                                 DPAP_READ, 0, buffer + 4 * readcount,
639                                 &dap->ack);
640                 if (retval != ERROR_OK)
641                         return retval;
642
643                 retval = dap_run(dap);
644                 if (retval != ERROR_OK)
645                 {
646                         errorcount++;
647                         if (errorcount <= 1)
648                         {
649                                 /* try again */
650                                 continue;
651                         }
652                         LOG_WARNING("Block read error address 0x%" PRIx32, address);
653                         return retval;
654                 }
655                 wcount = wcount - blocksize;
656                 address += 4 * blocksize;
657                 buffer += 4 * blocksize;
658         }
659
660         /* if we have an unaligned access - reorder data */
661         if (adr & 0x3u)
662         {
663                 for (readcount = 0; readcount < count; readcount++)
664                 {
665                         int i;
666                         uint32_t data;
667                         memcpy(&data, pBuffer, sizeof(uint32_t));
668
669                         for (i = 0; i < 4; i++)
670                         {
671                                 *((uint8_t*)pBuffer) =
672                                                 (data >> 8 * (adr & 0x3));
673                                 pBuffer++;
674                                 adr++;
675                         }
676                 }
677         }
678
679         return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683                 uint8_t *buffer, int count, uint32_t address)
684 {
685         uint32_t invalue;
686         int retval = ERROR_OK;
687         int wcount, blocksize, readcount, i;
688
689         wcount = count >> 1;
690
691         while (wcount > 0)
692         {
693                 int nbytes;
694
695                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697                 if (wcount < blocksize)
698                         blocksize = wcount;
699
700                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701                 if (retval != ERROR_OK)
702                         return retval;
703
704                 /* handle unaligned data at 4k boundary */
705                 if (blocksize == 0)
706                         blocksize = 1;
707                 readcount = blocksize;
708
709                 do
710                 {
711                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712                         if (retval != ERROR_OK)
713                                 return retval;
714                         if ((retval = dap_run(dap)) != ERROR_OK)
715                         {
716                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717                                 return retval;
718                         }
719
720                         nbytes = MIN((readcount << 1), 4);
721
722                         for (i = 0; i < nbytes; i++)
723                         {
724                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725                                 buffer++;
726                                 address++;
727                         }
728
729                         readcount -= (nbytes >> 1);
730                 } while (readcount);
731                 wcount -= blocksize;
732         }
733
734         return retval;
735 }
736
737 /**
738  * Synchronously read a block of 16-bit halfwords into a buffer
739  * @param dap The DAP connected to the MEM-AP.
740  * @param buffer where the halfwords will be stored (in host byte order).
741  * @param count How many halfwords to read.
742  * @param address Memory address from which to read words; all the
743  *      words must be readable by the currently selected MEM-AP.
744  */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746                 int count, uint32_t address)
747 {
748         uint32_t invalue, i;
749         int retval = ERROR_OK;
750
751         if (count >= 4)
752                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754         while (count > 0)
755         {
756                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757                 if (retval != ERROR_OK)
758                         return retval;
759                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760                 if (retval != ERROR_OK)
761                         break;
762
763                 retval = dap_run(dap);
764                 if (retval != ERROR_OK)
765                         break;
766
767                 if (address & 0x1)
768                 {
769                         for (i = 0; i < 2; i++)
770                         {
771                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772                                 buffer++;
773                                 address++;
774                         }
775                 }
776                 else
777                 {
778                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
779                         memcpy(buffer, &svalue, sizeof(uint16_t));
780                         address += 2;
781                         buffer += 2;
782                 }
783                 count -= 2;
784         }
785
786         return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791  *
792  * The solution is to arrange for a large out/in scan in this loop and
793  * and convert data afterwards.
794  */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796                 uint8_t *buffer, int count, uint32_t address)
797 {
798         uint32_t invalue;
799         int retval = ERROR_OK;
800         int wcount, blocksize, readcount, i;
801
802         wcount = count;
803
804         while (wcount > 0)
805         {
806                 int nbytes;
807
808                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811                 if (wcount < blocksize)
812                         blocksize = wcount;
813
814                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815                 if (retval != ERROR_OK)
816                         return retval;
817                 readcount = blocksize;
818
819                 do
820                 {
821                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822                         if (retval != ERROR_OK)
823                                 return retval;
824                         if ((retval = dap_run(dap)) != ERROR_OK)
825                         {
826                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827                                 return retval;
828                         }
829
830                         nbytes = MIN(readcount, 4);
831
832                         for (i = 0; i < nbytes; i++)
833                         {
834                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835                                 buffer++;
836                                 address++;
837                         }
838
839                         readcount -= nbytes;
840                 } while (readcount);
841                 wcount -= blocksize;
842         }
843
844         return retval;
845 }
846
847 /**
848  * Synchronously read a block of bytes into a buffer
849  * @param dap The DAP connected to the MEM-AP.
850  * @param buffer where the bytes will be stored.
851  * @param count How many bytes to read.
852  * @param address Memory address from which to read data; all the
853  *      data must be readable by the currently selected MEM-AP.
854  */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856                 int count, uint32_t address)
857 {
858         uint32_t invalue;
859         int retval = ERROR_OK;
860
861         if (count >= 4)
862                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864         while (count > 0)
865         {
866                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867                 if (retval != ERROR_OK)
868                         return retval;
869                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870                 if (retval != ERROR_OK)
871                         return retval;
872                 retval = dap_run(dap);
873                 if (retval != ERROR_OK)
874                         break;
875
876                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877                 count--;
878                 address++;
879                 buffer++;
880         }
881
882         return retval;
883 }
884
885 /*--------------------------------------------------------------------*/
886 /*          Wrapping function with selection of AP                    */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889                 uint32_t address, uint32_t *value)
890 {
891         dap_ap_select(swjdp, ap);
892         return mem_ap_read_u32(swjdp, address, value);
893 }
894
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896                 uint32_t address, uint32_t value)
897 {
898         dap_ap_select(swjdp, ap);
899         return mem_ap_write_u32(swjdp, address, value);
900 }
901
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903                 uint32_t address, uint32_t *value)
904 {
905         dap_ap_select(swjdp, ap);
906         return mem_ap_read_atomic_u32(swjdp, address, value);
907 }
908
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910                 uint32_t address, uint32_t value)
911 {
912         dap_ap_select(swjdp, ap);
913         return mem_ap_write_atomic_u32(swjdp, address, value);
914 }
915
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917                 uint8_t *buffer, int count, uint32_t address)
918 {
919         dap_ap_select(swjdp, ap);
920         return mem_ap_read_buf_u8(swjdp, buffer, count, address);
921 }
922
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924                 uint8_t *buffer, int count, uint32_t address)
925 {
926         dap_ap_select(swjdp, ap);
927         return mem_ap_read_buf_u16(swjdp, buffer, count, address);
928 }
929
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931                 uint8_t *buffer, int count, uint32_t address)
932 {
933         dap_ap_select(swjdp, ap);
934         return mem_ap_read_buf_u32(swjdp, buffer, count, address);
935 }
936
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938                 const uint8_t *buffer, int count, uint32_t address)
939 {
940         dap_ap_select(swjdp, ap);
941         return mem_ap_write_buf_u8(swjdp, buffer, count, address);
942 }
943
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945                 const uint8_t *buffer, int count, uint32_t address)
946 {
947         dap_ap_select(swjdp, ap);
948         return mem_ap_write_buf_u16(swjdp, buffer, count, address);
949 }
950
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952                 const uint8_t *buffer, int count, uint32_t address)
953 {
954         dap_ap_select(swjdp, ap);
955         return mem_ap_write_buf_u32(swjdp, buffer, count, address);
956 }
957
958
959 /*--------------------------------------------------------------------------*/
960
961
962 /* FIXME don't import ... just initialize as
963  * part of DAP transport setup
964 */
965 extern const struct dap_ops jtag_dp_ops;
966
967 /*--------------------------------------------------------------------------*/
968
969 /**
970  * Initialize a DAP.  This sets up the power domains, prepares the DP
971  * for further use, and arranges to use AP #0 for all AP operations
972  * until dap_ap-select() changes that policy.
973  *
974  * @param dap The DAP being initialized.
975  *
976  * @todo Rename this.  We also need an initialization scheme which account
977  * for SWD transports not just JTAG; that will need to address differences
978  * in layering.  (JTAG is useful without any debug target; but not SWD.)
979  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
980  */
981 int ahbap_debugport_init(struct adiv5_dap *dap)
982 {
983         uint32_t ctrlstat;
984         int cnt = 0;
985         int retval;
986
987         LOG_DEBUG(" ");
988
989         /* JTAG-DP or SWJ-DP, in JTAG mode
990          * ... for SWD mode this is patched as part
991          * of link switchover
992          */
993         if (!dap->ops)
994                 dap->ops = &jtag_dp_ops;
995
996         /* Default MEM-AP setup.
997          *
998          * REVISIT AP #0 may be an inappropriate default for this.
999          * Should we probe, or take a hint from the caller?
1000          * Presumably we can ignore the possibility of multiple APs.
1001          */
1002         dap->ap_current = !0;
1003         dap_ap_select(dap, 0);
1004
1005         /* DP initialization */
1006
1007         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008         if (retval != ERROR_OK)
1009                 return retval;
1010
1011         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012         if (retval != ERROR_OK)
1013                 return retval;
1014
1015         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016         if (retval != ERROR_OK)
1017                 return retval;
1018
1019         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021         if (retval != ERROR_OK)
1022                 return retval;
1023
1024         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025         if (retval != ERROR_OK)
1026                 return retval;
1027         if ((retval = dap_run(dap)) != ERROR_OK)
1028                 return retval;
1029
1030         /* Check that we have debug power domains activated */
1031         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1032         {
1033                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035                 if (retval != ERROR_OK)
1036                         return retval;
1037                 if ((retval = dap_run(dap)) != ERROR_OK)
1038                         return retval;
1039                 alive_sleep(10);
1040         }
1041
1042         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1043         {
1044                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046                 if (retval != ERROR_OK)
1047                         return retval;
1048                 if ((retval = dap_run(dap)) != ERROR_OK)
1049                         return retval;
1050                 alive_sleep(10);
1051         }
1052
1053         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054         if (retval != ERROR_OK)
1055                 return retval;
1056         /* With debug power on we can activate OVERRUN checking */
1057         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059         if (retval != ERROR_OK)
1060                 return retval;
1061         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062         if (retval != ERROR_OK)
1063                 return retval;
1064
1065         return ERROR_OK;
1066 }
1067
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069  * and ARM IHI 0031A table 13-3.
1070  */
1071 static const char *class_description[16] ={
1072         "Reserved", "ROM table", "Reserved", "Reserved",
1073         "Reserved", "Reserved", "Reserved", "Reserved",
1074         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075         "Reserved", "OptimoDE DESS",
1076                 "Generic IP component", "PrimeCell or System component"
1077 };
1078
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1081 {
1082         return cid3 == 0xb1 && cid2 == 0x05
1083                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1084 }
1085
1086 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1087                         uint32_t *out_dbgbase, uint32_t *out_apid)
1088 {
1089         uint32_t ap_old;
1090         int retval;
1091         uint32_t dbgbase, apid;
1092
1093         /* AP address is in bits 31:24 of DP_SELECT */
1094         if (ap >= 256)
1095                 return ERROR_INVALID_ARGUMENTS;
1096
1097         ap_old = dap->ap_current;
1098         dap_ap_select(dap, ap);
1099
1100         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1101         if (retval != ERROR_OK)
1102                 return retval;
1103         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1104         if (retval != ERROR_OK)
1105                 return retval;
1106         retval = dap_run(dap);
1107         if (retval != ERROR_OK)
1108                 return retval;
1109
1110         /* Excavate the device ID code */
1111         struct jtag_tap *tap = dap->jtag_info->tap;
1112         while (tap != NULL) {
1113                 if (tap->hasidcode)
1114                         break;
1115                 tap = tap->next_tap;
1116         }
1117         if (tap == NULL || !tap->hasidcode)
1118                 return ERROR_OK;
1119
1120         dap_ap_select(dap, ap_old);
1121
1122         /* The asignment happens only here to prevent modification of these
1123          * values before they are certain. */
1124         *out_dbgbase = dbgbase;
1125         *out_apid = apid;
1126
1127         return ERROR_OK;
1128 }
1129
1130 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1131                         uint32_t dbgbase, uint8_t type, uint32_t *addr)
1132 {
1133         uint32_t ap_old;
1134         uint32_t romentry, entry_offset = 0, component_base, devtype;
1135         int retval = ERROR_FAIL;
1136
1137         if (ap >= 256)
1138                 return ERROR_INVALID_ARGUMENTS;
1139
1140         ap_old = dap->ap_current;
1141         dap_ap_select(dap, ap);
1142
1143         do
1144         {
1145                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1146                                                 entry_offset, &romentry);
1147                 if (retval != ERROR_OK)
1148                         return retval;
1149
1150                 component_base = (dbgbase & 0xFFFFF000)
1151                         + (romentry & 0xFFFFF000);
1152
1153                 if (romentry & 0x1) {
1154                         retval = mem_ap_read_atomic_u32(dap,
1155                                         (component_base & 0xfffff000) | 0xfcc,
1156                                         &devtype);
1157                         if ((devtype & 0xff) == type) {
1158                                 *addr = component_base;
1159                                 retval = ERROR_OK;
1160                                 break;
1161                         }
1162                 }
1163                 entry_offset += 4;
1164         } while (romentry > 0);
1165
1166         dap_ap_select(dap, ap_old);
1167
1168         return retval;
1169 }
1170
1171 static int dap_info_command(struct command_context *cmd_ctx,
1172                 struct adiv5_dap *dap, int ap)
1173 {
1174         int retval;
1175         uint32_t dbgbase, apid;
1176         int romtable_present = 0;
1177         uint8_t mem_ap;
1178         uint32_t ap_old;
1179
1180         retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1181         if (retval != ERROR_OK)
1182                 return retval;
1183
1184         ap_old = dap->ap_current;
1185         dap_ap_select(dap, ap);
1186
1187         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1188         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1189         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1190         if (apid)
1191         {
1192                 switch (apid&0x0F)
1193                 {
1194                         case 0:
1195                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1196                                 break;
1197                         case 1:
1198                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1199                                 break;
1200                         case 2:
1201                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1202                                 break;
1203                         default:
1204                                 command_print(cmd_ctx, "\tUnknown AP type");
1205                                 break;
1206                 }
1207
1208                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1209                  * not a ROM table ... or have no such components at all.
1210                  */
1211                 if (mem_ap)
1212                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1213                                         dbgbase);
1214         }
1215         else
1216         {
1217                 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1218         }
1219
1220         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1221         if (romtable_present)
1222         {
1223                 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1224                 uint16_t entry_offset;
1225
1226                 /* bit 16 of apid indicates a memory access port */
1227                 if (dbgbase & 0x02)
1228                         command_print(cmd_ctx, "\tValid ROM table present");
1229                 else
1230                         command_print(cmd_ctx, "\tROM table in legacy format");
1231
1232                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1233                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1234                 if (retval != ERROR_OK)
1235                         return retval;
1236                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1237                 if (retval != ERROR_OK)
1238                         return retval;
1239                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1240                 if (retval != ERROR_OK)
1241                         return retval;
1242                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1243                 if (retval != ERROR_OK)
1244                         return retval;
1245                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1246                 if (retval != ERROR_OK)
1247                         return retval;
1248                 retval = dap_run(dap);
1249                 if (retval != ERROR_OK)
1250                         return retval;
1251
1252                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1253                         command_print(cmd_ctx, "\tCID3 0x%2.2x"
1254                                         ", CID2 0x%2.2x"
1255                                         ", CID1 0x%2.2x"
1256                                         ", CID0 0x%2.2x",
1257                                         (unsigned) cid3, (unsigned)cid2,
1258                                         (unsigned) cid1, (unsigned) cid0);
1259                 if (memtype & 0x01)
1260                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1261                 else
1262                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1263                                         "Dedicated debug bus.");
1264
1265                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1266                 entry_offset = 0;
1267                 do
1268                 {
1269                         retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1270                         if (retval != ERROR_OK)
1271                                 return retval;
1272                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1273                         if (romentry&0x01)
1274                         {
1275                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1276                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1277                                 uint32_t component_base;
1278                                 unsigned part_num;
1279                                 char *type, *full;
1280
1281                                 component_base = (dbgbase & 0xFFFFF000)
1282                                                 + (romentry & 0xFFFFF000);
1283
1284                                 /* IDs are in last 4K section */
1285
1286
1287                                 retval = mem_ap_read_atomic_u32(dap,
1288                                         component_base + 0xFE0, &c_pid0);
1289                                 if (retval != ERROR_OK)
1290                                         return retval;
1291                                 c_pid0 &= 0xff;
1292                                 retval = mem_ap_read_atomic_u32(dap,
1293                                         component_base + 0xFE4, &c_pid1);
1294                                 if (retval != ERROR_OK)
1295                                         return retval;
1296                                 c_pid1 &= 0xff;
1297                                 retval = mem_ap_read_atomic_u32(dap,
1298                                         component_base + 0xFE8, &c_pid2);
1299                                 if (retval != ERROR_OK)
1300                                         return retval;
1301                                 c_pid2 &= 0xff;
1302                                 retval = mem_ap_read_atomic_u32(dap,
1303                                         component_base + 0xFEC, &c_pid3);
1304                                 if (retval != ERROR_OK)
1305                                         return retval;
1306                                 c_pid3 &= 0xff;
1307                                 retval = mem_ap_read_atomic_u32(dap,
1308                                         component_base + 0xFD0, &c_pid4);
1309                                 if (retval != ERROR_OK)
1310                                         return retval;
1311                                 c_pid4 &= 0xff;
1312
1313                                 retval = mem_ap_read_atomic_u32(dap,
1314                                         component_base + 0xFF0, &c_cid0);
1315                                 if (retval != ERROR_OK)
1316                                         return retval;
1317                                 c_cid0 &= 0xff;
1318                                 retval = mem_ap_read_atomic_u32(dap,
1319                                         component_base + 0xFF4, &c_cid1);
1320                                 if (retval != ERROR_OK)
1321                                         return retval;
1322                                 c_cid1 &= 0xff;
1323                                 retval = mem_ap_read_atomic_u32(dap,
1324                                         component_base + 0xFF8, &c_cid2);
1325                                 if (retval != ERROR_OK)
1326                                         return retval;
1327                                 c_cid2 &= 0xff;
1328                                 retval = mem_ap_read_atomic_u32(dap,
1329                                         component_base + 0xFFC, &c_cid3);
1330                                 if (retval != ERROR_OK)
1331                                         return retval;
1332                                 c_cid3 &= 0xff;
1333
1334
1335                                 command_print(cmd_ctx,
1336                                 "\t\tComponent base address 0x%" PRIx32
1337                                         ", start address 0x%" PRIx32,
1338                                                 component_base,
1339                                 /* component may take multiple 4K pages */
1340                                 component_base - 0x1000*(c_pid4 >> 4));
1341                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1342                                                 (int) (c_cid1 >> 4) & 0xf,
1343                                                 /* See ARM IHI 0029B Table 3-3 */
1344                                                 class_description[(c_cid1 >> 4) & 0xf]);
1345
1346                                 /* CoreSight component? */
1347                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1348                                         uint32_t devtype;
1349                                         unsigned minor;
1350                                         char *major = "Reserved", *subtype = "Reserved";
1351
1352                                         retval = mem_ap_read_atomic_u32(dap,
1353                                                         (component_base & 0xfffff000) | 0xfcc,
1354                                                         &devtype);
1355                                         if (retval != ERROR_OK)
1356                                                 return retval;
1357                                         minor = (devtype >> 4) & 0x0f;
1358                                         switch (devtype & 0x0f) {
1359                                         case 0:
1360                                                 major = "Miscellaneous";
1361                                                 switch (minor) {
1362                                                 case 0:
1363                                                         subtype = "other";
1364                                                         break;
1365                                                 case 4:
1366                                                         subtype = "Validation component";
1367                                                         break;
1368                                                 }
1369                                                 break;
1370                                         case 1:
1371                                                 major = "Trace Sink";
1372                                                 switch (minor) {
1373                                                 case 0:
1374                                                         subtype = "other";
1375                                                         break;
1376                                                 case 1:
1377                                                         subtype = "Port";
1378                                                         break;
1379                                                 case 2:
1380                                                         subtype = "Buffer";
1381                                                         break;
1382                                                 }
1383                                                 break;
1384                                         case 2:
1385                                                 major = "Trace Link";
1386                                                 switch (minor) {
1387                                                 case 0:
1388                                                         subtype = "other";
1389                                                         break;
1390                                                 case 1:
1391                                                         subtype = "Funnel, router";
1392                                                         break;
1393                                                 case 2:
1394                                                         subtype = "Filter";
1395                                                         break;
1396                                                 case 3:
1397                                                         subtype = "FIFO, buffer";
1398                                                         break;
1399                                                 }
1400                                                 break;
1401                                         case 3:
1402                                                 major = "Trace Source";
1403                                                 switch (minor) {
1404                                                 case 0:
1405                                                         subtype = "other";
1406                                                         break;
1407                                                 case 1:
1408                                                         subtype = "Processor";
1409                                                         break;
1410                                                 case 2:
1411                                                         subtype = "DSP";
1412                                                         break;
1413                                                 case 3:
1414                                                         subtype = "Engine/Coprocessor";
1415                                                         break;
1416                                                 case 4:
1417                                                         subtype = "Bus";
1418                                                         break;
1419                                                 }
1420                                                 break;
1421                                         case 4:
1422                                                 major = "Debug Control";
1423                                                 switch (minor) {
1424                                                 case 0:
1425                                                         subtype = "other";
1426                                                         break;
1427                                                 case 1:
1428                                                         subtype = "Trigger Matrix";
1429                                                         break;
1430                                                 case 2:
1431                                                         subtype = "Debug Auth";
1432                                                         break;
1433                                                 }
1434                                                 break;
1435                                         case 5:
1436                                                 major = "Debug Logic";
1437                                                 switch (minor) {
1438                                                 case 0:
1439                                                         subtype = "other";
1440                                                         break;
1441                                                 case 1:
1442                                                         subtype = "Processor";
1443                                                         break;
1444                                                 case 2:
1445                                                         subtype = "DSP";
1446                                                         break;
1447                                                 case 3:
1448                                                         subtype = "Engine/Coprocessor";
1449                                                         break;
1450                                                 }
1451                                                 break;
1452                                         }
1453                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1454                                                         (unsigned) (devtype & 0xff),
1455                                                         major, subtype);
1456                                         /* REVISIT also show 0xfc8 DevId */
1457                                 }
1458
1459                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1460                                         command_print(cmd_ctx,
1461                                                       "\t\tCID3 0%2.2x"
1462                                                         ", CID2 0%2.2x"
1463                                                         ", CID1 0%2.2x"
1464                                                         ", CID0 0%2.2x",
1465                                                         (int) c_cid3,
1466                                                         (int) c_cid2,
1467                                                         (int)c_cid1,
1468                                                         (int)c_cid0);
1469                                 command_print(cmd_ctx,
1470                                 "\t\tPeripheral ID[4..0] = hex "
1471                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1472                                 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1473                                 (int) c_pid1, (int) c_pid0);
1474
1475                                 /* Part number interpretations are from Cortex
1476                                  * core specs, the CoreSight components TRM
1477                                  * (ARM DDI 0314H), CoreSight System Design
1478                                  * Guide (ARM DGI 0012D) and ETM specs; also
1479                                  * from chip observation (e.g. TI SDTI).
1480                                  */
1481                                 part_num = (c_pid0 & 0xff);
1482                                 part_num |= (c_pid1 & 0x0f) << 8;
1483                                 switch (part_num) {
1484                                 case 0x000:
1485                                         type = "Cortex-M3 NVIC";
1486                                         full = "(Interrupt Controller)";
1487                                         break;
1488                                 case 0x001:
1489                                         type = "Cortex-M3 ITM";
1490                                         full = "(Instrumentation Trace Module)";
1491                                         break;
1492                                 case 0x002:
1493                                         type = "Cortex-M3 DWT";
1494                                         full = "(Data Watchpoint and Trace)";
1495                                         break;
1496                                 case 0x003:
1497                                         type = "Cortex-M3 FBP";
1498                                         full = "(Flash Patch and Breakpoint)";
1499                                         break;
1500                                 case 0x00d:
1501                                         type = "CoreSight ETM11";
1502                                         full = "(Embedded Trace)";
1503                                         break;
1504                                 // case 0x113: what?
1505                                 case 0x120:             /* from OMAP3 memmap */
1506                                         type = "TI SDTI";
1507                                         full = "(System Debug Trace Interface)";
1508                                         break;
1509                                 case 0x343:             /* from OMAP3 memmap */
1510                                         type = "TI DAPCTL";
1511                                         full = "";
1512                                         break;
1513                                 case 0x906:
1514                                         type = "Coresight CTI";
1515                                         full = "(Cross Trigger)";
1516                                         break;
1517                                 case 0x907:
1518                                         type = "Coresight ETB";
1519                                         full = "(Trace Buffer)";
1520                                         break;
1521                                 case 0x908:
1522                                         type = "Coresight CSTF";
1523                                         full = "(Trace Funnel)";
1524                                         break;
1525                                 case 0x910:
1526                                         type = "CoreSight ETM9";
1527                                         full = "(Embedded Trace)";
1528                                         break;
1529                                 case 0x912:
1530                                         type = "Coresight TPIU";
1531                                         full = "(Trace Port Interface Unit)";
1532                                         break;
1533                                 case 0x921:
1534                                         type = "Cortex-A8 ETM";
1535                                         full = "(Embedded Trace)";
1536                                         break;
1537                                 case 0x922:
1538                                         type = "Cortex-A8 CTI";
1539                                         full = "(Cross Trigger)";
1540                                         break;
1541                                 case 0x923:
1542                                         type = "Cortex-M3 TPIU";
1543                                         full = "(Trace Port Interface Unit)";
1544                                         break;
1545                                 case 0x924:
1546                                         type = "Cortex-M3 ETM";
1547                                         full = "(Embedded Trace)";
1548                                         break;
1549                                 case 0x930:
1550                                         type = "Cortex-R4 ETM";
1551                                         full = "(Embedded Trace)";
1552                                         break;
1553                                 case 0xc08:
1554                                         type = "Cortex-A8 Debug";
1555                                         full = "(Debug Unit)";
1556                                         break;
1557                                 default:
1558                                         type = "-*- unrecognized -*-";
1559                                         full = "";
1560                                         break;
1561                                 }
1562                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1563                                                 type, full);
1564                         }
1565                         else
1566                         {
1567                                 if (romentry)
1568                                         command_print(cmd_ctx, "\t\tComponent not present");
1569                                 else
1570                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1571                         }
1572                         entry_offset += 4;
1573                 } while (romentry > 0);
1574         }
1575         else
1576         {
1577                 command_print(cmd_ctx, "\tNo ROM table present");
1578         }
1579         dap_ap_select(dap, ap_old);
1580
1581         return ERROR_OK;
1582 }
1583
1584 COMMAND_HANDLER(handle_dap_info_command)
1585 {
1586         struct target *target = get_current_target(CMD_CTX);
1587         struct arm *arm = target_to_arm(target);
1588         struct adiv5_dap *dap = arm->dap;
1589         uint32_t apsel;
1590
1591         switch (CMD_ARGC) {
1592         case 0:
1593                 apsel = dap->apsel;
1594                 break;
1595         case 1:
1596                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1597                 break;
1598         default:
1599                 return ERROR_COMMAND_SYNTAX_ERROR;
1600         }
1601
1602         return dap_info_command(CMD_CTX, dap, apsel);
1603 }
1604
1605 COMMAND_HANDLER(dap_baseaddr_command)
1606 {
1607         struct target *target = get_current_target(CMD_CTX);
1608         struct arm *arm = target_to_arm(target);
1609         struct adiv5_dap *dap = arm->dap;
1610
1611         uint32_t apsel, baseaddr;
1612         int retval;
1613
1614         switch (CMD_ARGC) {
1615         case 0:
1616                 apsel = dap->apsel;
1617                 break;
1618         case 1:
1619                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1620                 /* AP address is in bits 31:24 of DP_SELECT */
1621                 if (apsel >= 256)
1622                         return ERROR_INVALID_ARGUMENTS;
1623                 break;
1624         default:
1625                 return ERROR_COMMAND_SYNTAX_ERROR;
1626         }
1627
1628         dap_ap_select(dap, apsel);
1629
1630         /* NOTE:  assumes we're talking to a MEM-AP, which
1631          * has a base address.  There are other kinds of AP,
1632          * though they're not common for now.  This should
1633          * use the ID register to verify it's a MEM-AP.
1634          */
1635         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1636         if (retval != ERROR_OK)
1637                 return retval;
1638         retval = dap_run(dap);
1639         if (retval != ERROR_OK)
1640                 return retval;
1641
1642         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1643
1644         return retval;
1645 }
1646
1647 COMMAND_HANDLER(dap_memaccess_command)
1648 {
1649         struct target *target = get_current_target(CMD_CTX);
1650         struct arm *arm = target_to_arm(target);
1651         struct adiv5_dap *dap = arm->dap;
1652
1653         uint32_t memaccess_tck;
1654
1655         switch (CMD_ARGC) {
1656         case 0:
1657                 memaccess_tck = dap->memaccess_tck;
1658                 break;
1659         case 1:
1660                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1661                 break;
1662         default:
1663                 return ERROR_COMMAND_SYNTAX_ERROR;
1664         }
1665         dap->memaccess_tck = memaccess_tck;
1666
1667         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1668                         dap->memaccess_tck);
1669
1670         return ERROR_OK;
1671 }
1672
1673 COMMAND_HANDLER(dap_apsel_command)
1674 {
1675         struct target *target = get_current_target(CMD_CTX);
1676         struct arm *arm = target_to_arm(target);
1677         struct adiv5_dap *dap = arm->dap;
1678
1679         uint32_t apsel, apid;
1680         int retval;
1681
1682         switch (CMD_ARGC) {
1683         case 0:
1684                 apsel = 0;
1685                 break;
1686         case 1:
1687                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1688                 /* AP address is in bits 31:24 of DP_SELECT */
1689                 if (apsel >= 256)
1690                         return ERROR_INVALID_ARGUMENTS;
1691                 break;
1692         default:
1693                 return ERROR_COMMAND_SYNTAX_ERROR;
1694         }
1695
1696         dap->apsel = apsel;
1697         dap_ap_select(dap, apsel);
1698
1699         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1700         if (retval != ERROR_OK)
1701                 return retval;
1702         retval = dap_run(dap);
1703         if (retval != ERROR_OK)
1704                 return retval;
1705
1706         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1707                         apsel, apid);
1708
1709         return retval;
1710 }
1711
1712 COMMAND_HANDLER(dap_apid_command)
1713 {
1714         struct target *target = get_current_target(CMD_CTX);
1715         struct arm *arm = target_to_arm(target);
1716         struct adiv5_dap *dap = arm->dap;
1717
1718         uint32_t apsel, apid;
1719         int retval;
1720
1721         switch (CMD_ARGC) {
1722         case 0:
1723                 apsel = dap->apsel;
1724                 break;
1725         case 1:
1726                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1727                 /* AP address is in bits 31:24 of DP_SELECT */
1728                 if (apsel >= 256)
1729                         return ERROR_INVALID_ARGUMENTS;
1730                 break;
1731         default:
1732                 return ERROR_COMMAND_SYNTAX_ERROR;
1733         }
1734
1735         dap_ap_select(dap, apsel);
1736
1737         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1738         if (retval != ERROR_OK)
1739                 return retval;
1740         retval = dap_run(dap);
1741         if (retval != ERROR_OK)
1742                 return retval;
1743
1744         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1745
1746         return retval;
1747 }
1748
1749 static const struct command_registration dap_commands[] = {
1750         {
1751                 .name = "info",
1752                 .handler = handle_dap_info_command,
1753                 .mode = COMMAND_EXEC,
1754                 .help = "display ROM table for MEM-AP "
1755                         "(default currently selected AP)",
1756                 .usage = "[ap_num]",
1757         },
1758         {
1759                 .name = "apsel",
1760                 .handler = dap_apsel_command,
1761                 .mode = COMMAND_EXEC,
1762                 .help = "Set the currently selected AP (default 0) "
1763                         "and display the result",
1764                 .usage = "[ap_num]",
1765         },
1766         {
1767                 .name = "apid",
1768                 .handler = dap_apid_command,
1769                 .mode = COMMAND_EXEC,
1770                 .help = "return ID register from AP "
1771                         "(default currently selected AP)",
1772                 .usage = "[ap_num]",
1773         },
1774         {
1775                 .name = "baseaddr",
1776                 .handler = dap_baseaddr_command,
1777                 .mode = COMMAND_EXEC,
1778                 .help = "return debug base address from MEM-AP "
1779                         "(default currently selected AP)",
1780                 .usage = "[ap_num]",
1781         },
1782         {
1783                 .name = "memaccess",
1784                 .handler = dap_memaccess_command,
1785                 .mode = COMMAND_EXEC,
1786                 .help = "set/get number of extra tck for MEM-AP memory "
1787                         "bus access [0-255]",
1788                 .usage = "[cycles]",
1789         },
1790         COMMAND_REGISTRATION_DONE
1791 };
1792
1793 const struct command_registration dap_command_handlers[] = {
1794         {
1795                 .name = "dap",
1796                 .mode = COMMAND_EXEC,
1797                 .help = "DAP command group",
1798                 .chain = dap_commands,
1799         },
1800         COMMAND_REGISTRATION_DONE
1801 };
1802
1803