]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
aarch64: unify armv7-a and armv8 debug entry decoding
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "jtag/swd.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64         struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68         struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72         uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74         uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78         target_addr_t virt, target_addr_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /*  restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86         int retval = ERROR_OK;
87         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88         struct armv7a_common *armv7a = target_to_armv7a(target);
89
90         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93                 retval = armv7a->arm.mcr(target, 15,
94                                 0, 0,   /* op1, op2 */
95                                 1, 0,   /* CRn, CRm */
96                                 cortex_a->cp15_control_reg);
97         }
98         return retval;
99 }
100
101 /*
102  * Set up ARM core for memory access.
103  * If !phys_access, switch to SVC mode and make sure MMU is on
104  * If phys_access, switch off mmu
105  */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108         struct armv7a_common *armv7a = target_to_armv7a(target);
109         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110         int mmu_enabled = 0;
111
112         if (phys_access == 0) {
113                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114                 cortex_a_mmu(target, &mmu_enabled);
115                 if (mmu_enabled)
116                         cortex_a_mmu_modify(target, 1);
117                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118                         /* overwrite DACR to all-manager */
119                         armv7a->arm.mcr(target, 15,
120                                         0, 0, 3, 0,
121                                         0xFFFFFFFF);
122                 }
123         } else {
124                 cortex_a_mmu(target, &mmu_enabled);
125                 if (mmu_enabled)
126                         cortex_a_mmu_modify(target, 0);
127         }
128         return ERROR_OK;
129 }
130
131 /*
132  * Restore ARM core after memory access.
133  * If !phys_access, switch to previous mode
134  * If phys_access, restore MMU setting
135  */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138         struct armv7a_common *armv7a = target_to_armv7a(target);
139         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141         if (phys_access == 0) {
142                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143                         /* restore */
144                         armv7a->arm.mcr(target, 15,
145                                         0, 0, 3, 0,
146                                         cortex_a->cp15_dacr_reg);
147                 }
148                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149         } else {
150                 int mmu_enabled = 0;
151                 cortex_a_mmu(target, &mmu_enabled);
152                 if (mmu_enabled)
153                         cortex_a_mmu_modify(target, 1);
154         }
155         return ERROR_OK;
156 }
157
158
159 /*  modify cp15_control_reg in order to enable or disable mmu for :
160  *  - virt2phys address conversion
161  *  - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165         struct armv7a_common *armv7a = target_to_armv7a(target);
166         int retval = ERROR_OK;
167         int need_write = 0;
168
169         if (enable) {
170                 /*  if mmu enabled at target stop and mmu not enable */
171                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173                         return ERROR_FAIL;
174                 }
175                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176                         cortex_a->cp15_control_reg_curr |= 0x1U;
177                         need_write = 1;
178                 }
179         } else {
180                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181                         cortex_a->cp15_control_reg_curr &= ~0x1U;
182                         need_write = 1;
183                 }
184         }
185
186         if (need_write) {
187                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188                         enable ? "enable mmu" : "disable mmu",
189                         cortex_a->cp15_control_reg_curr);
190
191                 retval = armv7a->arm.mcr(target, 15,
192                                 0, 0,   /* op1, op2 */
193                                 1, 0,   /* CRn, CRm */
194                                 cortex_a->cp15_control_reg_curr);
195         }
196         return retval;
197 }
198
199 /*
200  * Cortex-A Basic debug access, very low level assumes state is saved
201  */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204         struct armv7a_common *armv7a = target_to_armv7a(target);
205         int retval;
206
207         /* lock memory-mapped access to debug registers to prevent
208          * software interference */
209         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
210                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
211         if (retval != ERROR_OK)
212                 return retval;
213
214         /* Disable cacheline fills and force cache write-through in debug state */
215         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
216                         armv7a->debug_base + CPUDBG_DSCCR, 0);
217         if (retval != ERROR_OK)
218                 return retval;
219
220         /* Disable TLB lookup and refill/eviction in debug state */
221         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
222                         armv7a->debug_base + CPUDBG_DSMCR, 0);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         /* Enabling of instruction execution in debug mode is done in debug_entry code */
227
228         /* Resync breakpoint registers */
229
230         /* Since this is likely called from init or reset, update target state information*/
231         return cortex_a_poll(target);
232 }
233
234 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
235 {
236         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
237          * Writes final value of DSCR into *dscr. Pass force to force always
238          * reading DSCR at least once. */
239         struct armv7a_common *armv7a = target_to_armv7a(target);
240         int64_t then = timeval_ms();
241         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
242                 force = false;
243                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
244                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
245                 if (retval != ERROR_OK) {
246                         LOG_ERROR("Could not read DSCR register");
247                         return retval;
248                 }
249                 if (timeval_ms() > then + 1000) {
250                         LOG_ERROR("Timeout waiting for InstrCompl=1");
251                         return ERROR_FAIL;
252                 }
253         }
254         return ERROR_OK;
255 }
256
257 /* To reduce needless round-trips, pass in a pointer to the current
258  * DSCR value.  Initialize it to zero if you just need to know the
259  * value on return from this function; or DSCR_INSTR_COMP if you
260  * happen to know that no instruction is pending.
261  */
262 static int cortex_a_exec_opcode(struct target *target,
263         uint32_t opcode, uint32_t *dscr_p)
264 {
265         uint32_t dscr;
266         int retval;
267         struct armv7a_common *armv7a = target_to_armv7a(target);
268
269         dscr = dscr_p ? *dscr_p : 0;
270
271         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
272
273         /* Wait for InstrCompl bit to be set */
274         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
275         if (retval != ERROR_OK)
276                 return retval;
277
278         retval = mem_ap_write_u32(armv7a->debug_ap,
279                         armv7a->debug_base + CPUDBG_ITR, opcode);
280         if (retval != ERROR_OK)
281                 return retval;
282
283         int64_t then = timeval_ms();
284         do {
285                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
286                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
287                 if (retval != ERROR_OK) {
288                         LOG_ERROR("Could not read DSCR register");
289                         return retval;
290                 }
291                 if (timeval_ms() > then + 1000) {
292                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
293                         return ERROR_FAIL;
294                 }
295         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
296
297         if (dscr_p)
298                 *dscr_p = dscr;
299
300         return retval;
301 }
302
303 /**************************************************************************
304 Read core register with very few exec_opcode, fast but needs work_area.
305 This can cause problems with MMU active.
306 **************************************************************************/
307 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
308         uint32_t *regfile)
309 {
310         int retval = ERROR_OK;
311         struct armv7a_common *armv7a = target_to_armv7a(target);
312
313         retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
314         if (retval != ERROR_OK)
315                 return retval;
316         retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
317         if (retval != ERROR_OK)
318                 return retval;
319         retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
320         if (retval != ERROR_OK)
321                 return retval;
322
323         retval = mem_ap_read_buf(armv7a->memory_ap,
324                         (uint8_t *)(&regfile[1]), 4, 15, address);
325
326         return retval;
327 }
328
329 static int cortex_a_dap_read_coreregister_u32(struct target *target,
330         uint32_t *value, int regnum)
331 {
332         int retval = ERROR_OK;
333         uint8_t reg = regnum&0xFF;
334         uint32_t dscr = 0;
335         struct armv7a_common *armv7a = target_to_armv7a(target);
336
337         if (reg > 17)
338                 return retval;
339
340         if (reg < 15) {
341                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
342                 retval = cortex_a_exec_opcode(target,
343                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
344                                 &dscr);
345                 if (retval != ERROR_OK)
346                         return retval;
347         } else if (reg == 15) {
348                 /* "MOV r0, r15"; then move r0 to DCCTX */
349                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
350                 if (retval != ERROR_OK)
351                         return retval;
352                 retval = cortex_a_exec_opcode(target,
353                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
354                                 &dscr);
355                 if (retval != ERROR_OK)
356                         return retval;
357         } else {
358                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
359                  * then move r0 to DCCTX
360                  */
361                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
362                 if (retval != ERROR_OK)
363                         return retval;
364                 retval = cortex_a_exec_opcode(target,
365                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
366                                 &dscr);
367                 if (retval != ERROR_OK)
368                         return retval;
369         }
370
371         /* Wait for DTRRXfull then read DTRRTX */
372         int64_t then = timeval_ms();
373         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
374                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
375                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
376                 if (retval != ERROR_OK)
377                         return retval;
378                 if (timeval_ms() > then + 1000) {
379                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
380                         return ERROR_FAIL;
381                 }
382         }
383
384         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
385                         armv7a->debug_base + CPUDBG_DTRTX, value);
386         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
387
388         return retval;
389 }
390
391 static int cortex_a_dap_write_coreregister_u32(struct target *target,
392         uint32_t value, int regnum)
393 {
394         int retval = ERROR_OK;
395         uint8_t Rd = regnum&0xFF;
396         uint32_t dscr;
397         struct armv7a_common *armv7a = target_to_armv7a(target);
398
399         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
400
401         /* Check that DCCRX is not full */
402         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
403                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
404         if (retval != ERROR_OK)
405                 return retval;
406         if (dscr & DSCR_DTR_RX_FULL) {
407                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
408                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
409                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
410                                 &dscr);
411                 if (retval != ERROR_OK)
412                         return retval;
413         }
414
415         if (Rd > 17)
416                 return retval;
417
418         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
419         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
420         retval = mem_ap_write_u32(armv7a->debug_ap,
421                         armv7a->debug_base + CPUDBG_DTRRX, value);
422         if (retval != ERROR_OK)
423                 return retval;
424
425         if (Rd < 15) {
426                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
427                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
428                                 &dscr);
429
430                 if (retval != ERROR_OK)
431                         return retval;
432         } else if (Rd == 15) {
433                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
434                  * then "mov r15, r0"
435                  */
436                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
441                 if (retval != ERROR_OK)
442                         return retval;
443         } else {
444                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
445                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
446                  */
447                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
448                                 &dscr);
449                 if (retval != ERROR_OK)
450                         return retval;
451                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
452                                 &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455
456                 /* "Prefetch flush" after modifying execution status in CPSR */
457                 if (Rd == 16) {
458                         retval = cortex_a_exec_opcode(target,
459                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
460                                         &dscr);
461                         if (retval != ERROR_OK)
462                                 return retval;
463                 }
464         }
465
466         return retval;
467 }
468
469 /* Write to memory mapped registers directly with no cache or mmu handling */
470 static int cortex_a_dap_write_memap_register_u32(struct target *target,
471         uint32_t address,
472         uint32_t value)
473 {
474         int retval;
475         struct armv7a_common *armv7a = target_to_armv7a(target);
476
477         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
478
479         return retval;
480 }
481
482 /*
483  * Cortex-A implementation of Debug Programmer's Model
484  *
485  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
486  * so there's no need to poll for it before executing an instruction.
487  *
488  * NOTE that in several of these cases the "stall" mode might be useful.
489  * It'd let us queue a few operations together... prepare/finish might
490  * be the places to enable/disable that mode.
491  */
492
493 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
494 {
495         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
496 }
497
498 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
499 {
500         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
501         return mem_ap_write_u32(a->armv7a_common.debug_ap,
502                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
503 }
504
505 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
506         uint32_t *dscr_p)
507 {
508         uint32_t dscr = DSCR_INSTR_COMP;
509         int retval;
510
511         if (dscr_p)
512                 dscr = *dscr_p;
513
514         /* Wait for DTRRXfull */
515         int64_t then = timeval_ms();
516         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
517                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
518                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
519                                 &dscr);
520                 if (retval != ERROR_OK)
521                         return retval;
522                 if (timeval_ms() > then + 1000) {
523                         LOG_ERROR("Timeout waiting for read dcc");
524                         return ERROR_FAIL;
525                 }
526         }
527
528         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
529                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
530         if (retval != ERROR_OK)
531                 return retval;
532         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
533
534         if (dscr_p)
535                 *dscr_p = dscr;
536
537         return retval;
538 }
539
540 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
541 {
542         struct cortex_a_common *a = dpm_to_a(dpm);
543         uint32_t dscr;
544         int retval;
545
546         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
547         int64_t then = timeval_ms();
548         for (;; ) {
549                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
550                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
551                                 &dscr);
552                 if (retval != ERROR_OK)
553                         return retval;
554                 if ((dscr & DSCR_INSTR_COMP) != 0)
555                         break;
556                 if (timeval_ms() > then + 1000) {
557                         LOG_ERROR("Timeout waiting for dpm prepare");
558                         return ERROR_FAIL;
559                 }
560         }
561
562         /* this "should never happen" ... */
563         if (dscr & DSCR_DTR_RX_FULL) {
564                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
565                 /* Clear DCCRX */
566                 retval = cortex_a_exec_opcode(
567                                 a->armv7a_common.arm.target,
568                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
569                                 &dscr);
570                 if (retval != ERROR_OK)
571                         return retval;
572         }
573
574         return retval;
575 }
576
577 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
578 {
579         /* REVISIT what could be done here? */
580         return ERROR_OK;
581 }
582
583 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
584         uint32_t opcode, uint32_t data)
585 {
586         struct cortex_a_common *a = dpm_to_a(dpm);
587         int retval;
588         uint32_t dscr = DSCR_INSTR_COMP;
589
590         retval = cortex_a_write_dcc(a, data);
591         if (retval != ERROR_OK)
592                 return retval;
593
594         return cortex_a_exec_opcode(
595                         a->armv7a_common.arm.target,
596                         opcode,
597                         &dscr);
598 }
599
600 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
601         uint32_t opcode, uint32_t data)
602 {
603         struct cortex_a_common *a = dpm_to_a(dpm);
604         uint32_t dscr = DSCR_INSTR_COMP;
605         int retval;
606
607         retval = cortex_a_write_dcc(a, data);
608         if (retval != ERROR_OK)
609                 return retval;
610
611         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
612         retval = cortex_a_exec_opcode(
613                         a->armv7a_common.arm.target,
614                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
615                         &dscr);
616         if (retval != ERROR_OK)
617                 return retval;
618
619         /* then the opcode, taking data from R0 */
620         retval = cortex_a_exec_opcode(
621                         a->armv7a_common.arm.target,
622                         opcode,
623                         &dscr);
624
625         return retval;
626 }
627
628 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
629 {
630         struct target *target = dpm->arm->target;
631         uint32_t dscr = DSCR_INSTR_COMP;
632
633         /* "Prefetch flush" after modifying execution status in CPSR */
634         return cortex_a_exec_opcode(target,
635                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
636                         &dscr);
637 }
638
639 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
640         uint32_t opcode, uint32_t *data)
641 {
642         struct cortex_a_common *a = dpm_to_a(dpm);
643         int retval;
644         uint32_t dscr = DSCR_INSTR_COMP;
645
646         /* the opcode, writing data to DCC */
647         retval = cortex_a_exec_opcode(
648                         a->armv7a_common.arm.target,
649                         opcode,
650                         &dscr);
651         if (retval != ERROR_OK)
652                 return retval;
653
654         return cortex_a_read_dcc(a, data, &dscr);
655 }
656
657
658 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
659         uint32_t opcode, uint32_t *data)
660 {
661         struct cortex_a_common *a = dpm_to_a(dpm);
662         uint32_t dscr = DSCR_INSTR_COMP;
663         int retval;
664
665         /* the opcode, writing data to R0 */
666         retval = cortex_a_exec_opcode(
667                         a->armv7a_common.arm.target,
668                         opcode,
669                         &dscr);
670         if (retval != ERROR_OK)
671                 return retval;
672
673         /* write R0 to DCC */
674         retval = cortex_a_exec_opcode(
675                         a->armv7a_common.arm.target,
676                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
677                         &dscr);
678         if (retval != ERROR_OK)
679                 return retval;
680
681         return cortex_a_read_dcc(a, data, &dscr);
682 }
683
684 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
685         uint32_t addr, uint32_t control)
686 {
687         struct cortex_a_common *a = dpm_to_a(dpm);
688         uint32_t vr = a->armv7a_common.debug_base;
689         uint32_t cr = a->armv7a_common.debug_base;
690         int retval;
691
692         switch (index_t) {
693                 case 0 ... 15:  /* breakpoints */
694                         vr += CPUDBG_BVR_BASE;
695                         cr += CPUDBG_BCR_BASE;
696                         break;
697                 case 16 ... 31: /* watchpoints */
698                         vr += CPUDBG_WVR_BASE;
699                         cr += CPUDBG_WCR_BASE;
700                         index_t -= 16;
701                         break;
702                 default:
703                         return ERROR_FAIL;
704         }
705         vr += 4 * index_t;
706         cr += 4 * index_t;
707
708         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
709                 (unsigned) vr, (unsigned) cr);
710
711         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
712                         vr, addr);
713         if (retval != ERROR_OK)
714                 return retval;
715         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
716                         cr, control);
717         return retval;
718 }
719
720 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
721 {
722         struct cortex_a_common *a = dpm_to_a(dpm);
723         uint32_t cr;
724
725         switch (index_t) {
726                 case 0 ... 15:
727                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
728                         break;
729                 case 16 ... 31:
730                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
731                         index_t -= 16;
732                         break;
733                 default:
734                         return ERROR_FAIL;
735         }
736         cr += 4 * index_t;
737
738         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
739
740         /* clear control register */
741         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
742 }
743
744 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
745 {
746         struct arm_dpm *dpm = &a->armv7a_common.dpm;
747         int retval;
748
749         dpm->arm = &a->armv7a_common.arm;
750         dpm->didr = didr;
751
752         dpm->prepare = cortex_a_dpm_prepare;
753         dpm->finish = cortex_a_dpm_finish;
754
755         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
756         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
757         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
758
759         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
760         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
761
762         dpm->bpwp_enable = cortex_a_bpwp_enable;
763         dpm->bpwp_disable = cortex_a_bpwp_disable;
764
765         retval = arm_dpm_setup(dpm);
766         if (retval == ERROR_OK)
767                 retval = arm_dpm_initialize(dpm);
768
769         return retval;
770 }
771 static struct target *get_cortex_a(struct target *target, int32_t coreid)
772 {
773         struct target_list *head;
774         struct target *curr;
775
776         head = target->head;
777         while (head != (struct target_list *)NULL) {
778                 curr = head->target;
779                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
780                         return curr;
781                 head = head->next;
782         }
783         return target;
784 }
785 static int cortex_a_halt(struct target *target);
786
787 static int cortex_a_halt_smp(struct target *target)
788 {
789         int retval = 0;
790         struct target_list *head;
791         struct target *curr;
792         head = target->head;
793         while (head != (struct target_list *)NULL) {
794                 curr = head->target;
795                 if ((curr != target) && (curr->state != TARGET_HALTED)
796                         && target_was_examined(curr))
797                         retval += cortex_a_halt(curr);
798                 head = head->next;
799         }
800         return retval;
801 }
802
803 static int update_halt_gdb(struct target *target)
804 {
805         int retval = 0;
806         if (target->gdb_service && target->gdb_service->core[0] == -1) {
807                 target->gdb_service->target = target;
808                 target->gdb_service->core[0] = target->coreid;
809                 retval += cortex_a_halt_smp(target);
810         }
811         return retval;
812 }
813
814 /*
815  * Cortex-A Run control
816  */
817
818 static int cortex_a_poll(struct target *target)
819 {
820         int retval = ERROR_OK;
821         uint32_t dscr;
822         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
823         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
824         enum target_state prev_target_state = target->state;
825         /*  toggle to another core is done by gdb as follow */
826         /*  maint packet J core_id */
827         /*  continue */
828         /*  the next polling trigger an halt event sent to gdb */
829         if ((target->state == TARGET_HALTED) && (target->smp) &&
830                 (target->gdb_service) &&
831                 (target->gdb_service->target == NULL)) {
832                 target->gdb_service->target =
833                         get_cortex_a(target, target->gdb_service->core[1]);
834                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
835                 return retval;
836         }
837         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
838                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
839         if (retval != ERROR_OK)
840                 return retval;
841         cortex_a->cpudbg_dscr = dscr;
842
843         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
844                 if (prev_target_state != TARGET_HALTED) {
845                         /* We have a halting debug event */
846                         LOG_DEBUG("Target halted");
847                         target->state = TARGET_HALTED;
848                         if ((prev_target_state == TARGET_RUNNING)
849                                 || (prev_target_state == TARGET_UNKNOWN)
850                                 || (prev_target_state == TARGET_RESET)) {
851                                 retval = cortex_a_debug_entry(target);
852                                 if (retval != ERROR_OK)
853                                         return retval;
854                                 if (target->smp) {
855                                         retval = update_halt_gdb(target);
856                                         if (retval != ERROR_OK)
857                                                 return retval;
858                                 }
859
860                                 if (arm_semihosting(target, &retval) != 0)
861                                         return retval;
862
863                                 target_call_event_callbacks(target,
864                                         TARGET_EVENT_HALTED);
865                         }
866                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
867                                 LOG_DEBUG(" ");
868
869                                 retval = cortex_a_debug_entry(target);
870                                 if (retval != ERROR_OK)
871                                         return retval;
872                                 if (target->smp) {
873                                         retval = update_halt_gdb(target);
874                                         if (retval != ERROR_OK)
875                                                 return retval;
876                                 }
877
878                                 target_call_event_callbacks(target,
879                                         TARGET_EVENT_DEBUG_HALTED);
880                         }
881                 }
882         } else
883                 target->state = TARGET_RUNNING;
884
885         return retval;
886 }
887
888 static int cortex_a_halt(struct target *target)
889 {
890         int retval = ERROR_OK;
891         uint32_t dscr;
892         struct armv7a_common *armv7a = target_to_armv7a(target);
893
894         /*
895          * Tell the core to be halted by writing DRCR with 0x1
896          * and then wait for the core to be halted.
897          */
898         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
899                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
900         if (retval != ERROR_OK)
901                 return retval;
902
903         /*
904          * enter halting debug mode
905          */
906         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
907                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
908         if (retval != ERROR_OK)
909                 return retval;
910
911         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
912                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
913         if (retval != ERROR_OK)
914                 return retval;
915
916         int64_t then = timeval_ms();
917         for (;; ) {
918                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
919                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
920                 if (retval != ERROR_OK)
921                         return retval;
922                 if ((dscr & DSCR_CORE_HALTED) != 0)
923                         break;
924                 if (timeval_ms() > then + 1000) {
925                         LOG_ERROR("Timeout waiting for halt");
926                         return ERROR_FAIL;
927                 }
928         }
929
930         target->debug_reason = DBG_REASON_DBGRQ;
931
932         return ERROR_OK;
933 }
934
935 static int cortex_a_internal_restore(struct target *target, int current,
936         target_addr_t *address, int handle_breakpoints, int debug_execution)
937 {
938         struct armv7a_common *armv7a = target_to_armv7a(target);
939         struct arm *arm = &armv7a->arm;
940         int retval;
941         uint32_t resume_pc;
942
943         if (!debug_execution)
944                 target_free_all_working_areas(target);
945
946 #if 0
947         if (debug_execution) {
948                 /* Disable interrupts */
949                 /* We disable interrupts in the PRIMASK register instead of
950                  * masking with C_MASKINTS,
951                  * This is probably the same issue as Cortex-M3 Errata 377493:
952                  * C_MASKINTS in parallel with disabled interrupts can cause
953                  * local faults to not be taken. */
954                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
955                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
956                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
957
958                 /* Make sure we are in Thumb mode */
959                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
960                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
961                         32) | (1 << 24));
962                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
963                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
964         }
965 #endif
966
967         /* current = 1: continue on current pc, otherwise continue at <address> */
968         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
969         if (!current)
970                 resume_pc = *address;
971         else
972                 *address = resume_pc;
973
974         /* Make sure that the Armv7 gdb thumb fixups does not
975          * kill the return address
976          */
977         switch (arm->core_state) {
978                 case ARM_STATE_ARM:
979                         resume_pc &= 0xFFFFFFFC;
980                         break;
981                 case ARM_STATE_THUMB:
982                 case ARM_STATE_THUMB_EE:
983                         /* When the return address is loaded into PC
984                          * bit 0 must be 1 to stay in Thumb state
985                          */
986                         resume_pc |= 0x1;
987                         break;
988                 case ARM_STATE_JAZELLE:
989                         LOG_ERROR("How do I resume into Jazelle state??");
990                         return ERROR_FAIL;
991                 case ARM_STATE_AARCH64:
992                         LOG_ERROR("Shoudn't be in AARCH64 state");
993                         return ERROR_FAIL;
994         }
995         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
996         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
997         arm->pc->dirty = 1;
998         arm->pc->valid = 1;
999
1000         /* restore dpm_mode at system halt */
1001         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1002         /* called it now before restoring context because it uses cpu
1003          * register r0 for restoring cp15 control register */
1004         retval = cortex_a_restore_cp15_control_reg(target);
1005         if (retval != ERROR_OK)
1006                 return retval;
1007         retval = cortex_a_restore_context(target, handle_breakpoints);
1008         if (retval != ERROR_OK)
1009                 return retval;
1010         target->debug_reason = DBG_REASON_NOTHALTED;
1011         target->state = TARGET_RUNNING;
1012
1013         /* registers are now invalid */
1014         register_cache_invalidate(arm->core_cache);
1015
1016 #if 0
1017         /* the front-end may request us not to handle breakpoints */
1018         if (handle_breakpoints) {
1019                 /* Single step past breakpoint at current address */
1020                 breakpoint = breakpoint_find(target, resume_pc);
1021                 if (breakpoint) {
1022                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1023                         cortex_m3_unset_breakpoint(target, breakpoint);
1024                         cortex_m3_single_step_core(target);
1025                         cortex_m3_set_breakpoint(target, breakpoint);
1026                 }
1027         }
1028
1029 #endif
1030         return retval;
1031 }
1032
1033 static int cortex_a_internal_restart(struct target *target)
1034 {
1035         struct armv7a_common *armv7a = target_to_armv7a(target);
1036         struct arm *arm = &armv7a->arm;
1037         int retval;
1038         uint32_t dscr;
1039         /*
1040          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1041          * * exception flags: see ARMv7 ARM, C5.9.
1042          *
1043          * REVISIT: for single stepping, we probably want to
1044          * disable IRQs by default, with optional override...
1045          */
1046
1047         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1048                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1049         if (retval != ERROR_OK)
1050                 return retval;
1051
1052         if ((dscr & DSCR_INSTR_COMP) == 0)
1053                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1054
1055         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1056                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1057         if (retval != ERROR_OK)
1058                 return retval;
1059
1060         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1061                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1062                         DRCR_CLEAR_EXCEPTIONS);
1063         if (retval != ERROR_OK)
1064                 return retval;
1065
1066         int64_t then = timeval_ms();
1067         for (;; ) {
1068                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1069                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1070                 if (retval != ERROR_OK)
1071                         return retval;
1072                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1073                         break;
1074                 if (timeval_ms() > then + 1000) {
1075                         LOG_ERROR("Timeout waiting for resume");
1076                         return ERROR_FAIL;
1077                 }
1078         }
1079
1080         target->debug_reason = DBG_REASON_NOTHALTED;
1081         target->state = TARGET_RUNNING;
1082
1083         /* registers are now invalid */
1084         register_cache_invalidate(arm->core_cache);
1085
1086         return ERROR_OK;
1087 }
1088
1089 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1090 {
1091         int retval = 0;
1092         struct target_list *head;
1093         struct target *curr;
1094         target_addr_t address;
1095         head = target->head;
1096         while (head != (struct target_list *)NULL) {
1097                 curr = head->target;
1098                 if ((curr != target) && (curr->state != TARGET_RUNNING)
1099                         && target_was_examined(curr)) {
1100                         /*  resume current address , not in step mode */
1101                         retval += cortex_a_internal_restore(curr, 1, &address,
1102                                         handle_breakpoints, 0);
1103                         retval += cortex_a_internal_restart(curr);
1104                 }
1105                 head = head->next;
1106
1107         }
1108         return retval;
1109 }
1110
1111 static int cortex_a_resume(struct target *target, int current,
1112         target_addr_t address, int handle_breakpoints, int debug_execution)
1113 {
1114         int retval = 0;
1115         /* dummy resume for smp toggle in order to reduce gdb impact  */
1116         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1117                 /*   simulate a start and halt of target */
1118                 target->gdb_service->target = NULL;
1119                 target->gdb_service->core[0] = target->gdb_service->core[1];
1120                 /*  fake resume at next poll we play the  target core[1], see poll*/
1121                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1122                 return 0;
1123         }
1124         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1125         if (target->smp) {
1126                 target->gdb_service->core[0] = -1;
1127                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1128                 if (retval != ERROR_OK)
1129                         return retval;
1130         }
1131         cortex_a_internal_restart(target);
1132
1133         if (!debug_execution) {
1134                 target->state = TARGET_RUNNING;
1135                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1136                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1137         } else {
1138                 target->state = TARGET_DEBUG_RUNNING;
1139                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1140                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1141         }
1142
1143         return ERROR_OK;
1144 }
1145
1146 static int cortex_a_debug_entry(struct target *target)
1147 {
1148         int i;
1149         uint32_t regfile[16], cpsr, spsr, dscr;
1150         int retval = ERROR_OK;
1151         struct working_area *regfile_working_area = NULL;
1152         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1153         struct armv7a_common *armv7a = target_to_armv7a(target);
1154         struct arm *arm = &armv7a->arm;
1155         struct reg *reg;
1156
1157         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1158
1159         /* REVISIT surely we should not re-read DSCR !! */
1160         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1161                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1162         if (retval != ERROR_OK)
1163                 return retval;
1164
1165         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1166          * imprecise data aborts get discarded by issuing a Data
1167          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1168          */
1169
1170         /* Enable the ITR execution once we are in debug mode */
1171         dscr |= DSCR_ITR_EN;
1172         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1173                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1174         if (retval != ERROR_OK)
1175                 return retval;
1176
1177         /* Examine debug reason */
1178         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1179
1180         /* save address of instruction that triggered the watchpoint? */
1181         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1182                 uint32_t wfar;
1183
1184                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1185                                 armv7a->debug_base + CPUDBG_WFAR,
1186                                 &wfar);
1187                 if (retval != ERROR_OK)
1188                         return retval;
1189                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1190         }
1191
1192         /* REVISIT fast_reg_read is never set ... */
1193
1194         /* Examine target state and mode */
1195         if (cortex_a->fast_reg_read)
1196                 target_alloc_working_area(target, 64, &regfile_working_area);
1197
1198
1199         /* First load register acessible through core debug port*/
1200         if (!regfile_working_area)
1201                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1202         else {
1203                 retval = cortex_a_read_regs_through_mem(target,
1204                                 regfile_working_area->address, regfile);
1205
1206                 target_free_working_area(target, regfile_working_area);
1207                 if (retval != ERROR_OK)
1208                         return retval;
1209
1210                 /* read Current PSR */
1211                 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1212                 /*  store current cpsr */
1213                 if (retval != ERROR_OK)
1214                         return retval;
1215
1216                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1217
1218                 arm_set_cpsr(arm, cpsr);
1219
1220                 /* update cache */
1221                 for (i = 0; i <= ARM_PC; i++) {
1222                         reg = arm_reg_current(arm, i);
1223
1224                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1225                         reg->valid = 1;
1226                         reg->dirty = 0;
1227                 }
1228
1229                 /* Fixup PC Resume Address */
1230                 if (cpsr & (1 << 5)) {
1231                         /* T bit set for Thumb or ThumbEE state */
1232                         regfile[ARM_PC] -= 4;
1233                 } else {
1234                         /* ARM state */
1235                         regfile[ARM_PC] -= 8;
1236                 }
1237
1238                 reg = arm->pc;
1239                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1240                 reg->dirty = reg->valid;
1241         }
1242
1243         if (arm->spsr) {
1244                 /* read Saved PSR */
1245                 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1246                 /*  store current spsr */
1247                 if (retval != ERROR_OK)
1248                         return retval;
1249
1250                 reg = arm->spsr;
1251                 buf_set_u32(reg->value, 0, 32, spsr);
1252                 reg->valid = 1;
1253                 reg->dirty = 0;
1254         }
1255
1256 #if 0
1257 /* TODO, Move this */
1258         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1259         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1260         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1261
1262         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1263         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1264
1265         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1266         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1267 #endif
1268
1269         /* Are we in an exception handler */
1270 /*      armv4_5->exception_number = 0; */
1271         if (armv7a->post_debug_entry) {
1272                 retval = armv7a->post_debug_entry(target);
1273                 if (retval != ERROR_OK)
1274                         return retval;
1275         }
1276
1277         return retval;
1278 }
1279
1280 static int cortex_a_post_debug_entry(struct target *target)
1281 {
1282         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1283         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1284         int retval;
1285
1286         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1287         retval = armv7a->arm.mrc(target, 15,
1288                         0, 0,   /* op1, op2 */
1289                         1, 0,   /* CRn, CRm */
1290                         &cortex_a->cp15_control_reg);
1291         if (retval != ERROR_OK)
1292                 return retval;
1293         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1294         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1295
1296         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1297                 armv7a_identify_cache(target);
1298
1299         if (armv7a->is_armv7r) {
1300                 armv7a->armv7a_mmu.mmu_enabled = 0;
1301         } else {
1302                 armv7a->armv7a_mmu.mmu_enabled =
1303                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1304         }
1305         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1306                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1307         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1308                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1309         cortex_a->curr_mode = armv7a->arm.core_mode;
1310
1311         /* switch to SVC mode to read DACR */
1312         dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1313         armv7a->arm.mrc(target, 15,
1314                         0, 0, 3, 0,
1315                         &cortex_a->cp15_dacr_reg);
1316
1317         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1318                         cortex_a->cp15_dacr_reg);
1319
1320         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1321         return ERROR_OK;
1322 }
1323
1324 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1325 {
1326         struct armv7a_common *armv7a = target_to_armv7a(target);
1327         uint32_t dscr;
1328
1329         /* Read DSCR */
1330         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1331                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1332         if (ERROR_OK != retval)
1333                 return retval;
1334
1335         /* clear bitfield */
1336         dscr &= ~bit_mask;
1337         /* put new value */
1338         dscr |= value & bit_mask;
1339
1340         /* write new DSCR */
1341         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1342                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1343         return retval;
1344 }
1345
1346 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1347         int handle_breakpoints)
1348 {
1349         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1350         struct armv7a_common *armv7a = target_to_armv7a(target);
1351         struct arm *arm = &armv7a->arm;
1352         struct breakpoint *breakpoint = NULL;
1353         struct breakpoint stepbreakpoint;
1354         struct reg *r;
1355         int retval;
1356
1357         if (target->state != TARGET_HALTED) {
1358                 LOG_WARNING("target not halted");
1359                 return ERROR_TARGET_NOT_HALTED;
1360         }
1361
1362         /* current = 1: continue on current pc, otherwise continue at <address> */
1363         r = arm->pc;
1364         if (!current)
1365                 buf_set_u32(r->value, 0, 32, address);
1366         else
1367                 address = buf_get_u32(r->value, 0, 32);
1368
1369         /* The front-end may request us not to handle breakpoints.
1370          * But since Cortex-A uses breakpoint for single step,
1371          * we MUST handle breakpoints.
1372          */
1373         handle_breakpoints = 1;
1374         if (handle_breakpoints) {
1375                 breakpoint = breakpoint_find(target, address);
1376                 if (breakpoint)
1377                         cortex_a_unset_breakpoint(target, breakpoint);
1378         }
1379
1380         /* Setup single step breakpoint */
1381         stepbreakpoint.address = address;
1382         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1383                 ? 2 : 4;
1384         stepbreakpoint.type = BKPT_HARD;
1385         stepbreakpoint.set = 0;
1386
1387         /* Disable interrupts during single step if requested */
1388         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1389                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1390                 if (ERROR_OK != retval)
1391                         return retval;
1392         }
1393
1394         /* Break on IVA mismatch */
1395         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1396
1397         target->debug_reason = DBG_REASON_SINGLESTEP;
1398
1399         retval = cortex_a_resume(target, 1, address, 0, 0);
1400         if (retval != ERROR_OK)
1401                 return retval;
1402
1403         int64_t then = timeval_ms();
1404         while (target->state != TARGET_HALTED) {
1405                 retval = cortex_a_poll(target);
1406                 if (retval != ERROR_OK)
1407                         return retval;
1408                 if (timeval_ms() > then + 1000) {
1409                         LOG_ERROR("timeout waiting for target halt");
1410                         return ERROR_FAIL;
1411                 }
1412         }
1413
1414         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1415
1416         /* Re-enable interrupts if they were disabled */
1417         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1418                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1419                 if (ERROR_OK != retval)
1420                         return retval;
1421         }
1422
1423
1424         target->debug_reason = DBG_REASON_BREAKPOINT;
1425
1426         if (breakpoint)
1427                 cortex_a_set_breakpoint(target, breakpoint, 0);
1428
1429         if (target->state != TARGET_HALTED)
1430                 LOG_DEBUG("target stepped");
1431
1432         return ERROR_OK;
1433 }
1434
1435 static int cortex_a_restore_context(struct target *target, bool bpwp)
1436 {
1437         struct armv7a_common *armv7a = target_to_armv7a(target);
1438
1439         LOG_DEBUG(" ");
1440
1441         if (armv7a->pre_restore_context)
1442                 armv7a->pre_restore_context(target);
1443
1444         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1445 }
1446
1447 /*
1448  * Cortex-A Breakpoint and watchpoint functions
1449  */
1450
1451 /* Setup hardware Breakpoint Register Pair */
1452 static int cortex_a_set_breakpoint(struct target *target,
1453         struct breakpoint *breakpoint, uint8_t matchmode)
1454 {
1455         int retval;
1456         int brp_i = 0;
1457         uint32_t control;
1458         uint8_t byte_addr_select = 0x0F;
1459         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1460         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1461         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1462
1463         if (breakpoint->set) {
1464                 LOG_WARNING("breakpoint already set");
1465                 return ERROR_OK;
1466         }
1467
1468         if (breakpoint->type == BKPT_HARD) {
1469                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1470                         brp_i++;
1471                 if (brp_i >= cortex_a->brp_num) {
1472                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1473                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1474                 }
1475                 breakpoint->set = brp_i + 1;
1476                 if (breakpoint->length == 2)
1477                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1478                 control = ((matchmode & 0x7) << 20)
1479                         | (byte_addr_select << 5)
1480                         | (3 << 1) | 1;
1481                 brp_list[brp_i].used = 1;
1482                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1483                 brp_list[brp_i].control = control;
1484                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1485                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1486                                 brp_list[brp_i].value);
1487                 if (retval != ERROR_OK)
1488                         return retval;
1489                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1490                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1491                                 brp_list[brp_i].control);
1492                 if (retval != ERROR_OK)
1493                         return retval;
1494                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1495                         brp_list[brp_i].control,
1496                         brp_list[brp_i].value);
1497         } else if (breakpoint->type == BKPT_SOFT) {
1498                 uint8_t code[4];
1499                 if (breakpoint->length == 2)
1500                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1501                 else
1502                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1503                 retval = target_read_memory(target,
1504                                 breakpoint->address & 0xFFFFFFFE,
1505                                 breakpoint->length, 1,
1506                                 breakpoint->orig_instr);
1507                 if (retval != ERROR_OK)
1508                         return retval;
1509
1510                 /* make sure data cache is cleaned & invalidated down to PoC */
1511                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1512                         armv7a_cache_flush_virt(target, breakpoint->address,
1513                                                 breakpoint->length);
1514                 }
1515
1516                 retval = target_write_memory(target,
1517                                 breakpoint->address & 0xFFFFFFFE,
1518                                 breakpoint->length, 1, code);
1519                 if (retval != ERROR_OK)
1520                         return retval;
1521
1522                 /* update i-cache at breakpoint location */
1523                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1524                                         breakpoint->length);
1525                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1526                                                  breakpoint->length);
1527
1528                 breakpoint->set = 0x11; /* Any nice value but 0 */
1529         }
1530
1531         return ERROR_OK;
1532 }
1533
1534 static int cortex_a_set_context_breakpoint(struct target *target,
1535         struct breakpoint *breakpoint, uint8_t matchmode)
1536 {
1537         int retval = ERROR_FAIL;
1538         int brp_i = 0;
1539         uint32_t control;
1540         uint8_t byte_addr_select = 0x0F;
1541         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1542         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1543         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1544
1545         if (breakpoint->set) {
1546                 LOG_WARNING("breakpoint already set");
1547                 return retval;
1548         }
1549         /*check available context BRPs*/
1550         while ((brp_list[brp_i].used ||
1551                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1552                 brp_i++;
1553
1554         if (brp_i >= cortex_a->brp_num) {
1555                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1556                 return ERROR_FAIL;
1557         }
1558
1559         breakpoint->set = brp_i + 1;
1560         control = ((matchmode & 0x7) << 20)
1561                 | (byte_addr_select << 5)
1562                 | (3 << 1) | 1;
1563         brp_list[brp_i].used = 1;
1564         brp_list[brp_i].value = (breakpoint->asid);
1565         brp_list[brp_i].control = control;
1566         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1567                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1568                         brp_list[brp_i].value);
1569         if (retval != ERROR_OK)
1570                 return retval;
1571         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1572                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1573                         brp_list[brp_i].control);
1574         if (retval != ERROR_OK)
1575                 return retval;
1576         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1577                 brp_list[brp_i].control,
1578                 brp_list[brp_i].value);
1579         return ERROR_OK;
1580
1581 }
1582
1583 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1584 {
1585         int retval = ERROR_FAIL;
1586         int brp_1 = 0;  /* holds the contextID pair */
1587         int brp_2 = 0;  /* holds the IVA pair */
1588         uint32_t control_CTX, control_IVA;
1589         uint8_t CTX_byte_addr_select = 0x0F;
1590         uint8_t IVA_byte_addr_select = 0x0F;
1591         uint8_t CTX_machmode = 0x03;
1592         uint8_t IVA_machmode = 0x01;
1593         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1594         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1595         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1596
1597         if (breakpoint->set) {
1598                 LOG_WARNING("breakpoint already set");
1599                 return retval;
1600         }
1601         /*check available context BRPs*/
1602         while ((brp_list[brp_1].used ||
1603                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1604                 brp_1++;
1605
1606         printf("brp(CTX) found num: %d\n", brp_1);
1607         if (brp_1 >= cortex_a->brp_num) {
1608                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1609                 return ERROR_FAIL;
1610         }
1611
1612         while ((brp_list[brp_2].used ||
1613                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1614                 brp_2++;
1615
1616         printf("brp(IVA) found num: %d\n", brp_2);
1617         if (brp_2 >= cortex_a->brp_num) {
1618                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1619                 return ERROR_FAIL;
1620         }
1621
1622         breakpoint->set = brp_1 + 1;
1623         breakpoint->linked_BRP = brp_2;
1624         control_CTX = ((CTX_machmode & 0x7) << 20)
1625                 | (brp_2 << 16)
1626                 | (0 << 14)
1627                 | (CTX_byte_addr_select << 5)
1628                 | (3 << 1) | 1;
1629         brp_list[brp_1].used = 1;
1630         brp_list[brp_1].value = (breakpoint->asid);
1631         brp_list[brp_1].control = control_CTX;
1632         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1633                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1634                         brp_list[brp_1].value);
1635         if (retval != ERROR_OK)
1636                 return retval;
1637         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1638                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1639                         brp_list[brp_1].control);
1640         if (retval != ERROR_OK)
1641                 return retval;
1642
1643         control_IVA = ((IVA_machmode & 0x7) << 20)
1644                 | (brp_1 << 16)
1645                 | (IVA_byte_addr_select << 5)
1646                 | (3 << 1) | 1;
1647         brp_list[brp_2].used = 1;
1648         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1649         brp_list[brp_2].control = control_IVA;
1650         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1651                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1652                         brp_list[brp_2].value);
1653         if (retval != ERROR_OK)
1654                 return retval;
1655         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1656                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1657                         brp_list[brp_2].control);
1658         if (retval != ERROR_OK)
1659                 return retval;
1660
1661         return ERROR_OK;
1662 }
1663
1664 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1665 {
1666         int retval;
1667         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1668         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1669         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1670
1671         if (!breakpoint->set) {
1672                 LOG_WARNING("breakpoint not set");
1673                 return ERROR_OK;
1674         }
1675
1676         if (breakpoint->type == BKPT_HARD) {
1677                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1678                         int brp_i = breakpoint->set - 1;
1679                         int brp_j = breakpoint->linked_BRP;
1680                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1681                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1682                                 return ERROR_OK;
1683                         }
1684                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1685                                 brp_list[brp_i].control, brp_list[brp_i].value);
1686                         brp_list[brp_i].used = 0;
1687                         brp_list[brp_i].value = 0;
1688                         brp_list[brp_i].control = 0;
1689                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1690                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1691                                         brp_list[brp_i].control);
1692                         if (retval != ERROR_OK)
1693                                 return retval;
1694                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1695                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1696                                         brp_list[brp_i].value);
1697                         if (retval != ERROR_OK)
1698                                 return retval;
1699                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1700                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1701                                 return ERROR_OK;
1702                         }
1703                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1704                                 brp_list[brp_j].control, brp_list[brp_j].value);
1705                         brp_list[brp_j].used = 0;
1706                         brp_list[brp_j].value = 0;
1707                         brp_list[brp_j].control = 0;
1708                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1709                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1710                                         brp_list[brp_j].control);
1711                         if (retval != ERROR_OK)
1712                                 return retval;
1713                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1714                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1715                                         brp_list[brp_j].value);
1716                         if (retval != ERROR_OK)
1717                                 return retval;
1718                         breakpoint->linked_BRP = 0;
1719                         breakpoint->set = 0;
1720                         return ERROR_OK;
1721
1722                 } else {
1723                         int brp_i = breakpoint->set - 1;
1724                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1725                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1726                                 return ERROR_OK;
1727                         }
1728                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1729                                 brp_list[brp_i].control, brp_list[brp_i].value);
1730                         brp_list[brp_i].used = 0;
1731                         brp_list[brp_i].value = 0;
1732                         brp_list[brp_i].control = 0;
1733                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1734                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1735                                         brp_list[brp_i].control);
1736                         if (retval != ERROR_OK)
1737                                 return retval;
1738                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1739                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1740                                         brp_list[brp_i].value);
1741                         if (retval != ERROR_OK)
1742                                 return retval;
1743                         breakpoint->set = 0;
1744                         return ERROR_OK;
1745                 }
1746         } else {
1747
1748                 /* make sure data cache is cleaned & invalidated down to PoC */
1749                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1750                         armv7a_cache_flush_virt(target, breakpoint->address,
1751                                                 breakpoint->length);
1752                 }
1753
1754                 /* restore original instruction (kept in target endianness) */
1755                 if (breakpoint->length == 4) {
1756                         retval = target_write_memory(target,
1757                                         breakpoint->address & 0xFFFFFFFE,
1758                                         4, 1, breakpoint->orig_instr);
1759                         if (retval != ERROR_OK)
1760                                 return retval;
1761                 } else {
1762                         retval = target_write_memory(target,
1763                                         breakpoint->address & 0xFFFFFFFE,
1764                                         2, 1, breakpoint->orig_instr);
1765                         if (retval != ERROR_OK)
1766                                 return retval;
1767                 }
1768
1769                 /* update i-cache at breakpoint location */
1770                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1771                                                  breakpoint->length);
1772                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1773                                                  breakpoint->length);
1774         }
1775         breakpoint->set = 0;
1776
1777         return ERROR_OK;
1778 }
1779
1780 static int cortex_a_add_breakpoint(struct target *target,
1781         struct breakpoint *breakpoint)
1782 {
1783         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1784
1785         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1786                 LOG_INFO("no hardware breakpoint available");
1787                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1788         }
1789
1790         if (breakpoint->type == BKPT_HARD)
1791                 cortex_a->brp_num_available--;
1792
1793         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1794 }
1795
1796 static int cortex_a_add_context_breakpoint(struct target *target,
1797         struct breakpoint *breakpoint)
1798 {
1799         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1800
1801         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1802                 LOG_INFO("no hardware breakpoint available");
1803                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1804         }
1805
1806         if (breakpoint->type == BKPT_HARD)
1807                 cortex_a->brp_num_available--;
1808
1809         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1810 }
1811
1812 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1813         struct breakpoint *breakpoint)
1814 {
1815         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1816
1817         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1818                 LOG_INFO("no hardware breakpoint available");
1819                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1820         }
1821
1822         if (breakpoint->type == BKPT_HARD)
1823                 cortex_a->brp_num_available--;
1824
1825         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1826 }
1827
1828
1829 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1830 {
1831         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1832
1833 #if 0
1834 /* It is perfectly possible to remove breakpoints while the target is running */
1835         if (target->state != TARGET_HALTED) {
1836                 LOG_WARNING("target not halted");
1837                 return ERROR_TARGET_NOT_HALTED;
1838         }
1839 #endif
1840
1841         if (breakpoint->set) {
1842                 cortex_a_unset_breakpoint(target, breakpoint);
1843                 if (breakpoint->type == BKPT_HARD)
1844                         cortex_a->brp_num_available++;
1845         }
1846
1847
1848         return ERROR_OK;
1849 }
1850
1851 /*
1852  * Cortex-A Reset functions
1853  */
1854
1855 static int cortex_a_assert_reset(struct target *target)
1856 {
1857         struct armv7a_common *armv7a = target_to_armv7a(target);
1858
1859         LOG_DEBUG(" ");
1860
1861         /* FIXME when halt is requested, make it work somehow... */
1862
1863         /* This function can be called in "target not examined" state */
1864
1865         /* Issue some kind of warm reset. */
1866         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1867                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1868         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1869                 /* REVISIT handle "pulls" cases, if there's
1870                  * hardware that needs them to work.
1871                  */
1872
1873                 /*
1874                  * FIXME: fix reset when transport is SWD. This is a temporary
1875                  * work-around for release v0.10 that is not intended to stay!
1876                  */
1877                 if (transport_is_swd() ||
1878                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1879                         jtag_add_reset(0, 1);
1880
1881         } else {
1882                 LOG_ERROR("%s: how to reset?", target_name(target));
1883                 return ERROR_FAIL;
1884         }
1885
1886         /* registers are now invalid */
1887         if (target_was_examined(target))
1888                 register_cache_invalidate(armv7a->arm.core_cache);
1889
1890         target->state = TARGET_RESET;
1891
1892         return ERROR_OK;
1893 }
1894
1895 static int cortex_a_deassert_reset(struct target *target)
1896 {
1897         int retval;
1898
1899         LOG_DEBUG(" ");
1900
1901         /* be certain SRST is off */
1902         jtag_add_reset(0, 0);
1903
1904         if (target_was_examined(target)) {
1905                 retval = cortex_a_poll(target);
1906                 if (retval != ERROR_OK)
1907                         return retval;
1908         }
1909
1910         if (target->reset_halt) {
1911                 if (target->state != TARGET_HALTED) {
1912                         LOG_WARNING("%s: ran after reset and before halt ...",
1913                                 target_name(target));
1914                         if (target_was_examined(target)) {
1915                                 retval = target_halt(target);
1916                                 if (retval != ERROR_OK)
1917                                         return retval;
1918                         } else
1919                                 target->state = TARGET_UNKNOWN;
1920                 }
1921         }
1922
1923         return ERROR_OK;
1924 }
1925
1926 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1927 {
1928         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1929          * New desired mode must be in mode. Current value of DSCR must be in
1930          * *dscr, which is updated with new value.
1931          *
1932          * This function elides actually sending the mode-change over the debug
1933          * interface if the mode is already set as desired.
1934          */
1935         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1936         if (new_dscr != *dscr) {
1937                 struct armv7a_common *armv7a = target_to_armv7a(target);
1938                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1939                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1940                 if (retval == ERROR_OK)
1941                         *dscr = new_dscr;
1942                 return retval;
1943         } else {
1944                 return ERROR_OK;
1945         }
1946 }
1947
1948 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1949         uint32_t value, uint32_t *dscr)
1950 {
1951         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1952         struct armv7a_common *armv7a = target_to_armv7a(target);
1953         int64_t then = timeval_ms();
1954         int retval;
1955
1956         while ((*dscr & mask) != value) {
1957                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1958                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1959                 if (retval != ERROR_OK)
1960                         return retval;
1961                 if (timeval_ms() > then + 1000) {
1962                         LOG_ERROR("timeout waiting for DSCR bit change");
1963                         return ERROR_FAIL;
1964                 }
1965         }
1966         return ERROR_OK;
1967 }
1968
1969 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1970         uint32_t *data, uint32_t *dscr)
1971 {
1972         int retval;
1973         struct armv7a_common *armv7a = target_to_armv7a(target);
1974
1975         /* Move from coprocessor to R0. */
1976         retval = cortex_a_exec_opcode(target, opcode, dscr);
1977         if (retval != ERROR_OK)
1978                 return retval;
1979
1980         /* Move from R0 to DTRTX. */
1981         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1982         if (retval != ERROR_OK)
1983                 return retval;
1984
1985         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1986          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1987          * must also check TXfull_l). Most of the time this will be free
1988          * because TXfull_l will be set immediately and cached in dscr. */
1989         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1990                         DSCR_DTRTX_FULL_LATCHED, dscr);
1991         if (retval != ERROR_OK)
1992                 return retval;
1993
1994         /* Read the value transferred to DTRTX. */
1995         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1996                         armv7a->debug_base + CPUDBG_DTRTX, data);
1997         if (retval != ERROR_OK)
1998                 return retval;
1999
2000         return ERROR_OK;
2001 }
2002
2003 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2004         uint32_t *dfsr, uint32_t *dscr)
2005 {
2006         int retval;
2007
2008         if (dfar) {
2009                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2010                 if (retval != ERROR_OK)
2011                         return retval;
2012         }
2013
2014         if (dfsr) {
2015                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2016                 if (retval != ERROR_OK)
2017                         return retval;
2018         }
2019
2020         return ERROR_OK;
2021 }
2022
2023 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2024         uint32_t data, uint32_t *dscr)
2025 {
2026         int retval;
2027         struct armv7a_common *armv7a = target_to_armv7a(target);
2028
2029         /* Write the value into DTRRX. */
2030         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2031                         armv7a->debug_base + CPUDBG_DTRRX, data);
2032         if (retval != ERROR_OK)
2033                 return retval;
2034
2035         /* Move from DTRRX to R0. */
2036         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2037         if (retval != ERROR_OK)
2038                 return retval;
2039
2040         /* Move from R0 to coprocessor. */
2041         retval = cortex_a_exec_opcode(target, opcode, dscr);
2042         if (retval != ERROR_OK)
2043                 return retval;
2044
2045         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2046          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2047          * check RXfull_l). Most of the time this will be free because RXfull_l
2048          * will be cleared immediately and cached in dscr. */
2049         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2050         if (retval != ERROR_OK)
2051                 return retval;
2052
2053         return ERROR_OK;
2054 }
2055
2056 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2057         uint32_t dfsr, uint32_t *dscr)
2058 {
2059         int retval;
2060
2061         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2062         if (retval != ERROR_OK)
2063                 return retval;
2064
2065         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2066         if (retval != ERROR_OK)
2067                 return retval;
2068
2069         return ERROR_OK;
2070 }
2071
2072 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2073 {
2074         uint32_t status, upper4;
2075
2076         if (dfsr & (1 << 9)) {
2077                 /* LPAE format. */
2078                 status = dfsr & 0x3f;
2079                 upper4 = status >> 2;
2080                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2081                         return ERROR_TARGET_TRANSLATION_FAULT;
2082                 else if (status == 33)
2083                         return ERROR_TARGET_UNALIGNED_ACCESS;
2084                 else
2085                         return ERROR_TARGET_DATA_ABORT;
2086         } else {
2087                 /* Normal format. */
2088                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2089                 if (status == 1)
2090                         return ERROR_TARGET_UNALIGNED_ACCESS;
2091                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2092                                 status == 9 || status == 11 || status == 13 || status == 15)
2093                         return ERROR_TARGET_TRANSLATION_FAULT;
2094                 else
2095                         return ERROR_TARGET_DATA_ABORT;
2096         }
2097 }
2098
2099 static int cortex_a_write_cpu_memory_slow(struct target *target,
2100         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2101 {
2102         /* Writes count objects of size size from *buffer. Old value of DSCR must
2103          * be in *dscr; updated to new value. This is slow because it works for
2104          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2105          * the address is aligned, cortex_a_write_cpu_memory_fast should be
2106          * preferred.
2107          * Preconditions:
2108          * - Address is in R0.
2109          * - R0 is marked dirty.
2110          */
2111         struct armv7a_common *armv7a = target_to_armv7a(target);
2112         struct arm *arm = &armv7a->arm;
2113         int retval;
2114
2115         /* Mark register R1 as dirty, to use for transferring data. */
2116         arm_reg_current(arm, 1)->dirty = true;
2117
2118         /* Switch to non-blocking mode if not already in that mode. */
2119         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2120         if (retval != ERROR_OK)
2121                 return retval;
2122
2123         /* Go through the objects. */
2124         while (count) {
2125                 /* Write the value to store into DTRRX. */
2126                 uint32_t data, opcode;
2127                 if (size == 1)
2128                         data = *buffer;
2129                 else if (size == 2)
2130                         data = target_buffer_get_u16(target, buffer);
2131                 else
2132                         data = target_buffer_get_u32(target, buffer);
2133                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2134                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2135                 if (retval != ERROR_OK)
2136                         return retval;
2137
2138                 /* Transfer the value from DTRRX to R1. */
2139                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2140                 if (retval != ERROR_OK)
2141                         return retval;
2142
2143                 /* Write the value transferred to R1 into memory. */
2144                 if (size == 1)
2145                         opcode = ARMV4_5_STRB_IP(1, 0);
2146                 else if (size == 2)
2147                         opcode = ARMV4_5_STRH_IP(1, 0);
2148                 else
2149                         opcode = ARMV4_5_STRW_IP(1, 0);
2150                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2151                 if (retval != ERROR_OK)
2152                         return retval;
2153
2154                 /* Check for faults and return early. */
2155                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2156                         return ERROR_OK; /* A data fault is not considered a system failure. */
2157
2158                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2159                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2160                  * must also check RXfull_l). Most of the time this will be free
2161                  * because RXfull_l will be cleared immediately and cached in dscr. */
2162                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2163                 if (retval != ERROR_OK)
2164                         return retval;
2165
2166                 /* Advance. */
2167                 buffer += size;
2168                 --count;
2169         }
2170
2171         return ERROR_OK;
2172 }
2173
2174 static int cortex_a_write_cpu_memory_fast(struct target *target,
2175         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2176 {
2177         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2178          * in *dscr; updated to new value. This is fast but only works for
2179          * word-sized objects at aligned addresses.
2180          * Preconditions:
2181          * - Address is in R0 and must be a multiple of 4.
2182          * - R0 is marked dirty.
2183          */
2184         struct armv7a_common *armv7a = target_to_armv7a(target);
2185         int retval;
2186
2187         /* Switch to fast mode if not already in that mode. */
2188         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2189         if (retval != ERROR_OK)
2190                 return retval;
2191
2192         /* Latch STC instruction. */
2193         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2194                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2195         if (retval != ERROR_OK)
2196                 return retval;
2197
2198         /* Transfer all the data and issue all the instructions. */
2199         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2200                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2201 }
2202
2203 static int cortex_a_write_cpu_memory(struct target *target,
2204         uint32_t address, uint32_t size,
2205         uint32_t count, const uint8_t *buffer)
2206 {
2207         /* Write memory through the CPU. */
2208         int retval, final_retval;
2209         struct armv7a_common *armv7a = target_to_armv7a(target);
2210         struct arm *arm = &armv7a->arm;
2211         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2212
2213         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2214                           address, size, count);
2215         if (target->state != TARGET_HALTED) {
2216                 LOG_WARNING("target not halted");
2217                 return ERROR_TARGET_NOT_HALTED;
2218         }
2219
2220         if (!count)
2221                 return ERROR_OK;
2222
2223         /* Clear any abort. */
2224         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2225                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2226         if (retval != ERROR_OK)
2227                 return retval;
2228
2229         /* Read DSCR. */
2230         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2231                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2232         if (retval != ERROR_OK)
2233                 return retval;
2234
2235         /* Switch to non-blocking mode if not already in that mode. */
2236         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2237         if (retval != ERROR_OK)
2238                 goto out;
2239
2240         /* Mark R0 as dirty. */
2241         arm_reg_current(arm, 0)->dirty = true;
2242
2243         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2244         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2245         if (retval != ERROR_OK)
2246                 goto out;
2247
2248         /* Get the memory address into R0. */
2249         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2250                         armv7a->debug_base + CPUDBG_DTRRX, address);
2251         if (retval != ERROR_OK)
2252                 goto out;
2253         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2254         if (retval != ERROR_OK)
2255                 goto out;
2256
2257         if (size == 4 && (address % 4) == 0) {
2258                 /* We are doing a word-aligned transfer, so use fast mode. */
2259                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2260         } else {
2261                 /* Use slow path. */
2262                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2263         }
2264
2265 out:
2266         final_retval = retval;
2267
2268         /* Switch to non-blocking mode if not already in that mode. */
2269         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2270         if (final_retval == ERROR_OK)
2271                 final_retval = retval;
2272
2273         /* Wait for last issued instruction to complete. */
2274         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2275         if (final_retval == ERROR_OK)
2276                 final_retval = retval;
2277
2278         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2279          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2280          * check RXfull_l). Most of the time this will be free because RXfull_l
2281          * will be cleared immediately and cached in dscr. However, don't do this
2282          * if there is fault, because then the instruction might not have completed
2283          * successfully. */
2284         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2285                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2286                 if (retval != ERROR_OK)
2287                         return retval;
2288         }
2289
2290         /* If there were any sticky abort flags, clear them. */
2291         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2292                 fault_dscr = dscr;
2293                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2294                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2295                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2296         } else {
2297                 fault_dscr = 0;
2298         }
2299
2300         /* Handle synchronous data faults. */
2301         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2302                 if (final_retval == ERROR_OK) {
2303                         /* Final return value will reflect cause of fault. */
2304                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2305                         if (retval == ERROR_OK) {
2306                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2307                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2308                         } else
2309                                 final_retval = retval;
2310                 }
2311                 /* Fault destroyed DFAR/DFSR; restore them. */
2312                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2313                 if (retval != ERROR_OK)
2314                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2315         }
2316
2317         /* Handle asynchronous data faults. */
2318         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2319                 if (final_retval == ERROR_OK)
2320                         /* No other error has been recorded so far, so keep this one. */
2321                         final_retval = ERROR_TARGET_DATA_ABORT;
2322         }
2323
2324         /* If the DCC is nonempty, clear it. */
2325         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2326                 uint32_t dummy;
2327                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2328                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2329                 if (final_retval == ERROR_OK)
2330                         final_retval = retval;
2331         }
2332         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2333                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2334                 if (final_retval == ERROR_OK)
2335                         final_retval = retval;
2336         }
2337
2338         /* Done. */
2339         return final_retval;
2340 }
2341
2342 static int cortex_a_read_cpu_memory_slow(struct target *target,
2343         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2344 {
2345         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2346          * in *dscr; updated to new value. This is slow because it works for
2347          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2348          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2349          * preferred.
2350          * Preconditions:
2351          * - Address is in R0.
2352          * - R0 is marked dirty.
2353          */
2354         struct armv7a_common *armv7a = target_to_armv7a(target);
2355         struct arm *arm = &armv7a->arm;
2356         int retval;
2357
2358         /* Mark register R1 as dirty, to use for transferring data. */
2359         arm_reg_current(arm, 1)->dirty = true;
2360
2361         /* Switch to non-blocking mode if not already in that mode. */
2362         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2363         if (retval != ERROR_OK)
2364                 return retval;
2365
2366         /* Go through the objects. */
2367         while (count) {
2368                 /* Issue a load of the appropriate size to R1. */
2369                 uint32_t opcode, data;
2370                 if (size == 1)
2371                         opcode = ARMV4_5_LDRB_IP(1, 0);
2372                 else if (size == 2)
2373                         opcode = ARMV4_5_LDRH_IP(1, 0);
2374                 else
2375                         opcode = ARMV4_5_LDRW_IP(1, 0);
2376                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2377                 if (retval != ERROR_OK)
2378                         return retval;
2379
2380                 /* Issue a write of R1 to DTRTX. */
2381                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2382                 if (retval != ERROR_OK)
2383                         return retval;
2384
2385                 /* Check for faults and return early. */
2386                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2387                         return ERROR_OK; /* A data fault is not considered a system failure. */
2388
2389                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2390                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2391                  * must also check TXfull_l). Most of the time this will be free
2392                  * because TXfull_l will be set immediately and cached in dscr. */
2393                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2394                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2395                 if (retval != ERROR_OK)
2396                         return retval;
2397
2398                 /* Read the value transferred to DTRTX into the buffer. */
2399                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2400                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2401                 if (retval != ERROR_OK)
2402                         return retval;
2403                 if (size == 1)
2404                         *buffer = (uint8_t) data;
2405                 else if (size == 2)
2406                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2407                 else
2408                         target_buffer_set_u32(target, buffer, data);
2409
2410                 /* Advance. */
2411                 buffer += size;
2412                 --count;
2413         }
2414
2415         return ERROR_OK;
2416 }
2417
2418 static int cortex_a_read_cpu_memory_fast(struct target *target,
2419         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2420 {
2421         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2422          * *dscr; updated to new value. This is fast but only works for word-sized
2423          * objects at aligned addresses.
2424          * Preconditions:
2425          * - Address is in R0 and must be a multiple of 4.
2426          * - R0 is marked dirty.
2427          */
2428         struct armv7a_common *armv7a = target_to_armv7a(target);
2429         uint32_t u32;
2430         int retval;
2431
2432         /* Switch to non-blocking mode if not already in that mode. */
2433         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2434         if (retval != ERROR_OK)
2435                 return retval;
2436
2437         /* Issue the LDC instruction via a write to ITR. */
2438         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2439         if (retval != ERROR_OK)
2440                 return retval;
2441
2442         count--;
2443
2444         if (count > 0) {
2445                 /* Switch to fast mode if not already in that mode. */
2446                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2447                 if (retval != ERROR_OK)
2448                         return retval;
2449
2450                 /* Latch LDC instruction. */
2451                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2452                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2453                 if (retval != ERROR_OK)
2454                         return retval;
2455
2456                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2457                  * mode rules, this blocks until the instruction finishes executing and
2458                  * then reissues the read instruction to read the next word from
2459                  * memory. The last read of DTRTX in this call reads the second-to-last
2460                  * word from memory and issues the read instruction for the last word.
2461                  */
2462                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2463                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2464                 if (retval != ERROR_OK)
2465                         return retval;
2466
2467                 /* Advance. */
2468                 buffer += count * 4;
2469         }
2470
2471         /* Wait for last issued instruction to complete. */
2472         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2473         if (retval != ERROR_OK)
2474                 return retval;
2475
2476         /* Switch to non-blocking mode if not already in that mode. */
2477         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2478         if (retval != ERROR_OK)
2479                 return retval;
2480
2481         /* Check for faults and return early. */
2482         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2483                 return ERROR_OK; /* A data fault is not considered a system failure. */
2484
2485         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2486          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2487          * check TXfull_l). Most of the time this will be free because TXfull_l
2488          * will be set immediately and cached in dscr. */
2489         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2490                         DSCR_DTRTX_FULL_LATCHED, dscr);
2491         if (retval != ERROR_OK)
2492                 return retval;
2493
2494         /* Read the value transferred to DTRTX into the buffer. This is the last
2495          * word. */
2496         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2497                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2498         if (retval != ERROR_OK)
2499                 return retval;
2500         target_buffer_set_u32(target, buffer, u32);
2501
2502         return ERROR_OK;
2503 }
2504
2505 static int cortex_a_read_cpu_memory(struct target *target,
2506         uint32_t address, uint32_t size,
2507         uint32_t count, uint8_t *buffer)
2508 {
2509         /* Read memory through the CPU. */
2510         int retval, final_retval;
2511         struct armv7a_common *armv7a = target_to_armv7a(target);
2512         struct arm *arm = &armv7a->arm;
2513         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2514
2515         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2516                           address, size, count);
2517         if (target->state != TARGET_HALTED) {
2518                 LOG_WARNING("target not halted");
2519                 return ERROR_TARGET_NOT_HALTED;
2520         }
2521
2522         if (!count)
2523                 return ERROR_OK;
2524
2525         /* Clear any abort. */
2526         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2527                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2528         if (retval != ERROR_OK)
2529                 return retval;
2530
2531         /* Read DSCR */
2532         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2533                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2534         if (retval != ERROR_OK)
2535                 return retval;
2536
2537         /* Switch to non-blocking mode if not already in that mode. */
2538         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2539         if (retval != ERROR_OK)
2540                 goto out;
2541
2542         /* Mark R0 as dirty. */
2543         arm_reg_current(arm, 0)->dirty = true;
2544
2545         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2546         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2547         if (retval != ERROR_OK)
2548                 goto out;
2549
2550         /* Get the memory address into R0. */
2551         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2552                         armv7a->debug_base + CPUDBG_DTRRX, address);
2553         if (retval != ERROR_OK)
2554                 goto out;
2555         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2556         if (retval != ERROR_OK)
2557                 goto out;
2558
2559         if (size == 4 && (address % 4) == 0) {
2560                 /* We are doing a word-aligned transfer, so use fast mode. */
2561                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2562         } else {
2563                 /* Use slow path. */
2564                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2565         }
2566
2567 out:
2568         final_retval = retval;
2569
2570         /* Switch to non-blocking mode if not already in that mode. */
2571         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2572         if (final_retval == ERROR_OK)
2573                 final_retval = retval;
2574
2575         /* Wait for last issued instruction to complete. */
2576         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2577         if (final_retval == ERROR_OK)
2578                 final_retval = retval;
2579
2580         /* If there were any sticky abort flags, clear them. */
2581         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2582                 fault_dscr = dscr;
2583                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2584                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2585                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2586         } else {
2587                 fault_dscr = 0;
2588         }
2589
2590         /* Handle synchronous data faults. */
2591         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2592                 if (final_retval == ERROR_OK) {
2593                         /* Final return value will reflect cause of fault. */
2594                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2595                         if (retval == ERROR_OK) {
2596                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2597                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2598                         } else
2599                                 final_retval = retval;
2600                 }
2601                 /* Fault destroyed DFAR/DFSR; restore them. */
2602                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2603                 if (retval != ERROR_OK)
2604                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2605         }
2606
2607         /* Handle asynchronous data faults. */
2608         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2609                 if (final_retval == ERROR_OK)
2610                         /* No other error has been recorded so far, so keep this one. */
2611                         final_retval = ERROR_TARGET_DATA_ABORT;
2612         }
2613
2614         /* If the DCC is nonempty, clear it. */
2615         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2616                 uint32_t dummy;
2617                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2618                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2619                 if (final_retval == ERROR_OK)
2620                         final_retval = retval;
2621         }
2622         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2623                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2624                 if (final_retval == ERROR_OK)
2625                         final_retval = retval;
2626         }
2627
2628         /* Done. */
2629         return final_retval;
2630 }
2631
2632
2633 /*
2634  * Cortex-A Memory access
2635  *
2636  * This is same Cortex-M3 but we must also use the correct
2637  * ap number for every access.
2638  */
2639
2640 static int cortex_a_read_phys_memory(struct target *target,
2641         target_addr_t address, uint32_t size,
2642         uint32_t count, uint8_t *buffer)
2643 {
2644         struct armv7a_common *armv7a = target_to_armv7a(target);
2645         struct adiv5_dap *swjdp = armv7a->arm.dap;
2646         uint8_t apsel = swjdp->apsel;
2647         int retval;
2648
2649         if (!count || !buffer)
2650                 return ERROR_COMMAND_SYNTAX_ERROR;
2651
2652         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2653                 address, size, count);
2654
2655         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2656                 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2657
2658         /* read memory through the CPU */
2659         cortex_a_prep_memaccess(target, 1);
2660         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2661         cortex_a_post_memaccess(target, 1);
2662
2663         return retval;
2664 }
2665
2666 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2667         uint32_t size, uint32_t count, uint8_t *buffer)
2668 {
2669         int retval;
2670
2671         /* cortex_a handles unaligned memory access */
2672         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2673                 address, size, count);
2674
2675         cortex_a_prep_memaccess(target, 0);
2676         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2677         cortex_a_post_memaccess(target, 0);
2678
2679         return retval;
2680 }
2681
2682 static int cortex_a_read_memory_ahb(struct target *target, target_addr_t address,
2683         uint32_t size, uint32_t count, uint8_t *buffer)
2684 {
2685         int mmu_enabled = 0;
2686         target_addr_t virt, phys;
2687         int retval;
2688         struct armv7a_common *armv7a = target_to_armv7a(target);
2689         struct adiv5_dap *swjdp = armv7a->arm.dap;
2690         uint8_t apsel = swjdp->apsel;
2691
2692         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2693                 return target_read_memory(target, address, size, count, buffer);
2694
2695         /* cortex_a handles unaligned memory access */
2696         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2697                 address, size, count);
2698
2699         /* determine if MMU was enabled on target stop */
2700         if (!armv7a->is_armv7r) {
2701                 retval = cortex_a_mmu(target, &mmu_enabled);
2702                 if (retval != ERROR_OK)
2703                         return retval;
2704         }
2705
2706         if (mmu_enabled) {
2707                 virt = address;
2708                 retval = cortex_a_virt2phys(target, virt, &phys);
2709                 if (retval != ERROR_OK)
2710                         return retval;
2711
2712                 LOG_DEBUG("Reading at virtual address. "
2713                           "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2714                           virt, phys);
2715                 address = phys;
2716         }
2717
2718         if (!count || !buffer)
2719                 return ERROR_COMMAND_SYNTAX_ERROR;
2720
2721         retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2722
2723         return retval;
2724 }
2725
2726 static int cortex_a_write_phys_memory(struct target *target,
2727         target_addr_t address, uint32_t size,
2728         uint32_t count, const uint8_t *buffer)
2729 {
2730         struct armv7a_common *armv7a = target_to_armv7a(target);
2731         struct adiv5_dap *swjdp = armv7a->arm.dap;
2732         uint8_t apsel = swjdp->apsel;
2733         int retval;
2734
2735         if (!count || !buffer)
2736                 return ERROR_COMMAND_SYNTAX_ERROR;
2737
2738         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2739                 address, size, count);
2740
2741         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2742                 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2743
2744         /* write memory through the CPU */
2745         cortex_a_prep_memaccess(target, 1);
2746         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2747         cortex_a_post_memaccess(target, 1);
2748
2749         return retval;
2750 }
2751
2752 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2753         uint32_t size, uint32_t count, const uint8_t *buffer)
2754 {
2755         int retval;
2756
2757         /* cortex_a handles unaligned memory access */
2758         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2759                 address, size, count);
2760
2761         /* memory writes bypass the caches, must flush before writing */
2762         armv7a_cache_auto_flush_on_write(target, address, size * count);
2763
2764         cortex_a_prep_memaccess(target, 0);
2765         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2766         cortex_a_post_memaccess(target, 0);
2767         return retval;
2768 }
2769
2770 static int cortex_a_write_memory_ahb(struct target *target, target_addr_t address,
2771         uint32_t size, uint32_t count, const uint8_t *buffer)
2772 {
2773         int mmu_enabled = 0;
2774         target_addr_t virt, phys;
2775         int retval;
2776         struct armv7a_common *armv7a = target_to_armv7a(target);
2777         struct adiv5_dap *swjdp = armv7a->arm.dap;
2778         uint8_t apsel = swjdp->apsel;
2779
2780         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2781                 return target_write_memory(target, address, size, count, buffer);
2782
2783         /* cortex_a handles unaligned memory access */
2784         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2785                 address, size, count);
2786
2787         /* determine if MMU was enabled on target stop */
2788         if (!armv7a->is_armv7r) {
2789                 retval = cortex_a_mmu(target, &mmu_enabled);
2790                 if (retval != ERROR_OK)
2791                         return retval;
2792         }
2793
2794         if (mmu_enabled) {
2795                 virt = address;
2796                 retval = cortex_a_virt2phys(target, virt, &phys);
2797                 if (retval != ERROR_OK)
2798                         return retval;
2799
2800                 LOG_DEBUG("Writing to virtual address. "
2801                           "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2802                           virt,
2803                           phys);
2804                 address = phys;
2805         }
2806
2807         if (!count || !buffer)
2808                 return ERROR_COMMAND_SYNTAX_ERROR;
2809
2810         retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2811
2812         return retval;
2813 }
2814
2815 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2816                                 uint32_t count, uint8_t *buffer)
2817 {
2818         uint32_t size;
2819
2820         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2821          * will have something to do with the size we leave to it. */
2822         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2823                 if (address & size) {
2824                         int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2825                         if (retval != ERROR_OK)
2826                                 return retval;
2827                         address += size;
2828                         count -= size;
2829                         buffer += size;
2830                 }
2831         }
2832
2833         /* Read the data with as large access size as possible. */
2834         for (; size > 0; size /= 2) {
2835                 uint32_t aligned = count - count % size;
2836                 if (aligned > 0) {
2837                         int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2838                         if (retval != ERROR_OK)
2839                                 return retval;
2840                         address += aligned;
2841                         count -= aligned;
2842                         buffer += aligned;
2843                 }
2844         }
2845
2846         return ERROR_OK;
2847 }
2848
2849 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2850                                  uint32_t count, const uint8_t *buffer)
2851 {
2852         uint32_t size;
2853
2854         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2855          * will have something to do with the size we leave to it. */
2856         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2857                 if (address & size) {
2858                         int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2859                         if (retval != ERROR_OK)
2860                                 return retval;
2861                         address += size;
2862                         count -= size;
2863                         buffer += size;
2864                 }
2865         }
2866
2867         /* Write the data with as large access size as possible. */
2868         for (; size > 0; size /= 2) {
2869                 uint32_t aligned = count - count % size;
2870                 if (aligned > 0) {
2871                         int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2872                         if (retval != ERROR_OK)
2873                                 return retval;
2874                         address += aligned;
2875                         count -= aligned;
2876                         buffer += aligned;
2877                 }
2878         }
2879
2880         return ERROR_OK;
2881 }
2882
2883 static int cortex_a_handle_target_request(void *priv)
2884 {
2885         struct target *target = priv;
2886         struct armv7a_common *armv7a = target_to_armv7a(target);
2887         int retval;
2888
2889         if (!target_was_examined(target))
2890                 return ERROR_OK;
2891         if (!target->dbg_msg_enabled)
2892                 return ERROR_OK;
2893
2894         if (target->state == TARGET_RUNNING) {
2895                 uint32_t request;
2896                 uint32_t dscr;
2897                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2898                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2899
2900                 /* check if we have data */
2901                 int64_t then = timeval_ms();
2902                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2903                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2904                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2905                         if (retval == ERROR_OK) {
2906                                 target_request(target, request);
2907                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2908                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2909                         }
2910                         if (timeval_ms() > then + 1000) {
2911                                 LOG_ERROR("Timeout waiting for dtr tx full");
2912                                 return ERROR_FAIL;
2913                         }
2914                 }
2915         }
2916
2917         return ERROR_OK;
2918 }
2919
2920 /*
2921  * Cortex-A target information and configuration
2922  */
2923
2924 static int cortex_a_examine_first(struct target *target)
2925 {
2926         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2927         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2928         struct adiv5_dap *swjdp = armv7a->arm.dap;
2929
2930         int i;
2931         int retval = ERROR_OK;
2932         uint32_t didr, cpuid, dbg_osreg;
2933
2934         retval = dap_dp_init(swjdp);
2935         if (retval != ERROR_OK) {
2936                 LOG_ERROR("Could not initialize the debug port");
2937                 return retval;
2938         }
2939
2940         /* Search for the APB-AP - it is needed for access to debug registers */
2941         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2942         if (retval != ERROR_OK) {
2943                 LOG_ERROR("Could not find APB-AP for debug access");
2944                 return retval;
2945         }
2946
2947         retval = mem_ap_init(armv7a->debug_ap);
2948         if (retval != ERROR_OK) {
2949                 LOG_ERROR("Could not initialize the APB-AP");
2950                 return retval;
2951         }
2952
2953         armv7a->debug_ap->memaccess_tck = 80;
2954
2955         /* Search for the AHB-AB.
2956          * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2957          * can access system memory. */
2958         armv7a->memory_ap_available = false;
2959         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2960         if (retval == ERROR_OK) {
2961                 retval = mem_ap_init(armv7a->memory_ap);
2962                 if (retval == ERROR_OK)
2963                         armv7a->memory_ap_available = true;
2964         }
2965         if (retval != ERROR_OK) {
2966                 /* AHB-AP not found or unavailable - use the CPU */
2967                 LOG_DEBUG("No AHB-AP available for memory access");
2968         }
2969
2970         if (!target->dbgbase_set) {
2971                 uint32_t dbgbase;
2972                 /* Get ROM Table base */
2973                 uint32_t apid;
2974                 int32_t coreidx = target->coreid;
2975                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2976                           target->cmd_name);
2977                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2978                 if (retval != ERROR_OK)
2979                         return retval;
2980                 /* Lookup 0x15 -- Processor DAP */
2981                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2982                                 &armv7a->debug_base, &coreidx);
2983                 if (retval != ERROR_OK) {
2984                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2985                                   target->cmd_name);
2986                         return retval;
2987                 }
2988                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2989                           target->coreid, armv7a->debug_base);
2990         } else
2991                 armv7a->debug_base = target->dbgbase;
2992
2993         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2994                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2995         if (retval != ERROR_OK) {
2996                 LOG_DEBUG("Examine %s failed", "DIDR");
2997                 return retval;
2998         }
2999
3000         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3001                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3002         if (retval != ERROR_OK) {
3003                 LOG_DEBUG("Examine %s failed", "CPUID");
3004                 return retval;
3005         }
3006
3007         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3008         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3009
3010         cortex_a->didr = didr;
3011         cortex_a->cpuid = cpuid;
3012
3013         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3014                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3015         if (retval != ERROR_OK)
3016                 return retval;
3017         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
3018
3019         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3020                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3021                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3022                 return ERROR_TARGET_INIT_FAILED;
3023         }
3024
3025         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3026                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3027
3028         /* Read DBGOSLSR and check if OSLK is implemented */
3029         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3030                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3031         if (retval != ERROR_OK)
3032                 return retval;
3033         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3034
3035         /* check if OS Lock is implemented */
3036         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3037                 /* check if OS Lock is set */
3038                 if (dbg_osreg & OSLSR_OSLK) {
3039                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3040
3041                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3042                                                         armv7a->debug_base + CPUDBG_OSLAR,
3043                                                         0);
3044                         if (retval == ERROR_OK)
3045                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3046                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3047
3048                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3049                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3050                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3051                                                 target->coreid);
3052                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3053                                 return ERROR_TARGET_INIT_FAILED;
3054                         }
3055                 }
3056         }
3057
3058         armv7a->arm.core_type = ARM_MODE_MON;
3059
3060         /* Avoid recreating the registers cache */
3061         if (!target_was_examined(target)) {
3062                 retval = cortex_a_dpm_setup(cortex_a, didr);
3063                 if (retval != ERROR_OK)
3064                         return retval;
3065         }
3066
3067         /* Setup Breakpoint Register Pairs */
3068         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3069         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3070         cortex_a->brp_num_available = cortex_a->brp_num;
3071         free(cortex_a->brp_list);
3072         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3073 /*      cortex_a->brb_enabled = ????; */
3074         for (i = 0; i < cortex_a->brp_num; i++) {
3075                 cortex_a->brp_list[i].used = 0;
3076                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3077                         cortex_a->brp_list[i].type = BRP_NORMAL;
3078                 else
3079                         cortex_a->brp_list[i].type = BRP_CONTEXT;
3080                 cortex_a->brp_list[i].value = 0;
3081                 cortex_a->brp_list[i].control = 0;
3082                 cortex_a->brp_list[i].BRPn = i;
3083         }
3084
3085         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3086
3087         /* select debug_ap as default */
3088         swjdp->apsel = armv7a->debug_ap->ap_num;
3089
3090         target_set_examined(target);
3091         return ERROR_OK;
3092 }
3093
3094 static int cortex_a_examine(struct target *target)
3095 {
3096         int retval = ERROR_OK;
3097
3098         /* Reestablish communication after target reset */
3099         retval = cortex_a_examine_first(target);
3100
3101         /* Configure core debug access */
3102         if (retval == ERROR_OK)
3103                 retval = cortex_a_init_debug_access(target);
3104
3105         return retval;
3106 }
3107
3108 /*
3109  *      Cortex-A target creation and initialization
3110  */
3111
3112 static int cortex_a_init_target(struct command_context *cmd_ctx,
3113         struct target *target)
3114 {
3115         /* examine_first() does a bunch of this */
3116         arm_semihosting_init(target);
3117         return ERROR_OK;
3118 }
3119
3120 static int cortex_a_init_arch_info(struct target *target,
3121         struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3122 {
3123         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3124
3125         /* Setup struct cortex_a_common */
3126         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3127
3128         /*  tap has no dap initialized */
3129         if (!tap->dap) {
3130                 tap->dap = dap_init();
3131
3132                 /* Leave (only) generic DAP stuff for debugport_init() */
3133                 tap->dap->tap = tap;
3134         }
3135
3136         armv7a->arm.dap = tap->dap;
3137
3138         cortex_a->fast_reg_read = 0;
3139
3140         /* register arch-specific functions */
3141         armv7a->examine_debug_reason = NULL;
3142
3143         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3144
3145         armv7a->pre_restore_context = NULL;
3146
3147         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3148
3149
3150 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3151
3152         /* REVISIT v7a setup should be in a v7a-specific routine */
3153         armv7a_init_arch_info(target, armv7a);
3154         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3155
3156         return ERROR_OK;
3157 }
3158
3159 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3160 {
3161         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3162
3163         cortex_a->armv7a_common.is_armv7r = false;
3164
3165         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3166 }
3167
3168 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3169 {
3170         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3171
3172         cortex_a->armv7a_common.is_armv7r = true;
3173
3174         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3175 }
3176
3177 static void cortex_a_deinit_target(struct target *target)
3178 {
3179         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3180         struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3181
3182         free(cortex_a->brp_list);
3183         free(dpm->dbp);
3184         free(dpm->dwp);
3185         free(cortex_a);
3186 }
3187
3188 static int cortex_a_mmu(struct target *target, int *enabled)
3189 {
3190         struct armv7a_common *armv7a = target_to_armv7a(target);
3191
3192         if (target->state != TARGET_HALTED) {
3193                 LOG_ERROR("%s: target not halted", __func__);
3194                 return ERROR_TARGET_INVALID;
3195         }
3196
3197         if (armv7a->is_armv7r)
3198                 *enabled = 0;
3199         else
3200                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3201
3202         return ERROR_OK;
3203 }
3204
3205 static int cortex_a_virt2phys(struct target *target,
3206         target_addr_t virt, target_addr_t *phys)
3207 {
3208         int retval = ERROR_FAIL;
3209         struct armv7a_common *armv7a = target_to_armv7a(target);
3210         struct adiv5_dap *swjdp = armv7a->arm.dap;
3211         uint8_t apsel = swjdp->apsel;
3212         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3213                 uint32_t ret;
3214                 retval = armv7a_mmu_translate_va(target,
3215                                 virt, &ret);
3216                 if (retval != ERROR_OK)
3217                         goto done;
3218                 *phys = ret;
3219         } else {/*  use this method if armv7a->memory_ap not selected
3220                  *  mmu must be enable in order to get a correct translation */
3221                 retval = cortex_a_mmu_modify(target, 1);
3222                 if (retval != ERROR_OK)
3223                         goto done;
3224                 retval = armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3225                                                     (uint32_t *)phys, 1);
3226         }
3227 done:
3228         return retval;
3229 }
3230
3231 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3232 {
3233         struct target *target = get_current_target(CMD_CTX);
3234         struct armv7a_common *armv7a = target_to_armv7a(target);
3235
3236         return armv7a_handle_cache_info_command(CMD_CTX,
3237                         &armv7a->armv7a_mmu.armv7a_cache);
3238 }
3239
3240
3241 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3242 {
3243         struct target *target = get_current_target(CMD_CTX);
3244         if (!target_was_examined(target)) {
3245                 LOG_ERROR("target not examined yet");
3246                 return ERROR_FAIL;
3247         }
3248
3249         return cortex_a_init_debug_access(target);
3250 }
3251 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3252 {
3253         struct target *target = get_current_target(CMD_CTX);
3254         /* check target is an smp target */
3255         struct target_list *head;
3256         struct target *curr;
3257         head = target->head;
3258         target->smp = 0;
3259         if (head != (struct target_list *)NULL) {
3260                 while (head != (struct target_list *)NULL) {
3261                         curr = head->target;
3262                         curr->smp = 0;
3263                         head = head->next;
3264                 }
3265                 /*  fixes the target display to the debugger */
3266                 target->gdb_service->target = target;
3267         }
3268         return ERROR_OK;
3269 }
3270
3271 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3272 {
3273         struct target *target = get_current_target(CMD_CTX);
3274         struct target_list *head;
3275         struct target *curr;
3276         head = target->head;
3277         if (head != (struct target_list *)NULL) {
3278                 target->smp = 1;
3279                 while (head != (struct target_list *)NULL) {
3280                         curr = head->target;
3281                         curr->smp = 1;
3282                         head = head->next;
3283                 }
3284         }
3285         return ERROR_OK;
3286 }
3287
3288 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3289 {
3290         struct target *target = get_current_target(CMD_CTX);
3291         int retval = ERROR_OK;
3292         struct target_list *head;
3293         head = target->head;
3294         if (head != (struct target_list *)NULL) {
3295                 if (CMD_ARGC == 1) {
3296                         int coreid = 0;
3297                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3298                         if (ERROR_OK != retval)
3299                                 return retval;
3300                         target->gdb_service->core[1] = coreid;
3301
3302                 }
3303                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3304                         , target->gdb_service->core[1]);
3305         }
3306         return ERROR_OK;
3307 }
3308
3309 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3310 {
3311         struct target *target = get_current_target(CMD_CTX);
3312         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3313
3314         static const Jim_Nvp nvp_maskisr_modes[] = {
3315                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3316                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3317                 { .name = NULL, .value = -1 },
3318         };
3319         const Jim_Nvp *n;
3320
3321         if (CMD_ARGC > 0) {
3322                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3323                 if (n->name == NULL) {
3324                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3325                         return ERROR_COMMAND_SYNTAX_ERROR;
3326                 }
3327
3328                 cortex_a->isrmasking_mode = n->value;
3329         }
3330
3331         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3332         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3333
3334         return ERROR_OK;
3335 }
3336
3337 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3338 {
3339         struct target *target = get_current_target(CMD_CTX);
3340         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3341
3342         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3343                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3344                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3345                 { .name = NULL, .value = -1 },
3346         };
3347         const Jim_Nvp *n;
3348
3349         if (CMD_ARGC > 0) {
3350                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3351                 if (n->name == NULL)
3352                         return ERROR_COMMAND_SYNTAX_ERROR;
3353                 cortex_a->dacrfixup_mode = n->value;
3354
3355         }
3356
3357         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3358         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3359
3360         return ERROR_OK;
3361 }
3362
3363 static const struct command_registration cortex_a_exec_command_handlers[] = {
3364         {
3365                 .name = "cache_info",
3366                 .handler = cortex_a_handle_cache_info_command,
3367                 .mode = COMMAND_EXEC,
3368                 .help = "display information about target caches",
3369                 .usage = "",
3370         },
3371         {
3372                 .name = "dbginit",
3373                 .handler = cortex_a_handle_dbginit_command,
3374                 .mode = COMMAND_EXEC,
3375                 .help = "Initialize core debug",
3376                 .usage = "",
3377         },
3378         {   .name = "smp_off",
3379             .handler = cortex_a_handle_smp_off_command,
3380             .mode = COMMAND_EXEC,
3381             .help = "Stop smp handling",
3382             .usage = "",},
3383         {
3384                 .name = "smp_on",
3385                 .handler = cortex_a_handle_smp_on_command,
3386                 .mode = COMMAND_EXEC,
3387                 .help = "Restart smp handling",
3388                 .usage = "",
3389         },
3390         {
3391                 .name = "smp_gdb",
3392                 .handler = cortex_a_handle_smp_gdb_command,
3393                 .mode = COMMAND_EXEC,
3394                 .help = "display/fix current core played to gdb",
3395                 .usage = "",
3396         },
3397         {
3398                 .name = "maskisr",
3399                 .handler = handle_cortex_a_mask_interrupts_command,
3400                 .mode = COMMAND_ANY,
3401                 .help = "mask cortex_a interrupts",
3402                 .usage = "['on'|'off']",
3403         },
3404         {
3405                 .name = "dacrfixup",
3406                 .handler = handle_cortex_a_dacrfixup_command,
3407                 .mode = COMMAND_EXEC,
3408                 .help = "set domain access control (DACR) to all-manager "
3409                         "on memory access",
3410                 .usage = "['on'|'off']",
3411         },
3412
3413         COMMAND_REGISTRATION_DONE
3414 };
3415 static const struct command_registration cortex_a_command_handlers[] = {
3416         {
3417                 .chain = arm_command_handlers,
3418         },
3419         {
3420                 .chain = armv7a_command_handlers,
3421         },
3422         {
3423                 .name = "cortex_a",
3424                 .mode = COMMAND_ANY,
3425                 .help = "Cortex-A command group",
3426                 .usage = "",
3427                 .chain = cortex_a_exec_command_handlers,
3428         },
3429         COMMAND_REGISTRATION_DONE
3430 };
3431
3432 struct target_type cortexa_target = {
3433         .name = "cortex_a",
3434         .deprecated_name = "cortex_a8",
3435
3436         .poll = cortex_a_poll,
3437         .arch_state = armv7a_arch_state,
3438
3439         .halt = cortex_a_halt,
3440         .resume = cortex_a_resume,
3441         .step = cortex_a_step,
3442
3443         .assert_reset = cortex_a_assert_reset,
3444         .deassert_reset = cortex_a_deassert_reset,
3445
3446         /* REVISIT allow exporting VFP3 registers ... */
3447         .get_gdb_reg_list = arm_get_gdb_reg_list,
3448
3449         .read_memory = cortex_a_read_memory,
3450         .write_memory = cortex_a_write_memory,
3451
3452         .read_buffer = cortex_a_read_buffer,
3453         .write_buffer = cortex_a_write_buffer,
3454
3455         .checksum_memory = arm_checksum_memory,
3456         .blank_check_memory = arm_blank_check_memory,
3457
3458         .run_algorithm = armv4_5_run_algorithm,
3459
3460         .add_breakpoint = cortex_a_add_breakpoint,
3461         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3462         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3463         .remove_breakpoint = cortex_a_remove_breakpoint,
3464         .add_watchpoint = NULL,
3465         .remove_watchpoint = NULL,
3466
3467         .commands = cortex_a_command_handlers,
3468         .target_create = cortex_a_target_create,
3469         .init_target = cortex_a_init_target,
3470         .examine = cortex_a_examine,
3471         .deinit_target = cortex_a_deinit_target,
3472
3473         .read_phys_memory = cortex_a_read_phys_memory,
3474         .write_phys_memory = cortex_a_write_phys_memory,
3475         .mmu = cortex_a_mmu,
3476         .virt2phys = cortex_a_virt2phys,
3477 };
3478
3479 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3480         {
3481                 .name = "cache_info",
3482                 .handler = cortex_a_handle_cache_info_command,
3483                 .mode = COMMAND_EXEC,
3484                 .help = "display information about target caches",
3485                 .usage = "",
3486         },
3487         {
3488                 .name = "dbginit",
3489                 .handler = cortex_a_handle_dbginit_command,
3490                 .mode = COMMAND_EXEC,
3491                 .help = "Initialize core debug",
3492                 .usage = "",
3493         },
3494         {
3495                 .name = "maskisr",
3496                 .handler = handle_cortex_a_mask_interrupts_command,
3497                 .mode = COMMAND_EXEC,
3498                 .help = "mask cortex_r4 interrupts",
3499                 .usage = "['on'|'off']",
3500         },
3501
3502         COMMAND_REGISTRATION_DONE
3503 };
3504 static const struct command_registration cortex_r4_command_handlers[] = {
3505         {
3506                 .chain = arm_command_handlers,
3507         },
3508         {
3509                 .chain = armv7a_command_handlers,
3510         },
3511         {
3512                 .name = "cortex_r4",
3513                 .mode = COMMAND_ANY,
3514                 .help = "Cortex-R4 command group",
3515                 .usage = "",
3516                 .chain = cortex_r4_exec_command_handlers,
3517         },
3518         COMMAND_REGISTRATION_DONE
3519 };
3520
3521 struct target_type cortexr4_target = {
3522         .name = "cortex_r4",
3523
3524         .poll = cortex_a_poll,
3525         .arch_state = armv7a_arch_state,
3526
3527         .halt = cortex_a_halt,
3528         .resume = cortex_a_resume,
3529         .step = cortex_a_step,
3530
3531         .assert_reset = cortex_a_assert_reset,
3532         .deassert_reset = cortex_a_deassert_reset,
3533
3534         /* REVISIT allow exporting VFP3 registers ... */
3535         .get_gdb_reg_list = arm_get_gdb_reg_list,
3536
3537         .read_memory = cortex_a_read_phys_memory,
3538         .write_memory = cortex_a_write_phys_memory,
3539
3540         .checksum_memory = arm_checksum_memory,
3541         .blank_check_memory = arm_blank_check_memory,
3542
3543         .run_algorithm = armv4_5_run_algorithm,
3544
3545         .add_breakpoint = cortex_a_add_breakpoint,
3546         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3547         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3548         .remove_breakpoint = cortex_a_remove_breakpoint,
3549         .add_watchpoint = NULL,
3550         .remove_watchpoint = NULL,
3551
3552         .commands = cortex_r4_command_handlers,
3553         .target_create = cortex_r4_target_create,
3554         .init_target = cortex_a_init_target,
3555         .examine = cortex_a_examine,
3556         .deinit_target = cortex_a_deinit_target,
3557 };