]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
change #include "embeddedice.h" to <target/embeddedice.h>
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target, bool bpwp);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 /* To reduce needless round-trips, pass in a pointer to the current
93  * DSCR value.  Initialize it to zero if you just need to know the
94  * value on return from this function; or (1 << DSCR_INSTR_COMP) if
95  * you happen to know that no instruction is pending.
96  */
97 static int cortex_a8_exec_opcode(struct target *target,
98                 uint32_t opcode, uint32_t *dscr_p)
99 {
100         uint32_t dscr;
101         int retval;
102         struct armv7a_common *armv7a = target_to_armv7a(target);
103         struct swjdp_common *swjdp = &armv7a->swjdp_info;
104
105         dscr = dscr_p ? *dscr_p : 0;
106
107         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
108
109         /* Wait for InstrCompl bit to be set */
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0)
111         {
112                 retval = mem_ap_read_atomic_u32(swjdp,
113                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
114                 if (retval != ERROR_OK)
115                 {
116                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
117                         return retval;
118                 }
119         }
120
121         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
122
123         do
124         {
125                 retval = mem_ap_read_atomic_u32(swjdp,
126                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
127                 if (retval != ERROR_OK)
128                 {
129                         LOG_ERROR("Could not read DSCR register");
130                         return retval;
131                 }
132         }
133         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
134
135         if (dscr_p)
136                 *dscr_p = dscr;
137
138         return retval;
139 }
140
141 /**************************************************************************
142 Read core register with very few exec_opcode, fast but needs work_area.
143 This can cause problems with MMU active.
144 **************************************************************************/
145 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
146                 uint32_t * regfile)
147 {
148         int retval = ERROR_OK;
149         struct armv7a_common *armv7a = target_to_armv7a(target);
150         struct swjdp_common *swjdp = &armv7a->swjdp_info;
151
152         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
153         cortex_a8_dap_write_coreregister_u32(target, address, 0);
154         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
155         dap_ap_select(swjdp, swjdp_memoryap);
156         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
157         dap_ap_select(swjdp, swjdp_debugap);
158
159         return retval;
160 }
161
162 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
163                 uint32_t *value, int regnum)
164 {
165         int retval = ERROR_OK;
166         uint8_t reg = regnum&0xFF;
167         uint32_t dscr = 0;
168         struct armv7a_common *armv7a = target_to_armv7a(target);
169         struct swjdp_common *swjdp = &armv7a->swjdp_info;
170
171         if (reg > 17)
172                 return retval;
173
174         if (reg < 15)
175         {
176                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
177                 cortex_a8_exec_opcode(target,
178                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
179                                 &dscr);
180         }
181         else if (reg == 15)
182         {
183                 /* "MOV r0, r15"; then move r0 to DCCTX */
184                 cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
185                 cortex_a8_exec_opcode(target,
186                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
187                                 &dscr);
188         }
189         else
190         {
191                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
192                  * then move r0 to DCCTX
193                  */
194                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
195                 cortex_a8_exec_opcode(target,
196                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
197                                 &dscr);
198         }
199
200         /* Wait for DTRRXfull then read DTRRTX */
201         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0)
202         {
203                 retval = mem_ap_read_atomic_u32(swjdp,
204                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
205         }
206
207         retval = mem_ap_read_atomic_u32(swjdp,
208                         armv7a->debug_base + CPUDBG_DTRTX, value);
209         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
210
211         return retval;
212 }
213
214 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
215                 uint32_t value, int regnum)
216 {
217         int retval = ERROR_OK;
218         uint8_t Rd = regnum&0xFF;
219         uint32_t dscr;
220         struct armv7a_common *armv7a = target_to_armv7a(target);
221         struct swjdp_common *swjdp = &armv7a->swjdp_info;
222
223         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
224
225         /* Check that DCCRX is not full */
226         retval = mem_ap_read_atomic_u32(swjdp,
227                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
228         if (dscr & (1 << DSCR_DTR_RX_FULL))
229         {
230                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
231                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
232                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
233                                 &dscr);
234         }
235
236         if (Rd > 17)
237                 return retval;
238
239         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
240         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
241         retval = mem_ap_write_u32(swjdp,
242                         armv7a->debug_base + CPUDBG_DTRRX, value);
243
244         if (Rd < 15)
245         {
246                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
247                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
248                                 &dscr);
249         }
250         else if (Rd == 15)
251         {
252                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
253                  * then "mov r15, r0"
254                  */
255                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
256                                 &dscr);
257                 cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
258         }
259         else
260         {
261                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
262                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
263                  */
264                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
265                                 &dscr);
266                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
267                                 &dscr);
268
269                 /* "Prefetch flush" after modifying execution status in CPSR */
270                 if (Rd == 16)
271                         cortex_a8_exec_opcode(target,
272                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
273                                         &dscr);
274         }
275
276         return retval;
277 }
278
279 /* Write to memory mapped registers directly with no cache or mmu handling */
280 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
281 {
282         int retval;
283         struct armv7a_common *armv7a = target_to_armv7a(target);
284         struct swjdp_common *swjdp = &armv7a->swjdp_info;
285
286         retval = mem_ap_write_atomic_u32(swjdp, address, value);
287
288         return retval;
289 }
290
291 /*
292  * Cortex-A8 implementation of Debug Programmer's Model
293  *
294  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
295  * so there's no need to poll for it before executing an instruction.
296  *
297  * NOTE that in several of these cases the "stall" mode might be useful.
298  * It'd let us queue a few operations together... prepare/finish might
299  * be the places to enable/disable that mode.
300  */
301
302 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
303 {
304         return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
305 }
306
307 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
308 {
309         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
310         return mem_ap_write_u32(&a8->armv7a_common.swjdp_info,
311                         a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
312 }
313
314 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
315                 uint32_t *dscr_p)
316 {
317         struct swjdp_common *swjdp = &a8->armv7a_common.swjdp_info;
318         uint32_t dscr = 1 << DSCR_INSTR_COMP;
319         int retval;
320
321         if (dscr_p)
322                 dscr = *dscr_p;
323
324         /* Wait for DTRRXfull */
325         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0) {
326                 retval = mem_ap_read_atomic_u32(swjdp,
327                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
328                                 &dscr);
329         }
330
331         retval = mem_ap_read_atomic_u32(swjdp,
332                         a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
333         //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
334
335         if (dscr_p)
336                 *dscr_p = dscr;
337
338         return retval;
339 }
340
341 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
342 {
343         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
344         struct swjdp_common *swjdp = &a8->armv7a_common.swjdp_info;
345         uint32_t dscr;
346         int retval;
347
348         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
349         do {
350                 retval = mem_ap_read_atomic_u32(swjdp,
351                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
352                                 &dscr);
353         } while ((dscr & (1 << DSCR_INSTR_COMP)) == 0);
354
355         /* this "should never happen" ... */
356         if (dscr & (1 << DSCR_DTR_RX_FULL)) {
357                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
358                 /* Clear DCCRX */
359                 retval = cortex_a8_exec_opcode(
360                                 a8->armv7a_common.armv4_5_common.target,
361                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
362                                 &dscr);
363         }
364
365         return retval;
366 }
367
368 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
369 {
370         /* REVISIT what could be done here? */
371         return ERROR_OK;
372 }
373
374 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
375                 uint32_t opcode, uint32_t data)
376 {
377         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
378         int retval;
379         uint32_t dscr = 1 << DSCR_INSTR_COMP;
380
381         retval = cortex_a8_write_dcc(a8, data);
382
383         return cortex_a8_exec_opcode(
384                         a8->armv7a_common.armv4_5_common.target,
385                         opcode,
386                         &dscr);
387 }
388
389 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
390                 uint32_t opcode, uint32_t data)
391 {
392         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
393         uint32_t dscr = 1 << DSCR_INSTR_COMP;
394         int retval;
395
396         retval = cortex_a8_write_dcc(a8, data);
397
398         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
399         retval = cortex_a8_exec_opcode(
400                         a8->armv7a_common.armv4_5_common.target,
401                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
402                         &dscr);
403
404         /* then the opcode, taking data from R0 */
405         retval = cortex_a8_exec_opcode(
406                         a8->armv7a_common.armv4_5_common.target,
407                         opcode,
408                         &dscr);
409
410         return retval;
411 }
412
413 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
414 {
415         struct target *target = dpm->arm->target;
416         uint32_t dscr = 1 << DSCR_INSTR_COMP;
417
418         /* "Prefetch flush" after modifying execution status in CPSR */
419         return cortex_a8_exec_opcode(target,
420                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
421                         &dscr);
422 }
423
424 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
425                 uint32_t opcode, uint32_t *data)
426 {
427         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
428         int retval;
429         uint32_t dscr = 1 << DSCR_INSTR_COMP;
430
431         /* the opcode, writing data to DCC */
432         retval = cortex_a8_exec_opcode(
433                         a8->armv7a_common.armv4_5_common.target,
434                         opcode,
435                         &dscr);
436
437         return cortex_a8_read_dcc(a8, data, &dscr);
438 }
439
440
441 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
442                 uint32_t opcode, uint32_t *data)
443 {
444         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
445         uint32_t dscr = 1 << DSCR_INSTR_COMP;
446         int retval;
447
448         /* the opcode, writing data to R0 */
449         retval = cortex_a8_exec_opcode(
450                         a8->armv7a_common.armv4_5_common.target,
451                         opcode,
452                         &dscr);
453
454         /* write R0 to DCC */
455         retval = cortex_a8_exec_opcode(
456                         a8->armv7a_common.armv4_5_common.target,
457                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
458                         &dscr);
459
460         return cortex_a8_read_dcc(a8, data, &dscr);
461 }
462
463 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index,
464                 uint32_t addr, uint32_t control)
465 {
466         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
467         uint32_t vr = a8->armv7a_common.debug_base;
468         uint32_t cr = a8->armv7a_common.debug_base;
469         int retval;
470
471         switch (index) {
472         case 0 ... 15:          /* breakpoints */
473                 vr += CPUDBG_BVR_BASE;
474                 cr += CPUDBG_BCR_BASE;
475                 break;
476         case 16 ... 31:         /* watchpoints */
477                 vr += CPUDBG_WVR_BASE;
478                 cr += CPUDBG_WCR_BASE;
479                 index -= 16;
480                 break;
481         default:
482                 return ERROR_FAIL;
483         }
484         vr += 4 * index;
485         cr += 4 * index;
486
487         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
488                         (unsigned) vr, (unsigned) cr);
489
490         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
491                         vr, addr);
492         if (retval != ERROR_OK)
493                 return retval;
494         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
495                         cr, control);
496         return retval;
497 }
498
499 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index)
500 {
501         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
502         uint32_t cr;
503
504         switch (index) {
505         case 0 ... 15:
506                 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
507                 break;
508         case 16 ... 31:
509                 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
510                 index -= 16;
511                 break;
512         default:
513                 return ERROR_FAIL;
514         }
515         cr += 4 * index;
516
517         LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
518
519         /* clear control register */
520         return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
521 }
522
523 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
524 {
525         struct arm_dpm *dpm = &a8->armv7a_common.dpm;
526         int retval;
527
528         dpm->arm = &a8->armv7a_common.armv4_5_common;
529         dpm->didr = didr;
530
531         dpm->prepare = cortex_a8_dpm_prepare;
532         dpm->finish = cortex_a8_dpm_finish;
533
534         dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
535         dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
536         dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
537
538         dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
539         dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
540
541         dpm->bpwp_enable = cortex_a8_bpwp_enable;
542         dpm->bpwp_disable = cortex_a8_bpwp_disable;
543
544         retval = arm_dpm_setup(dpm);
545         if (retval == ERROR_OK)
546                 retval = arm_dpm_initialize(dpm);
547
548         return retval;
549 }
550
551
552 /*
553  * Cortex-A8 Run control
554  */
555
556 static int cortex_a8_poll(struct target *target)
557 {
558         int retval = ERROR_OK;
559         uint32_t dscr;
560         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
561         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
562         struct swjdp_common *swjdp = &armv7a->swjdp_info;
563         enum target_state prev_target_state = target->state;
564         uint8_t saved_apsel = dap_ap_get_select(swjdp);
565
566         dap_ap_select(swjdp, swjdp_debugap);
567         retval = mem_ap_read_atomic_u32(swjdp,
568                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
569         if (retval != ERROR_OK)
570         {
571                 dap_ap_select(swjdp, saved_apsel);
572                 return retval;
573         }
574         cortex_a8->cpudbg_dscr = dscr;
575
576         if ((dscr & 0x3) == 0x3)
577         {
578                 if (prev_target_state != TARGET_HALTED)
579                 {
580                         /* We have a halting debug event */
581                         LOG_DEBUG("Target halted");
582                         target->state = TARGET_HALTED;
583                         if ((prev_target_state == TARGET_RUNNING)
584                                         || (prev_target_state == TARGET_RESET))
585                         {
586                                 retval = cortex_a8_debug_entry(target);
587                                 if (retval != ERROR_OK)
588                                         return retval;
589
590                                 target_call_event_callbacks(target,
591                                                 TARGET_EVENT_HALTED);
592                         }
593                         if (prev_target_state == TARGET_DEBUG_RUNNING)
594                         {
595                                 LOG_DEBUG(" ");
596
597                                 retval = cortex_a8_debug_entry(target);
598                                 if (retval != ERROR_OK)
599                                         return retval;
600
601                                 target_call_event_callbacks(target,
602                                                 TARGET_EVENT_DEBUG_HALTED);
603                         }
604                 }
605         }
606         else if ((dscr & 0x3) == 0x2)
607         {
608                 target->state = TARGET_RUNNING;
609         }
610         else
611         {
612                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
613                 target->state = TARGET_UNKNOWN;
614         }
615
616         dap_ap_select(swjdp, saved_apsel);
617
618         return retval;
619 }
620
621 static int cortex_a8_halt(struct target *target)
622 {
623         int retval = ERROR_OK;
624         uint32_t dscr;
625         struct armv7a_common *armv7a = target_to_armv7a(target);
626         struct swjdp_common *swjdp = &armv7a->swjdp_info;
627         uint8_t saved_apsel = dap_ap_get_select(swjdp);
628         dap_ap_select(swjdp, swjdp_debugap);
629
630         /*
631          * Tell the core to be halted by writing DRCR with 0x1
632          * and then wait for the core to be halted.
633          */
634         retval = mem_ap_write_atomic_u32(swjdp,
635                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
636
637         /*
638          * enter halting debug mode
639          */
640         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
641         retval = mem_ap_write_atomic_u32(swjdp,
642                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
643
644         if (retval != ERROR_OK)
645                 goto out;
646
647         do {
648                 mem_ap_read_atomic_u32(swjdp,
649                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
650         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
651
652         target->debug_reason = DBG_REASON_DBGRQ;
653
654 out:
655         dap_ap_select(swjdp, saved_apsel);
656         return retval;
657 }
658
659 static int cortex_a8_resume(struct target *target, int current,
660                 uint32_t address, int handle_breakpoints, int debug_execution)
661 {
662         struct armv7a_common *armv7a = target_to_armv7a(target);
663         struct arm *armv4_5 = &armv7a->armv4_5_common;
664         struct swjdp_common *swjdp = &armv7a->swjdp_info;
665
666 //      struct breakpoint *breakpoint = NULL;
667         uint32_t resume_pc, dscr;
668
669         uint8_t saved_apsel = dap_ap_get_select(swjdp);
670         dap_ap_select(swjdp, swjdp_debugap);
671
672         if (!debug_execution)
673                 target_free_all_working_areas(target);
674
675 #if 0
676         if (debug_execution)
677         {
678                 /* Disable interrupts */
679                 /* We disable interrupts in the PRIMASK register instead of
680                  * masking with C_MASKINTS,
681                  * This is probably the same issue as Cortex-M3 Errata 377493:
682                  * C_MASKINTS in parallel with disabled interrupts can cause
683                  * local faults to not be taken. */
684                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
685                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
686                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
687
688                 /* Make sure we are in Thumb mode */
689                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
690                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
691                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
692                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
693         }
694 #endif
695
696         /* current = 1: continue on current pc, otherwise continue at <address> */
697         resume_pc = buf_get_u32(
698                         armv4_5->core_cache->reg_list[15].value,
699                         0, 32);
700         if (!current)
701                 resume_pc = address;
702
703         /* Make sure that the Armv7 gdb thumb fixups does not
704          * kill the return address
705          */
706         switch (armv4_5->core_state)
707         {
708         case ARMV4_5_STATE_ARM:
709                 resume_pc &= 0xFFFFFFFC;
710                 break;
711         case ARMV4_5_STATE_THUMB:
712         case ARM_STATE_THUMB_EE:
713                 /* When the return address is loaded into PC
714                  * bit 0 must be 1 to stay in Thumb state
715                  */
716                 resume_pc |= 0x1;
717                 break;
718         case ARMV4_5_STATE_JAZELLE:
719                 LOG_ERROR("How do I resume into Jazelle state??");
720                 return ERROR_FAIL;
721         }
722         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
723         buf_set_u32(armv4_5->core_cache->reg_list[15].value,
724                         0, 32, resume_pc);
725         armv4_5->core_cache->reg_list[15].dirty = 1;
726         armv4_5->core_cache->reg_list[15].valid = 1;
727
728         cortex_a8_restore_context(target, handle_breakpoints);
729
730 #if 0
731         /* the front-end may request us not to handle breakpoints */
732         if (handle_breakpoints)
733         {
734                 /* Single step past breakpoint at current address */
735                 if ((breakpoint = breakpoint_find(target, resume_pc)))
736                 {
737                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
738                         cortex_m3_unset_breakpoint(target, breakpoint);
739                         cortex_m3_single_step_core(target);
740                         cortex_m3_set_breakpoint(target, breakpoint);
741                 }
742         }
743
744 #endif
745         /* Restart core and wait for it to be started */
746         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
747
748         do {
749                 mem_ap_read_atomic_u32(swjdp,
750                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
751         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
752
753         target->debug_reason = DBG_REASON_NOTHALTED;
754         target->state = TARGET_RUNNING;
755
756         /* registers are now invalid */
757         register_cache_invalidate(armv4_5->core_cache);
758
759         if (!debug_execution)
760         {
761                 target->state = TARGET_RUNNING;
762                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
763                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
764         }
765         else
766         {
767                 target->state = TARGET_DEBUG_RUNNING;
768                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
769                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
770         }
771
772         dap_ap_select(swjdp, saved_apsel);
773
774         return ERROR_OK;
775 }
776
777 static int cortex_a8_debug_entry(struct target *target)
778 {
779         int i;
780         uint32_t regfile[16], wfar, cpsr, dscr;
781         int retval = ERROR_OK;
782         struct working_area *regfile_working_area = NULL;
783         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
784         struct armv7a_common *armv7a = target_to_armv7a(target);
785         struct arm *armv4_5 = &armv7a->armv4_5_common;
786         struct swjdp_common *swjdp = &armv7a->swjdp_info;
787         struct reg *reg;
788
789         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
790
791         /* Enable the ITR execution once we are in debug mode */
792         mem_ap_read_atomic_u32(swjdp,
793                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
794
795         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
796          * imprecise data aborts get discarded by issuing a Data
797          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
798          */
799
800         dscr |= (1 << DSCR_EXT_INT_EN);
801         retval = mem_ap_write_atomic_u32(swjdp,
802                         armv7a->debug_base + CPUDBG_DSCR, dscr);
803
804         /* Examine debug reason */
805         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
806         {
807                 case 0:         /* DRCR[0] write */
808                 case 4:         /* EDBGRQ */
809                         target->debug_reason = DBG_REASON_DBGRQ;
810                         break;
811                 case 1:         /* HW breakpoint */
812                 case 3:         /* SW BKPT */
813                 case 5:         /* vector catch */
814                         target->debug_reason = DBG_REASON_BREAKPOINT;
815                         break;
816                 case 2:         /* asynch watchpoint */
817                 case 10:        /* precise watchpoint */
818                         target->debug_reason = DBG_REASON_WATCHPOINT;
819
820                         /* save address of faulting instruction */
821                         retval = mem_ap_read_atomic_u32(swjdp,
822                                         armv7a->debug_base + CPUDBG_WFAR,
823                                         &wfar);
824                         arm_dpm_report_wfar(&armv7a->dpm, wfar);
825                         break;
826                 default:
827                         target->debug_reason = DBG_REASON_UNDEFINED;
828                         break;
829         }
830
831         /* REVISIT fast_reg_read is never set ... */
832
833         /* Examine target state and mode */
834         if (cortex_a8->fast_reg_read)
835                 target_alloc_working_area(target, 64, &regfile_working_area);
836
837         /* First load register acessible through core debug port*/
838         if (!regfile_working_area)
839         {
840                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
841         }
842         else
843         {
844                 dap_ap_select(swjdp, swjdp_memoryap);
845                 cortex_a8_read_regs_through_mem(target,
846                                 regfile_working_area->address, regfile);
847                 dap_ap_select(swjdp, swjdp_memoryap);
848                 target_free_working_area(target, regfile_working_area);
849
850                 /* read Current PSR */
851                 cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
852                 dap_ap_select(swjdp, swjdp_debugap);
853                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
854
855                 arm_set_cpsr(armv4_5, cpsr);
856
857                 /* update cache */
858                 for (i = 0; i <= ARM_PC; i++)
859                 {
860                         reg = arm_reg_current(armv4_5, i);
861
862                         buf_set_u32(reg->value, 0, 32, regfile[i]);
863                         reg->valid = 1;
864                         reg->dirty = 0;
865                 }
866
867                 /* Fixup PC Resume Address */
868                 if (cpsr & (1 << 5))
869                 {
870                         // T bit set for Thumb or ThumbEE state
871                         regfile[ARM_PC] -= 4;
872                 }
873                 else
874                 {
875                         // ARM state
876                         regfile[ARM_PC] -= 8;
877                 }
878
879                 reg = armv4_5->core_cache->reg_list + 15;
880                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
881                 reg->dirty = reg->valid;
882         }
883
884 #if 0
885 /* TODO, Move this */
886         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
887         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
888         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
889
890         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
891         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
892
893         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
894         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
895 #endif
896
897         /* Are we in an exception handler */
898 //      armv4_5->exception_number = 0;
899         if (armv7a->post_debug_entry)
900                 armv7a->post_debug_entry(target);
901
902         return retval;
903 }
904
905 static void cortex_a8_post_debug_entry(struct target *target)
906 {
907         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
908         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
909         int retval;
910
911         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
912         retval = armv7a->armv4_5_common.mrc(target, 15,
913                         0, 0,   /* op1, op2 */
914                         1, 0,   /* CRn, CRm */
915                         &cortex_a8->cp15_control_reg);
916         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
917
918         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
919         {
920                 uint32_t cache_type_reg;
921
922                 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
923                 retval = armv7a->armv4_5_common.mrc(target, 15,
924                                 0, 1,   /* op1, op2 */
925                                 0, 0,   /* CRn, CRm */
926                                 &cache_type_reg);
927                 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
928
929                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
930                 armv4_5_identify_cache(cache_type_reg,
931                                 &armv7a->armv4_5_mmu.armv4_5_cache);
932         }
933
934         armv7a->armv4_5_mmu.mmu_enabled =
935                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
936         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
937                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
938         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
939                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
940
941
942 }
943
944 static int cortex_a8_step(struct target *target, int current, uint32_t address,
945                 int handle_breakpoints)
946 {
947         struct armv7a_common *armv7a = target_to_armv7a(target);
948         struct arm *armv4_5 = &armv7a->armv4_5_common;
949         struct breakpoint *breakpoint = NULL;
950         struct breakpoint stepbreakpoint;
951         struct reg *r;
952
953         int timeout = 100;
954
955         if (target->state != TARGET_HALTED)
956         {
957                 LOG_WARNING("target not halted");
958                 return ERROR_TARGET_NOT_HALTED;
959         }
960
961         /* current = 1: continue on current pc, otherwise continue at <address> */
962         r = armv4_5->core_cache->reg_list + 15;
963         if (!current)
964         {
965                 buf_set_u32(r->value, 0, 32, address);
966         }
967         else
968         {
969                 address = buf_get_u32(r->value, 0, 32);
970         }
971
972         /* The front-end may request us not to handle breakpoints.
973          * But since Cortex-A8 uses breakpoint for single step,
974          * we MUST handle breakpoints.
975          */
976         handle_breakpoints = 1;
977         if (handle_breakpoints) {
978                 breakpoint = breakpoint_find(target, address);
979                 if (breakpoint)
980                         cortex_a8_unset_breakpoint(target, breakpoint);
981         }
982
983         /* Setup single step breakpoint */
984         stepbreakpoint.address = address;
985         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
986                         ? 2 : 4;
987         stepbreakpoint.type = BKPT_HARD;
988         stepbreakpoint.set = 0;
989
990         /* Break on IVA mismatch */
991         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
992
993         target->debug_reason = DBG_REASON_SINGLESTEP;
994
995         cortex_a8_resume(target, 1, address, 0, 0);
996
997         while (target->state != TARGET_HALTED)
998         {
999                 cortex_a8_poll(target);
1000                 if (--timeout == 0)
1001                 {
1002                         LOG_WARNING("timeout waiting for target halt");
1003                         break;
1004                 }
1005         }
1006
1007         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1008         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
1009
1010         if (breakpoint)
1011                 cortex_a8_set_breakpoint(target, breakpoint, 0);
1012
1013         if (target->state != TARGET_HALTED)
1014                 LOG_DEBUG("target stepped");
1015
1016         return ERROR_OK;
1017 }
1018
1019 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1020 {
1021         struct armv7a_common *armv7a = target_to_armv7a(target);
1022
1023         LOG_DEBUG(" ");
1024
1025         if (armv7a->pre_restore_context)
1026                 armv7a->pre_restore_context(target);
1027
1028         arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1029
1030         if (armv7a->post_restore_context)
1031                 armv7a->post_restore_context(target);
1032
1033         return ERROR_OK;
1034 }
1035
1036
1037 /*
1038  * Cortex-A8 Breakpoint and watchpoint fuctions
1039  */
1040
1041 /* Setup hardware Breakpoint Register Pair */
1042 static int cortex_a8_set_breakpoint(struct target *target,
1043                 struct breakpoint *breakpoint, uint8_t matchmode)
1044 {
1045         int retval;
1046         int brp_i=0;
1047         uint32_t control;
1048         uint8_t byte_addr_select = 0x0F;
1049         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1050         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1051         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1052
1053         if (breakpoint->set)
1054         {
1055                 LOG_WARNING("breakpoint already set");
1056                 return ERROR_OK;
1057         }
1058
1059         if (breakpoint->type == BKPT_HARD)
1060         {
1061                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1062                         brp_i++ ;
1063                 if (brp_i >= cortex_a8->brp_num)
1064                 {
1065                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1066                         return ERROR_FAIL;
1067                 }
1068                 breakpoint->set = brp_i + 1;
1069                 if (breakpoint->length == 2)
1070                 {
1071                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1072                 }
1073                 control = ((matchmode & 0x7) << 20)
1074                                 | (byte_addr_select << 5)
1075                                 | (3 << 1) | 1;
1076                 brp_list[brp_i].used = 1;
1077                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1078                 brp_list[brp_i].control = control;
1079                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1080                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1081                                 brp_list[brp_i].value);
1082                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1083                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1084                                 brp_list[brp_i].control);
1085                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1086                                 brp_list[brp_i].control,
1087                                 brp_list[brp_i].value);
1088         }
1089         else if (breakpoint->type == BKPT_SOFT)
1090         {
1091                 uint8_t code[4];
1092                 if (breakpoint->length == 2)
1093                 {
1094                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1095                 }
1096                 else
1097                 {
1098                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1099                 }
1100                 retval = target->type->read_memory(target,
1101                                 breakpoint->address & 0xFFFFFFFE,
1102                                 breakpoint->length, 1,
1103                                 breakpoint->orig_instr);
1104                 if (retval != ERROR_OK)
1105                         return retval;
1106                 retval = target->type->write_memory(target,
1107                                 breakpoint->address & 0xFFFFFFFE,
1108                                 breakpoint->length, 1, code);
1109                 if (retval != ERROR_OK)
1110                         return retval;
1111                 breakpoint->set = 0x11; /* Any nice value but 0 */
1112         }
1113
1114         return ERROR_OK;
1115 }
1116
1117 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1118 {
1119         int retval;
1120         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1121         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1122         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1123
1124         if (!breakpoint->set)
1125         {
1126                 LOG_WARNING("breakpoint not set");
1127                 return ERROR_OK;
1128         }
1129
1130         if (breakpoint->type == BKPT_HARD)
1131         {
1132                 int brp_i = breakpoint->set - 1;
1133                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1134                 {
1135                         LOG_DEBUG("Invalid BRP number in breakpoint");
1136                         return ERROR_OK;
1137                 }
1138                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1139                                 brp_list[brp_i].control, brp_list[brp_i].value);
1140                 brp_list[brp_i].used = 0;
1141                 brp_list[brp_i].value = 0;
1142                 brp_list[brp_i].control = 0;
1143                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1144                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1145                                 brp_list[brp_i].control);
1146                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1147                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1148                                 brp_list[brp_i].value);
1149         }
1150         else
1151         {
1152                 /* restore original instruction (kept in target endianness) */
1153                 if (breakpoint->length == 4)
1154                 {
1155                         retval = target->type->write_memory(target,
1156                                         breakpoint->address & 0xFFFFFFFE,
1157                                         4, 1, breakpoint->orig_instr);
1158                         if (retval != ERROR_OK)
1159                                 return retval;
1160                 }
1161                 else
1162                 {
1163                         retval = target->type->write_memory(target,
1164                                         breakpoint->address & 0xFFFFFFFE,
1165                                         2, 1, breakpoint->orig_instr);
1166                         if (retval != ERROR_OK)
1167                                 return retval;
1168                 }
1169         }
1170         breakpoint->set = 0;
1171
1172         return ERROR_OK;
1173 }
1174
1175 static int cortex_a8_add_breakpoint(struct target *target,
1176                 struct breakpoint *breakpoint)
1177 {
1178         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1179
1180         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1181         {
1182                 LOG_INFO("no hardware breakpoint available");
1183                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1184         }
1185
1186         if (breakpoint->type == BKPT_HARD)
1187                 cortex_a8->brp_num_available--;
1188         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1189
1190         return ERROR_OK;
1191 }
1192
1193 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1194 {
1195         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1196
1197 #if 0
1198 /* It is perfectly possible to remove brakpoints while the taget is running */
1199         if (target->state != TARGET_HALTED)
1200         {
1201                 LOG_WARNING("target not halted");
1202                 return ERROR_TARGET_NOT_HALTED;
1203         }
1204 #endif
1205
1206         if (breakpoint->set)
1207         {
1208                 cortex_a8_unset_breakpoint(target, breakpoint);
1209                 if (breakpoint->type == BKPT_HARD)
1210                         cortex_a8->brp_num_available++ ;
1211         }
1212
1213
1214         return ERROR_OK;
1215 }
1216
1217
1218
1219 /*
1220  * Cortex-A8 Reset fuctions
1221  */
1222
1223 static int cortex_a8_assert_reset(struct target *target)
1224 {
1225         struct armv7a_common *armv7a = target_to_armv7a(target);
1226
1227         LOG_DEBUG(" ");
1228
1229         /* FIXME when halt is requested, make it work somehow... */
1230
1231         /* Issue some kind of warm reset. */
1232         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1233                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1234         } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1235                 /* REVISIT handle "pulls" cases, if there's
1236                  * hardware that needs them to work.
1237                  */
1238                 jtag_add_reset(0, 1);
1239         } else {
1240                 LOG_ERROR("%s: how to reset?", target_name(target));
1241                 return ERROR_FAIL;
1242         }
1243
1244         /* registers are now invalid */
1245         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1246
1247         target->state = TARGET_RESET;
1248
1249         return ERROR_OK;
1250 }
1251
1252 static int cortex_a8_deassert_reset(struct target *target)
1253 {
1254         int retval;
1255
1256         LOG_DEBUG(" ");
1257
1258         /* be certain SRST is off */
1259         jtag_add_reset(0, 0);
1260
1261         retval = cortex_a8_poll(target);
1262
1263         if (target->reset_halt) {
1264                 if (target->state != TARGET_HALTED) {
1265                         LOG_WARNING("%s: ran after reset and before halt ...",
1266                                         target_name(target));
1267                         if ((retval = target_halt(target)) != ERROR_OK)
1268                                 return retval;
1269                 }
1270         }
1271
1272         return ERROR_OK;
1273 }
1274
1275 /*
1276  * Cortex-A8 Memory access
1277  *
1278  * This is same Cortex M3 but we must also use the correct
1279  * ap number for every access.
1280  */
1281
1282 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1283                 uint32_t size, uint32_t count, uint8_t *buffer)
1284 {
1285         struct armv7a_common *armv7a = target_to_armv7a(target);
1286         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1287         int retval = ERROR_INVALID_ARGUMENTS;
1288
1289         /* cortex_a8 handles unaligned memory access */
1290
1291 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1292
1293         if (count && buffer) {
1294                 switch (size) {
1295                 case 4:
1296                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1297                         break;
1298                 case 2:
1299                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1300                         break;
1301                 case 1:
1302                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1303                         break;
1304                 }
1305         }
1306
1307         return retval;
1308 }
1309
1310 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1311                 uint32_t size, uint32_t count, uint8_t *buffer)
1312 {
1313         struct armv7a_common *armv7a = target_to_armv7a(target);
1314         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1315         int retval = ERROR_INVALID_ARGUMENTS;
1316
1317 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1318
1319         if (count && buffer) {
1320                 switch (size) {
1321                 case 4:
1322                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1323                         break;
1324                 case 2:
1325                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1326                         break;
1327                 case 1:
1328                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1329                         break;
1330                 }
1331         }
1332
1333         /* REVISIT this op is generic ARMv7-A/R stuff */
1334         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1335         {
1336                 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1337
1338                 retval = dpm->prepare(dpm);
1339                 if (retval != ERROR_OK)
1340                         return retval;
1341
1342                 /* The Cache handling will NOT work with MMU active, the
1343                  * wrong addresses will be invalidated!
1344                  *
1345                  * For both ICache and DCache, walk all cache lines in the
1346                  * address range. Cortex-A8 has fixed 64 byte line length.
1347                  *
1348                  * REVISIT per ARMv7, these may trigger watchpoints ...
1349                  */
1350
1351                 /* invalidate I-Cache */
1352                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1353                 {
1354                         /* ICIMVAU - Invalidate Cache single entry
1355                          * with MVA to PoU
1356                          *      MCR p15, 0, r0, c7, c5, 1
1357                          */
1358                         for (uint32_t cacheline = address;
1359                                         cacheline < address + size * count;
1360                                         cacheline += 64) {
1361                                 retval = dpm->instr_write_data_r0(dpm,
1362                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1363                                         cacheline);
1364                         }
1365                 }
1366
1367                 /* invalidate D-Cache */
1368                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1369                 {
1370                         /* DCIMVAC - Invalidate data Cache line
1371                          * with MVA to PoC
1372                          *      MCR p15, 0, r0, c7, c6, 1
1373                          */
1374                         for (uint32_t cacheline = address;
1375                                         cacheline < address + size * count;
1376                                         cacheline += 64) {
1377                                 retval = dpm->instr_write_data_r0(dpm,
1378                                         ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1379                                         cacheline);
1380                         }
1381                 }
1382
1383                 /* (void) */ dpm->finish(dpm);
1384         }
1385
1386         return retval;
1387 }
1388
1389 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1390                 uint32_t count, uint8_t *buffer)
1391 {
1392         return cortex_a8_write_memory(target, address, 4, count, buffer);
1393 }
1394
1395
1396 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1397 {
1398 #if 0
1399         u16 dcrdr;
1400
1401         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1402         *ctrl = (uint8_t)dcrdr;
1403         *value = (uint8_t)(dcrdr >> 8);
1404
1405         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1406
1407         /* write ack back to software dcc register
1408          * signify we have read data */
1409         if (dcrdr & (1 << 0))
1410         {
1411                 dcrdr = 0;
1412                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1413         }
1414 #endif
1415         return ERROR_OK;
1416 }
1417
1418
1419 static int cortex_a8_handle_target_request(void *priv)
1420 {
1421         struct target *target = priv;
1422         struct armv7a_common *armv7a = target_to_armv7a(target);
1423         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1424
1425         if (!target_was_examined(target))
1426                 return ERROR_OK;
1427         if (!target->dbg_msg_enabled)
1428                 return ERROR_OK;
1429
1430         if (target->state == TARGET_RUNNING)
1431         {
1432                 uint8_t data = 0;
1433                 uint8_t ctrl = 0;
1434
1435                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1436
1437                 /* check if we have data */
1438                 if (ctrl & (1 << 0))
1439                 {
1440                         uint32_t request;
1441
1442                         /* we assume target is quick enough */
1443                         request = data;
1444                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1445                         request |= (data << 8);
1446                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1447                         request |= (data << 16);
1448                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1449                         request |= (data << 24);
1450                         target_request(target, request);
1451                 }
1452         }
1453
1454         return ERROR_OK;
1455 }
1456
1457 /*
1458  * Cortex-A8 target information and configuration
1459  */
1460
1461 static int cortex_a8_examine_first(struct target *target)
1462 {
1463         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1464         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1465         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1466         int i;
1467         int retval = ERROR_OK;
1468         uint32_t didr, ctypr, ttypr, cpuid;
1469
1470         LOG_DEBUG("TODO");
1471
1472         /* Here we shall insert a proper ROM Table scan */
1473         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1474
1475         /* We do one extra read to ensure DAP is configured,
1476          * we call ahbap_debugport_init(swjdp) instead
1477          */
1478         ahbap_debugport_init(swjdp);
1479         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1480         if ((retval = mem_ap_read_atomic_u32(swjdp,
1481                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1482         {
1483                 LOG_DEBUG("Examine failed");
1484                 return retval;
1485         }
1486
1487         if ((retval = mem_ap_read_atomic_u32(swjdp,
1488                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1489         {
1490                 LOG_DEBUG("Examine failed");
1491                 return retval;
1492         }
1493
1494         if ((retval = mem_ap_read_atomic_u32(swjdp,
1495                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1496         {
1497                 LOG_DEBUG("Examine failed");
1498                 return retval;
1499         }
1500
1501         if ((retval = mem_ap_read_atomic_u32(swjdp,
1502                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1503         {
1504                 LOG_DEBUG("Examine failed");
1505                 return retval;
1506         }
1507
1508         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1509         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1510         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1511         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1512
1513         armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1514         cortex_a8_dpm_setup(cortex_a8, didr);
1515
1516         /* Setup Breakpoint Register Pairs */
1517         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1518         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1519         cortex_a8->brp_num_available = cortex_a8->brp_num;
1520         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1521 //      cortex_a8->brb_enabled = ????;
1522         for (i = 0; i < cortex_a8->brp_num; i++)
1523         {
1524                 cortex_a8->brp_list[i].used = 0;
1525                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1526                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1527                 else
1528                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1529                 cortex_a8->brp_list[i].value = 0;
1530                 cortex_a8->brp_list[i].control = 0;
1531                 cortex_a8->brp_list[i].BRPn = i;
1532         }
1533
1534         LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1535
1536         target_set_examined(target);
1537         return ERROR_OK;
1538 }
1539
1540 static int cortex_a8_examine(struct target *target)
1541 {
1542         int retval = ERROR_OK;
1543
1544         /* don't re-probe hardware after each reset */
1545         if (!target_was_examined(target))
1546                 retval = cortex_a8_examine_first(target);
1547
1548         /* Configure core debug access */
1549         if (retval == ERROR_OK)
1550                 retval = cortex_a8_init_debug_access(target);
1551
1552         return retval;
1553 }
1554
1555 /*
1556  *      Cortex-A8 target creation and initialization
1557  */
1558
1559 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1560                 struct target *target)
1561 {
1562         /* examine_first() does a bunch of this */
1563         return ERROR_OK;
1564 }
1565
1566 static int cortex_a8_init_arch_info(struct target *target,
1567                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1568 {
1569         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1570         struct arm *armv4_5 = &armv7a->armv4_5_common;
1571         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1572
1573         /* Setup struct cortex_a8_common */
1574         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1575         armv4_5->arch_info = armv7a;
1576
1577         /* prepare JTAG information for the new target */
1578         cortex_a8->jtag_info.tap = tap;
1579         cortex_a8->jtag_info.scann_size = 4;
1580
1581         swjdp->dp_select_value = -1;
1582         swjdp->ap_csw_value = -1;
1583         swjdp->ap_tar_value = -1;
1584         swjdp->jtag_info = &cortex_a8->jtag_info;
1585         swjdp->memaccess_tck = 80;
1586
1587         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1588         swjdp->tar_autoincr_block = (1 << 10);
1589
1590         cortex_a8->fast_reg_read = 0;
1591
1592         /* register arch-specific functions */
1593         armv7a->examine_debug_reason = NULL;
1594
1595         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1596
1597         armv7a->pre_restore_context = NULL;
1598         armv7a->post_restore_context = NULL;
1599         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1600 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1601         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1602         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1603 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1604 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1605         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1606         armv7a->armv4_5_mmu.mmu_enabled = 0;
1607
1608
1609 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1610
1611         /* REVISIT v7a setup should be in a v7a-specific routine */
1612         armv4_5_init_arch_info(target, armv4_5);
1613         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1614
1615         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1616
1617         return ERROR_OK;
1618 }
1619
1620 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1621 {
1622         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1623
1624         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1625
1626         return ERROR_OK;
1627 }
1628
1629 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1630 {
1631         struct target *target = get_current_target(CMD_CTX);
1632         struct armv7a_common *armv7a = target_to_armv7a(target);
1633
1634         return armv4_5_handle_cache_info_command(CMD_CTX,
1635                         &armv7a->armv4_5_mmu.armv4_5_cache);
1636 }
1637
1638
1639 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1640 {
1641         struct target *target = get_current_target(CMD_CTX);
1642
1643         cortex_a8_init_debug_access(target);
1644
1645         return ERROR_OK;
1646 }
1647
1648 static const struct command_registration cortex_a8_exec_command_handlers[] = {
1649         {
1650                 .name = "cache_info",
1651                 .handler = &cortex_a8_handle_cache_info_command,
1652                 .mode = COMMAND_EXEC,
1653                 .help = "display information about target caches",
1654         },
1655         {
1656                 .name = "dbginit",
1657                 .handler = &cortex_a8_handle_dbginit_command,
1658                 .mode = COMMAND_EXEC,
1659                 .help = "Initialize core debug",
1660         },
1661         COMMAND_REGISTRATION_DONE
1662 };
1663 static const struct command_registration cortex_a8_command_handlers[] = {
1664         {
1665                 .chain = arm_command_handlers,
1666         },
1667         {
1668                 .chain = armv7a_command_handlers,
1669         },
1670         {
1671                 .name = "cortex_a8",
1672                 .mode = COMMAND_ANY,
1673                 .help = "Cortex-A8 command group",
1674                 .chain = cortex_a8_exec_command_handlers,
1675         },
1676         COMMAND_REGISTRATION_DONE
1677 };
1678
1679 struct target_type cortexa8_target = {
1680         .name = "cortex_a8",
1681
1682         .poll = cortex_a8_poll,
1683         .arch_state = armv7a_arch_state,
1684
1685         .target_request_data = NULL,
1686
1687         .halt = cortex_a8_halt,
1688         .resume = cortex_a8_resume,
1689         .step = cortex_a8_step,
1690
1691         .assert_reset = cortex_a8_assert_reset,
1692         .deassert_reset = cortex_a8_deassert_reset,
1693         .soft_reset_halt = NULL,
1694
1695         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1696
1697         .read_memory = cortex_a8_read_memory,
1698         .write_memory = cortex_a8_write_memory,
1699         .bulk_write_memory = cortex_a8_bulk_write_memory,
1700
1701         .checksum_memory = arm_checksum_memory,
1702         .blank_check_memory = arm_blank_check_memory,
1703
1704         .run_algorithm = armv4_5_run_algorithm,
1705
1706         .add_breakpoint = cortex_a8_add_breakpoint,
1707         .remove_breakpoint = cortex_a8_remove_breakpoint,
1708         .add_watchpoint = NULL,
1709         .remove_watchpoint = NULL,
1710
1711         .commands = cortex_a8_command_handlers,
1712         .target_create = cortex_a8_target_create,
1713         .init_target = cortex_a8_init_target,
1714         .examine = cortex_a8_examine,
1715 };