]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
cortex a8: add missing error handling for mem_ap_read_atomic_u32()
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  *                                                                         *
32  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
33  *                                                                         *
34  ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include "breakpoints.h"
40 #include "cortex_a8.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
46
47 static int cortex_a8_poll(struct target *target);
48 static int cortex_a8_debug_entry(struct target *target);
49 static int cortex_a8_restore_context(struct target *target, bool bpwp);
50 static int cortex_a8_set_breakpoint(struct target *target,
51                 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a8_unset_breakpoint(struct target *target,
53                 struct breakpoint *breakpoint);
54 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
55                 uint32_t *value, int regnum);
56 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
57                 uint32_t value, int regnum);
58 static int cortex_a8_mmu(struct target *target, int *enabled);
59 static int cortex_a8_virt2phys(struct target *target,
60                 uint32_t virt, uint32_t *phys);
61 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
62                 int d_u_cache, int i_cache);
63 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
64                 int d_u_cache, int i_cache);
65 static uint32_t cortex_a8_get_ttb(struct target *target);
66
67
68 /*
69  * FIXME do topology discovery using the ROM; don't
70  * assume this is an OMAP3.   Also, allow for multiple ARMv7-A
71  * cores, with different AP numbering ... don't use a #define
72  * for these numbers, use per-core armv7a state.
73  */
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76 #define OMAP3530_DEBUG_BASE 0x54011000
77
78 /*
79  * Cortex-A8 Basic debug access, very low level assumes state is saved
80  */
81 static int cortex_a8_init_debug_access(struct target *target)
82 {
83         struct armv7a_common *armv7a = target_to_armv7a(target);
84         struct adiv5_dap *swjdp = &armv7a->dap;
85
86         int retval;
87         uint32_t dummy;
88
89         LOG_DEBUG(" ");
90
91         /* Unlocking the debug registers for modification */
92         /* The debugport might be uninitialised so try twice */
93         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
94         if (retval != ERROR_OK)
95         {
96                 /* try again */
97                 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
98                 if (retval == ERROR_OK)
99                 {
100                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
101                 }
102         }
103         if (retval != ERROR_OK)
104                 return retval;
105         /* Clear Sticky Power Down status Bit in PRSR to enable access to
106            the registers in the Core Power Domain */
107         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
108         if (retval != ERROR_OK)
109                 return retval;
110
111         /* Enabling of instruction execution in debug mode is done in debug_entry code */
112
113         /* Resync breakpoint registers */
114
115         /* Since this is likely called from init or reset, update target state information*/
116         retval = cortex_a8_poll(target);
117
118         return retval;
119 }
120
121 /* To reduce needless round-trips, pass in a pointer to the current
122  * DSCR value.  Initialize it to zero if you just need to know the
123  * value on return from this function; or DSCR_INSTR_COMP if you
124  * happen to know that no instruction is pending.
125  */
126 static int cortex_a8_exec_opcode(struct target *target,
127                 uint32_t opcode, uint32_t *dscr_p)
128 {
129         uint32_t dscr;
130         int retval;
131         struct armv7a_common *armv7a = target_to_armv7a(target);
132         struct adiv5_dap *swjdp = &armv7a->dap;
133
134         dscr = dscr_p ? *dscr_p : 0;
135
136         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
137
138         /* Wait for InstrCompl bit to be set */
139         while ((dscr & DSCR_INSTR_COMP) == 0)
140         {
141                 retval = mem_ap_read_atomic_u32(swjdp,
142                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
143                 if (retval != ERROR_OK)
144                 {
145                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
146                         return retval;
147                 }
148         }
149
150         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
151
152         do
153         {
154                 retval = mem_ap_read_atomic_u32(swjdp,
155                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
156                 if (retval != ERROR_OK)
157                 {
158                         LOG_ERROR("Could not read DSCR register");
159                         return retval;
160                 }
161         }
162         while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
163
164         if (dscr_p)
165                 *dscr_p = dscr;
166
167         return retval;
168 }
169
170 /**************************************************************************
171 Read core register with very few exec_opcode, fast but needs work_area.
172 This can cause problems with MMU active.
173 **************************************************************************/
174 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
175                 uint32_t * regfile)
176 {
177         int retval = ERROR_OK;
178         struct armv7a_common *armv7a = target_to_armv7a(target);
179         struct adiv5_dap *swjdp = &armv7a->dap;
180
181         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
182         cortex_a8_dap_write_coreregister_u32(target, address, 0);
183         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
184         dap_ap_select(swjdp, swjdp_memoryap);
185         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
186         dap_ap_select(swjdp, swjdp_debugap);
187
188         return retval;
189 }
190
191 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
192                 uint32_t *value, int regnum)
193 {
194         int retval = ERROR_OK;
195         uint8_t reg = regnum&0xFF;
196         uint32_t dscr = 0;
197         struct armv7a_common *armv7a = target_to_armv7a(target);
198         struct adiv5_dap *swjdp = &armv7a->dap;
199
200         if (reg > 17)
201                 return retval;
202
203         if (reg < 15)
204         {
205                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
206                 cortex_a8_exec_opcode(target,
207                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
208                                 &dscr);
209         }
210         else if (reg == 15)
211         {
212                 /* "MOV r0, r15"; then move r0 to DCCTX */
213                 cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
214                 cortex_a8_exec_opcode(target,
215                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
216                                 &dscr);
217         }
218         else
219         {
220                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
221                  * then move r0 to DCCTX
222                  */
223                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
224                 cortex_a8_exec_opcode(target,
225                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
226                                 &dscr);
227         }
228
229         /* Wait for DTRRXfull then read DTRRTX */
230         while ((dscr & DSCR_DTR_TX_FULL) == 0)
231         {
232                 retval = mem_ap_read_atomic_u32(swjdp,
233                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
234                 if (retval != ERROR_OK)
235                         return retval;
236         }
237
238         retval = mem_ap_read_atomic_u32(swjdp,
239                         armv7a->debug_base + CPUDBG_DTRTX, value);
240         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
241
242         return retval;
243 }
244
245 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
246                 uint32_t value, int regnum)
247 {
248         int retval = ERROR_OK;
249         uint8_t Rd = regnum&0xFF;
250         uint32_t dscr;
251         struct armv7a_common *armv7a = target_to_armv7a(target);
252         struct adiv5_dap *swjdp = &armv7a->dap;
253
254         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
255
256         /* Check that DCCRX is not full */
257         retval = mem_ap_read_atomic_u32(swjdp,
258                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
259         if (retval != ERROR_OK)
260                 return retval;
261         if (dscr & DSCR_DTR_RX_FULL)
262         {
263                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
264                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
265                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
266                                 &dscr);
267         }
268
269         if (Rd > 17)
270                 return retval;
271
272         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
273         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
274         retval = mem_ap_write_u32(swjdp,
275                         armv7a->debug_base + CPUDBG_DTRRX, value);
276
277         if (Rd < 15)
278         {
279                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
280                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
281                                 &dscr);
282         }
283         else if (Rd == 15)
284         {
285                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
286                  * then "mov r15, r0"
287                  */
288                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
289                                 &dscr);
290                 cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
291         }
292         else
293         {
294                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
295                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
296                  */
297                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
298                                 &dscr);
299                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
300                                 &dscr);
301
302                 /* "Prefetch flush" after modifying execution status in CPSR */
303                 if (Rd == 16)
304                         cortex_a8_exec_opcode(target,
305                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
306                                         &dscr);
307         }
308
309         return retval;
310 }
311
312 /* Write to memory mapped registers directly with no cache or mmu handling */
313 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
314 {
315         int retval;
316         struct armv7a_common *armv7a = target_to_armv7a(target);
317         struct adiv5_dap *swjdp = &armv7a->dap;
318
319         retval = mem_ap_write_atomic_u32(swjdp, address, value);
320
321         return retval;
322 }
323
324 /*
325  * Cortex-A8 implementation of Debug Programmer's Model
326  *
327  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
328  * so there's no need to poll for it before executing an instruction.
329  *
330  * NOTE that in several of these cases the "stall" mode might be useful.
331  * It'd let us queue a few operations together... prepare/finish might
332  * be the places to enable/disable that mode.
333  */
334
335 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
336 {
337         return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
338 }
339
340 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
341 {
342         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
343         return mem_ap_write_u32(&a8->armv7a_common.dap,
344                         a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
345 }
346
347 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
348                 uint32_t *dscr_p)
349 {
350         struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
351         uint32_t dscr = DSCR_INSTR_COMP;
352         int retval;
353
354         if (dscr_p)
355                 dscr = *dscr_p;
356
357         /* Wait for DTRRXfull */
358         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
359                 retval = mem_ap_read_atomic_u32(swjdp,
360                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
361                                 &dscr);
362                 if (retval != ERROR_OK)
363                         return retval;
364         }
365
366         retval = mem_ap_read_atomic_u32(swjdp,
367                         a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
368         if (retval != ERROR_OK)
369                 return retval;
370         //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
371
372         if (dscr_p)
373                 *dscr_p = dscr;
374
375         return retval;
376 }
377
378 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
379 {
380         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
381         struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
382         uint32_t dscr;
383         int retval;
384
385         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
386         long long then = timeval_ms();
387         for (;;)
388         {
389                 retval = mem_ap_read_atomic_u32(swjdp,
390                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
391                                 &dscr);
392                 if (retval != ERROR_OK)
393                         return retval;
394                 if ((dscr & DSCR_INSTR_COMP) != 0)
395                         break;
396                 if (timeval_ms() > then + 1000)
397                 {
398                         LOG_ERROR("Timeout waiting for dpm prepare");
399                         return ERROR_FAIL;
400                 }
401         }
402
403         /* this "should never happen" ... */
404         if (dscr & DSCR_DTR_RX_FULL) {
405                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
406                 /* Clear DCCRX */
407                 retval = cortex_a8_exec_opcode(
408                                 a8->armv7a_common.armv4_5_common.target,
409                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
410                                 &dscr);
411         }
412
413         return retval;
414 }
415
416 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
417 {
418         /* REVISIT what could be done here? */
419         return ERROR_OK;
420 }
421
422 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
423                 uint32_t opcode, uint32_t data)
424 {
425         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
426         int retval;
427         uint32_t dscr = DSCR_INSTR_COMP;
428
429         retval = cortex_a8_write_dcc(a8, data);
430
431         return cortex_a8_exec_opcode(
432                         a8->armv7a_common.armv4_5_common.target,
433                         opcode,
434                         &dscr);
435 }
436
437 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
438                 uint32_t opcode, uint32_t data)
439 {
440         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
441         uint32_t dscr = DSCR_INSTR_COMP;
442         int retval;
443
444         retval = cortex_a8_write_dcc(a8, data);
445
446         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
447         retval = cortex_a8_exec_opcode(
448                         a8->armv7a_common.armv4_5_common.target,
449                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
450                         &dscr);
451
452         /* then the opcode, taking data from R0 */
453         retval = cortex_a8_exec_opcode(
454                         a8->armv7a_common.armv4_5_common.target,
455                         opcode,
456                         &dscr);
457
458         return retval;
459 }
460
461 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
462 {
463         struct target *target = dpm->arm->target;
464         uint32_t dscr = DSCR_INSTR_COMP;
465
466         /* "Prefetch flush" after modifying execution status in CPSR */
467         return cortex_a8_exec_opcode(target,
468                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
469                         &dscr);
470 }
471
472 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
473                 uint32_t opcode, uint32_t *data)
474 {
475         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
476         int retval;
477         uint32_t dscr = DSCR_INSTR_COMP;
478
479         /* the opcode, writing data to DCC */
480         retval = cortex_a8_exec_opcode(
481                         a8->armv7a_common.armv4_5_common.target,
482                         opcode,
483                         &dscr);
484
485         return cortex_a8_read_dcc(a8, data, &dscr);
486 }
487
488
489 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
490                 uint32_t opcode, uint32_t *data)
491 {
492         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
493         uint32_t dscr = DSCR_INSTR_COMP;
494         int retval;
495
496         /* the opcode, writing data to R0 */
497         retval = cortex_a8_exec_opcode(
498                         a8->armv7a_common.armv4_5_common.target,
499                         opcode,
500                         &dscr);
501
502         /* write R0 to DCC */
503         retval = cortex_a8_exec_opcode(
504                         a8->armv7a_common.armv4_5_common.target,
505                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
506                         &dscr);
507
508         return cortex_a8_read_dcc(a8, data, &dscr);
509 }
510
511 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
512                 uint32_t addr, uint32_t control)
513 {
514         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
515         uint32_t vr = a8->armv7a_common.debug_base;
516         uint32_t cr = a8->armv7a_common.debug_base;
517         int retval;
518
519         switch (index_t) {
520         case 0 ... 15:          /* breakpoints */
521                 vr += CPUDBG_BVR_BASE;
522                 cr += CPUDBG_BCR_BASE;
523                 break;
524         case 16 ... 31:         /* watchpoints */
525                 vr += CPUDBG_WVR_BASE;
526                 cr += CPUDBG_WCR_BASE;
527                 index_t -= 16;
528                 break;
529         default:
530                 return ERROR_FAIL;
531         }
532         vr += 4 * index_t;
533         cr += 4 * index_t;
534
535         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
536                         (unsigned) vr, (unsigned) cr);
537
538         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
539                         vr, addr);
540         if (retval != ERROR_OK)
541                 return retval;
542         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
543                         cr, control);
544         return retval;
545 }
546
547 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
548 {
549         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
550         uint32_t cr;
551
552         switch (index_t) {
553         case 0 ... 15:
554                 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
555                 break;
556         case 16 ... 31:
557                 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
558                 index_t -= 16;
559                 break;
560         default:
561                 return ERROR_FAIL;
562         }
563         cr += 4 * index_t;
564
565         LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
566
567         /* clear control register */
568         return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
569 }
570
571 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
572 {
573         struct arm_dpm *dpm = &a8->armv7a_common.dpm;
574         int retval;
575
576         dpm->arm = &a8->armv7a_common.armv4_5_common;
577         dpm->didr = didr;
578
579         dpm->prepare = cortex_a8_dpm_prepare;
580         dpm->finish = cortex_a8_dpm_finish;
581
582         dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
583         dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
584         dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
585
586         dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
587         dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
588
589         dpm->bpwp_enable = cortex_a8_bpwp_enable;
590         dpm->bpwp_disable = cortex_a8_bpwp_disable;
591
592         retval = arm_dpm_setup(dpm);
593         if (retval == ERROR_OK)
594                 retval = arm_dpm_initialize(dpm);
595
596         return retval;
597 }
598
599
600 /*
601  * Cortex-A8 Run control
602  */
603
604 static int cortex_a8_poll(struct target *target)
605 {
606         int retval = ERROR_OK;
607         uint32_t dscr;
608         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
609         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
610         struct adiv5_dap *swjdp = &armv7a->dap;
611         enum target_state prev_target_state = target->state;
612         uint8_t saved_apsel = dap_ap_get_select(swjdp);
613
614         dap_ap_select(swjdp, swjdp_debugap);
615         retval = mem_ap_read_atomic_u32(swjdp,
616                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
617         if (retval != ERROR_OK)
618         {
619                 dap_ap_select(swjdp, saved_apsel);
620                 return retval;
621         }
622         cortex_a8->cpudbg_dscr = dscr;
623
624         if ((dscr & 0x3) == 0x3)
625         {
626                 if (prev_target_state != TARGET_HALTED)
627                 {
628                         /* We have a halting debug event */
629                         LOG_DEBUG("Target halted");
630                         target->state = TARGET_HALTED;
631                         if ((prev_target_state == TARGET_RUNNING)
632                                         || (prev_target_state == TARGET_RESET))
633                         {
634                                 retval = cortex_a8_debug_entry(target);
635                                 if (retval != ERROR_OK)
636                                         return retval;
637
638                                 target_call_event_callbacks(target,
639                                                 TARGET_EVENT_HALTED);
640                         }
641                         if (prev_target_state == TARGET_DEBUG_RUNNING)
642                         {
643                                 LOG_DEBUG(" ");
644
645                                 retval = cortex_a8_debug_entry(target);
646                                 if (retval != ERROR_OK)
647                                         return retval;
648
649                                 target_call_event_callbacks(target,
650                                                 TARGET_EVENT_DEBUG_HALTED);
651                         }
652                 }
653         }
654         else if ((dscr & 0x3) == 0x2)
655         {
656                 target->state = TARGET_RUNNING;
657         }
658         else
659         {
660                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
661                 target->state = TARGET_UNKNOWN;
662         }
663
664         dap_ap_select(swjdp, saved_apsel);
665
666         return retval;
667 }
668
669 static int cortex_a8_halt(struct target *target)
670 {
671         int retval = ERROR_OK;
672         uint32_t dscr;
673         struct armv7a_common *armv7a = target_to_armv7a(target);
674         struct adiv5_dap *swjdp = &armv7a->dap;
675         uint8_t saved_apsel = dap_ap_get_select(swjdp);
676         dap_ap_select(swjdp, swjdp_debugap);
677
678         /*
679          * Tell the core to be halted by writing DRCR with 0x1
680          * and then wait for the core to be halted.
681          */
682         retval = mem_ap_write_atomic_u32(swjdp,
683                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
684         if (retval != ERROR_OK)
685                 goto out;
686
687         /*
688          * enter halting debug mode
689          */
690         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
691         if (retval != ERROR_OK)
692                 goto out;
693
694         retval = mem_ap_write_atomic_u32(swjdp,
695                 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
696         if (retval != ERROR_OK)
697                 goto out;
698
699         long long then = timeval_ms();
700         for (;;)
701         {
702                 retval = mem_ap_read_atomic_u32(swjdp,
703                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
704                 if (retval != ERROR_OK)
705                         goto out;
706                 if ((dscr & DSCR_CORE_HALTED) != 0)
707                 {
708                         break;
709                 }
710                 if (timeval_ms() > then + 1000)
711                 {
712                         LOG_ERROR("Timeout waiting for halt");
713                         return ERROR_FAIL;
714                 }
715         }
716
717         target->debug_reason = DBG_REASON_DBGRQ;
718
719 out:
720         dap_ap_select(swjdp, saved_apsel);
721         return retval;
722 }
723
724 static int cortex_a8_resume(struct target *target, int current,
725                 uint32_t address, int handle_breakpoints, int debug_execution)
726 {
727         struct armv7a_common *armv7a = target_to_armv7a(target);
728         struct arm *armv4_5 = &armv7a->armv4_5_common;
729         struct adiv5_dap *swjdp = &armv7a->dap;
730         int retval;
731
732 //      struct breakpoint *breakpoint = NULL;
733         uint32_t resume_pc, dscr;
734
735         uint8_t saved_apsel = dap_ap_get_select(swjdp);
736         dap_ap_select(swjdp, swjdp_debugap);
737
738         if (!debug_execution)
739                 target_free_all_working_areas(target);
740
741 #if 0
742         if (debug_execution)
743         {
744                 /* Disable interrupts */
745                 /* We disable interrupts in the PRIMASK register instead of
746                  * masking with C_MASKINTS,
747                  * This is probably the same issue as Cortex-M3 Errata 377493:
748                  * C_MASKINTS in parallel with disabled interrupts can cause
749                  * local faults to not be taken. */
750                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
751                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
752                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
753
754                 /* Make sure we are in Thumb mode */
755                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
756                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
757                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
758                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
759         }
760 #endif
761
762         /* current = 1: continue on current pc, otherwise continue at <address> */
763         resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
764         if (!current)
765                 resume_pc = address;
766
767         /* Make sure that the Armv7 gdb thumb fixups does not
768          * kill the return address
769          */
770         switch (armv4_5->core_state)
771         {
772         case ARM_STATE_ARM:
773                 resume_pc &= 0xFFFFFFFC;
774                 break;
775         case ARM_STATE_THUMB:
776         case ARM_STATE_THUMB_EE:
777                 /* When the return address is loaded into PC
778                  * bit 0 must be 1 to stay in Thumb state
779                  */
780                 resume_pc |= 0x1;
781                 break;
782         case ARM_STATE_JAZELLE:
783                 LOG_ERROR("How do I resume into Jazelle state??");
784                 return ERROR_FAIL;
785         }
786         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
787         buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
788         armv4_5->pc->dirty = 1;
789         armv4_5->pc->valid = 1;
790
791         cortex_a8_restore_context(target, handle_breakpoints);
792
793 #if 0
794         /* the front-end may request us not to handle breakpoints */
795         if (handle_breakpoints)
796         {
797                 /* Single step past breakpoint at current address */
798                 if ((breakpoint = breakpoint_find(target, resume_pc)))
799                 {
800                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
801                         cortex_m3_unset_breakpoint(target, breakpoint);
802                         cortex_m3_single_step_core(target);
803                         cortex_m3_set_breakpoint(target, breakpoint);
804                 }
805         }
806
807 #endif
808         /* Restart core and wait for it to be started
809          * NOTE: this clears DSCR_ITR_EN and other bits.
810          *
811          * REVISIT: for single stepping, we probably want to
812          * disable IRQs by default, with optional override...
813          */
814         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
815         if (retval != ERROR_OK)
816                 return retval;
817
818         long long then = timeval_ms();
819         for (;;)
820         {
821                 retval = mem_ap_read_atomic_u32(swjdp,
822                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
823                 if (retval != ERROR_OK)
824                         return retval;
825                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
826                         break;
827                 if (timeval_ms() > then + 1000)
828                 {
829                         LOG_ERROR("Timeout waiting for resume");
830                         return ERROR_FAIL;
831                 }
832         }
833
834         target->debug_reason = DBG_REASON_NOTHALTED;
835         target->state = TARGET_RUNNING;
836
837         /* registers are now invalid */
838         register_cache_invalidate(armv4_5->core_cache);
839
840         if (!debug_execution)
841         {
842                 target->state = TARGET_RUNNING;
843                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
844                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
845         }
846         else
847         {
848                 target->state = TARGET_DEBUG_RUNNING;
849                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
850                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
851         }
852
853         dap_ap_select(swjdp, saved_apsel);
854
855         return ERROR_OK;
856 }
857
858 static int cortex_a8_debug_entry(struct target *target)
859 {
860         int i;
861         uint32_t regfile[16], cpsr, dscr;
862         int retval = ERROR_OK;
863         struct working_area *regfile_working_area = NULL;
864         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
865         struct armv7a_common *armv7a = target_to_armv7a(target);
866         struct arm *armv4_5 = &armv7a->armv4_5_common;
867         struct adiv5_dap *swjdp = &armv7a->dap;
868         struct reg *reg;
869
870         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
871
872         /* REVISIT surely we should not re-read DSCR !! */
873         retval = mem_ap_read_atomic_u32(swjdp,
874                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
875         if (retval != ERROR_OK)
876                 return retval;
877
878         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
879          * imprecise data aborts get discarded by issuing a Data
880          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
881          */
882
883         /* Enable the ITR execution once we are in debug mode */
884         dscr |= DSCR_ITR_EN;
885         retval = mem_ap_write_atomic_u32(swjdp,
886                         armv7a->debug_base + CPUDBG_DSCR, dscr);
887         if (retval != ERROR_OK)
888                 return retval;
889
890         /* Examine debug reason */
891         arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
892
893         /* save address of instruction that triggered the watchpoint? */
894         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
895                 uint32_t wfar;
896
897                 retval = mem_ap_read_atomic_u32(swjdp,
898                                 armv7a->debug_base + CPUDBG_WFAR,
899                                 &wfar);
900                 if (retval != ERROR_OK)
901                         return retval;
902                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
903         }
904
905         /* REVISIT fast_reg_read is never set ... */
906
907         /* Examine target state and mode */
908         if (cortex_a8->fast_reg_read)
909                 target_alloc_working_area(target, 64, &regfile_working_area);
910
911         /* First load register acessible through core debug port*/
912         if (!regfile_working_area)
913         {
914                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
915         }
916         else
917         {
918                 dap_ap_select(swjdp, swjdp_memoryap);
919                 cortex_a8_read_regs_through_mem(target,
920                                 regfile_working_area->address, regfile);
921                 dap_ap_select(swjdp, swjdp_memoryap);
922                 target_free_working_area(target, regfile_working_area);
923
924                 /* read Current PSR */
925                 cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
926                 dap_ap_select(swjdp, swjdp_debugap);
927                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
928
929                 arm_set_cpsr(armv4_5, cpsr);
930
931                 /* update cache */
932                 for (i = 0; i <= ARM_PC; i++)
933                 {
934                         reg = arm_reg_current(armv4_5, i);
935
936                         buf_set_u32(reg->value, 0, 32, regfile[i]);
937                         reg->valid = 1;
938                         reg->dirty = 0;
939                 }
940
941                 /* Fixup PC Resume Address */
942                 if (cpsr & (1 << 5))
943                 {
944                         // T bit set for Thumb or ThumbEE state
945                         regfile[ARM_PC] -= 4;
946                 }
947                 else
948                 {
949                         // ARM state
950                         regfile[ARM_PC] -= 8;
951                 }
952
953                 reg = armv4_5->pc;
954                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
955                 reg->dirty = reg->valid;
956         }
957
958 #if 0
959 /* TODO, Move this */
960         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
961         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
962         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
963
964         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
965         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
966
967         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
968         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
969 #endif
970
971         /* Are we in an exception handler */
972 //      armv4_5->exception_number = 0;
973         if (armv7a->post_debug_entry)
974                 armv7a->post_debug_entry(target);
975
976         return retval;
977 }
978
979 static void cortex_a8_post_debug_entry(struct target *target)
980 {
981         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
982         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
983         int retval;
984
985         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
986         retval = armv7a->armv4_5_common.mrc(target, 15,
987                         0, 0,   /* op1, op2 */
988                         1, 0,   /* CRn, CRm */
989                         &cortex_a8->cp15_control_reg);
990         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
991
992         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
993         {
994                 uint32_t cache_type_reg;
995
996                 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
997                 retval = armv7a->armv4_5_common.mrc(target, 15,
998                                 0, 1,   /* op1, op2 */
999                                 0, 0,   /* CRn, CRm */
1000                                 &cache_type_reg);
1001                 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1002
1003                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1004                 armv4_5_identify_cache(cache_type_reg,
1005                                 &armv7a->armv4_5_mmu.armv4_5_cache);
1006         }
1007
1008         armv7a->armv4_5_mmu.mmu_enabled =
1009                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1010         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1011                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1012         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1013                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1014
1015
1016 }
1017
1018 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1019                 int handle_breakpoints)
1020 {
1021         struct armv7a_common *armv7a = target_to_armv7a(target);
1022         struct arm *armv4_5 = &armv7a->armv4_5_common;
1023         struct breakpoint *breakpoint = NULL;
1024         struct breakpoint stepbreakpoint;
1025         struct reg *r;
1026         int retval;
1027
1028         int timeout = 100;
1029
1030         if (target->state != TARGET_HALTED)
1031         {
1032                 LOG_WARNING("target not halted");
1033                 return ERROR_TARGET_NOT_HALTED;
1034         }
1035
1036         /* current = 1: continue on current pc, otherwise continue at <address> */
1037         r = armv4_5->pc;
1038         if (!current)
1039         {
1040                 buf_set_u32(r->value, 0, 32, address);
1041         }
1042         else
1043         {
1044                 address = buf_get_u32(r->value, 0, 32);
1045         }
1046
1047         /* The front-end may request us not to handle breakpoints.
1048          * But since Cortex-A8 uses breakpoint for single step,
1049          * we MUST handle breakpoints.
1050          */
1051         handle_breakpoints = 1;
1052         if (handle_breakpoints) {
1053                 breakpoint = breakpoint_find(target, address);
1054                 if (breakpoint)
1055                         cortex_a8_unset_breakpoint(target, breakpoint);
1056         }
1057
1058         /* Setup single step breakpoint */
1059         stepbreakpoint.address = address;
1060         stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1061                         ? 2 : 4;
1062         stepbreakpoint.type = BKPT_HARD;
1063         stepbreakpoint.set = 0;
1064
1065         /* Break on IVA mismatch */
1066         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1067
1068         target->debug_reason = DBG_REASON_SINGLESTEP;
1069
1070         retval = cortex_a8_resume(target, 1, address, 0, 0);
1071         if (retval != ERROR_OK)
1072                 return retval;
1073
1074         while (target->state != TARGET_HALTED)
1075         {
1076                 retval = cortex_a8_poll(target);
1077                 if (retval != ERROR_OK)
1078                         return retval;
1079                 if (--timeout == 0)
1080                 {
1081                         LOG_ERROR("timeout waiting for target halt");
1082                         return ERROR_FAIL;
1083                 }
1084         }
1085
1086         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1087         if (timeout > 0)
1088                 target->debug_reason = DBG_REASON_BREAKPOINT;
1089
1090         if (breakpoint)
1091                 cortex_a8_set_breakpoint(target, breakpoint, 0);
1092
1093         if (target->state != TARGET_HALTED)
1094                 LOG_DEBUG("target stepped");
1095
1096         return ERROR_OK;
1097 }
1098
1099 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1100 {
1101         struct armv7a_common *armv7a = target_to_armv7a(target);
1102
1103         LOG_DEBUG(" ");
1104
1105         if (armv7a->pre_restore_context)
1106                 armv7a->pre_restore_context(target);
1107
1108         arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1109
1110         return ERROR_OK;
1111 }
1112
1113
1114 /*
1115  * Cortex-A8 Breakpoint and watchpoint functions
1116  */
1117
1118 /* Setup hardware Breakpoint Register Pair */
1119 static int cortex_a8_set_breakpoint(struct target *target,
1120                 struct breakpoint *breakpoint, uint8_t matchmode)
1121 {
1122         int retval;
1123         int brp_i=0;
1124         uint32_t control;
1125         uint8_t byte_addr_select = 0x0F;
1126         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1127         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1128         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1129
1130         if (breakpoint->set)
1131         {
1132                 LOG_WARNING("breakpoint already set");
1133                 return ERROR_OK;
1134         }
1135
1136         if (breakpoint->type == BKPT_HARD)
1137         {
1138                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1139                         brp_i++ ;
1140                 if (brp_i >= cortex_a8->brp_num)
1141                 {
1142                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1143                         return ERROR_FAIL;
1144                 }
1145                 breakpoint->set = brp_i + 1;
1146                 if (breakpoint->length == 2)
1147                 {
1148                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1149                 }
1150                 control = ((matchmode & 0x7) << 20)
1151                                 | (byte_addr_select << 5)
1152                                 | (3 << 1) | 1;
1153                 brp_list[brp_i].used = 1;
1154                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1155                 brp_list[brp_i].control = control;
1156                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1157                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1158                                 brp_list[brp_i].value);
1159                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1160                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1161                                 brp_list[brp_i].control);
1162                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1163                                 brp_list[brp_i].control,
1164                                 brp_list[brp_i].value);
1165         }
1166         else if (breakpoint->type == BKPT_SOFT)
1167         {
1168                 uint8_t code[4];
1169                 if (breakpoint->length == 2)
1170                 {
1171                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1172                 }
1173                 else
1174                 {
1175                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1176                 }
1177                 retval = target->type->read_memory(target,
1178                                 breakpoint->address & 0xFFFFFFFE,
1179                                 breakpoint->length, 1,
1180                                 breakpoint->orig_instr);
1181                 if (retval != ERROR_OK)
1182                         return retval;
1183                 retval = target->type->write_memory(target,
1184                                 breakpoint->address & 0xFFFFFFFE,
1185                                 breakpoint->length, 1, code);
1186                 if (retval != ERROR_OK)
1187                         return retval;
1188                 breakpoint->set = 0x11; /* Any nice value but 0 */
1189         }
1190
1191         return ERROR_OK;
1192 }
1193
1194 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1195 {
1196         int retval;
1197         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1198         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1199         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1200
1201         if (!breakpoint->set)
1202         {
1203                 LOG_WARNING("breakpoint not set");
1204                 return ERROR_OK;
1205         }
1206
1207         if (breakpoint->type == BKPT_HARD)
1208         {
1209                 int brp_i = breakpoint->set - 1;
1210                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1211                 {
1212                         LOG_DEBUG("Invalid BRP number in breakpoint");
1213                         return ERROR_OK;
1214                 }
1215                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1216                                 brp_list[brp_i].control, brp_list[brp_i].value);
1217                 brp_list[brp_i].used = 0;
1218                 brp_list[brp_i].value = 0;
1219                 brp_list[brp_i].control = 0;
1220                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1221                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1222                                 brp_list[brp_i].control);
1223                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1224                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1225                                 brp_list[brp_i].value);
1226         }
1227         else
1228         {
1229                 /* restore original instruction (kept in target endianness) */
1230                 if (breakpoint->length == 4)
1231                 {
1232                         retval = target->type->write_memory(target,
1233                                         breakpoint->address & 0xFFFFFFFE,
1234                                         4, 1, breakpoint->orig_instr);
1235                         if (retval != ERROR_OK)
1236                                 return retval;
1237                 }
1238                 else
1239                 {
1240                         retval = target->type->write_memory(target,
1241                                         breakpoint->address & 0xFFFFFFFE,
1242                                         2, 1, breakpoint->orig_instr);
1243                         if (retval != ERROR_OK)
1244                                 return retval;
1245                 }
1246         }
1247         breakpoint->set = 0;
1248
1249         return ERROR_OK;
1250 }
1251
1252 static int cortex_a8_add_breakpoint(struct target *target,
1253                 struct breakpoint *breakpoint)
1254 {
1255         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1256
1257         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1258         {
1259                 LOG_INFO("no hardware breakpoint available");
1260                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1261         }
1262
1263         if (breakpoint->type == BKPT_HARD)
1264                 cortex_a8->brp_num_available--;
1265         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1266
1267         return ERROR_OK;
1268 }
1269
1270 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1271 {
1272         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1273
1274 #if 0
1275 /* It is perfectly possible to remove breakpoints while the target is running */
1276         if (target->state != TARGET_HALTED)
1277         {
1278                 LOG_WARNING("target not halted");
1279                 return ERROR_TARGET_NOT_HALTED;
1280         }
1281 #endif
1282
1283         if (breakpoint->set)
1284         {
1285                 cortex_a8_unset_breakpoint(target, breakpoint);
1286                 if (breakpoint->type == BKPT_HARD)
1287                         cortex_a8->brp_num_available++ ;
1288         }
1289
1290
1291         return ERROR_OK;
1292 }
1293
1294
1295
1296 /*
1297  * Cortex-A8 Reset functions
1298  */
1299
1300 static int cortex_a8_assert_reset(struct target *target)
1301 {
1302         struct armv7a_common *armv7a = target_to_armv7a(target);
1303
1304         LOG_DEBUG(" ");
1305
1306         /* FIXME when halt is requested, make it work somehow... */
1307
1308         /* Issue some kind of warm reset. */
1309         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1310                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1311         } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1312                 /* REVISIT handle "pulls" cases, if there's
1313                  * hardware that needs them to work.
1314                  */
1315                 jtag_add_reset(0, 1);
1316         } else {
1317                 LOG_ERROR("%s: how to reset?", target_name(target));
1318                 return ERROR_FAIL;
1319         }
1320
1321         /* registers are now invalid */
1322         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1323
1324         target->state = TARGET_RESET;
1325
1326         return ERROR_OK;
1327 }
1328
1329 static int cortex_a8_deassert_reset(struct target *target)
1330 {
1331         int retval;
1332
1333         LOG_DEBUG(" ");
1334
1335         /* be certain SRST is off */
1336         jtag_add_reset(0, 0);
1337
1338         retval = cortex_a8_poll(target);
1339         if (retval != ERROR_OK)
1340                 return retval;
1341
1342         if (target->reset_halt) {
1343                 if (target->state != TARGET_HALTED) {
1344                         LOG_WARNING("%s: ran after reset and before halt ...",
1345                                         target_name(target));
1346                         if ((retval = target_halt(target)) != ERROR_OK)
1347                                 return retval;
1348                 }
1349         }
1350
1351         return ERROR_OK;
1352 }
1353
1354 /*
1355  * Cortex-A8 Memory access
1356  *
1357  * This is same Cortex M3 but we must also use the correct
1358  * ap number for every access.
1359  */
1360
1361 static int cortex_a8_read_phys_memory(struct target *target,
1362                 uint32_t address, uint32_t size,
1363                 uint32_t count, uint8_t *buffer)
1364 {
1365         struct armv7a_common *armv7a = target_to_armv7a(target);
1366         struct adiv5_dap *swjdp = &armv7a->dap;
1367         int retval = ERROR_INVALID_ARGUMENTS;
1368
1369         /* cortex_a8 handles unaligned memory access */
1370
1371 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1372         LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1373         if (count && buffer) {
1374                 switch (size) {
1375                 case 4:
1376                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1377                         break;
1378                 case 2:
1379                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1380                         break;
1381                 case 1:
1382                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1383                         break;
1384                 }
1385         }
1386
1387         return retval;
1388 }
1389
1390 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1391                 uint32_t size, uint32_t count, uint8_t *buffer)
1392 {
1393         int enabled = 0;
1394         uint32_t virt, phys;
1395         int retval;
1396
1397         /* cortex_a8 handles unaligned memory access */
1398
1399 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1400         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1401         retval = cortex_a8_mmu(target, &enabled);
1402         if (retval != ERROR_OK)
1403                 return retval;
1404
1405         if(enabled)
1406         {
1407             virt = address;
1408             cortex_a8_virt2phys(target, virt, &phys);
1409             LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1410             address = phys;
1411         }
1412
1413         return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1414 }
1415
1416 static int cortex_a8_write_phys_memory(struct target *target,
1417                 uint32_t address, uint32_t size,
1418                 uint32_t count, uint8_t *buffer)
1419 {
1420         struct armv7a_common *armv7a = target_to_armv7a(target);
1421         struct adiv5_dap *swjdp = &armv7a->dap;
1422         int retval = ERROR_INVALID_ARGUMENTS;
1423
1424 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1425
1426         LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1427         if (count && buffer) {
1428                 switch (size) {
1429                 case 4:
1430                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1431                         break;
1432                 case 2:
1433                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1434                         break;
1435                 case 1:
1436                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1437                         break;
1438                 }
1439         }
1440
1441         /* REVISIT this op is generic ARMv7-A/R stuff */
1442         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1443         {
1444                 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1445
1446                 retval = dpm->prepare(dpm);
1447                 if (retval != ERROR_OK)
1448                         return retval;
1449
1450                 /* The Cache handling will NOT work with MMU active, the
1451                  * wrong addresses will be invalidated!
1452                  *
1453                  * For both ICache and DCache, walk all cache lines in the
1454                  * address range. Cortex-A8 has fixed 64 byte line length.
1455                  *
1456                  * REVISIT per ARMv7, these may trigger watchpoints ...
1457                  */
1458
1459                 /* invalidate I-Cache */
1460                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1461                 {
1462                         /* ICIMVAU - Invalidate Cache single entry
1463                          * with MVA to PoU
1464                          *      MCR p15, 0, r0, c7, c5, 1
1465                          */
1466                         for (uint32_t cacheline = address;
1467                                         cacheline < address + size * count;
1468                                         cacheline += 64) {
1469                                 retval = dpm->instr_write_data_r0(dpm,
1470                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1471                                         cacheline);
1472                         }
1473                 }
1474
1475                 /* invalidate D-Cache */
1476                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1477                 {
1478                         /* DCIMVAC - Invalidate data Cache line
1479                          * with MVA to PoC
1480                          *      MCR p15, 0, r0, c7, c6, 1
1481                          */
1482                         for (uint32_t cacheline = address;
1483                                         cacheline < address + size * count;
1484                                         cacheline += 64) {
1485                                 retval = dpm->instr_write_data_r0(dpm,
1486                                         ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1487                                         cacheline);
1488                         }
1489                 }
1490
1491                 /* (void) */ dpm->finish(dpm);
1492         }
1493
1494         return retval;
1495 }
1496
1497 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1498                 uint32_t size, uint32_t count, uint8_t *buffer)
1499 {
1500         int enabled = 0;
1501         uint32_t virt, phys;
1502         int retval;
1503
1504 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1505
1506         LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1507         retval = cortex_a8_mmu(target, &enabled);
1508         if (retval != ERROR_OK)
1509                 return retval;
1510         if(enabled)
1511         {
1512             virt = address;
1513             cortex_a8_virt2phys(target, virt, &phys);
1514             LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1515             address = phys;
1516         }
1517
1518         return cortex_a8_write_phys_memory(target, address, size, 
1519                 count, buffer);
1520 }
1521
1522 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1523                 uint32_t count, uint8_t *buffer)
1524 {
1525         return cortex_a8_write_memory(target, address, 4, count, buffer);
1526 }
1527
1528
1529 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1530 {
1531 #if 0
1532         u16 dcrdr;
1533
1534         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1535         *ctrl = (uint8_t)dcrdr;
1536         *value = (uint8_t)(dcrdr >> 8);
1537
1538         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1539
1540         /* write ack back to software dcc register
1541          * signify we have read data */
1542         if (dcrdr & (1 << 0))
1543         {
1544                 dcrdr = 0;
1545                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1546         }
1547 #endif
1548         return ERROR_OK;
1549 }
1550
1551
1552 static int cortex_a8_handle_target_request(void *priv)
1553 {
1554         struct target *target = priv;
1555         struct armv7a_common *armv7a = target_to_armv7a(target);
1556         struct adiv5_dap *swjdp = &armv7a->dap;
1557
1558         if (!target_was_examined(target))
1559                 return ERROR_OK;
1560         if (!target->dbg_msg_enabled)
1561                 return ERROR_OK;
1562
1563         if (target->state == TARGET_RUNNING)
1564         {
1565                 uint8_t data = 0;
1566                 uint8_t ctrl = 0;
1567
1568                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1569
1570                 /* check if we have data */
1571                 if (ctrl & (1 << 0))
1572                 {
1573                         uint32_t request;
1574
1575                         /* we assume target is quick enough */
1576                         request = data;
1577                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1578                         request |= (data << 8);
1579                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1580                         request |= (data << 16);
1581                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1582                         request |= (data << 24);
1583                         target_request(target, request);
1584                 }
1585         }
1586
1587         return ERROR_OK;
1588 }
1589
1590 /*
1591  * Cortex-A8 target information and configuration
1592  */
1593
1594 static int cortex_a8_examine_first(struct target *target)
1595 {
1596         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1597         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1598         struct adiv5_dap *swjdp = &armv7a->dap;
1599         int i;
1600         int retval = ERROR_OK;
1601         uint32_t didr, ctypr, ttypr, cpuid;
1602
1603         /* stop assuming this is an OMAP! */
1604         LOG_DEBUG("TODO - autoconfigure");
1605
1606         /* Here we shall insert a proper ROM Table scan */
1607         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1608
1609         /* We do one extra read to ensure DAP is configured,
1610          * we call ahbap_debugport_init(swjdp) instead
1611          */
1612         retval = ahbap_debugport_init(swjdp);
1613         if (retval != ERROR_OK)
1614                 return retval;
1615
1616         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1617         if (retval != ERROR_OK)
1618                 return retval;
1619
1620         if ((retval = mem_ap_read_atomic_u32(swjdp,
1621                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1622         {
1623                 LOG_DEBUG("Examine %s failed", "CPUID");
1624                 return retval;
1625         }
1626
1627         if ((retval = mem_ap_read_atomic_u32(swjdp,
1628                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1629         {
1630                 LOG_DEBUG("Examine %s failed", "CTYPR");
1631                 return retval;
1632         }
1633
1634         if ((retval = mem_ap_read_atomic_u32(swjdp,
1635                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1636         {
1637                 LOG_DEBUG("Examine %s failed", "TTYPR");
1638                 return retval;
1639         }
1640
1641         if ((retval = mem_ap_read_atomic_u32(swjdp,
1642                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1643         {
1644                 LOG_DEBUG("Examine %s failed", "DIDR");
1645                 return retval;
1646         }
1647
1648         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1649         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1650         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1651         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1652
1653         armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1654         retval = cortex_a8_dpm_setup(cortex_a8, didr);
1655         if (retval != ERROR_OK)
1656                 return retval;
1657
1658         /* Setup Breakpoint Register Pairs */
1659         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1660         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1661         cortex_a8->brp_num_available = cortex_a8->brp_num;
1662         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1663 //      cortex_a8->brb_enabled = ????;
1664         for (i = 0; i < cortex_a8->brp_num; i++)
1665         {
1666                 cortex_a8->brp_list[i].used = 0;
1667                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1668                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1669                 else
1670                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1671                 cortex_a8->brp_list[i].value = 0;
1672                 cortex_a8->brp_list[i].control = 0;
1673                 cortex_a8->brp_list[i].BRPn = i;
1674         }
1675
1676         LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1677
1678         target_set_examined(target);
1679         return ERROR_OK;
1680 }
1681
1682 static int cortex_a8_examine(struct target *target)
1683 {
1684         int retval = ERROR_OK;
1685
1686         /* don't re-probe hardware after each reset */
1687         if (!target_was_examined(target))
1688                 retval = cortex_a8_examine_first(target);
1689
1690         /* Configure core debug access */
1691         if (retval == ERROR_OK)
1692                 retval = cortex_a8_init_debug_access(target);
1693
1694         return retval;
1695 }
1696
1697 /*
1698  *      Cortex-A8 target creation and initialization
1699  */
1700
1701 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1702                 struct target *target)
1703 {
1704         /* examine_first() does a bunch of this */
1705         return ERROR_OK;
1706 }
1707
1708 static int cortex_a8_init_arch_info(struct target *target,
1709                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1710 {
1711         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1712         struct arm *armv4_5 = &armv7a->armv4_5_common;
1713         struct adiv5_dap *dap = &armv7a->dap;
1714
1715         armv7a->armv4_5_common.dap = dap;
1716
1717         /* Setup struct cortex_a8_common */
1718         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1719         armv4_5->arch_info = armv7a;
1720
1721         /* prepare JTAG information for the new target */
1722         cortex_a8->jtag_info.tap = tap;
1723         cortex_a8->jtag_info.scann_size = 4;
1724
1725         /* Leave (only) generic DAP stuff for debugport_init() */
1726         dap->jtag_info = &cortex_a8->jtag_info;
1727         dap->memaccess_tck = 80;
1728
1729         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1730         dap->tar_autoincr_block = (1 << 10);
1731
1732         cortex_a8->fast_reg_read = 0;
1733
1734         /* Set default value */
1735         cortex_a8->current_address_mode = ARM_MODE_ANY;
1736
1737         /* register arch-specific functions */
1738         armv7a->examine_debug_reason = NULL;
1739
1740         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1741
1742         armv7a->pre_restore_context = NULL;
1743         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1744         armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
1745         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
1746         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
1747         armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
1748         armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
1749         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1750         armv7a->armv4_5_mmu.mmu_enabled = 0;
1751
1752
1753 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1754
1755         /* REVISIT v7a setup should be in a v7a-specific routine */
1756         arm_init_arch_info(target, armv4_5);
1757         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1758
1759         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1760
1761         return ERROR_OK;
1762 }
1763
1764 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1765 {
1766         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1767
1768         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1769
1770         return ERROR_OK;
1771 }
1772
1773 static uint32_t cortex_a8_get_ttb(struct target *target)
1774 {
1775         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1776     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1777     uint32_t ttb = 0, retval = ERROR_OK;
1778
1779     /* current_address_mode is set inside cortex_a8_virt2phys()
1780        where we can determine if address belongs to user or kernel */
1781     if(cortex_a8->current_address_mode == ARM_MODE_SVC)
1782     {
1783         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1784         retval = armv7a->armv4_5_common.mrc(target, 15,
1785                     0, 1,   /* op1, op2 */
1786                     2, 0,   /* CRn, CRm */
1787                     &ttb);
1788     }
1789     else if(cortex_a8->current_address_mode == ARM_MODE_USR)
1790     {
1791         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1792         retval = armv7a->armv4_5_common.mrc(target, 15,
1793                     0, 0,   /* op1, op2 */
1794                     2, 0,   /* CRn, CRm */
1795                     &ttb);
1796     }
1797     /* we don't know whose address is: user or kernel
1798        we assume that if we are in kernel mode then
1799        address belongs to kernel else if in user mode
1800        - to user */
1801     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1802     {
1803         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1804         retval = armv7a->armv4_5_common.mrc(target, 15,
1805                     0, 1,   /* op1, op2 */
1806                     2, 0,   /* CRn, CRm */
1807                     &ttb);
1808     }
1809     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1810     {
1811         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1812         retval = armv7a->armv4_5_common.mrc(target, 15,
1813                     0, 0,   /* op1, op2 */
1814                     2, 0,   /* CRn, CRm */
1815                     &ttb);
1816     }
1817     /* finally we don't know whose ttb to use: user or kernel */
1818     else
1819         LOG_ERROR("Don't know how to get ttb for current mode!!!");
1820
1821     ttb &= 0xffffc000;
1822
1823     return ttb;
1824 }
1825
1826 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
1827                 int d_u_cache, int i_cache)
1828 {
1829     struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1830     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1831     uint32_t cp15_control;
1832
1833     /* read cp15 control register */
1834     armv7a->armv4_5_common.mrc(target, 15,
1835                     0, 0,   /* op1, op2 */
1836                     1, 0,   /* CRn, CRm */
1837                     &cp15_control);
1838
1839
1840     if (mmu)
1841             cp15_control &= ~0x1U;
1842
1843     if (d_u_cache)
1844             cp15_control &= ~0x4U;
1845
1846     if (i_cache)
1847             cp15_control &= ~0x1000U;
1848
1849     armv7a->armv4_5_common.mcr(target, 15,
1850                     0, 0,   /* op1, op2 */
1851                     1, 0,   /* CRn, CRm */
1852                     cp15_control);
1853 }
1854
1855 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
1856                 int d_u_cache, int i_cache)
1857 {
1858     struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1859     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1860     uint32_t cp15_control;
1861
1862     /* read cp15 control register */
1863     armv7a->armv4_5_common.mrc(target, 15,
1864                     0, 0,   /* op1, op2 */
1865                     1, 0,   /* CRn, CRm */
1866                     &cp15_control);
1867
1868     if (mmu)
1869             cp15_control |= 0x1U;
1870
1871     if (d_u_cache)
1872             cp15_control |= 0x4U;
1873
1874     if (i_cache)
1875             cp15_control |= 0x1000U;
1876
1877     armv7a->armv4_5_common.mcr(target, 15,
1878                     0, 0,   /* op1, op2 */
1879                     1, 0,   /* CRn, CRm */
1880                     cp15_control);
1881 }
1882
1883
1884 static int cortex_a8_mmu(struct target *target, int *enabled)
1885 {
1886         if (target->state != TARGET_HALTED) {
1887                 LOG_ERROR("%s: target not halted", __func__);
1888                 return ERROR_TARGET_INVALID;
1889         }
1890
1891         *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
1892         return ERROR_OK;
1893 }
1894
1895 static int cortex_a8_virt2phys(struct target *target,
1896                 uint32_t virt, uint32_t *phys)
1897 {
1898         uint32_t cb;
1899         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1900         // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1901         struct armv7a_common *armv7a = target_to_armv7a(target);
1902
1903     /* We assume that virtual address is separated
1904        between user and kernel in Linux style:
1905        0x00000000-0xbfffffff - User space
1906        0xc0000000-0xffffffff - Kernel space */
1907     if( virt < 0xc0000000 ) /* Linux user space */
1908         cortex_a8->current_address_mode = ARM_MODE_USR;
1909     else /* Linux kernel */
1910         cortex_a8->current_address_mode = ARM_MODE_SVC;
1911         uint32_t ret;
1912         int retval = armv4_5_mmu_translate_va(target,
1913                         &armv7a->armv4_5_mmu, virt, &cb, &ret);
1914         if (retval != ERROR_OK)
1915                 return retval;
1916     /* Reset the flag. We don't want someone else to use it by error */
1917     cortex_a8->current_address_mode = ARM_MODE_ANY;
1918
1919         *phys = ret;
1920         return ERROR_OK;
1921 }
1922
1923 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1924 {
1925         struct target *target = get_current_target(CMD_CTX);
1926         struct armv7a_common *armv7a = target_to_armv7a(target);
1927
1928         return armv4_5_handle_cache_info_command(CMD_CTX,
1929                         &armv7a->armv4_5_mmu.armv4_5_cache);
1930 }
1931
1932
1933 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1934 {
1935         struct target *target = get_current_target(CMD_CTX);
1936         if (!target_was_examined(target))
1937         {
1938                 LOG_ERROR("target not examined yet");
1939                 return ERROR_FAIL;
1940         }
1941
1942         return cortex_a8_init_debug_access(target);
1943 }
1944
1945 static const struct command_registration cortex_a8_exec_command_handlers[] = {
1946         {
1947                 .name = "cache_info",
1948                 .handler = cortex_a8_handle_cache_info_command,
1949                 .mode = COMMAND_EXEC,
1950                 .help = "display information about target caches",
1951         },
1952         {
1953                 .name = "dbginit",
1954                 .handler = cortex_a8_handle_dbginit_command,
1955                 .mode = COMMAND_EXEC,
1956                 .help = "Initialize core debug",
1957         },
1958         COMMAND_REGISTRATION_DONE
1959 };
1960 static const struct command_registration cortex_a8_command_handlers[] = {
1961         {
1962                 .chain = arm_command_handlers,
1963         },
1964         {
1965                 .chain = armv7a_command_handlers,
1966         },
1967         {
1968                 .name = "cortex_a8",
1969                 .mode = COMMAND_ANY,
1970                 .help = "Cortex-A8 command group",
1971                 .chain = cortex_a8_exec_command_handlers,
1972         },
1973         COMMAND_REGISTRATION_DONE
1974 };
1975
1976 struct target_type cortexa8_target = {
1977         .name = "cortex_a8",
1978
1979         .poll = cortex_a8_poll,
1980         .arch_state = armv7a_arch_state,
1981
1982         .target_request_data = NULL,
1983
1984         .halt = cortex_a8_halt,
1985         .resume = cortex_a8_resume,
1986         .step = cortex_a8_step,
1987
1988         .assert_reset = cortex_a8_assert_reset,
1989         .deassert_reset = cortex_a8_deassert_reset,
1990         .soft_reset_halt = NULL,
1991
1992         /* REVISIT allow exporting VFP3 registers ... */
1993         .get_gdb_reg_list = arm_get_gdb_reg_list,
1994
1995         .read_memory = cortex_a8_read_memory,
1996         .write_memory = cortex_a8_write_memory,
1997         .bulk_write_memory = cortex_a8_bulk_write_memory,
1998
1999         .checksum_memory = arm_checksum_memory,
2000         .blank_check_memory = arm_blank_check_memory,
2001
2002         .run_algorithm = armv4_5_run_algorithm,
2003
2004         .add_breakpoint = cortex_a8_add_breakpoint,
2005         .remove_breakpoint = cortex_a8_remove_breakpoint,
2006         .add_watchpoint = NULL,
2007         .remove_watchpoint = NULL,
2008
2009         .commands = cortex_a8_command_handlers,
2010         .target_create = cortex_a8_target_create,
2011         .init_target = cortex_a8_init_target,
2012         .examine = cortex_a8_examine,
2013
2014         .read_phys_memory = cortex_a8_read_phys_memory,
2015         .write_phys_memory = cortex_a8_write_phys_memory,
2016         .mmu = cortex_a8_mmu,
2017         .virt2phys = cortex_a8_virt2phys,
2018
2019 };