1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2006 by Magnus Lundin *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
29 * Cortex-A8(tm) TRM, ARM DDI 0344H *
31 ***************************************************************************/
36 #include "cortex_a8.h"
40 #include "target_request.h"
41 #include "target_type.h"
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69 uint32_t value, int regnum);
71 target_type_t cortexa8_target =
75 .poll = cortex_a8_poll,
76 .arch_state = armv7a_arch_state,
78 .target_request_data = NULL,
80 .halt = cortex_a8_halt,
81 .resume = cortex_a8_resume,
82 .step = cortex_a8_step,
85 .deassert_reset = NULL,
86 .soft_reset_halt = NULL,
88 // .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89 .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
91 .read_memory = cortex_a8_read_memory,
92 .write_memory = cortex_a8_write_memory,
93 .bulk_write_memory = cortex_a8_bulk_write_memory,
94 .checksum_memory = arm7_9_checksum_memory,
95 .blank_check_memory = arm7_9_blank_check_memory,
97 .run_algorithm = armv4_5_run_algorithm,
99 .add_breakpoint = cortex_a8_add_breakpoint,
100 .remove_breakpoint = cortex_a8_remove_breakpoint,
101 .add_watchpoint = NULL,
102 .remove_watchpoint = NULL,
104 .register_commands = cortex_a8_register_commands,
105 .target_create = cortex_a8_target_create,
106 .init_target = cortex_a8_init_target,
107 .examine = cortex_a8_examine,
112 * FIXME do topology discovery using the ROM; don't
113 * assume this is an OMAP3.
115 #define swjdp_memoryap 0
116 #define swjdp_debugap 1
117 #define OMAP3530_DEBUG_BASE 0x54011000
120 * Cortex-A8 Basic debug access, very low level assumes state is saved
122 int cortex_a8_init_debug_access(target_t *target)
125 # Unlocking the debug registers for modification
126 mww 0x54011FB0 0xC5ACCE55 4
128 # Clear Sticky Power Down status Bit to enable access to
129 # the registers in the Core Power Domain
131 # Check that it is cleared
133 # Now we can read Core Debug Registers at offset 0x080
135 # We can also read RAM.
141 # Set DBGEN line for hardware debug (OMAP35xx)
142 mww 0x5401d030 0x00002000
148 mww 0x54011088 0x2000
154 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
158 /* get pointers to arch-specific information */
159 armv4_5_common_t *armv4_5 = target->arch_info;
160 armv7a_common_t *armv7a = armv4_5->arch_info;
161 swjdp_common_t *swjdp = &armv7a->swjdp_info;
163 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
166 retvalue = mem_ap_read_atomic_u32(swjdp,
167 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
169 while ((dscr & (1 << 24)) == 0); /* Wait for InstrCompl bit to be set */
171 mem_ap_write_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_ITR, opcode);
175 retvalue = mem_ap_read_atomic_u32(swjdp,
176 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
178 while ((dscr & (1 << 24)) == 0); /* Wait for InstrCompl bit to be set */
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
190 int retval = ERROR_OK;
191 /* get pointers to arch-specific information */
192 armv4_5_common_t *armv4_5 = target->arch_info;
193 armv7a_common_t *armv7a = armv4_5->arch_info;
194 swjdp_common_t *swjdp = &armv7a->swjdp_info;
196 cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197 cortex_a8_dap_write_coreregister_u32(target, address, 0);
198 cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
199 dap_ap_select(swjdp, swjdp_memoryap);
200 mem_ap_read_buf_u32(swjdp, (uint8_t *)(®file[1]), 4*15, address);
201 dap_ap_select(swjdp, swjdp_debugap);
206 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
207 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
210 /* get pointers to arch-specific information */
211 armv4_5_common_t *armv4_5 = target->arch_info;
212 armv7a_common_t *armv7a = armv4_5->arch_info;
213 swjdp_common_t *swjdp = &armv7a->swjdp_info;
215 cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
216 /* Move R0 to DTRTX */
217 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
220 retval = mem_ap_read_atomic_u32(swjdp,
221 OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
226 int cortex_a8_write_cp(target_t *target, uint32_t value,
227 uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
231 /* get pointers to arch-specific information */
232 armv4_5_common_t *armv4_5 = target->arch_info;
233 armv7a_common_t *armv7a = armv4_5->arch_info;
234 swjdp_common_t *swjdp = &armv7a->swjdp_info;
236 retval = mem_ap_write_u32(swjdp,
237 OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
238 /* Move DTRRX to r0 */
239 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
241 cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, 0, 0, 0, 5, 0));
245 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
246 uint32_t CRn, uint32_t CRm, uint32_t *value)
248 return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
251 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
252 uint32_t CRn, uint32_t CRm, uint32_t value)
254 return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
257 int cortex_a8_dap_read_coreregister_u32(target_t *target,
258 uint32_t *value, int regnum)
260 int retval = ERROR_OK;
261 uint8_t reg = regnum&0xFF;
264 /* get pointers to arch-specific information */
265 armv4_5_common_t *armv4_5 = target->arch_info;
266 armv7a_common_t *armv7a = armv4_5->arch_info;
267 swjdp_common_t *swjdp = &armv7a->swjdp_info;
274 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0, 0xEE000E15 */
275 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
279 cortex_a8_exec_opcode(target, 0xE1A0000F);
280 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
284 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
285 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
291 retval = mem_ap_read_atomic_u32(swjdp,
292 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
294 while ((dscr & (1 << 29)) == 0); /* Wait for DTRRXfull */
296 retval = mem_ap_read_atomic_u32(swjdp,
297 OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
302 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
304 int retval = ERROR_OK;
305 uint8_t Rd = regnum&0xFF;
307 /* get pointers to arch-specific information */
308 armv4_5_common_t *armv4_5 = target->arch_info;
309 armv7a_common_t *armv7a = armv4_5->arch_info;
310 swjdp_common_t *swjdp = &armv7a->swjdp_info;
316 retval = mem_ap_write_u32(swjdp,
317 OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
321 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0, 0xEE000E15 */
322 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
326 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
327 cortex_a8_exec_opcode(target, 0xE1A0F000);
331 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
332 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
333 /* Execute a PrefetchFlush instruction through the ITR. */
334 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
341 * Cortex-A8 Run control
344 int cortex_a8_poll(target_t *target)
346 int retval = ERROR_OK;
348 /* get pointers to arch-specific information */
349 armv4_5_common_t *armv4_5 = target->arch_info;
350 armv7a_common_t *armv7a = armv4_5->arch_info;
351 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
352 swjdp_common_t *swjdp = &armv7a->swjdp_info;
355 enum target_state prev_target_state = target->state;
357 uint8_t saved_apsel = dap_ap_get_select(swjdp);
358 dap_ap_select(swjdp, swjdp_debugap);
359 retval = mem_ap_read_atomic_u32(swjdp,
360 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
361 if (retval != ERROR_OK)
363 dap_ap_select(swjdp, saved_apsel);
366 cortex_a8->cpudbg_dscr = dscr;
368 if ((dscr & 0x3) == 0x3)
370 if (prev_target_state != TARGET_HALTED)
372 /* We have a halting debug event */
373 LOG_DEBUG("Target halted");
374 target->state = TARGET_HALTED;
375 if ((prev_target_state == TARGET_RUNNING)
376 || (prev_target_state == TARGET_RESET))
378 retval = cortex_a8_debug_entry(target);
379 if (retval != ERROR_OK)
382 target_call_event_callbacks(target,
383 TARGET_EVENT_HALTED);
385 if (prev_target_state == TARGET_DEBUG_RUNNING)
389 retval = cortex_a8_debug_entry(target);
390 if (retval != ERROR_OK)
393 target_call_event_callbacks(target,
394 TARGET_EVENT_DEBUG_HALTED);
398 else if ((dscr & 0x3) == 0x2)
400 target->state = TARGET_RUNNING;
404 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
405 target->state = TARGET_UNKNOWN;
408 dap_ap_select(swjdp, saved_apsel);
413 int cortex_a8_halt(target_t *target)
415 int retval = ERROR_OK;
418 /* get pointers to arch-specific information */
419 armv4_5_common_t *armv4_5 = target->arch_info;
420 armv7a_common_t *armv7a = armv4_5->arch_info;
421 swjdp_common_t *swjdp = &armv7a->swjdp_info;
423 uint8_t saved_apsel = dap_ap_get_select(swjdp);
424 dap_ap_select(swjdp, swjdp_debugap);
427 * Tell the core to be halted by writing DRCR with 0x1
428 * and then wait for the core to be halted.
430 retval = mem_ap_write_atomic_u32(swjdp,
431 OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x1);
433 if (retval != ERROR_OK)
437 mem_ap_read_atomic_u32(swjdp,
438 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
439 } while ((dscr & (1 << 0)) == 0);
441 target->debug_reason = DBG_REASON_DBGRQ;
444 dap_ap_select(swjdp, saved_apsel);
448 int cortex_a8_resume(struct target_s *target, int current,
449 uint32_t address, int handle_breakpoints, int debug_execution)
451 /* get pointers to arch-specific information */
452 armv4_5_common_t *armv4_5 = target->arch_info;
453 armv7a_common_t *armv7a = armv4_5->arch_info;
454 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
455 swjdp_common_t *swjdp = &armv7a->swjdp_info;
457 // breakpoint_t *breakpoint = NULL;
458 uint32_t resume_pc, dscr;
460 uint8_t saved_apsel = dap_ap_get_select(swjdp);
461 dap_ap_select(swjdp, swjdp_debugap);
463 if (!debug_execution)
465 target_free_all_working_areas(target);
466 // cortex_m3_enable_breakpoints(target);
467 // cortex_m3_enable_watchpoints(target);
473 /* Disable interrupts */
474 /* We disable interrupts in the PRIMASK register instead of
475 * masking with C_MASKINTS,
476 * This is probably the same issue as Cortex-M3 Errata 377493:
477 * C_MASKINTS in parallel with disabled interrupts can cause
478 * local faults to not be taken. */
479 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
480 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
481 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
483 /* Make sure we are in Thumb mode */
484 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
485 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
486 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
487 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
491 /* current = 1: continue on current pc, otherwise continue at <address> */
492 resume_pc = buf_get_u32(
493 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
494 armv4_5->core_mode, 15).value,
499 /* Make sure that the Armv7 gdb thumb fixups does not
500 * kill the return address
502 if (!(cortex_a8->cpudbg_dscr & (1 << 5)))
504 resume_pc &= 0xFFFFFFFC;
506 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
507 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
508 armv4_5->core_mode, 15).value,
510 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
511 armv4_5->core_mode, 15).dirty = 1;
512 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
513 armv4_5->core_mode, 15).valid = 1;
515 cortex_a8_restore_context(target);
516 // arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
518 /* the front-end may request us not to handle breakpoints */
519 if (handle_breakpoints)
521 /* Single step past breakpoint at current address */
522 if ((breakpoint = breakpoint_find(target, resume_pc)))
524 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
525 cortex_m3_unset_breakpoint(target, breakpoint);
526 cortex_m3_single_step_core(target);
527 cortex_m3_set_breakpoint(target, breakpoint);
532 /* Restart core and wait for it to be started */
533 mem_ap_write_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x2);
536 mem_ap_read_atomic_u32(swjdp,
537 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
538 } while ((dscr & (1 << 1)) == 0);
540 target->debug_reason = DBG_REASON_NOTHALTED;
541 target->state = TARGET_RUNNING;
543 /* registers are now invalid */
544 armv4_5_invalidate_core_regs(target);
546 if (!debug_execution)
548 target->state = TARGET_RUNNING;
549 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
550 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
554 target->state = TARGET_DEBUG_RUNNING;
555 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
556 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
559 dap_ap_select(swjdp, saved_apsel);
564 int cortex_a8_debug_entry(target_t *target)
567 uint32_t regfile[16], pc, cpsr, dscr;
568 int retval = ERROR_OK;
569 working_area_t *regfile_working_area = NULL;
571 /* get pointers to arch-specific information */
572 armv4_5_common_t *armv4_5 = target->arch_info;
573 armv7a_common_t *armv7a = armv4_5->arch_info;
574 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
575 swjdp_common_t *swjdp = &armv7a->swjdp_info;
577 if (armv7a->pre_debug_entry)
578 armv7a->pre_debug_entry(target);
580 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
582 /* Enable the ITR execution once we are in debug mode */
583 mem_ap_read_atomic_u32(swjdp,
584 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
586 retval = mem_ap_write_atomic_u32(swjdp,
587 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr);
590 /* Examine debug reason */
591 switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
595 target->debug_reason = DBG_REASON_DBGRQ;
599 target->debug_reason = DBG_REASON_BREAKPOINT;
602 target->debug_reason = DBG_REASON_WATCHPOINT;
605 target->debug_reason = DBG_REASON_UNDEFINED;
609 /* Examine target state and mode */
610 if (cortex_a8->fast_reg_read)
611 target_alloc_working_area(target, 64, ®file_working_area);
613 /* First load register acessible through core debug port*/
614 if (!regfile_working_area)
616 for (i = 0; i <= 15; i++)
617 cortex_a8_dap_read_coreregister_u32(target,
622 dap_ap_select(swjdp, swjdp_memoryap);
623 cortex_a8_read_regs_through_mem(target,
624 regfile_working_area->address, regfile);
625 dap_ap_select(swjdp, swjdp_memoryap);
626 target_free_working_area(target, regfile_working_area);
629 cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
631 dap_ap_select(swjdp, swjdp_debugap);
632 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
634 armv4_5->core_mode = cpsr & 0x3F;
636 for (i = 0; i <= ARM_PC; i++)
638 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
639 armv4_5->core_mode, i).value,
641 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
642 armv4_5->core_mode, i).valid = 1;
643 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
644 armv4_5->core_mode, i).dirty = 0;
646 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
647 armv4_5->core_mode, 16).value,
649 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
650 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
652 /* Fixup PC Resume Address */
653 /* TODO Her we should use arch->core_state */
654 if (cortex_a8->cpudbg_dscr & (1 << 5))
656 // T bit set for Thumb or ThumbEE state
657 regfile[ARM_PC] -= 4;
662 regfile[ARM_PC] -= 8;
664 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
665 armv4_5->core_mode, ARM_PC).value,
666 0, 32, regfile[ARM_PC]);
668 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
669 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
670 armv4_5->core_mode, 0).valid;
671 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
672 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
673 armv4_5->core_mode, 15).valid;
676 /* TODO, Move this */
677 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
678 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
679 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
681 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
682 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
684 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
685 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
688 /* Are we in an exception handler */
689 // armv4_5->exception_number = 0;
690 if (armv7a->post_debug_entry)
691 armv7a->post_debug_entry(target);
699 void cortex_a8_post_debug_entry(target_t *target)
701 /* get pointers to arch-specific information */
702 armv4_5_common_t *armv4_5 = target->arch_info;
703 armv7a_common_t *armv7a = armv4_5->arch_info;
704 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
706 // cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
707 /* examine cp15 control reg */
708 armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
709 jtag_execute_queue();
710 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
712 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
714 uint32_t cache_type_reg;
715 /* identify caches */
716 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
717 jtag_execute_queue();
718 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
719 armv4_5_identify_cache(cache_type_reg,
720 &armv7a->armv4_5_mmu.armv4_5_cache);
723 armv7a->armv4_5_mmu.mmu_enabled =
724 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
725 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
726 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
727 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
728 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
733 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
734 int handle_breakpoints)
736 /* get pointers to arch-specific information */
737 armv4_5_common_t *armv4_5 = target->arch_info;
738 armv7a_common_t *armv7a = armv4_5->arch_info;
739 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
740 breakpoint_t *breakpoint = NULL;
741 breakpoint_t stepbreakpoint;
745 if (target->state != TARGET_HALTED)
747 LOG_WARNING("target not halted");
748 return ERROR_TARGET_NOT_HALTED;
751 /* current = 1: continue on current pc, otherwise continue at <address> */
754 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
755 armv4_5->core_mode, ARM_PC).value,
760 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
761 armv4_5->core_mode, ARM_PC).value,
765 /* The front-end may request us not to handle breakpoints.
766 * But since Cortex-A8 uses breakpoint for single step,
767 * we MUST handle breakpoints.
769 handle_breakpoints = 1;
770 if (handle_breakpoints) {
771 breakpoint = breakpoint_find(target,
772 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
773 armv4_5->core_mode, 15).value,
776 cortex_a8_unset_breakpoint(target, breakpoint);
779 /* Setup single step breakpoint */
780 stepbreakpoint.address = address;
781 stepbreakpoint.length = (cortex_a8->cpudbg_dscr & (1 << 5)) ? 2 : 4;
782 stepbreakpoint.type = BKPT_HARD;
783 stepbreakpoint.set = 0;
785 /* Break on IVA mismatch */
786 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
788 target->debug_reason = DBG_REASON_SINGLESTEP;
790 cortex_a8_resume(target, 1, address, 0, 0);
792 while (target->state != TARGET_HALTED)
794 cortex_a8_poll(target);
797 LOG_WARNING("timeout waiting for target halt");
802 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
803 if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
806 cortex_a8_set_breakpoint(target, breakpoint, 0);
808 if (target->state != TARGET_HALTED)
809 LOG_DEBUG("target stepped");
814 int cortex_a8_restore_context(target_t *target)
819 /* get pointers to arch-specific information */
820 armv4_5_common_t *armv4_5 = target->arch_info;
821 armv7a_common_t *armv7a = armv4_5->arch_info;
825 if (armv7a->pre_restore_context)
826 armv7a->pre_restore_context(target);
828 for (i = 15; i >= 0; i--)
830 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
831 armv4_5->core_mode, i).dirty)
833 value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
834 armv4_5->core_mode, i).value,
836 /* TODO Check return values */
837 cortex_a8_dap_write_coreregister_u32(target, value, i);
841 if (armv7a->post_restore_context)
842 armv7a->post_restore_context(target);
849 * Cortex-A8 Core register functions
852 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
853 armv4_5_mode_t mode, uint32_t * value)
856 /* get pointers to arch-specific information */
857 armv4_5_common_t *armv4_5 = target->arch_info;
859 if ((num <= ARM_CPSR))
861 /* read a normal core register */
862 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
864 if (retval != ERROR_OK)
866 LOG_ERROR("JTAG failure %i", retval);
867 return ERROR_JTAG_DEVICE_ERROR;
869 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
873 return ERROR_INVALID_ARGUMENTS;
876 /* Register other than r0 - r14 uses r0 for access */
878 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
879 armv4_5->core_mode, 0).dirty =
880 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
881 armv4_5->core_mode, 0).valid;
882 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
883 armv4_5->core_mode, 15).dirty =
884 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
885 armv4_5->core_mode, 15).valid;
890 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
891 armv4_5_mode_t mode, uint32_t value)
896 /* get pointers to arch-specific information */
897 armv4_5_common_t *armv4_5 = target->arch_info;
899 #ifdef ARMV7_GDB_HACKS
900 /* If the LR register is being modified, make sure it will put us
901 * in "thumb" mode, or an INVSTATE exception will occur. This is a
902 * hack to deal with the fact that gdb will sometimes "forge"
903 * return addresses, and doesn't set the LSB correctly (i.e., when
904 * printing expressions containing function calls, it sets LR=0.) */
910 if ((num <= ARM_CPSR))
912 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
913 if (retval != ERROR_OK)
915 LOG_ERROR("JTAG failure %i", retval);
916 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
917 armv4_5->core_mode, num).dirty =
918 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
919 armv4_5->core_mode, num).valid;
920 return ERROR_JTAG_DEVICE_ERROR;
922 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
926 return ERROR_INVALID_ARGUMENTS;
933 int cortex_a8_read_core_reg(struct target_s *target, int num,
934 enum armv4_5_mode mode)
938 armv4_5_common_t *armv4_5 = target->arch_info;
939 cortex_a8_dap_read_coreregister_u32(target, &value, num);
941 if ((retval = jtag_execute_queue()) != ERROR_OK)
946 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
947 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
948 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
949 mode, num).value, 0, 32, value);
954 int cortex_a8_write_core_reg(struct target_s *target, int num,
955 enum armv4_5_mode mode, uint32_t value)
958 armv4_5_common_t *armv4_5 = target->arch_info;
960 cortex_a8_dap_write_coreregister_u32(target, value, num);
961 if ((retval = jtag_execute_queue()) != ERROR_OK)
966 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
967 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
974 * Cortex-A8 Breakpoint and watchpoint fuctions
977 /* Setup hardware Breakpoint Register Pair */
978 int cortex_a8_set_breakpoint(struct target_s *target,
979 breakpoint_t *breakpoint, uint8_t matchmode)
984 uint8_t byte_addr_select = 0x0F;
987 /* get pointers to arch-specific information */
988 armv4_5_common_t *armv4_5 = target->arch_info;
989 armv7a_common_t *armv7a = armv4_5->arch_info;
990 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
991 cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
995 LOG_WARNING("breakpoint already set");
999 if (breakpoint->type == BKPT_HARD)
1001 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1003 if (brp_i >= cortex_a8->brp_num)
1005 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1008 breakpoint->set = brp_i + 1;
1009 if (breakpoint->length == 2)
1011 byte_addr_select = (3 << (breakpoint->address & 0x02));
1013 control = ((matchmode & 0x7) << 20)
1014 | (byte_addr_select << 5)
1016 brp_list[brp_i].used = 1;
1017 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1018 brp_list[brp_i].control = control;
1019 target_write_u32(target, OMAP3530_DEBUG_BASE
1020 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1021 brp_list[brp_i].value);
1022 target_write_u32(target, OMAP3530_DEBUG_BASE
1023 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1024 brp_list[brp_i].control);
1025 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1026 brp_list[brp_i].control,
1027 brp_list[brp_i].value);
1029 else if (breakpoint->type == BKPT_SOFT)
1032 if (breakpoint->length == 2)
1034 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1038 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1040 retval = target->type->read_memory(target,
1041 breakpoint->address & 0xFFFFFFFE,
1042 breakpoint->length, 1,
1043 breakpoint->orig_instr);
1044 if (retval != ERROR_OK)
1046 retval = target->type->write_memory(target,
1047 breakpoint->address & 0xFFFFFFFE,
1048 breakpoint->length, 1, code);
1049 if (retval != ERROR_OK)
1051 breakpoint->set = 0x11; /* Any nice value but 0 */
1057 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1060 /* get pointers to arch-specific information */
1061 armv4_5_common_t *armv4_5 = target->arch_info;
1062 armv7a_common_t *armv7a = armv4_5->arch_info;
1063 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1064 cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1066 if (!breakpoint->set)
1068 LOG_WARNING("breakpoint not set");
1072 if (breakpoint->type == BKPT_HARD)
1074 int brp_i = breakpoint->set - 1;
1075 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1077 LOG_DEBUG("Invalid BRP number in breakpoint");
1080 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1081 brp_list[brp_i].control, brp_list[brp_i].value);
1082 brp_list[brp_i].used = 0;
1083 brp_list[brp_i].value = 0;
1084 brp_list[brp_i].control = 0;
1085 target_write_u32(target, OMAP3530_DEBUG_BASE
1086 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1087 brp_list[brp_i].control);
1088 target_write_u32(target, OMAP3530_DEBUG_BASE
1089 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1090 brp_list[brp_i].value);
1094 /* restore original instruction (kept in target endianness) */
1095 if (breakpoint->length == 4)
1097 retval = target->type->write_memory(target,
1098 breakpoint->address & 0xFFFFFFFE,
1099 4, 1, breakpoint->orig_instr);
1100 if (retval != ERROR_OK)
1105 retval = target->type->write_memory(target,
1106 breakpoint->address & 0xFFFFFFFE,
1107 2, 1, breakpoint->orig_instr);
1108 if (retval != ERROR_OK)
1112 breakpoint->set = 0;
1117 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1119 /* get pointers to arch-specific information */
1120 armv4_5_common_t *armv4_5 = target->arch_info;
1121 armv7a_common_t *armv7a = armv4_5->arch_info;
1122 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1124 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1126 LOG_INFO("no hardware breakpoint available");
1127 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1130 if (breakpoint->type == BKPT_HARD)
1131 cortex_a8->brp_num_available--;
1132 cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1137 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1139 /* get pointers to arch-specific information */
1140 armv4_5_common_t *armv4_5 = target->arch_info;
1141 armv7a_common_t *armv7a = armv4_5->arch_info;
1142 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1145 /* It is perfectly possible to remove brakpoints while the taget is running */
1146 if (target->state != TARGET_HALTED)
1148 LOG_WARNING("target not halted");
1149 return ERROR_TARGET_NOT_HALTED;
1153 if (breakpoint->set)
1155 cortex_a8_unset_breakpoint(target, breakpoint);
1156 if (breakpoint->type == BKPT_HARD)
1157 cortex_a8->brp_num_available++ ;
1167 * Cortex-A8 Reset fuctions
1172 * Cortex-A8 Memory access
1174 * This is same Cortex M3 but we must also use the correct
1175 * ap number for every access.
1178 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1179 uint32_t size, uint32_t count, uint8_t *buffer)
1181 /* get pointers to arch-specific information */
1182 armv4_5_common_t *armv4_5 = target->arch_info;
1183 armv7a_common_t *armv7a = armv4_5->arch_info;
1184 swjdp_common_t *swjdp = &armv7a->swjdp_info;
1186 int retval = ERROR_OK;
1188 /* sanitize arguments */
1189 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1190 return ERROR_INVALID_ARGUMENTS;
1192 /* cortex_a8 handles unaligned memory access */
1194 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1199 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1202 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1205 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1208 LOG_ERROR("BUG: we shouldn't get here");
1215 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1216 uint32_t size, uint32_t count, uint8_t *buffer)
1218 /* get pointers to arch-specific information */
1219 armv4_5_common_t *armv4_5 = target->arch_info;
1220 armv7a_common_t *armv7a = armv4_5->arch_info;
1221 swjdp_common_t *swjdp = &armv7a->swjdp_info;
1225 /* sanitize arguments */
1226 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1227 return ERROR_INVALID_ARGUMENTS;
1229 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1234 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1237 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1240 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1243 LOG_ERROR("BUG: we shouldn't get here");
1250 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1251 uint32_t count, uint8_t *buffer)
1253 return cortex_a8_write_memory(target, address, 4, count, buffer);
1257 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1262 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1263 *ctrl = (uint8_t)dcrdr;
1264 *value = (uint8_t)(dcrdr >> 8);
1266 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1268 /* write ack back to software dcc register
1269 * signify we have read data */
1270 if (dcrdr & (1 << 0))
1273 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1280 int cortex_a8_handle_target_request(void *priv)
1282 target_t *target = priv;
1283 if (!target->type->examined)
1285 armv4_5_common_t *armv4_5 = target->arch_info;
1286 armv7a_common_t *armv7a = armv4_5->arch_info;
1287 swjdp_common_t *swjdp = &armv7a->swjdp_info;
1290 if (!target->dbg_msg_enabled)
1293 if (target->state == TARGET_RUNNING)
1298 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1300 /* check if we have data */
1301 if (ctrl & (1 << 0))
1305 /* we assume target is quick enough */
1307 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1308 request |= (data << 8);
1309 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1310 request |= (data << 16);
1311 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1312 request |= (data << 24);
1313 target_request(target, request);
1321 * Cortex-A8 target information and configuration
1324 int cortex_a8_examine(struct target_s *target)
1326 /* get pointers to arch-specific information */
1327 armv4_5_common_t *armv4_5 = target->arch_info;
1328 armv7a_common_t *armv7a = armv4_5->arch_info;
1329 cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1330 swjdp_common_t *swjdp = &armv7a->swjdp_info;
1334 int retval = ERROR_OK;
1335 uint32_t didr, ctypr, ttypr, cpuid;
1339 /* We do one extra read to ensure DAP is configured,
1340 * we call ahbap_debugport_init(swjdp) instead
1342 ahbap_debugport_init(swjdp);
1343 mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid);
1344 if ((retval = mem_ap_read_atomic_u32(swjdp,
1345 OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1347 LOG_DEBUG("Examine failed");
1351 if ((retval = mem_ap_read_atomic_u32(swjdp,
1352 OMAP3530_DEBUG_BASE + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1354 LOG_DEBUG("Examine failed");
1358 if ((retval = mem_ap_read_atomic_u32(swjdp,
1359 OMAP3530_DEBUG_BASE + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1361 LOG_DEBUG("Examine failed");
1365 if ((retval = mem_ap_read_atomic_u32(swjdp,
1366 OMAP3530_DEBUG_BASE + CPUDBG_DIDR, &didr)) != ERROR_OK)
1368 LOG_DEBUG("Examine failed");
1372 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1373 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1374 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1375 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1377 /* Setup Breakpoint Register Pairs */
1378 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1379 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1380 cortex_a8->brp_num_available = cortex_a8->brp_num;
1381 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1382 // cortex_a8->brb_enabled = ????;
1383 for (i = 0; i < cortex_a8->brp_num; i++)
1385 cortex_a8->brp_list[i].used = 0;
1386 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1387 cortex_a8->brp_list[i].type = BRP_NORMAL;
1389 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1390 cortex_a8->brp_list[i].value = 0;
1391 cortex_a8->brp_list[i].control = 0;
1392 cortex_a8->brp_list[i].BRPn = i;
1395 /* Setup Watchpoint Register Pairs */
1396 cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1397 cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1398 cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1399 for (i = 0; i < cortex_a8->wrp_num; i++)
1401 cortex_a8->wrp_list[i].used = 0;
1402 cortex_a8->wrp_list[i].type = 0;
1403 cortex_a8->wrp_list[i].value = 0;
1404 cortex_a8->wrp_list[i].control = 0;
1405 cortex_a8->wrp_list[i].WRPn = i;
1407 LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1408 cortex_a8->brp_num , cortex_a8->wrp_num);
1410 target->type->examined = 1;
1416 * Cortex-A8 target creation and initialization
1419 void cortex_a8_build_reg_cache(target_t *target)
1421 reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1422 /* get pointers to arch-specific information */
1423 armv4_5_common_t *armv4_5 = target->arch_info;
1425 (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1426 armv4_5->core_cache = (*cache_p);
1430 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1431 struct target_s *target)
1433 cortex_a8_build_reg_cache(target);
1437 int cortex_a8_init_arch_info(target_t *target,
1438 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1440 armv4_5_common_t *armv4_5;
1441 armv7a_common_t *armv7a;
1443 armv7a = &cortex_a8->armv7a_common;
1444 armv4_5 = &armv7a->armv4_5_common;
1445 swjdp_common_t *swjdp = &armv7a->swjdp_info;
1447 /* Setup cortex_a8_common_t */
1448 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1449 cortex_a8->arch_info = NULL;
1450 armv7a->arch_info = cortex_a8;
1451 armv4_5->arch_info = armv7a;
1453 armv4_5_init_arch_info(target, armv4_5);
1455 /* prepare JTAG information for the new target */
1456 cortex_a8->jtag_info.tap = tap;
1457 cortex_a8->jtag_info.scann_size = 4;
1459 swjdp->dp_select_value = -1;
1460 swjdp->ap_csw_value = -1;
1461 swjdp->ap_tar_value = -1;
1462 swjdp->jtag_info = &cortex_a8->jtag_info;
1463 swjdp->memaccess_tck = 80;
1465 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1466 swjdp->tar_autoincr_block = (1 << 10);
1468 cortex_a8->fast_reg_read = 0;
1471 /* register arch-specific functions */
1472 armv7a->examine_debug_reason = NULL;
1474 armv7a->pre_debug_entry = NULL;
1475 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1477 armv7a->pre_restore_context = NULL;
1478 armv7a->post_restore_context = NULL;
1479 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1480 // armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1481 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1482 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1483 // armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1484 // armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1485 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1486 armv7a->armv4_5_mmu.mmu_enabled = 0;
1487 armv7a->read_cp15 = cortex_a8_read_cp15;
1488 armv7a->write_cp15 = cortex_a8_write_cp15;
1491 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1493 armv4_5->read_core_reg = cortex_a8_read_core_reg;
1494 armv4_5->write_core_reg = cortex_a8_write_core_reg;
1495 // armv4_5->full_context = arm7_9_full_context;
1497 // armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1498 // armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1499 // armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1500 // armv4_5->write_core_reg = armv4_5_write_core_reg;
1502 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1507 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1509 cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1511 cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1516 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1517 char *cmd, char **args, int argc)
1519 target_t *target = get_current_target(cmd_ctx);
1520 armv4_5_common_t *armv4_5 = target->arch_info;
1521 armv7a_common_t *armv7a = armv4_5->arch_info;
1523 return armv4_5_handle_cache_info_command(cmd_ctx,
1524 &armv7a->armv4_5_mmu.armv4_5_cache);
1528 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1530 command_t *cortex_a8_cmd;
1531 int retval = ERROR_OK;
1533 armv4_5_register_commands(cmd_ctx);
1534 armv7a_register_commands(cmd_ctx);
1536 cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1538 "cortex_a8 specific commands");
1540 register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1541 cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1542 "display information about target caches");