]> git.sur5r.net Git - openocd/blob - src/target/cortex_a9.c
arm_adi_v5: add wrapping transfer functions with selection of ap
[openocd] / src / target / cortex_a9.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  *                                                                         *
32  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
33  *                                                                         *
34  ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include "breakpoints.h"
40 #include "cortex_a9.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
46
47 static int cortex_a9_poll(struct target *target);
48 static int cortex_a9_debug_entry(struct target *target);
49 static int cortex_a9_restore_context(struct target *target, bool bpwp);
50 static int cortex_a9_set_breakpoint(struct target *target,
51                 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a9_unset_breakpoint(struct target *target,
53                 struct breakpoint *breakpoint);
54 static int cortex_a9_dap_read_coreregister_u32(struct target *target,
55                 uint32_t *value, int regnum);
56 static int cortex_a9_dap_write_coreregister_u32(struct target *target,
57                 uint32_t value, int regnum);
58 static int cortex_a9_mmu(struct target *target, int *enabled);
59 static int cortex_a9_virt2phys(struct target *target,
60                 uint32_t virt, uint32_t *phys);
61 static int cortex_a9_disable_mmu_caches(struct target *target, int mmu,
62                 int d_u_cache, int i_cache);
63 static int cortex_a9_enable_mmu_caches(struct target *target, int mmu,
64                 int d_u_cache, int i_cache);
65 static int cortex_a9_get_ttb(struct target *target, uint32_t *result);
66
67
68 /*
69  * FIXME do topology discovery using the ROM; don't
70  * assume this is an OMAP3.   Also, allow for multiple ARMv7-A
71  * cores, with different AP numbering ... don't use a #define
72  * for these numbers, use per-core armv7a state.
73  */
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76
77 /*
78  * Cortex-A9 Basic debug access, very low level assumes state is saved
79  */
80 static int cortex_a9_init_debug_access(struct target *target)
81 {
82         struct armv7a_common *armv7a = target_to_armv7a(target);
83         struct adiv5_dap *swjdp = &armv7a->dap;
84         uint8_t saved_apsel = dap_ap_get_select(swjdp);
85
86         int retval;
87         uint32_t dummy;
88
89         dap_ap_select(swjdp, swjdp_debugap);
90
91         LOG_DEBUG(" ");
92
93         /* Unlocking the debug registers for modification */
94         /* The debugport might be uninitialised so try twice */
95         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
96         if (retval != ERROR_OK)
97         {
98                 /* try again */
99                 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
100                 if (retval == ERROR_OK)
101                 {
102                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
103                 }
104         }
105         if (retval != ERROR_OK)
106                 goto out;
107         /* Clear Sticky Power Down status Bit in PRSR to enable access to
108            the registers in the Core Power Domain */
109         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
110         if (retval != ERROR_OK)
111                 goto out;
112
113         /* Enabling of instruction execution in debug mode is done in debug_entry code */
114
115         /* Resync breakpoint registers */
116
117         /* Since this is likely called from init or reset, update target state information*/
118         retval = cortex_a9_poll(target);
119
120  out:
121         dap_ap_select(swjdp, saved_apsel);
122         return retval;
123 }
124
125 /* To reduce needless round-trips, pass in a pointer to the current
126  * DSCR value.  Initialize it to zero if you just need to know the
127  * value on return from this function; or DSCR_INSTR_COMP if you
128  * happen to know that no instruction is pending.
129  */
130 static int cortex_a9_exec_opcode(struct target *target,
131                 uint32_t opcode, uint32_t *dscr_p)
132 {
133         uint32_t dscr;
134         int retval;
135         struct armv7a_common *armv7a = target_to_armv7a(target);
136         struct adiv5_dap *swjdp = &armv7a->dap;
137
138         dscr = dscr_p ? *dscr_p : 0;
139
140         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
141
142         /* Wait for InstrCompl bit to be set */
143         long long then = timeval_ms();
144         while ((dscr & DSCR_INSTR_COMP) == 0)
145         {
146                 retval = mem_ap_read_atomic_u32(swjdp,
147                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
148                 if (retval != ERROR_OK)
149                 {
150                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
151                         return retval;
152                 }
153                 if (timeval_ms() > then + 1000)
154                 {
155                         LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
156                         return ERROR_FAIL;
157                 }
158         }
159
160         retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
161         if (retval != ERROR_OK)
162                 return retval;
163
164         then = timeval_ms();
165         do
166         {
167                 retval = mem_ap_read_atomic_u32(swjdp,
168                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
169                 if (retval != ERROR_OK)
170                 {
171                         LOG_ERROR("Could not read DSCR register");
172                         return retval;
173                 }
174                 if (timeval_ms() > then + 1000)
175                 {
176                         LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
177                         return ERROR_FAIL;
178                 }
179         }
180         while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
181
182         if (dscr_p)
183                 *dscr_p = dscr;
184
185         return retval;
186 }
187
188 /**************************************************************************
189 Read core register with very few exec_opcode, fast but needs work_area.
190 This can cause problems with MMU active.
191 **************************************************************************/
192 static int cortex_a9_read_regs_through_mem(struct target *target, uint32_t address,
193                 uint32_t * regfile)
194 {
195         int retval = ERROR_OK;
196         struct armv7a_common *armv7a = target_to_armv7a(target);
197         struct adiv5_dap *swjdp = &armv7a->dap;
198
199         retval = cortex_a9_dap_read_coreregister_u32(target, regfile, 0);
200         if (retval != ERROR_OK)
201                 return retval;
202         retval = cortex_a9_dap_write_coreregister_u32(target, address, 0);
203         if (retval != ERROR_OK)
204                 return retval;
205         retval = cortex_a9_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
206         if (retval != ERROR_OK)
207                 return retval;
208
209         dap_ap_select(swjdp, swjdp_memoryap);
210         retval = mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
211         if (retval != ERROR_OK)
212                 return retval;
213         dap_ap_select(swjdp, swjdp_debugap);
214
215         return retval;
216 }
217
218 static int cortex_a9_dap_read_coreregister_u32(struct target *target,
219                 uint32_t *value, int regnum)
220 {
221         int retval = ERROR_OK;
222         uint8_t reg = regnum&0xFF;
223         uint32_t dscr = 0;
224         struct armv7a_common *armv7a = target_to_armv7a(target);
225         struct adiv5_dap *swjdp = &armv7a->dap;
226
227         if (reg > 17)
228                 return retval;
229
230         if (reg < 15)
231         {
232                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
233                 retval = cortex_a9_exec_opcode(target,
234                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
235                                 &dscr);
236                 if (retval != ERROR_OK)
237                         return retval;
238         }
239         else if (reg == 15)
240         {
241                 /* "MOV r0, r15"; then move r0 to DCCTX */
242                 retval = cortex_a9_exec_opcode(target, 0xE1A0000F, &dscr);
243                 if (retval != ERROR_OK)
244                         return retval;
245                 retval = cortex_a9_exec_opcode(target,
246                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
247                                 &dscr);
248                 if (retval != ERROR_OK)
249                         return retval;
250         }
251         else
252         {
253                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
254                  * then move r0 to DCCTX
255                  */
256                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
257                 if (retval != ERROR_OK)
258                         return retval;
259                 retval = cortex_a9_exec_opcode(target,
260                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
261                                 &dscr);
262                 if (retval != ERROR_OK)
263                         return retval;
264         }
265
266         /* Wait for DTRRXfull then read DTRRTX */
267         long long then = timeval_ms();
268         while ((dscr & DSCR_DTR_TX_FULL) == 0)
269         {
270                 retval = mem_ap_read_atomic_u32(swjdp,
271                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
272                 if (retval != ERROR_OK)
273                         return retval;
274                 if (timeval_ms() > then + 1000)
275                 {
276                         LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
277                         return ERROR_FAIL;
278                 }
279         }
280
281         retval = mem_ap_read_atomic_u32(swjdp,
282                         armv7a->debug_base + CPUDBG_DTRTX, value);
283         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
284
285         return retval;
286 }
287
288 static int cortex_a9_dap_write_coreregister_u32(struct target *target,
289                 uint32_t value, int regnum)
290 {
291         int retval = ERROR_OK;
292         uint8_t Rd = regnum&0xFF;
293         uint32_t dscr;
294         struct armv7a_common *armv7a = target_to_armv7a(target);
295         struct adiv5_dap *swjdp = &armv7a->dap;
296
297         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
298
299         /* Check that DCCRX is not full */
300         retval = mem_ap_read_atomic_u32(swjdp,
301                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
302         if (retval != ERROR_OK)
303                 return retval;
304         if (dscr & DSCR_DTR_RX_FULL)
305         {
306                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
307                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
308                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
309                                 &dscr);
310                 if (retval != ERROR_OK)
311                         return retval;
312         }
313
314         if (Rd > 17)
315                 return retval;
316
317         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
318         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
319         retval = mem_ap_write_u32(swjdp,
320                         armv7a->debug_base + CPUDBG_DTRRX, value);
321         if (retval != ERROR_OK)
322                 return retval;
323
324         if (Rd < 15)
325         {
326                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
327                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
328                                 &dscr);
329                 if (retval != ERROR_OK)
330                         return retval;
331         }
332         else if (Rd == 15)
333         {
334                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
335                  * then "mov r15, r0"
336                  */
337                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
338                                 &dscr);
339                 if (retval != ERROR_OK)
340                         return retval;
341                 retval = cortex_a9_exec_opcode(target, 0xE1A0F000, &dscr);
342                 if (retval != ERROR_OK)
343                         return retval;
344         }
345         else
346         {
347                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
348                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
349                  */
350                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
351                                 &dscr);
352                 if (retval != ERROR_OK)
353                         return retval;
354                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
355                                 &dscr);
356                 if (retval != ERROR_OK)
357                         return retval;
358
359                 /* "Prefetch flush" after modifying execution status in CPSR */
360                 if (Rd == 16)
361                 {
362                         retval = cortex_a9_exec_opcode(target,
363                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
364                                         &dscr);
365                         if (retval != ERROR_OK)
366                                 return retval;
367                 }
368         }
369
370         return retval;
371 }
372
373 /* Write to memory mapped registers directly with no cache or mmu handling */
374 static int cortex_a9_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
375 {
376         int retval;
377         struct armv7a_common *armv7a = target_to_armv7a(target);
378         struct adiv5_dap *swjdp = &armv7a->dap;
379
380         retval = mem_ap_write_atomic_u32(swjdp, address, value);
381
382         return retval;
383 }
384
385 /*
386  * Cortex-A9 implementation of Debug Programmer's Model
387  *
388  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
389  * so there's no need to poll for it before executing an instruction.
390  *
391  * NOTE that in several of these cases the "stall" mode might be useful.
392  * It'd let us queue a few operations together... prepare/finish might
393  * be the places to enable/disable that mode.
394  */
395
396 static inline struct cortex_a9_common *dpm_to_a9(struct arm_dpm *dpm)
397 {
398         return container_of(dpm, struct cortex_a9_common, armv7a_common.dpm);
399 }
400
401 static int cortex_a9_write_dcc(struct cortex_a9_common *a9, uint32_t data)
402 {
403         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
404         return mem_ap_write_u32(&a9->armv7a_common.dap,
405                         a9->armv7a_common.debug_base + CPUDBG_DTRRX, data);
406 }
407
408 static int cortex_a9_read_dcc(struct cortex_a9_common *a9, uint32_t *data,
409                 uint32_t *dscr_p)
410 {
411         struct adiv5_dap *swjdp = &a9->armv7a_common.dap;
412         uint32_t dscr = DSCR_INSTR_COMP;
413         int retval;
414
415         if (dscr_p)
416                 dscr = *dscr_p;
417
418         /* Wait for DTRRXfull */
419         long long then = timeval_ms();
420         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
421                 retval = mem_ap_read_atomic_u32(swjdp,
422                                 a9->armv7a_common.debug_base + CPUDBG_DSCR,
423                                 &dscr);
424                 if (retval != ERROR_OK)
425                         return retval;
426                 if (timeval_ms() > then + 1000)
427                 {
428                         LOG_ERROR("Timeout waiting for read dcc");
429                         return ERROR_FAIL;
430                 }
431         }
432
433         retval = mem_ap_read_atomic_u32(swjdp,
434                         a9->armv7a_common.debug_base + CPUDBG_DTRTX, data);
435         if (retval != ERROR_OK)
436                 return retval;
437         //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
438
439         if (dscr_p)
440                 *dscr_p = dscr;
441
442         return retval;
443 }
444
445 static int cortex_a9_dpm_prepare(struct arm_dpm *dpm)
446 {
447         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
448         struct adiv5_dap *swjdp = &a9->armv7a_common.dap;
449         uint32_t dscr;
450         int retval;
451
452         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
453         long long then = timeval_ms();
454         for (;;)
455         {
456                 retval = mem_ap_read_atomic_u32(swjdp,
457                                 a9->armv7a_common.debug_base + CPUDBG_DSCR,
458                                 &dscr);
459                 if (retval != ERROR_OK)
460                         return retval;
461                 if ((dscr & DSCR_INSTR_COMP) != 0)
462                         break;
463                 if (timeval_ms() > then + 1000)
464                 {
465                         LOG_ERROR("Timeout waiting for dpm prepare");
466                         return ERROR_FAIL;
467                 }
468         }
469
470         /* this "should never happen" ... */
471         if (dscr & DSCR_DTR_RX_FULL) {
472                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
473                 /* Clear DCCRX */
474                 retval = cortex_a9_exec_opcode(
475                                 a9->armv7a_common.armv4_5_common.target,
476                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
477                                 &dscr);
478                 if (retval != ERROR_OK)
479                         return retval;
480         }
481
482         return retval;
483 }
484
485 static int cortex_a9_dpm_finish(struct arm_dpm *dpm)
486 {
487         /* REVISIT what could be done here? */
488         return ERROR_OK;
489 }
490
491 static int cortex_a9_instr_write_data_dcc(struct arm_dpm *dpm,
492                 uint32_t opcode, uint32_t data)
493 {
494         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
495         int retval;
496         uint32_t dscr = DSCR_INSTR_COMP;
497
498         retval = cortex_a9_write_dcc(a9, data);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         return cortex_a9_exec_opcode(
503                         a9->armv7a_common.armv4_5_common.target,
504                         opcode,
505                         &dscr);
506 }
507
508 static int cortex_a9_instr_write_data_r0(struct arm_dpm *dpm,
509                 uint32_t opcode, uint32_t data)
510 {
511         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
512         uint32_t dscr = DSCR_INSTR_COMP;
513         int retval;
514
515         retval = cortex_a9_write_dcc(a9, data);
516         if (retval != ERROR_OK)
517                 return retval;
518
519         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
520         retval = cortex_a9_exec_opcode(
521                         a9->armv7a_common.armv4_5_common.target,
522                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
523                         &dscr);
524         if (retval != ERROR_OK)
525                 return retval;
526
527         /* then the opcode, taking data from R0 */
528         retval = cortex_a9_exec_opcode(
529                         a9->armv7a_common.armv4_5_common.target,
530                         opcode,
531                         &dscr);
532
533         return retval;
534 }
535
536 static int cortex_a9_instr_cpsr_sync(struct arm_dpm *dpm)
537 {
538         struct target *target = dpm->arm->target;
539         uint32_t dscr = DSCR_INSTR_COMP;
540
541         /* "Prefetch flush" after modifying execution status in CPSR */
542         return cortex_a9_exec_opcode(target,
543                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
544                         &dscr);
545 }
546
547 static int cortex_a9_instr_read_data_dcc(struct arm_dpm *dpm,
548                 uint32_t opcode, uint32_t *data)
549 {
550         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
551         int retval;
552         uint32_t dscr = DSCR_INSTR_COMP;
553
554         /* the opcode, writing data to DCC */
555         retval = cortex_a9_exec_opcode(
556                         a9->armv7a_common.armv4_5_common.target,
557                         opcode,
558                         &dscr);
559         if (retval != ERROR_OK)
560                 return retval;
561
562         return cortex_a9_read_dcc(a9, data, &dscr);
563 }
564
565
566 static int cortex_a9_instr_read_data_r0(struct arm_dpm *dpm,
567                 uint32_t opcode, uint32_t *data)
568 {
569         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
570         uint32_t dscr = DSCR_INSTR_COMP;
571         int retval;
572
573         /* the opcode, writing data to R0 */
574         retval = cortex_a9_exec_opcode(
575                         a9->armv7a_common.armv4_5_common.target,
576                         opcode,
577                         &dscr);
578         if (retval != ERROR_OK)
579                 return retval;
580
581         /* write R0 to DCC */
582         retval = cortex_a9_exec_opcode(
583                         a9->armv7a_common.armv4_5_common.target,
584                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
585                         &dscr);
586         if (retval != ERROR_OK)
587                 return retval;
588
589         return cortex_a9_read_dcc(a9, data, &dscr);
590 }
591
592 static int cortex_a9_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
593                 uint32_t addr, uint32_t control)
594 {
595         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
596         uint32_t vr = a9->armv7a_common.debug_base;
597         uint32_t cr = a9->armv7a_common.debug_base;
598         int retval;
599
600         switch (index_t) {
601         case 0 ... 15:          /* breakpoints */
602                 vr += CPUDBG_BVR_BASE;
603                 cr += CPUDBG_BCR_BASE;
604                 break;
605         case 16 ... 31:         /* watchpoints */
606                 vr += CPUDBG_WVR_BASE;
607                 cr += CPUDBG_WCR_BASE;
608                 index_t -= 16;
609                 break;
610         default:
611                 return ERROR_FAIL;
612         }
613         vr += 4 * index_t;
614         cr += 4 * index_t;
615
616         LOG_DEBUG("A9: bpwp enable, vr %08x cr %08x",
617                         (unsigned) vr, (unsigned) cr);
618
619         retval = cortex_a9_dap_write_memap_register_u32(dpm->arm->target,
620                         vr, addr);
621         if (retval != ERROR_OK)
622                 return retval;
623         retval = cortex_a9_dap_write_memap_register_u32(dpm->arm->target,
624                         cr, control);
625         return retval;
626 }
627
628 static int cortex_a9_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
629 {
630         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
631         uint32_t cr;
632
633         switch (index_t) {
634         case 0 ... 15:
635                 cr = a9->armv7a_common.debug_base + CPUDBG_BCR_BASE;
636                 break;
637         case 16 ... 31:
638                 cr = a9->armv7a_common.debug_base + CPUDBG_WCR_BASE;
639                 index_t -= 16;
640                 break;
641         default:
642                 return ERROR_FAIL;
643         }
644         cr += 4 * index_t;
645
646         LOG_DEBUG("A9: bpwp disable, cr %08x", (unsigned) cr);
647
648         /* clear control register */
649         return cortex_a9_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
650 }
651
652 static int cortex_a9_dpm_setup(struct cortex_a9_common *a9, uint32_t didr)
653 {
654         struct arm_dpm *dpm = &a9->armv7a_common.dpm;
655         int retval;
656
657         dpm->arm = &a9->armv7a_common.armv4_5_common;
658         dpm->didr = didr;
659
660         dpm->prepare = cortex_a9_dpm_prepare;
661         dpm->finish = cortex_a9_dpm_finish;
662
663         dpm->instr_write_data_dcc = cortex_a9_instr_write_data_dcc;
664         dpm->instr_write_data_r0 = cortex_a9_instr_write_data_r0;
665         dpm->instr_cpsr_sync = cortex_a9_instr_cpsr_sync;
666
667         dpm->instr_read_data_dcc = cortex_a9_instr_read_data_dcc;
668         dpm->instr_read_data_r0 = cortex_a9_instr_read_data_r0;
669
670         dpm->bpwp_enable = cortex_a9_bpwp_enable;
671         dpm->bpwp_disable = cortex_a9_bpwp_disable;
672
673         retval = arm_dpm_setup(dpm);
674         if (retval == ERROR_OK)
675                 retval = arm_dpm_initialize(dpm);
676
677         return retval;
678 }
679
680
681 /*
682  * Cortex-A9 Run control
683  */
684
685 static int cortex_a9_poll(struct target *target)
686 {
687         int retval = ERROR_OK;
688         uint32_t dscr;
689         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
690         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
691         struct adiv5_dap *swjdp = &armv7a->dap;
692         enum target_state prev_target_state = target->state;
693         uint8_t saved_apsel = dap_ap_get_select(swjdp);
694
695         dap_ap_select(swjdp, swjdp_debugap);
696         retval = mem_ap_read_atomic_u32(swjdp,
697                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
698         if (retval != ERROR_OK)
699         {
700                 dap_ap_select(swjdp, saved_apsel);
701                 return retval;
702         }
703         cortex_a9->cpudbg_dscr = dscr;
704
705         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
706         {
707                 if (prev_target_state != TARGET_HALTED)
708                 {
709                         /* We have a halting debug event */
710                         LOG_DEBUG("Target halted");
711                         target->state = TARGET_HALTED;
712                         if ((prev_target_state == TARGET_RUNNING)
713                                         || (prev_target_state == TARGET_RESET))
714                         {
715                                 retval = cortex_a9_debug_entry(target);
716                                 if (retval != ERROR_OK)
717                                         return retval;
718
719                                 target_call_event_callbacks(target,
720                                                 TARGET_EVENT_HALTED);
721                         }
722                         if (prev_target_state == TARGET_DEBUG_RUNNING)
723                         {
724                                 LOG_DEBUG(" ");
725
726                                 retval = cortex_a9_debug_entry(target);
727                                 if (retval != ERROR_OK)
728                                         return retval;
729
730                                 target_call_event_callbacks(target,
731                                                 TARGET_EVENT_DEBUG_HALTED);
732                         }
733                 }
734         }
735         else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
736         {
737                 target->state = TARGET_RUNNING;
738         }
739         else
740         {
741                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
742                 target->state = TARGET_UNKNOWN;
743         }
744
745         dap_ap_select(swjdp, saved_apsel);
746
747         return retval;
748 }
749
750 static int cortex_a9_halt(struct target *target)
751 {
752         int retval = ERROR_OK;
753         uint32_t dscr;
754         struct armv7a_common *armv7a = target_to_armv7a(target);
755         struct adiv5_dap *swjdp = &armv7a->dap;
756         uint8_t saved_apsel = dap_ap_get_select(swjdp);
757         dap_ap_select(swjdp, swjdp_debugap);
758
759         /*
760          * Tell the core to be halted by writing DRCR with 0x1
761          * and then wait for the core to be halted.
762          */
763         retval = mem_ap_write_atomic_u32(swjdp,
764                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
765         if (retval != ERROR_OK)
766                 goto out;
767
768         /*
769          * enter halting debug mode
770          */
771         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
772         if (retval != ERROR_OK)
773                 goto out;
774
775         retval = mem_ap_write_atomic_u32(swjdp,
776                 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
777         if (retval != ERROR_OK)
778                 goto out;
779
780         long long then = timeval_ms();
781         for (;;)
782         {
783                 retval = mem_ap_read_atomic_u32(swjdp,
784                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
785                 if (retval != ERROR_OK)
786                         goto out;
787                 if ((dscr & DSCR_CORE_HALTED) != 0)
788                 {
789                         break;
790                 }
791                 if (timeval_ms() > then + 1000)
792                 {
793                         LOG_ERROR("Timeout waiting for halt");
794                         return ERROR_FAIL;
795                 }
796         }
797
798         target->debug_reason = DBG_REASON_DBGRQ;
799
800 out:
801         dap_ap_select(swjdp, saved_apsel);
802         return retval;
803 }
804
805 static int cortex_a9_resume(struct target *target, int current,
806                 uint32_t address, int handle_breakpoints, int debug_execution)
807 {
808         struct armv7a_common *armv7a = target_to_armv7a(target);
809         struct arm *armv4_5 = &armv7a->armv4_5_common;
810         struct adiv5_dap *swjdp = &armv7a->dap;
811         int retval;
812
813 //      struct breakpoint *breakpoint = NULL;
814         uint32_t resume_pc, dscr;
815
816         uint8_t saved_apsel = dap_ap_get_select(swjdp);
817         dap_ap_select(swjdp, swjdp_debugap);
818
819         if (!debug_execution)
820                 target_free_all_working_areas(target);
821
822 #if 0
823         if (debug_execution)
824         {
825                 /* Disable interrupts */
826                 /* We disable interrupts in the PRIMASK register instead of
827                  * masking with C_MASKINTS,
828                  * This is probably the same issue as Cortex-M3 Errata 377493:
829                  * C_MASKINTS in parallel with disabled interrupts can cause
830                  * local faults to not be taken. */
831                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
832                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
833                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
834
835                 /* Make sure we are in Thumb mode */
836                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
837                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
838                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
839                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
840         }
841 #endif
842
843         /* current = 1: continue on current pc, otherwise continue at <address> */
844         resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
845         if (!current)
846                 resume_pc = address;
847
848         /* Make sure that the Armv7 gdb thumb fixups does not
849          * kill the return address
850          */
851         switch (armv4_5->core_state)
852         {
853         case ARM_STATE_ARM:
854                 resume_pc &= 0xFFFFFFFC;
855                 break;
856         case ARM_STATE_THUMB:
857         case ARM_STATE_THUMB_EE:
858                 /* When the return address is loaded into PC
859                  * bit 0 must be 1 to stay in Thumb state
860                  */
861                 resume_pc |= 0x1;
862                 break;
863         case ARM_STATE_JAZELLE:
864                 LOG_ERROR("How do I resume into Jazelle state??");
865                 return ERROR_FAIL;
866         }
867         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
868         buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
869         armv4_5->pc->dirty = 1;
870         armv4_5->pc->valid = 1;
871
872         retval = cortex_a9_restore_context(target, handle_breakpoints);
873         if (retval != ERROR_OK)
874                 return retval;
875
876 #if 0
877         /* the front-end may request us not to handle breakpoints */
878         if (handle_breakpoints)
879         {
880                 /* Single step past breakpoint at current address */
881                 if ((breakpoint = breakpoint_find(target, resume_pc)))
882                 {
883                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
884                         cortex_m3_unset_breakpoint(target, breakpoint);
885                         cortex_m3_single_step_core(target);
886                         cortex_m3_set_breakpoint(target, breakpoint);
887                 }
888         }
889
890 #endif
891
892         /*
893          * Restart core and wait for it to be started.  Clear ITRen and sticky
894          * exception flags: see ARMv7 ARM, C5.9.
895          *
896          * REVISIT: for single stepping, we probably want to
897          * disable IRQs by default, with optional override...
898          */
899
900         retval = mem_ap_read_atomic_u32(swjdp,
901                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
902         if (retval != ERROR_OK)
903                 return retval;
904
905         if ((dscr & DSCR_INSTR_COMP) == 0)
906                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
907
908         retval = mem_ap_write_atomic_u32(swjdp,
909                 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
910         if (retval != ERROR_OK)
911                 return retval;
912
913         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR,
914                         DRCR_RESTART | DRCR_CLEAR_EXCEPTIONS);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         long long then = timeval_ms();
919         for (;;)
920         {
921                 retval = mem_ap_read_atomic_u32(swjdp,
922                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
923                 if (retval != ERROR_OK)
924                         return retval;
925                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
926                         break;
927                 if (timeval_ms() > then + 1000)
928                 {
929                         LOG_ERROR("Timeout waiting for resume");
930                         return ERROR_FAIL;
931                 }
932         }
933
934         target->debug_reason = DBG_REASON_NOTHALTED;
935         target->state = TARGET_RUNNING;
936
937         /* registers are now invalid */
938         register_cache_invalidate(armv4_5->core_cache);
939
940         if (!debug_execution)
941         {
942                 target->state = TARGET_RUNNING;
943                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
944                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
945         }
946         else
947         {
948                 target->state = TARGET_DEBUG_RUNNING;
949                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
950                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
951         }
952
953         dap_ap_select(swjdp, saved_apsel);
954
955         return ERROR_OK;
956 }
957
958 static int cortex_a9_debug_entry(struct target *target)
959 {
960         int i;
961         uint32_t regfile[16], cpsr, dscr;
962         int retval = ERROR_OK;
963         struct working_area *regfile_working_area = NULL;
964         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
965         struct armv7a_common *armv7a = target_to_armv7a(target);
966         struct arm *armv4_5 = &armv7a->armv4_5_common;
967         struct adiv5_dap *swjdp = &armv7a->dap;
968         struct reg *reg;
969
970         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a9->cpudbg_dscr);
971
972         /* REVISIT surely we should not re-read DSCR !! */
973         retval = mem_ap_read_atomic_u32(swjdp,
974                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
975         if (retval != ERROR_OK)
976                 return retval;
977
978         /* REVISIT see A9 TRM 12.11.4 steps 2..3 -- make sure that any
979          * imprecise data aborts get discarded by issuing a Data
980          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
981          */
982
983         /* Enable the ITR execution once we are in debug mode */
984         dscr |= DSCR_ITR_EN;
985         retval = mem_ap_write_atomic_u32(swjdp,
986                         armv7a->debug_base + CPUDBG_DSCR, dscr);
987         if (retval != ERROR_OK)
988                 return retval;
989
990         /* Examine debug reason */
991         arm_dpm_report_dscr(&armv7a->dpm, cortex_a9->cpudbg_dscr);
992
993         /* save address of instruction that triggered the watchpoint? */
994         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
995                 uint32_t wfar;
996
997                 retval = mem_ap_read_atomic_u32(swjdp,
998                                 armv7a->debug_base + CPUDBG_WFAR,
999                                 &wfar);
1000                 if (retval != ERROR_OK)
1001                         return retval;
1002                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1003         }
1004
1005         /* REVISIT fast_reg_read is never set ... */
1006
1007         /* Examine target state and mode */
1008         if (cortex_a9->fast_reg_read)
1009                 target_alloc_working_area(target, 64, &regfile_working_area);
1010
1011         /* First load register acessible through core debug port*/
1012         if (!regfile_working_area)
1013         {
1014                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1015         }
1016         else
1017         {
1018                 dap_ap_select(swjdp, swjdp_memoryap);
1019                 retval = cortex_a9_read_regs_through_mem(target,
1020                                 regfile_working_area->address, regfile);
1021                 dap_ap_select(swjdp, swjdp_memoryap);
1022                 target_free_working_area(target, regfile_working_area);
1023                 if (retval != ERROR_OK)
1024                 {
1025                         return retval;
1026                 }
1027
1028                 /* read Current PSR */
1029                 retval = cortex_a9_dap_read_coreregister_u32(target, &cpsr, 16);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032                 dap_ap_select(swjdp, swjdp_debugap);
1033                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1034
1035                 arm_set_cpsr(armv4_5, cpsr);
1036
1037                 /* update cache */
1038                 for (i = 0; i <= ARM_PC; i++)
1039                 {
1040                         reg = arm_reg_current(armv4_5, i);
1041
1042                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1043                         reg->valid = 1;
1044                         reg->dirty = 0;
1045                 }
1046
1047                 /* Fixup PC Resume Address */
1048                 if (cpsr & (1 << 5))
1049                 {
1050                         // T bit set for Thumb or ThumbEE state
1051                         regfile[ARM_PC] -= 4;
1052                 }
1053                 else
1054                 {
1055                         // ARM state
1056                         regfile[ARM_PC] -= 8;
1057                 }
1058
1059                 reg = armv4_5->pc;
1060                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1061                 reg->dirty = reg->valid;
1062         }
1063
1064 #if 0
1065 /* TODO, Move this */
1066         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1067         cortex_a9_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1068         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1069
1070         cortex_a9_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1071         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1072
1073         cortex_a9_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1074         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1075 #endif
1076
1077         /* Are we in an exception handler */
1078 //      armv4_5->exception_number = 0;
1079         if (armv7a->post_debug_entry)
1080         {
1081                 retval = armv7a->post_debug_entry(target);
1082                 if (retval != ERROR_OK)
1083                         return retval;
1084         }
1085
1086         return retval;
1087 }
1088
1089 static int cortex_a9_post_debug_entry(struct target *target)
1090 {
1091         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1092         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1093         int retval;
1094
1095         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1096         retval = armv7a->armv4_5_common.mrc(target, 15,
1097                         0, 0,   /* op1, op2 */
1098                         1, 0,   /* CRn, CRm */
1099                         &cortex_a9->cp15_control_reg);
1100         if (retval != ERROR_OK)
1101                 return retval;
1102         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a9->cp15_control_reg);
1103
1104         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1105         {
1106                 uint32_t cache_type_reg;
1107
1108                 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1109                 retval = armv7a->armv4_5_common.mrc(target, 15,
1110                                 0, 1,   /* op1, op2 */
1111                                 0, 0,   /* CRn, CRm */
1112                                 &cache_type_reg);
1113                 if (retval != ERROR_OK)
1114                         return retval;
1115                 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1116
1117                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A9 */
1118                 armv4_5_identify_cache(cache_type_reg,
1119                                 &armv7a->armv4_5_mmu.armv4_5_cache);
1120         }
1121
1122         armv7a->armv4_5_mmu.mmu_enabled =
1123                         (cortex_a9->cp15_control_reg & 0x1U) ? 1 : 0;
1124         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1125                         (cortex_a9->cp15_control_reg & 0x4U) ? 1 : 0;
1126         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1127                         (cortex_a9->cp15_control_reg & 0x1000U) ? 1 : 0;
1128
1129         return ERROR_OK;
1130 }
1131
1132 static int cortex_a9_step(struct target *target, int current, uint32_t address,
1133                 int handle_breakpoints)
1134 {
1135         struct armv7a_common *armv7a = target_to_armv7a(target);
1136         struct arm *armv4_5 = &armv7a->armv4_5_common;
1137         struct adiv5_dap *swjdp = &armv7a->dap;
1138         struct breakpoint *breakpoint = NULL;
1139         struct breakpoint stepbreakpoint;
1140         struct reg *r;
1141         int retval;
1142         uint8_t saved_apsel = dap_ap_get_select(swjdp);
1143
1144         if (target->state != TARGET_HALTED)
1145         {
1146                 LOG_WARNING("target not halted");
1147                 return ERROR_TARGET_NOT_HALTED;
1148         }
1149
1150         dap_ap_select(swjdp, swjdp_debugap);
1151
1152         /* current = 1: continue on current pc, otherwise continue at <address> */
1153         r = armv4_5->pc;
1154         if (!current)
1155         {
1156                 buf_set_u32(r->value, 0, 32, address);
1157         }
1158         else
1159         {
1160                 address = buf_get_u32(r->value, 0, 32);
1161         }
1162
1163         /* The front-end may request us not to handle breakpoints.
1164          * But since Cortex-A9 uses breakpoint for single step,
1165          * we MUST handle breakpoints.
1166          */
1167         handle_breakpoints = 1;
1168         if (handle_breakpoints) {
1169                 breakpoint = breakpoint_find(target, address);
1170                 if (breakpoint)
1171                         cortex_a9_unset_breakpoint(target, breakpoint);
1172         }
1173
1174         /* Setup single step breakpoint */
1175         stepbreakpoint.address = address;
1176         stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1177                         ? 2 : 4;
1178         stepbreakpoint.type = BKPT_HARD;
1179         stepbreakpoint.set = 0;
1180
1181         /* Break on IVA mismatch */
1182         cortex_a9_set_breakpoint(target, &stepbreakpoint, 0x04);
1183
1184         target->debug_reason = DBG_REASON_SINGLESTEP;
1185
1186         retval = cortex_a9_resume(target, 1, address, 0, 0);
1187         if (retval != ERROR_OK)
1188                 goto out;
1189
1190         long long then = timeval_ms();
1191         while (target->state != TARGET_HALTED)
1192         {
1193                 retval = cortex_a9_poll(target);
1194                 if (retval != ERROR_OK)
1195                         goto out;
1196                 if (timeval_ms() > then + 1000)
1197                 {
1198                         LOG_ERROR("timeout waiting for target halt");
1199                         retval = ERROR_FAIL;
1200                         goto out;
1201                 }
1202         }
1203
1204         cortex_a9_unset_breakpoint(target, &stepbreakpoint);
1205
1206         target->debug_reason = DBG_REASON_BREAKPOINT;
1207
1208         if (breakpoint)
1209                 cortex_a9_set_breakpoint(target, breakpoint, 0);
1210
1211         if (target->state != TARGET_HALTED)
1212                 LOG_DEBUG("target stepped");
1213
1214         retval = ERROR_OK;
1215
1216  out:
1217         dap_ap_select(swjdp, saved_apsel);
1218         return retval;
1219 }
1220
1221 static int cortex_a9_restore_context(struct target *target, bool bpwp)
1222 {
1223         struct armv7a_common *armv7a = target_to_armv7a(target);
1224
1225         LOG_DEBUG(" ");
1226
1227         if (armv7a->pre_restore_context)
1228                 armv7a->pre_restore_context(target);
1229
1230         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1231 }
1232
1233
1234 /*
1235  * Cortex-A9 Breakpoint and watchpoint functions
1236  */
1237
1238 /* Setup hardware Breakpoint Register Pair */
1239 static int cortex_a9_set_breakpoint(struct target *target,
1240                 struct breakpoint *breakpoint, uint8_t matchmode)
1241 {
1242         int retval;
1243         int brp_i=0;
1244         uint32_t control;
1245         uint8_t byte_addr_select = 0x0F;
1246         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1247         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1248         struct cortex_a9_brp * brp_list = cortex_a9->brp_list;
1249
1250         if (breakpoint->set)
1251         {
1252                 LOG_WARNING("breakpoint already set");
1253                 return ERROR_OK;
1254         }
1255
1256         if (breakpoint->type == BKPT_HARD)
1257         {
1258                 while (brp_list[brp_i].used && (brp_i < cortex_a9->brp_num))
1259                         brp_i++ ;
1260                 if (brp_i >= cortex_a9->brp_num)
1261                 {
1262                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1263                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1264                 }
1265                 breakpoint->set = brp_i + 1;
1266                 if (breakpoint->length == 2)
1267                 {
1268                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1269                 }
1270                 control = ((matchmode & 0x7) << 20)
1271                                 | (byte_addr_select << 5)
1272                                 | (3 << 1) | 1;
1273                 brp_list[brp_i].used = 1;
1274                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1275                 brp_list[brp_i].control = control;
1276                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1277                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1278                                 brp_list[brp_i].value);
1279                 if (retval != ERROR_OK)
1280                         return retval;
1281                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1282                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1283                                 brp_list[brp_i].control);
1284                 if (retval != ERROR_OK)
1285                         return retval;
1286                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1287                                 brp_list[brp_i].control,
1288                                 brp_list[brp_i].value);
1289         }
1290         else if (breakpoint->type == BKPT_SOFT)
1291         {
1292                 uint8_t code[4];
1293                 if (breakpoint->length == 2)
1294                 {
1295                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1296                 }
1297                 else
1298                 {
1299                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1300                 }
1301                 retval = target->type->read_memory(target,
1302                                 breakpoint->address & 0xFFFFFFFE,
1303                                 breakpoint->length, 1,
1304                                 breakpoint->orig_instr);
1305                 if (retval != ERROR_OK)
1306                         return retval;
1307                 retval = target->type->write_memory(target,
1308                                 breakpoint->address & 0xFFFFFFFE,
1309                                 breakpoint->length, 1, code);
1310                 if (retval != ERROR_OK)
1311                         return retval;
1312                 breakpoint->set = 0x11; /* Any nice value but 0 */
1313         }
1314
1315         return ERROR_OK;
1316 }
1317
1318 static int cortex_a9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1319 {
1320         int retval;
1321         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1322         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1323         struct cortex_a9_brp * brp_list = cortex_a9->brp_list;
1324
1325         if (!breakpoint->set)
1326         {
1327                 LOG_WARNING("breakpoint not set");
1328                 return ERROR_OK;
1329         }
1330
1331         if (breakpoint->type == BKPT_HARD)
1332         {
1333                 int brp_i = breakpoint->set - 1;
1334                 if ((brp_i < 0) || (brp_i >= cortex_a9->brp_num))
1335                 {
1336                         LOG_DEBUG("Invalid BRP number in breakpoint");
1337                         return ERROR_OK;
1338                 }
1339                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1340                                 brp_list[brp_i].control, brp_list[brp_i].value);
1341                 brp_list[brp_i].used = 0;
1342                 brp_list[brp_i].value = 0;
1343                 brp_list[brp_i].control = 0;
1344                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1345                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1346                                 brp_list[brp_i].control);
1347                 if (retval != ERROR_OK)
1348                         return retval;
1349                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1350                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1351                                 brp_list[brp_i].value);
1352                 if (retval != ERROR_OK)
1353                         return retval;
1354         }
1355         else
1356         {
1357                 /* restore original instruction (kept in target endianness) */
1358                 if (breakpoint->length == 4)
1359                 {
1360                         retval = target->type->write_memory(target,
1361                                         breakpoint->address & 0xFFFFFFFE,
1362                                         4, 1, breakpoint->orig_instr);
1363                         if (retval != ERROR_OK)
1364                                 return retval;
1365                 }
1366                 else
1367                 {
1368                         retval = target->type->write_memory(target,
1369                                         breakpoint->address & 0xFFFFFFFE,
1370                                         2, 1, breakpoint->orig_instr);
1371                         if (retval != ERROR_OK)
1372                                 return retval;
1373                 }
1374         }
1375         breakpoint->set = 0;
1376
1377         return ERROR_OK;
1378 }
1379
1380 static int cortex_a9_add_breakpoint(struct target *target,
1381                 struct breakpoint *breakpoint)
1382 {
1383         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1384
1385         if ((breakpoint->type == BKPT_HARD) && (cortex_a9->brp_num_available < 1))
1386         {
1387                 LOG_INFO("no hardware breakpoint available");
1388                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1389         }
1390
1391         if (breakpoint->type == BKPT_HARD)
1392                 cortex_a9->brp_num_available--;
1393
1394         return cortex_a9_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1395 }
1396
1397 static int cortex_a9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1398 {
1399         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1400
1401 #if 0
1402 /* It is perfectly possible to remove breakpoints while the target is running */
1403         if (target->state != TARGET_HALTED)
1404         {
1405                 LOG_WARNING("target not halted");
1406                 return ERROR_TARGET_NOT_HALTED;
1407         }
1408 #endif
1409
1410         if (breakpoint->set)
1411         {
1412                 cortex_a9_unset_breakpoint(target, breakpoint);
1413                 if (breakpoint->type == BKPT_HARD)
1414                         cortex_a9->brp_num_available++ ;
1415         }
1416
1417
1418         return ERROR_OK;
1419 }
1420
1421
1422
1423 /*
1424  * Cortex-A9 Reset functions
1425  */
1426
1427 static int cortex_a9_assert_reset(struct target *target)
1428 {
1429         struct armv7a_common *armv7a = target_to_armv7a(target);
1430
1431         LOG_DEBUG(" ");
1432
1433         /* FIXME when halt is requested, make it work somehow... */
1434
1435         /* Issue some kind of warm reset. */
1436         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1437                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1438         } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1439                 /* REVISIT handle "pulls" cases, if there's
1440                  * hardware that needs them to work.
1441                  */
1442                 jtag_add_reset(0, 1);
1443         } else {
1444                 LOG_ERROR("%s: how to reset?", target_name(target));
1445                 return ERROR_FAIL;
1446         }
1447
1448         /* registers are now invalid */
1449         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1450
1451         target->state = TARGET_RESET;
1452
1453         return ERROR_OK;
1454 }
1455
1456 static int cortex_a9_deassert_reset(struct target *target)
1457 {
1458         int retval;
1459
1460         LOG_DEBUG(" ");
1461
1462         /* be certain SRST is off */
1463         jtag_add_reset(0, 0);
1464
1465         retval = cortex_a9_poll(target);
1466         if (retval != ERROR_OK)
1467                 return retval;
1468
1469         if (target->reset_halt) {
1470                 if (target->state != TARGET_HALTED) {
1471                         LOG_WARNING("%s: ran after reset and before halt ...",
1472                                         target_name(target));
1473                         if ((retval = target_halt(target)) != ERROR_OK)
1474                                 return retval;
1475                 }
1476         }
1477
1478         return ERROR_OK;
1479 }
1480
1481 /*
1482  * Cortex-A9 Memory access
1483  *
1484  * This is same Cortex M3 but we must also use the correct
1485  * ap number for every access.
1486  */
1487
1488 static int cortex_a9_read_phys_memory(struct target *target,
1489                 uint32_t address, uint32_t size,
1490                 uint32_t count, uint8_t *buffer)
1491 {
1492         struct armv7a_common *armv7a = target_to_armv7a(target);
1493         struct adiv5_dap *swjdp = &armv7a->dap;
1494         int retval = ERROR_INVALID_ARGUMENTS;
1495         uint8_t apsel = dap_ap_get_select(swjdp);
1496
1497         LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1498
1499         if (count && buffer) {
1500
1501                 if ( apsel == swjdp_memoryap ) {
1502
1503                         /* read memory through AHB-AP */
1504
1505                         switch (size) {
1506                                 case 4:
1507                                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1508                                         break;
1509                                 case 2:
1510                                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1511                                         break;
1512                                 case 1:
1513                                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1514                                         break;
1515                         }
1516
1517                 } else {
1518
1519                         /* read memory through APB-AP */
1520
1521                         uint32_t saved_r0, saved_r1;
1522                         int nbytes = count * size;
1523                         uint32_t data;
1524                         int enabled = 0;
1525
1526                         if (target->state != TARGET_HALTED)
1527                         {
1528                                 LOG_WARNING("target not halted");
1529                                 return ERROR_TARGET_NOT_HALTED;
1530                         }
1531
1532                         retval = cortex_a9_mmu(target, &enabled);
1533                         if (retval != ERROR_OK)
1534                                 return retval;
1535
1536                         if (enabled)
1537                         {
1538                                 LOG_WARNING("Reading physical memory through APB with MMU enabled is not yet implemented");
1539                                 return ERROR_TARGET_FAILURE;
1540                         }
1541
1542                         /* save registers r0 and r1, we are going to corrupt them  */
1543                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r0, 0);
1544                         if (retval != ERROR_OK)
1545                                 return retval;
1546
1547                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r1, 1);
1548                         if (retval != ERROR_OK)
1549                                 return retval;
1550
1551                         retval = cortex_a9_dap_write_coreregister_u32(target, address, 0);
1552                         if (retval != ERROR_OK)
1553                                 return retval;
1554
1555                         while (nbytes > 0) {
1556
1557                                 /* execute instruction LDRB r1, [r0], 1 (0xe4d01001) */
1558                                 retval = cortex_a9_exec_opcode(target, ARMV4_5_LDRB_IP(1, 0) , NULL);
1559                                 if (retval != ERROR_OK)
1560                                                 return retval;
1561
1562                                 retval = cortex_a9_dap_read_coreregister_u32(target, &data, 1);
1563                                 if (retval != ERROR_OK)
1564                                         return retval;
1565
1566                                 *buffer++ = data;
1567                                 --nbytes;
1568
1569                         }
1570
1571                         /* restore corrupted registers r0 and r1 */
1572                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r0, 0);
1573                         if (retval != ERROR_OK)
1574                                 return retval;
1575
1576                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r1, 1);
1577                         if (retval != ERROR_OK)
1578                                 return retval;
1579
1580                 }
1581         }
1582
1583         return retval;
1584 }
1585
1586 static int cortex_a9_read_memory(struct target *target, uint32_t address,
1587                 uint32_t size, uint32_t count, uint8_t *buffer)
1588 {
1589         int enabled = 0;
1590         uint32_t virt, phys;
1591         int retval;
1592
1593         /* cortex_a9 handles unaligned memory access */
1594
1595         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1596         retval = cortex_a9_mmu(target, &enabled);
1597         if (retval != ERROR_OK)
1598                 return retval;
1599
1600         if (enabled)
1601         {
1602                 virt = address;
1603                 retval = cortex_a9_virt2phys(target, virt, &phys);
1604                 if (retval != ERROR_OK)
1605                         return retval;
1606
1607                 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1608                 address = phys;
1609         }
1610
1611         return cortex_a9_read_phys_memory(target, address, size, count, buffer);
1612 }
1613
1614 static int cortex_a9_write_phys_memory(struct target *target,
1615                 uint32_t address, uint32_t size,
1616                 uint32_t count, uint8_t *buffer)
1617 {
1618         struct armv7a_common *armv7a = target_to_armv7a(target);
1619         struct adiv5_dap *swjdp = &armv7a->dap;
1620         int retval = ERROR_INVALID_ARGUMENTS;
1621
1622         LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1623
1624         if (count && buffer) {
1625                 uint8_t apsel = dap_ap_get_select(swjdp);
1626
1627                 if ( apsel == swjdp_memoryap ) {
1628
1629                         /* write memory through AHB-AP */
1630                         switch (size) {
1631                                 case 4:
1632                                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1633                                         break;
1634                                 case 2:
1635                                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1636                                         break;
1637                                 case 1:
1638                                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1639                                         break;
1640                         }
1641
1642                 } else {
1643
1644                         /* write memory through APB-AP */
1645
1646                         uint32_t saved_r0, saved_r1;
1647                         int nbytes = count * size;
1648                         uint32_t data;
1649                         int enabled = 0;
1650
1651                         if (target->state != TARGET_HALTED)
1652                         {
1653                                 LOG_WARNING("target not halted");
1654                                 return ERROR_TARGET_NOT_HALTED;
1655                         }
1656
1657                         retval = cortex_a9_mmu(target, &enabled);
1658                         if (retval != ERROR_OK)
1659                                 return retval;
1660
1661                         if (enabled)
1662                         {
1663                                 LOG_WARNING("Writing physical memory through APB with MMU enabled is not yet implemented");
1664                                 return ERROR_TARGET_FAILURE;
1665                         }
1666
1667                         /* save registers r0 and r1, we are going to corrupt them  */
1668                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r0, 0);
1669                         if (retval != ERROR_OK)
1670                                 return retval;
1671
1672                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r1, 1);
1673                         if (retval != ERROR_OK)
1674                                 return retval;
1675
1676                         retval = cortex_a9_dap_write_coreregister_u32(target, address, 0);
1677                         if (retval != ERROR_OK)
1678                                 return retval;
1679
1680                         while (nbytes > 0) {
1681
1682                                 data = *buffer++;
1683
1684                                 retval = cortex_a9_dap_write_coreregister_u32(target, data, 1);
1685                                 if (retval != ERROR_OK)
1686                                         return retval;
1687
1688                                         /* execute instruction STRB r1, [r0], 1 (0xe4c01001) */
1689                                 retval = cortex_a9_exec_opcode(target, ARMV4_5_STRB_IP(1, 0) , NULL);
1690                                 if (retval != ERROR_OK)
1691                                                 return retval;
1692
1693                                 --nbytes;
1694                         }
1695
1696                         /* restore corrupted registers r0 and r1 */
1697                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r0, 0);
1698                         if (retval != ERROR_OK)
1699                                 return retval;
1700
1701                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r1, 1);
1702                         if (retval != ERROR_OK)
1703                                 return retval;
1704
1705                         /* we can return here without invalidating D/I-cache because */
1706                         /* access through APB maintains cache coherency              */
1707                         return retval;
1708                 }
1709         }
1710
1711
1712         /* REVISIT this op is generic ARMv7-A/R stuff */
1713         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1714         {
1715                 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1716
1717                 retval = dpm->prepare(dpm);
1718                 if (retval != ERROR_OK)
1719                         return retval;
1720
1721                 /* The Cache handling will NOT work with MMU active, the
1722                  * wrong addresses will be invalidated!
1723                  *
1724                  * For both ICache and DCache, walk all cache lines in the
1725                  * address range. Cortex-A9 has fixed 64 byte line length.
1726                  *
1727                  * REVISIT per ARMv7, these may trigger watchpoints ...
1728                  */
1729
1730                 /* invalidate I-Cache */
1731                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1732                 {
1733                         /* ICIMVAU - Invalidate Cache single entry
1734                          * with MVA to PoU
1735                          *      MCR p15, 0, r0, c7, c5, 1
1736                          */
1737                         for (uint32_t cacheline = address;
1738                                         cacheline < address + size * count;
1739                                         cacheline += 64) {
1740                                 retval = dpm->instr_write_data_r0(dpm,
1741                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1742                                                 cacheline);
1743                                 if (retval != ERROR_OK)
1744                                         return retval;
1745                         }
1746                 }
1747
1748                 /* invalidate D-Cache */
1749                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1750                 {
1751                         /* DCIMVAC - Invalidate data Cache line
1752                          * with MVA to PoC
1753                          *      MCR p15, 0, r0, c7, c6, 1
1754                          */
1755                         for (uint32_t cacheline = address;
1756                                         cacheline < address + size * count;
1757                                         cacheline += 64) {
1758                                 retval = dpm->instr_write_data_r0(dpm,
1759                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1760                                                 cacheline);
1761                                 if (retval != ERROR_OK)
1762                                         return retval;
1763                         }
1764                 }
1765
1766                 /* (void) */ dpm->finish(dpm);
1767         }
1768
1769         return retval;
1770 }
1771
1772 static int cortex_a9_write_memory(struct target *target, uint32_t address,
1773                 uint32_t size, uint32_t count, uint8_t *buffer)
1774 {
1775         int enabled = 0;
1776         uint32_t virt, phys;
1777         int retval;
1778
1779         LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1780         retval = cortex_a9_mmu(target, &enabled);
1781         if (retval != ERROR_OK)
1782                 return retval;
1783
1784         if (enabled)
1785         {
1786                 virt = address;
1787                 retval = cortex_a9_virt2phys(target, virt, &phys);
1788                 if (retval != ERROR_OK)
1789                         return retval;
1790                 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1791                 address = phys;
1792         }
1793
1794         return cortex_a9_write_phys_memory(target, address, size,
1795                         count, buffer);
1796 }
1797
1798 static int cortex_a9_bulk_write_memory(struct target *target, uint32_t address,
1799                 uint32_t count, uint8_t *buffer)
1800 {
1801         return cortex_a9_write_memory(target, address, 4, count, buffer);
1802 }
1803
1804 static int cortex_a9_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1805 {
1806 #if 0
1807         u16 dcrdr;
1808
1809         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1810         *ctrl = (uint8_t)dcrdr;
1811         *value = (uint8_t)(dcrdr >> 8);
1812
1813         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1814
1815         /* write ack back to software dcc register
1816          * signify we have read data */
1817         if (dcrdr & (1 << 0))
1818         {
1819                 dcrdr = 0;
1820                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1821         }
1822 #endif
1823         return ERROR_OK;
1824 }
1825
1826
1827 static int cortex_a9_handle_target_request(void *priv)
1828 {
1829         struct target *target = priv;
1830         struct armv7a_common *armv7a = target_to_armv7a(target);
1831         struct adiv5_dap *swjdp = &armv7a->dap;
1832         int retval;
1833
1834         if (!target_was_examined(target))
1835                 return ERROR_OK;
1836         if (!target->dbg_msg_enabled)
1837                 return ERROR_OK;
1838
1839         if (target->state == TARGET_RUNNING)
1840         {
1841                 uint8_t data = 0;
1842                 uint8_t ctrl = 0;
1843
1844                 retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1845                 if (retval != ERROR_OK)
1846                         return retval;
1847
1848                 /* check if we have data */
1849                 if (ctrl & (1 << 0))
1850                 {
1851                         uint32_t request;
1852
1853                         /* we assume target is quick enough */
1854                         request = data;
1855                         retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1856                         if (retval != ERROR_OK)
1857                                 return retval;
1858                         request |= (data << 8);
1859                         retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1860                         if (retval != ERROR_OK)
1861                                 return retval;
1862                         request |= (data << 16);
1863                         retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1864                         if (retval != ERROR_OK)
1865                                 return retval;
1866                         request |= (data << 24);
1867                         target_request(target, request);
1868                 }
1869         }
1870
1871         return ERROR_OK;
1872 }
1873
1874 /*
1875  * Cortex-A9 target information and configuration
1876  */
1877
1878 static int cortex_a9_examine_first(struct target *target)
1879 {
1880         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1881         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1882         struct adiv5_dap *swjdp = &armv7a->dap;
1883         int i;
1884         int retval = ERROR_OK;
1885         uint32_t didr, ctypr, ttypr, cpuid;
1886
1887         /* We do one extra read to ensure DAP is configured,
1888          * we call ahbap_debugport_init(swjdp) instead
1889          */
1890         retval = ahbap_debugport_init(swjdp);
1891         if (retval != ERROR_OK)
1892                 return retval;
1893
1894         dap_ap_select(swjdp, swjdp_debugap);
1895
1896         /*
1897          * FIXME: assuming omap4430
1898          *
1899          * APB DBGBASE reads 0x80040000, but this points to an empty ROM table.
1900          * 0x80000000 is cpu0 coresight region
1901          */
1902         if (target->coreid > 3) {
1903                 LOG_ERROR("cortex_a9 supports up to 4 cores");
1904                 return ERROR_INVALID_ARGUMENTS;
1905         }
1906         armv7a->debug_base = 0x80000000 |
1907                         ((target->coreid & 0x3) << CORTEX_A9_PADDRDBG_CPU_SHIFT);
1908
1909         retval = mem_ap_read_atomic_u32(swjdp,
1910                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1911         if (retval != ERROR_OK)
1912                 return retval;
1913
1914         if ((retval = mem_ap_read_atomic_u32(swjdp,
1915                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1916         {
1917                 LOG_DEBUG("Examine %s failed", "CPUID");
1918                 return retval;
1919         }
1920
1921         if ((retval = mem_ap_read_atomic_u32(swjdp,
1922                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1923         {
1924                 LOG_DEBUG("Examine %s failed", "CTYPR");
1925                 return retval;
1926         }
1927
1928         if ((retval = mem_ap_read_atomic_u32(swjdp,
1929                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1930         {
1931                 LOG_DEBUG("Examine %s failed", "TTYPR");
1932                 return retval;
1933         }
1934
1935         if ((retval = mem_ap_read_atomic_u32(swjdp,
1936                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1937         {
1938                 LOG_DEBUG("Examine %s failed", "DIDR");
1939                 return retval;
1940         }
1941
1942         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1943         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1944         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1945         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1946
1947         armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1948         retval = cortex_a9_dpm_setup(cortex_a9, didr);
1949         if (retval != ERROR_OK)
1950                 return retval;
1951
1952         /* Setup Breakpoint Register Pairs */
1953         cortex_a9->brp_num = ((didr >> 24) & 0x0F) + 1;
1954         cortex_a9->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1955         cortex_a9->brp_num_available = cortex_a9->brp_num;
1956         cortex_a9->brp_list = calloc(cortex_a9->brp_num, sizeof(struct cortex_a9_brp));
1957 //      cortex_a9->brb_enabled = ????;
1958         for (i = 0; i < cortex_a9->brp_num; i++)
1959         {
1960                 cortex_a9->brp_list[i].used = 0;
1961                 if (i < (cortex_a9->brp_num-cortex_a9->brp_num_context))
1962                         cortex_a9->brp_list[i].type = BRP_NORMAL;
1963                 else
1964                         cortex_a9->brp_list[i].type = BRP_CONTEXT;
1965                 cortex_a9->brp_list[i].value = 0;
1966                 cortex_a9->brp_list[i].control = 0;
1967                 cortex_a9->brp_list[i].BRPn = i;
1968         }
1969
1970         LOG_DEBUG("Configured %i hw breakpoints", cortex_a9->brp_num);
1971
1972         target_set_examined(target);
1973         return ERROR_OK;
1974 }
1975
1976 static int cortex_a9_examine(struct target *target)
1977 {
1978         int retval = ERROR_OK;
1979
1980         /* don't re-probe hardware after each reset */
1981         if (!target_was_examined(target))
1982                 retval = cortex_a9_examine_first(target);
1983
1984         /* Configure core debug access */
1985         if (retval == ERROR_OK)
1986                 retval = cortex_a9_init_debug_access(target);
1987
1988         return retval;
1989 }
1990
1991 /*
1992  *      Cortex-A9 target creation and initialization
1993  */
1994
1995 static int cortex_a9_init_target(struct command_context *cmd_ctx,
1996                 struct target *target)
1997 {
1998         /* examine_first() does a bunch of this */
1999         return ERROR_OK;
2000 }
2001
2002 static int cortex_a9_init_arch_info(struct target *target,
2003                 struct cortex_a9_common *cortex_a9, struct jtag_tap *tap)
2004 {
2005         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2006         struct arm *armv4_5 = &armv7a->armv4_5_common;
2007         struct adiv5_dap *dap = &armv7a->dap;
2008
2009         armv7a->armv4_5_common.dap = dap;
2010
2011         /* Setup struct cortex_a9_common */
2012         cortex_a9->common_magic = CORTEX_A9_COMMON_MAGIC;
2013         armv4_5->arch_info = armv7a;
2014
2015         /* prepare JTAG information for the new target */
2016         cortex_a9->jtag_info.tap = tap;
2017         cortex_a9->jtag_info.scann_size = 4;
2018
2019         /* Leave (only) generic DAP stuff for debugport_init() */
2020         dap->jtag_info = &cortex_a9->jtag_info;
2021         dap->memaccess_tck = 80;
2022
2023         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
2024         dap->tar_autoincr_block = (1 << 10);
2025
2026         cortex_a9->fast_reg_read = 0;
2027
2028         /* Set default value */
2029         cortex_a9->current_address_mode = ARM_MODE_ANY;
2030
2031         /* register arch-specific functions */
2032         armv7a->examine_debug_reason = NULL;
2033
2034         armv7a->post_debug_entry = cortex_a9_post_debug_entry;
2035
2036         armv7a->pre_restore_context = NULL;
2037         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
2038         armv7a->armv4_5_mmu.get_ttb = cortex_a9_get_ttb;
2039         armv7a->armv4_5_mmu.read_memory = cortex_a9_read_phys_memory;
2040         armv7a->armv4_5_mmu.write_memory = cortex_a9_write_phys_memory;
2041         armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a9_disable_mmu_caches;
2042         armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a9_enable_mmu_caches;
2043         armv7a->armv4_5_mmu.has_tiny_pages = 1;
2044         armv7a->armv4_5_mmu.mmu_enabled = 0;
2045
2046
2047 //      arm7_9->handle_target_request = cortex_a9_handle_target_request;
2048
2049         /* REVISIT v7a setup should be in a v7a-specific routine */
2050         arm_init_arch_info(target, armv4_5);
2051         armv7a->common_magic = ARMV7_COMMON_MAGIC;
2052
2053         target_register_timer_callback(cortex_a9_handle_target_request, 1, 1, target);
2054
2055         return ERROR_OK;
2056 }
2057
2058 static int cortex_a9_target_create(struct target *target, Jim_Interp *interp)
2059 {
2060         struct cortex_a9_common *cortex_a9 = calloc(1, sizeof(struct cortex_a9_common));
2061
2062         return cortex_a9_init_arch_info(target, cortex_a9, target->tap);
2063 }
2064
2065 static int cortex_a9_get_ttb(struct target *target, uint32_t *result)
2066 {
2067         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2068     struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2069     uint32_t ttb = 0, retval = ERROR_OK;
2070
2071     /* current_address_mode is set inside cortex_a9_virt2phys()
2072        where we can determine if address belongs to user or kernel */
2073     if(cortex_a9->current_address_mode == ARM_MODE_SVC)
2074     {
2075         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2076         retval = armv7a->armv4_5_common.mrc(target, 15,
2077                     0, 1,   /* op1, op2 */
2078                     2, 0,   /* CRn, CRm */
2079                     &ttb);
2080                 if (retval != ERROR_OK)
2081                         return retval;
2082     }
2083     else if(cortex_a9->current_address_mode == ARM_MODE_USR)
2084     {
2085         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2086         retval = armv7a->armv4_5_common.mrc(target, 15,
2087                     0, 0,   /* op1, op2 */
2088                     2, 0,   /* CRn, CRm */
2089                     &ttb);
2090                 if (retval != ERROR_OK)
2091                         return retval;
2092     }
2093     /* we don't know whose address is: user or kernel
2094        we assume that if we are in kernel mode then
2095        address belongs to kernel else if in user mode
2096        - to user */
2097     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
2098     {
2099         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2100         retval = armv7a->armv4_5_common.mrc(target, 15,
2101                     0, 1,   /* op1, op2 */
2102                     2, 0,   /* CRn, CRm */
2103                     &ttb);
2104                 if (retval != ERROR_OK)
2105                         return retval;
2106     }
2107     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
2108     {
2109         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2110         retval = armv7a->armv4_5_common.mrc(target, 15,
2111                     0, 0,   /* op1, op2 */
2112                     2, 0,   /* CRn, CRm */
2113                     &ttb);
2114                 if (retval != ERROR_OK)
2115                         return retval;
2116     }
2117     /* finally we don't know whose ttb to use: user or kernel */
2118     else
2119         LOG_ERROR("Don't know how to get ttb for current mode!!!");
2120
2121     ttb &= 0xffffc000;
2122
2123     *result = ttb;
2124
2125     return ERROR_OK;
2126 }
2127
2128 static int cortex_a9_disable_mmu_caches(struct target *target, int mmu,
2129                 int d_u_cache, int i_cache)
2130 {
2131         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2132         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2133         uint32_t cp15_control;
2134         int retval;
2135
2136         /* read cp15 control register */
2137         retval = armv7a->armv4_5_common.mrc(target, 15,
2138                         0, 0,   /* op1, op2 */
2139                         1, 0,   /* CRn, CRm */
2140                         &cp15_control);
2141         if (retval != ERROR_OK)
2142                 return retval;
2143
2144
2145         if (mmu)
2146                 cp15_control &= ~0x1U;
2147
2148         if (d_u_cache)
2149                 cp15_control &= ~0x4U;
2150
2151         if (i_cache)
2152                 cp15_control &= ~0x1000U;
2153
2154         retval = armv7a->armv4_5_common.mcr(target, 15,
2155                         0, 0,   /* op1, op2 */
2156                         1, 0,   /* CRn, CRm */
2157                         cp15_control);
2158         return retval;
2159 }
2160
2161 static int cortex_a9_enable_mmu_caches(struct target *target, int mmu,
2162                 int d_u_cache, int i_cache)
2163 {
2164         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2165         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2166         uint32_t cp15_control;
2167         int retval;
2168
2169         /* read cp15 control register */
2170         retval = armv7a->armv4_5_common.mrc(target, 15,
2171                         0, 0,   /* op1, op2 */
2172                         1, 0,   /* CRn, CRm */
2173                         &cp15_control);
2174         if (retval != ERROR_OK)
2175                 return retval;
2176
2177         if (mmu)
2178                 cp15_control |= 0x1U;
2179
2180         if (d_u_cache)
2181                 cp15_control |= 0x4U;
2182
2183         if (i_cache)
2184                 cp15_control |= 0x1000U;
2185
2186         retval = armv7a->armv4_5_common.mcr(target, 15,
2187                         0, 0,   /* op1, op2 */
2188                         1, 0,   /* CRn, CRm */
2189                         cp15_control);
2190         return retval;
2191 }
2192
2193
2194 static int cortex_a9_mmu(struct target *target, int *enabled)
2195 {
2196         if (target->state != TARGET_HALTED) {
2197                 LOG_ERROR("%s: target not halted", __func__);
2198                 return ERROR_TARGET_INVALID;
2199         }
2200
2201         *enabled = target_to_cortex_a9(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
2202         return ERROR_OK;
2203 }
2204
2205 static int cortex_a9_virt2phys(struct target *target,
2206                 uint32_t virt, uint32_t *phys)
2207 {
2208         uint32_t cb;
2209         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2210         // struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2211         struct armv7a_common *armv7a = target_to_armv7a(target);
2212
2213     /* We assume that virtual address is separated
2214        between user and kernel in Linux style:
2215        0x00000000-0xbfffffff - User space
2216        0xc0000000-0xffffffff - Kernel space */
2217     if( virt < 0xc0000000 ) /* Linux user space */
2218         cortex_a9->current_address_mode = ARM_MODE_USR;
2219     else /* Linux kernel */
2220         cortex_a9->current_address_mode = ARM_MODE_SVC;
2221         uint32_t ret;
2222         int retval = armv4_5_mmu_translate_va(target,
2223                         &armv7a->armv4_5_mmu, virt, &cb, &ret);
2224         if (retval != ERROR_OK)
2225                 return retval;
2226     /* Reset the flag. We don't want someone else to use it by error */
2227     cortex_a9->current_address_mode = ARM_MODE_ANY;
2228
2229         *phys = ret;
2230         return ERROR_OK;
2231 }
2232
2233 COMMAND_HANDLER(cortex_a9_handle_cache_info_command)
2234 {
2235         struct target *target = get_current_target(CMD_CTX);
2236         struct armv7a_common *armv7a = target_to_armv7a(target);
2237
2238         return armv4_5_handle_cache_info_command(CMD_CTX,
2239                         &armv7a->armv4_5_mmu.armv4_5_cache);
2240 }
2241
2242
2243 COMMAND_HANDLER(cortex_a9_handle_dbginit_command)
2244 {
2245         struct target *target = get_current_target(CMD_CTX);
2246         if (!target_was_examined(target))
2247         {
2248                 LOG_ERROR("target not examined yet");
2249                 return ERROR_FAIL;
2250         }
2251
2252         return cortex_a9_init_debug_access(target);
2253 }
2254
2255 static const struct command_registration cortex_a9_exec_command_handlers[] = {
2256         {
2257                 .name = "cache_info",
2258                 .handler = cortex_a9_handle_cache_info_command,
2259                 .mode = COMMAND_EXEC,
2260                 .help = "display information about target caches",
2261         },
2262         {
2263                 .name = "dbginit",
2264                 .handler = cortex_a9_handle_dbginit_command,
2265                 .mode = COMMAND_EXEC,
2266                 .help = "Initialize core debug",
2267         },
2268         COMMAND_REGISTRATION_DONE
2269 };
2270 static const struct command_registration cortex_a9_command_handlers[] = {
2271         {
2272                 .chain = arm_command_handlers,
2273         },
2274         {
2275                 .chain = armv7a_command_handlers,
2276         },
2277         {
2278                 .name = "cortex_a9",
2279                 .mode = COMMAND_ANY,
2280                 .help = "Cortex-A9 command group",
2281                 .chain = cortex_a9_exec_command_handlers,
2282         },
2283         COMMAND_REGISTRATION_DONE
2284 };
2285
2286 struct target_type cortexa9_target = {
2287         .name = "cortex_a9",
2288
2289         .poll = cortex_a9_poll,
2290         .arch_state = armv7a_arch_state,
2291
2292         .target_request_data = NULL,
2293
2294         .halt = cortex_a9_halt,
2295         .resume = cortex_a9_resume,
2296         .step = cortex_a9_step,
2297
2298         .assert_reset = cortex_a9_assert_reset,
2299         .deassert_reset = cortex_a9_deassert_reset,
2300         .soft_reset_halt = NULL,
2301
2302         /* REVISIT allow exporting VFP3 registers ... */
2303         .get_gdb_reg_list = arm_get_gdb_reg_list,
2304
2305         .read_memory = cortex_a9_read_memory,
2306         .write_memory = cortex_a9_write_memory,
2307         .bulk_write_memory = cortex_a9_bulk_write_memory,
2308
2309         .checksum_memory = arm_checksum_memory,
2310         .blank_check_memory = arm_blank_check_memory,
2311
2312         .run_algorithm = armv4_5_run_algorithm,
2313
2314         .add_breakpoint = cortex_a9_add_breakpoint,
2315         .remove_breakpoint = cortex_a9_remove_breakpoint,
2316         .add_watchpoint = NULL,
2317         .remove_watchpoint = NULL,
2318
2319         .commands = cortex_a9_command_handlers,
2320         .target_create = cortex_a9_target_create,
2321         .init_target = cortex_a9_init_target,
2322         .examine = cortex_a9_examine,
2323
2324         .read_phys_memory = cortex_a9_read_phys_memory,
2325         .write_phys_memory = cortex_a9_write_phys_memory,
2326         .mmu = cortex_a9_mmu,
2327         .virt2phys = cortex_a9_virt2phys,
2328 };