]> git.sur5r.net Git - openocd/blob - src/target/cortex_a9.c
cortex_a9: implement read/write memory through APB-AP
[openocd] / src / target / cortex_a9.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  *                                                                         *
32  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
33  *                                                                         *
34  ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include "breakpoints.h"
40 #include "cortex_a9.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
46
47 static int cortex_a9_poll(struct target *target);
48 static int cortex_a9_debug_entry(struct target *target);
49 static int cortex_a9_restore_context(struct target *target, bool bpwp);
50 static int cortex_a9_set_breakpoint(struct target *target,
51                 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a9_unset_breakpoint(struct target *target,
53                 struct breakpoint *breakpoint);
54 static int cortex_a9_dap_read_coreregister_u32(struct target *target,
55                 uint32_t *value, int regnum);
56 static int cortex_a9_dap_write_coreregister_u32(struct target *target,
57                 uint32_t value, int regnum);
58 static int cortex_a9_mmu(struct target *target, int *enabled);
59 static int cortex_a9_virt2phys(struct target *target,
60                 uint32_t virt, uint32_t *phys);
61 static int cortex_a9_disable_mmu_caches(struct target *target, int mmu,
62                 int d_u_cache, int i_cache);
63 static int cortex_a9_enable_mmu_caches(struct target *target, int mmu,
64                 int d_u_cache, int i_cache);
65 static int cortex_a9_get_ttb(struct target *target, uint32_t *result);
66
67
68 /*
69  * FIXME do topology discovery using the ROM; don't
70  * assume this is an OMAP3.   Also, allow for multiple ARMv7-A
71  * cores, with different AP numbering ... don't use a #define
72  * for these numbers, use per-core armv7a state.
73  */
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76
77 /*
78  * Cortex-A9 Basic debug access, very low level assumes state is saved
79  */
80 static int cortex_a9_init_debug_access(struct target *target)
81 {
82         struct armv7a_common *armv7a = target_to_armv7a(target);
83         struct adiv5_dap *swjdp = &armv7a->dap;
84         uint8_t saved_apsel = dap_ap_get_select(swjdp);
85
86         int retval;
87         uint32_t dummy;
88
89         dap_ap_select(swjdp, swjdp_debugap);
90
91         LOG_DEBUG(" ");
92
93         /* Unlocking the debug registers for modification */
94         /* The debugport might be uninitialised so try twice */
95         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
96         if (retval != ERROR_OK)
97         {
98                 /* try again */
99                 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
100                 if (retval == ERROR_OK)
101                 {
102                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
103                 }
104         }
105         if (retval != ERROR_OK)
106                 goto out;
107         /* Clear Sticky Power Down status Bit in PRSR to enable access to
108            the registers in the Core Power Domain */
109         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
110         if (retval != ERROR_OK)
111                 goto out;
112
113         /* Enabling of instruction execution in debug mode is done in debug_entry code */
114
115         /* Resync breakpoint registers */
116
117         /* Since this is likely called from init or reset, update target state information*/
118         retval = cortex_a9_poll(target);
119
120  out:
121         dap_ap_select(swjdp, saved_apsel);
122         return retval;
123 }
124
125 /* To reduce needless round-trips, pass in a pointer to the current
126  * DSCR value.  Initialize it to zero if you just need to know the
127  * value on return from this function; or DSCR_INSTR_COMP if you
128  * happen to know that no instruction is pending.
129  */
130 static int cortex_a9_exec_opcode(struct target *target,
131                 uint32_t opcode, uint32_t *dscr_p)
132 {
133         uint32_t dscr;
134         int retval;
135         struct armv7a_common *armv7a = target_to_armv7a(target);
136         struct adiv5_dap *swjdp = &armv7a->dap;
137
138         dscr = dscr_p ? *dscr_p : 0;
139
140         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
141
142         /* Wait for InstrCompl bit to be set */
143         long long then = timeval_ms();
144         while ((dscr & DSCR_INSTR_COMP) == 0)
145         {
146                 retval = mem_ap_read_atomic_u32(swjdp,
147                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
148                 if (retval != ERROR_OK)
149                 {
150                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
151                         return retval;
152                 }
153                 if (timeval_ms() > then + 1000)
154                 {
155                         LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
156                         return ERROR_FAIL;
157                 }
158         }
159
160         retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
161         if (retval != ERROR_OK)
162                 return retval;
163
164         then = timeval_ms();
165         do
166         {
167                 retval = mem_ap_read_atomic_u32(swjdp,
168                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
169                 if (retval != ERROR_OK)
170                 {
171                         LOG_ERROR("Could not read DSCR register");
172                         return retval;
173                 }
174                 if (timeval_ms() > then + 1000)
175                 {
176                         LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
177                         return ERROR_FAIL;
178                 }
179         }
180         while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
181
182         if (dscr_p)
183                 *dscr_p = dscr;
184
185         return retval;
186 }
187
188 /**************************************************************************
189 Read core register with very few exec_opcode, fast but needs work_area.
190 This can cause problems with MMU active.
191 **************************************************************************/
192 static int cortex_a9_read_regs_through_mem(struct target *target, uint32_t address,
193                 uint32_t * regfile)
194 {
195         int retval = ERROR_OK;
196         struct armv7a_common *armv7a = target_to_armv7a(target);
197         struct adiv5_dap *swjdp = &armv7a->dap;
198
199         retval = cortex_a9_dap_read_coreregister_u32(target, regfile, 0);
200         if (retval != ERROR_OK)
201                 return retval;
202         retval = cortex_a9_dap_write_coreregister_u32(target, address, 0);
203         if (retval != ERROR_OK)
204                 return retval;
205         retval = cortex_a9_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
206         if (retval != ERROR_OK)
207                 return retval;
208
209         dap_ap_select(swjdp, swjdp_memoryap);
210         retval = mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
211         if (retval != ERROR_OK)
212                 return retval;
213         dap_ap_select(swjdp, swjdp_debugap);
214
215         return retval;
216 }
217
218 static int cortex_a9_dap_read_coreregister_u32(struct target *target,
219                 uint32_t *value, int regnum)
220 {
221         int retval = ERROR_OK;
222         uint8_t reg = regnum&0xFF;
223         uint32_t dscr = 0;
224         struct armv7a_common *armv7a = target_to_armv7a(target);
225         struct adiv5_dap *swjdp = &armv7a->dap;
226
227         if (reg > 17)
228                 return retval;
229
230         if (reg < 15)
231         {
232                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
233                 retval = cortex_a9_exec_opcode(target,
234                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
235                                 &dscr);
236                 if (retval != ERROR_OK)
237                         return retval;
238         }
239         else if (reg == 15)
240         {
241                 /* "MOV r0, r15"; then move r0 to DCCTX */
242                 retval = cortex_a9_exec_opcode(target, 0xE1A0000F, &dscr);
243                 if (retval != ERROR_OK)
244                         return retval;
245                 retval = cortex_a9_exec_opcode(target,
246                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
247                                 &dscr);
248                 if (retval != ERROR_OK)
249                         return retval;
250         }
251         else
252         {
253                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
254                  * then move r0 to DCCTX
255                  */
256                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
257                 if (retval != ERROR_OK)
258                         return retval;
259                 retval = cortex_a9_exec_opcode(target,
260                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
261                                 &dscr);
262                 if (retval != ERROR_OK)
263                         return retval;
264         }
265
266         /* Wait for DTRRXfull then read DTRRTX */
267         long long then = timeval_ms();
268         while ((dscr & DSCR_DTR_TX_FULL) == 0)
269         {
270                 retval = mem_ap_read_atomic_u32(swjdp,
271                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
272                 if (retval != ERROR_OK)
273                         return retval;
274                 if (timeval_ms() > then + 1000)
275                 {
276                         LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
277                         return ERROR_FAIL;
278                 }
279         }
280
281         retval = mem_ap_read_atomic_u32(swjdp,
282                         armv7a->debug_base + CPUDBG_DTRTX, value);
283         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
284
285         return retval;
286 }
287
288 static int cortex_a9_dap_write_coreregister_u32(struct target *target,
289                 uint32_t value, int regnum)
290 {
291         int retval = ERROR_OK;
292         uint8_t Rd = regnum&0xFF;
293         uint32_t dscr;
294         struct armv7a_common *armv7a = target_to_armv7a(target);
295         struct adiv5_dap *swjdp = &armv7a->dap;
296
297         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
298
299         /* Check that DCCRX is not full */
300         retval = mem_ap_read_atomic_u32(swjdp,
301                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
302         if (retval != ERROR_OK)
303                 return retval;
304         if (dscr & DSCR_DTR_RX_FULL)
305         {
306                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
307                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
308                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
309                                 &dscr);
310                 if (retval != ERROR_OK)
311                         return retval;
312         }
313
314         if (Rd > 17)
315                 return retval;
316
317         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
318         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
319         retval = mem_ap_write_u32(swjdp,
320                         armv7a->debug_base + CPUDBG_DTRRX, value);
321         if (retval != ERROR_OK)
322                 return retval;
323
324         if (Rd < 15)
325         {
326                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
327                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
328                                 &dscr);
329                 if (retval != ERROR_OK)
330                         return retval;
331         }
332         else if (Rd == 15)
333         {
334                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
335                  * then "mov r15, r0"
336                  */
337                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
338                                 &dscr);
339                 if (retval != ERROR_OK)
340                         return retval;
341                 retval = cortex_a9_exec_opcode(target, 0xE1A0F000, &dscr);
342                 if (retval != ERROR_OK)
343                         return retval;
344         }
345         else
346         {
347                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
348                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
349                  */
350                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
351                                 &dscr);
352                 if (retval != ERROR_OK)
353                         return retval;
354                 retval = cortex_a9_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
355                                 &dscr);
356                 if (retval != ERROR_OK)
357                         return retval;
358
359                 /* "Prefetch flush" after modifying execution status in CPSR */
360                 if (Rd == 16)
361                 {
362                         retval = cortex_a9_exec_opcode(target,
363                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
364                                         &dscr);
365                         if (retval != ERROR_OK)
366                                 return retval;
367                 }
368         }
369
370         return retval;
371 }
372
373 /* Write to memory mapped registers directly with no cache or mmu handling */
374 static int cortex_a9_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
375 {
376         int retval;
377         struct armv7a_common *armv7a = target_to_armv7a(target);
378         struct adiv5_dap *swjdp = &armv7a->dap;
379
380         retval = mem_ap_write_atomic_u32(swjdp, address, value);
381
382         return retval;
383 }
384
385 /*
386  * Cortex-A9 implementation of Debug Programmer's Model
387  *
388  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
389  * so there's no need to poll for it before executing an instruction.
390  *
391  * NOTE that in several of these cases the "stall" mode might be useful.
392  * It'd let us queue a few operations together... prepare/finish might
393  * be the places to enable/disable that mode.
394  */
395
396 static inline struct cortex_a9_common *dpm_to_a9(struct arm_dpm *dpm)
397 {
398         return container_of(dpm, struct cortex_a9_common, armv7a_common.dpm);
399 }
400
401 static int cortex_a9_write_dcc(struct cortex_a9_common *a9, uint32_t data)
402 {
403         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
404         return mem_ap_write_u32(&a9->armv7a_common.dap,
405                         a9->armv7a_common.debug_base + CPUDBG_DTRRX, data);
406 }
407
408 static int cortex_a9_read_dcc(struct cortex_a9_common *a9, uint32_t *data,
409                 uint32_t *dscr_p)
410 {
411         struct adiv5_dap *swjdp = &a9->armv7a_common.dap;
412         uint32_t dscr = DSCR_INSTR_COMP;
413         int retval;
414
415         if (dscr_p)
416                 dscr = *dscr_p;
417
418         /* Wait for DTRRXfull */
419         long long then = timeval_ms();
420         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
421                 retval = mem_ap_read_atomic_u32(swjdp,
422                                 a9->armv7a_common.debug_base + CPUDBG_DSCR,
423                                 &dscr);
424                 if (retval != ERROR_OK)
425                         return retval;
426                 if (timeval_ms() > then + 1000)
427                 {
428                         LOG_ERROR("Timeout waiting for read dcc");
429                         return ERROR_FAIL;
430                 }
431         }
432
433         retval = mem_ap_read_atomic_u32(swjdp,
434                         a9->armv7a_common.debug_base + CPUDBG_DTRTX, data);
435         if (retval != ERROR_OK)
436                 return retval;
437         //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
438
439         if (dscr_p)
440                 *dscr_p = dscr;
441
442         return retval;
443 }
444
445 static int cortex_a9_dpm_prepare(struct arm_dpm *dpm)
446 {
447         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
448         struct adiv5_dap *swjdp = &a9->armv7a_common.dap;
449         uint32_t dscr;
450         int retval;
451
452         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
453         long long then = timeval_ms();
454         for (;;)
455         {
456                 retval = mem_ap_read_atomic_u32(swjdp,
457                                 a9->armv7a_common.debug_base + CPUDBG_DSCR,
458                                 &dscr);
459                 if (retval != ERROR_OK)
460                         return retval;
461                 if ((dscr & DSCR_INSTR_COMP) != 0)
462                         break;
463                 if (timeval_ms() > then + 1000)
464                 {
465                         LOG_ERROR("Timeout waiting for dpm prepare");
466                         return ERROR_FAIL;
467                 }
468         }
469
470         /* this "should never happen" ... */
471         if (dscr & DSCR_DTR_RX_FULL) {
472                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
473                 /* Clear DCCRX */
474                 retval = cortex_a9_exec_opcode(
475                                 a9->armv7a_common.armv4_5_common.target,
476                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
477                                 &dscr);
478                 if (retval != ERROR_OK)
479                         return retval;
480         }
481
482         return retval;
483 }
484
485 static int cortex_a9_dpm_finish(struct arm_dpm *dpm)
486 {
487         /* REVISIT what could be done here? */
488         return ERROR_OK;
489 }
490
491 static int cortex_a9_instr_write_data_dcc(struct arm_dpm *dpm,
492                 uint32_t opcode, uint32_t data)
493 {
494         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
495         int retval;
496         uint32_t dscr = DSCR_INSTR_COMP;
497
498         retval = cortex_a9_write_dcc(a9, data);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         return cortex_a9_exec_opcode(
503                         a9->armv7a_common.armv4_5_common.target,
504                         opcode,
505                         &dscr);
506 }
507
508 static int cortex_a9_instr_write_data_r0(struct arm_dpm *dpm,
509                 uint32_t opcode, uint32_t data)
510 {
511         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
512         uint32_t dscr = DSCR_INSTR_COMP;
513         int retval;
514
515         retval = cortex_a9_write_dcc(a9, data);
516         if (retval != ERROR_OK)
517                 return retval;
518
519         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
520         retval = cortex_a9_exec_opcode(
521                         a9->armv7a_common.armv4_5_common.target,
522                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
523                         &dscr);
524         if (retval != ERROR_OK)
525                 return retval;
526
527         /* then the opcode, taking data from R0 */
528         retval = cortex_a9_exec_opcode(
529                         a9->armv7a_common.armv4_5_common.target,
530                         opcode,
531                         &dscr);
532
533         return retval;
534 }
535
536 static int cortex_a9_instr_cpsr_sync(struct arm_dpm *dpm)
537 {
538         struct target *target = dpm->arm->target;
539         uint32_t dscr = DSCR_INSTR_COMP;
540
541         /* "Prefetch flush" after modifying execution status in CPSR */
542         return cortex_a9_exec_opcode(target,
543                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
544                         &dscr);
545 }
546
547 static int cortex_a9_instr_read_data_dcc(struct arm_dpm *dpm,
548                 uint32_t opcode, uint32_t *data)
549 {
550         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
551         int retval;
552         uint32_t dscr = DSCR_INSTR_COMP;
553
554         /* the opcode, writing data to DCC */
555         retval = cortex_a9_exec_opcode(
556                         a9->armv7a_common.armv4_5_common.target,
557                         opcode,
558                         &dscr);
559         if (retval != ERROR_OK)
560                 return retval;
561
562         return cortex_a9_read_dcc(a9, data, &dscr);
563 }
564
565
566 static int cortex_a9_instr_read_data_r0(struct arm_dpm *dpm,
567                 uint32_t opcode, uint32_t *data)
568 {
569         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
570         uint32_t dscr = DSCR_INSTR_COMP;
571         int retval;
572
573         /* the opcode, writing data to R0 */
574         retval = cortex_a9_exec_opcode(
575                         a9->armv7a_common.armv4_5_common.target,
576                         opcode,
577                         &dscr);
578         if (retval != ERROR_OK)
579                 return retval;
580
581         /* write R0 to DCC */
582         retval = cortex_a9_exec_opcode(
583                         a9->armv7a_common.armv4_5_common.target,
584                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
585                         &dscr);
586         if (retval != ERROR_OK)
587                 return retval;
588
589         return cortex_a9_read_dcc(a9, data, &dscr);
590 }
591
592 static int cortex_a9_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
593                 uint32_t addr, uint32_t control)
594 {
595         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
596         uint32_t vr = a9->armv7a_common.debug_base;
597         uint32_t cr = a9->armv7a_common.debug_base;
598         int retval;
599
600         switch (index_t) {
601         case 0 ... 15:          /* breakpoints */
602                 vr += CPUDBG_BVR_BASE;
603                 cr += CPUDBG_BCR_BASE;
604                 break;
605         case 16 ... 31:         /* watchpoints */
606                 vr += CPUDBG_WVR_BASE;
607                 cr += CPUDBG_WCR_BASE;
608                 index_t -= 16;
609                 break;
610         default:
611                 return ERROR_FAIL;
612         }
613         vr += 4 * index_t;
614         cr += 4 * index_t;
615
616         LOG_DEBUG("A9: bpwp enable, vr %08x cr %08x",
617                         (unsigned) vr, (unsigned) cr);
618
619         retval = cortex_a9_dap_write_memap_register_u32(dpm->arm->target,
620                         vr, addr);
621         if (retval != ERROR_OK)
622                 return retval;
623         retval = cortex_a9_dap_write_memap_register_u32(dpm->arm->target,
624                         cr, control);
625         return retval;
626 }
627
628 static int cortex_a9_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
629 {
630         struct cortex_a9_common *a9 = dpm_to_a9(dpm);
631         uint32_t cr;
632
633         switch (index_t) {
634         case 0 ... 15:
635                 cr = a9->armv7a_common.debug_base + CPUDBG_BCR_BASE;
636                 break;
637         case 16 ... 31:
638                 cr = a9->armv7a_common.debug_base + CPUDBG_WCR_BASE;
639                 index_t -= 16;
640                 break;
641         default:
642                 return ERROR_FAIL;
643         }
644         cr += 4 * index_t;
645
646         LOG_DEBUG("A9: bpwp disable, cr %08x", (unsigned) cr);
647
648         /* clear control register */
649         return cortex_a9_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
650 }
651
652 static int cortex_a9_dpm_setup(struct cortex_a9_common *a9, uint32_t didr)
653 {
654         struct arm_dpm *dpm = &a9->armv7a_common.dpm;
655         int retval;
656
657         dpm->arm = &a9->armv7a_common.armv4_5_common;
658         dpm->didr = didr;
659
660         dpm->prepare = cortex_a9_dpm_prepare;
661         dpm->finish = cortex_a9_dpm_finish;
662
663         dpm->instr_write_data_dcc = cortex_a9_instr_write_data_dcc;
664         dpm->instr_write_data_r0 = cortex_a9_instr_write_data_r0;
665         dpm->instr_cpsr_sync = cortex_a9_instr_cpsr_sync;
666
667         dpm->instr_read_data_dcc = cortex_a9_instr_read_data_dcc;
668         dpm->instr_read_data_r0 = cortex_a9_instr_read_data_r0;
669
670         dpm->bpwp_enable = cortex_a9_bpwp_enable;
671         dpm->bpwp_disable = cortex_a9_bpwp_disable;
672
673         retval = arm_dpm_setup(dpm);
674         if (retval == ERROR_OK)
675                 retval = arm_dpm_initialize(dpm);
676
677         return retval;
678 }
679
680
681 /*
682  * Cortex-A9 Run control
683  */
684
685 static int cortex_a9_poll(struct target *target)
686 {
687         int retval = ERROR_OK;
688         uint32_t dscr;
689         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
690         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
691         struct adiv5_dap *swjdp = &armv7a->dap;
692         enum target_state prev_target_state = target->state;
693         uint8_t saved_apsel = dap_ap_get_select(swjdp);
694
695         dap_ap_select(swjdp, swjdp_debugap);
696         retval = mem_ap_read_atomic_u32(swjdp,
697                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
698         if (retval != ERROR_OK)
699         {
700                 dap_ap_select(swjdp, saved_apsel);
701                 return retval;
702         }
703         cortex_a9->cpudbg_dscr = dscr;
704
705         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
706         {
707                 if (prev_target_state != TARGET_HALTED)
708                 {
709                         /* We have a halting debug event */
710                         LOG_DEBUG("Target halted");
711                         target->state = TARGET_HALTED;
712                         if ((prev_target_state == TARGET_RUNNING)
713                                         || (prev_target_state == TARGET_RESET))
714                         {
715                                 retval = cortex_a9_debug_entry(target);
716                                 if (retval != ERROR_OK)
717                                         return retval;
718
719                                 target_call_event_callbacks(target,
720                                                 TARGET_EVENT_HALTED);
721                         }
722                         if (prev_target_state == TARGET_DEBUG_RUNNING)
723                         {
724                                 LOG_DEBUG(" ");
725
726                                 retval = cortex_a9_debug_entry(target);
727                                 if (retval != ERROR_OK)
728                                         return retval;
729
730                                 target_call_event_callbacks(target,
731                                                 TARGET_EVENT_DEBUG_HALTED);
732                         }
733                 }
734         }
735         else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
736         {
737                 target->state = TARGET_RUNNING;
738         }
739         else
740         {
741                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
742                 target->state = TARGET_UNKNOWN;
743         }
744
745         dap_ap_select(swjdp, saved_apsel);
746
747         return retval;
748 }
749
750 static int cortex_a9_halt(struct target *target)
751 {
752         int retval = ERROR_OK;
753         uint32_t dscr;
754         struct armv7a_common *armv7a = target_to_armv7a(target);
755         struct adiv5_dap *swjdp = &armv7a->dap;
756         uint8_t saved_apsel = dap_ap_get_select(swjdp);
757         dap_ap_select(swjdp, swjdp_debugap);
758
759         /*
760          * Tell the core to be halted by writing DRCR with 0x1
761          * and then wait for the core to be halted.
762          */
763         retval = mem_ap_write_atomic_u32(swjdp,
764                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
765         if (retval != ERROR_OK)
766                 goto out;
767
768         /*
769          * enter halting debug mode
770          */
771         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
772         if (retval != ERROR_OK)
773                 goto out;
774
775         retval = mem_ap_write_atomic_u32(swjdp,
776                 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
777         if (retval != ERROR_OK)
778                 goto out;
779
780         long long then = timeval_ms();
781         for (;;)
782         {
783                 retval = mem_ap_read_atomic_u32(swjdp,
784                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
785                 if (retval != ERROR_OK)
786                         goto out;
787                 if ((dscr & DSCR_CORE_HALTED) != 0)
788                 {
789                         break;
790                 }
791                 if (timeval_ms() > then + 1000)
792                 {
793                         LOG_ERROR("Timeout waiting for halt");
794                         return ERROR_FAIL;
795                 }
796         }
797
798         target->debug_reason = DBG_REASON_DBGRQ;
799
800 out:
801         dap_ap_select(swjdp, saved_apsel);
802         return retval;
803 }
804
805 static int cortex_a9_resume(struct target *target, int current,
806                 uint32_t address, int handle_breakpoints, int debug_execution)
807 {
808         struct armv7a_common *armv7a = target_to_armv7a(target);
809         struct arm *armv4_5 = &armv7a->armv4_5_common;
810         struct adiv5_dap *swjdp = &armv7a->dap;
811         int retval;
812
813 //      struct breakpoint *breakpoint = NULL;
814         uint32_t resume_pc, dscr;
815
816         uint8_t saved_apsel = dap_ap_get_select(swjdp);
817         dap_ap_select(swjdp, swjdp_debugap);
818
819         if (!debug_execution)
820                 target_free_all_working_areas(target);
821
822 #if 0
823         if (debug_execution)
824         {
825                 /* Disable interrupts */
826                 /* We disable interrupts in the PRIMASK register instead of
827                  * masking with C_MASKINTS,
828                  * This is probably the same issue as Cortex-M3 Errata 377493:
829                  * C_MASKINTS in parallel with disabled interrupts can cause
830                  * local faults to not be taken. */
831                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
832                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
833                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
834
835                 /* Make sure we are in Thumb mode */
836                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
837                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
838                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
839                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
840         }
841 #endif
842
843         /* current = 1: continue on current pc, otherwise continue at <address> */
844         resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
845         if (!current)
846                 resume_pc = address;
847
848         /* Make sure that the Armv7 gdb thumb fixups does not
849          * kill the return address
850          */
851         switch (armv4_5->core_state)
852         {
853         case ARM_STATE_ARM:
854                 resume_pc &= 0xFFFFFFFC;
855                 break;
856         case ARM_STATE_THUMB:
857         case ARM_STATE_THUMB_EE:
858                 /* When the return address is loaded into PC
859                  * bit 0 must be 1 to stay in Thumb state
860                  */
861                 resume_pc |= 0x1;
862                 break;
863         case ARM_STATE_JAZELLE:
864                 LOG_ERROR("How do I resume into Jazelle state??");
865                 return ERROR_FAIL;
866         }
867         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
868         buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
869         armv4_5->pc->dirty = 1;
870         armv4_5->pc->valid = 1;
871
872         retval = cortex_a9_restore_context(target, handle_breakpoints);
873         if (retval != ERROR_OK)
874                 return retval;
875
876 #if 0
877         /* the front-end may request us not to handle breakpoints */
878         if (handle_breakpoints)
879         {
880                 /* Single step past breakpoint at current address */
881                 if ((breakpoint = breakpoint_find(target, resume_pc)))
882                 {
883                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
884                         cortex_m3_unset_breakpoint(target, breakpoint);
885                         cortex_m3_single_step_core(target);
886                         cortex_m3_set_breakpoint(target, breakpoint);
887                 }
888         }
889
890 #endif
891
892         /*
893          * Restart core and wait for it to be started.  Clear ITRen and sticky
894          * exception flags: see ARMv7 ARM, C5.9.
895          *
896          * REVISIT: for single stepping, we probably want to
897          * disable IRQs by default, with optional override...
898          */
899
900         retval = mem_ap_read_atomic_u32(swjdp,
901                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
902         if (retval != ERROR_OK)
903                 return retval;
904
905         if ((dscr & DSCR_INSTR_COMP) == 0)
906                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
907
908         retval = mem_ap_write_atomic_u32(swjdp,
909                 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
910         if (retval != ERROR_OK)
911                 return retval;
912
913         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR,
914                         DRCR_RESTART | DRCR_CLEAR_EXCEPTIONS);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         long long then = timeval_ms();
919         for (;;)
920         {
921                 retval = mem_ap_read_atomic_u32(swjdp,
922                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
923                 if (retval != ERROR_OK)
924                         return retval;
925                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
926                         break;
927                 if (timeval_ms() > then + 1000)
928                 {
929                         LOG_ERROR("Timeout waiting for resume");
930                         return ERROR_FAIL;
931                 }
932         }
933
934         target->debug_reason = DBG_REASON_NOTHALTED;
935         target->state = TARGET_RUNNING;
936
937         /* registers are now invalid */
938         register_cache_invalidate(armv4_5->core_cache);
939
940         if (!debug_execution)
941         {
942                 target->state = TARGET_RUNNING;
943                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
944                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
945         }
946         else
947         {
948                 target->state = TARGET_DEBUG_RUNNING;
949                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
950                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
951         }
952
953         dap_ap_select(swjdp, saved_apsel);
954
955         return ERROR_OK;
956 }
957
958 static int cortex_a9_debug_entry(struct target *target)
959 {
960         int i;
961         uint32_t regfile[16], cpsr, dscr;
962         int retval = ERROR_OK;
963         struct working_area *regfile_working_area = NULL;
964         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
965         struct armv7a_common *armv7a = target_to_armv7a(target);
966         struct arm *armv4_5 = &armv7a->armv4_5_common;
967         struct adiv5_dap *swjdp = &armv7a->dap;
968         struct reg *reg;
969
970         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a9->cpudbg_dscr);
971
972         /* REVISIT surely we should not re-read DSCR !! */
973         retval = mem_ap_read_atomic_u32(swjdp,
974                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
975         if (retval != ERROR_OK)
976                 return retval;
977
978         /* REVISIT see A9 TRM 12.11.4 steps 2..3 -- make sure that any
979          * imprecise data aborts get discarded by issuing a Data
980          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
981          */
982
983         /* Enable the ITR execution once we are in debug mode */
984         dscr |= DSCR_ITR_EN;
985         retval = mem_ap_write_atomic_u32(swjdp,
986                         armv7a->debug_base + CPUDBG_DSCR, dscr);
987         if (retval != ERROR_OK)
988                 return retval;
989
990         /* Examine debug reason */
991         arm_dpm_report_dscr(&armv7a->dpm, cortex_a9->cpudbg_dscr);
992
993         /* save address of instruction that triggered the watchpoint? */
994         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
995                 uint32_t wfar;
996
997                 retval = mem_ap_read_atomic_u32(swjdp,
998                                 armv7a->debug_base + CPUDBG_WFAR,
999                                 &wfar);
1000                 if (retval != ERROR_OK)
1001                         return retval;
1002                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1003         }
1004
1005         /* REVISIT fast_reg_read is never set ... */
1006
1007         /* Examine target state and mode */
1008         if (cortex_a9->fast_reg_read)
1009                 target_alloc_working_area(target, 64, &regfile_working_area);
1010
1011         /* First load register acessible through core debug port*/
1012         if (!regfile_working_area)
1013         {
1014                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1015         }
1016         else
1017         {
1018                 dap_ap_select(swjdp, swjdp_memoryap);
1019                 retval = cortex_a9_read_regs_through_mem(target,
1020                                 regfile_working_area->address, regfile);
1021                 dap_ap_select(swjdp, swjdp_memoryap);
1022                 target_free_working_area(target, regfile_working_area);
1023                 if (retval != ERROR_OK)
1024                 {
1025                         return retval;
1026                 }
1027
1028                 /* read Current PSR */
1029                 retval = cortex_a9_dap_read_coreregister_u32(target, &cpsr, 16);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032                 dap_ap_select(swjdp, swjdp_debugap);
1033                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1034
1035                 arm_set_cpsr(armv4_5, cpsr);
1036
1037                 /* update cache */
1038                 for (i = 0; i <= ARM_PC; i++)
1039                 {
1040                         reg = arm_reg_current(armv4_5, i);
1041
1042                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1043                         reg->valid = 1;
1044                         reg->dirty = 0;
1045                 }
1046
1047                 /* Fixup PC Resume Address */
1048                 if (cpsr & (1 << 5))
1049                 {
1050                         // T bit set for Thumb or ThumbEE state
1051                         regfile[ARM_PC] -= 4;
1052                 }
1053                 else
1054                 {
1055                         // ARM state
1056                         regfile[ARM_PC] -= 8;
1057                 }
1058
1059                 reg = armv4_5->pc;
1060                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1061                 reg->dirty = reg->valid;
1062         }
1063
1064 #if 0
1065 /* TODO, Move this */
1066         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1067         cortex_a9_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1068         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1069
1070         cortex_a9_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1071         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1072
1073         cortex_a9_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1074         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1075 #endif
1076
1077         /* Are we in an exception handler */
1078 //      armv4_5->exception_number = 0;
1079         if (armv7a->post_debug_entry)
1080         {
1081                 retval = armv7a->post_debug_entry(target);
1082                 if (retval != ERROR_OK)
1083                         return retval;
1084         }
1085
1086         return retval;
1087 }
1088
1089 static int cortex_a9_post_debug_entry(struct target *target)
1090 {
1091         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1092         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1093         int retval;
1094
1095         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1096         retval = armv7a->armv4_5_common.mrc(target, 15,
1097                         0, 0,   /* op1, op2 */
1098                         1, 0,   /* CRn, CRm */
1099                         &cortex_a9->cp15_control_reg);
1100         if (retval != ERROR_OK)
1101                 return retval;
1102         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a9->cp15_control_reg);
1103
1104         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1105         {
1106                 uint32_t cache_type_reg;
1107
1108                 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1109                 retval = armv7a->armv4_5_common.mrc(target, 15,
1110                                 0, 1,   /* op1, op2 */
1111                                 0, 0,   /* CRn, CRm */
1112                                 &cache_type_reg);
1113                 if (retval != ERROR_OK)
1114                         return retval;
1115                 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1116
1117                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A9 */
1118                 armv4_5_identify_cache(cache_type_reg,
1119                                 &armv7a->armv4_5_mmu.armv4_5_cache);
1120         }
1121
1122         armv7a->armv4_5_mmu.mmu_enabled =
1123                         (cortex_a9->cp15_control_reg & 0x1U) ? 1 : 0;
1124         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1125                         (cortex_a9->cp15_control_reg & 0x4U) ? 1 : 0;
1126         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1127                         (cortex_a9->cp15_control_reg & 0x1000U) ? 1 : 0;
1128
1129         return ERROR_OK;
1130 }
1131
1132 static int cortex_a9_step(struct target *target, int current, uint32_t address,
1133                 int handle_breakpoints)
1134 {
1135         struct armv7a_common *armv7a = target_to_armv7a(target);
1136         struct arm *armv4_5 = &armv7a->armv4_5_common;
1137         struct adiv5_dap *swjdp = &armv7a->dap;
1138         struct breakpoint *breakpoint = NULL;
1139         struct breakpoint stepbreakpoint;
1140         struct reg *r;
1141         int retval;
1142         uint8_t saved_apsel = dap_ap_get_select(swjdp);
1143
1144         if (target->state != TARGET_HALTED)
1145         {
1146                 LOG_WARNING("target not halted");
1147                 return ERROR_TARGET_NOT_HALTED;
1148         }
1149
1150         dap_ap_select(swjdp, swjdp_debugap);
1151
1152         /* current = 1: continue on current pc, otherwise continue at <address> */
1153         r = armv4_5->pc;
1154         if (!current)
1155         {
1156                 buf_set_u32(r->value, 0, 32, address);
1157         }
1158         else
1159         {
1160                 address = buf_get_u32(r->value, 0, 32);
1161         }
1162
1163         /* The front-end may request us not to handle breakpoints.
1164          * But since Cortex-A9 uses breakpoint for single step,
1165          * we MUST handle breakpoints.
1166          */
1167         handle_breakpoints = 1;
1168         if (handle_breakpoints) {
1169                 breakpoint = breakpoint_find(target, address);
1170                 if (breakpoint)
1171                         cortex_a9_unset_breakpoint(target, breakpoint);
1172         }
1173
1174         /* Setup single step breakpoint */
1175         stepbreakpoint.address = address;
1176         stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1177                         ? 2 : 4;
1178         stepbreakpoint.type = BKPT_HARD;
1179         stepbreakpoint.set = 0;
1180
1181         /* Break on IVA mismatch */
1182         cortex_a9_set_breakpoint(target, &stepbreakpoint, 0x04);
1183
1184         target->debug_reason = DBG_REASON_SINGLESTEP;
1185
1186         retval = cortex_a9_resume(target, 1, address, 0, 0);
1187         if (retval != ERROR_OK)
1188                 goto out;
1189
1190         long long then = timeval_ms();
1191         while (target->state != TARGET_HALTED)
1192         {
1193                 retval = cortex_a9_poll(target);
1194                 if (retval != ERROR_OK)
1195                         goto out;
1196                 if (timeval_ms() > then + 1000)
1197                 {
1198                         LOG_ERROR("timeout waiting for target halt");
1199                         retval = ERROR_FAIL;
1200                         goto out;
1201                 }
1202         }
1203
1204         cortex_a9_unset_breakpoint(target, &stepbreakpoint);
1205
1206         target->debug_reason = DBG_REASON_BREAKPOINT;
1207
1208         if (breakpoint)
1209                 cortex_a9_set_breakpoint(target, breakpoint, 0);
1210
1211         if (target->state != TARGET_HALTED)
1212                 LOG_DEBUG("target stepped");
1213
1214         retval = ERROR_OK;
1215
1216  out:
1217         dap_ap_select(swjdp, saved_apsel);
1218         return retval;
1219 }
1220
1221 static int cortex_a9_restore_context(struct target *target, bool bpwp)
1222 {
1223         struct armv7a_common *armv7a = target_to_armv7a(target);
1224
1225         LOG_DEBUG(" ");
1226
1227         if (armv7a->pre_restore_context)
1228                 armv7a->pre_restore_context(target);
1229
1230         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1231 }
1232
1233
1234 /*
1235  * Cortex-A9 Breakpoint and watchpoint functions
1236  */
1237
1238 /* Setup hardware Breakpoint Register Pair */
1239 static int cortex_a9_set_breakpoint(struct target *target,
1240                 struct breakpoint *breakpoint, uint8_t matchmode)
1241 {
1242         int retval;
1243         int brp_i=0;
1244         uint32_t control;
1245         uint8_t byte_addr_select = 0x0F;
1246         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1247         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1248         struct cortex_a9_brp * brp_list = cortex_a9->brp_list;
1249
1250         if (breakpoint->set)
1251         {
1252                 LOG_WARNING("breakpoint already set");
1253                 return ERROR_OK;
1254         }
1255
1256         if (breakpoint->type == BKPT_HARD)
1257         {
1258                 while (brp_list[brp_i].used && (brp_i < cortex_a9->brp_num))
1259                         brp_i++ ;
1260                 if (brp_i >= cortex_a9->brp_num)
1261                 {
1262                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1263                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1264                 }
1265                 breakpoint->set = brp_i + 1;
1266                 if (breakpoint->length == 2)
1267                 {
1268                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1269                 }
1270                 control = ((matchmode & 0x7) << 20)
1271                                 | (byte_addr_select << 5)
1272                                 | (3 << 1) | 1;
1273                 brp_list[brp_i].used = 1;
1274                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1275                 brp_list[brp_i].control = control;
1276                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1277                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1278                                 brp_list[brp_i].value);
1279                 if (retval != ERROR_OK)
1280                         return retval;
1281                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1282                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1283                                 brp_list[brp_i].control);
1284                 if (retval != ERROR_OK)
1285                         return retval;
1286                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1287                                 brp_list[brp_i].control,
1288                                 brp_list[brp_i].value);
1289         }
1290         else if (breakpoint->type == BKPT_SOFT)
1291         {
1292                 uint8_t code[4];
1293                 if (breakpoint->length == 2)
1294                 {
1295                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1296                 }
1297                 else
1298                 {
1299                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1300                 }
1301                 retval = target->type->read_memory(target,
1302                                 breakpoint->address & 0xFFFFFFFE,
1303                                 breakpoint->length, 1,
1304                                 breakpoint->orig_instr);
1305                 if (retval != ERROR_OK)
1306                         return retval;
1307                 retval = target->type->write_memory(target,
1308                                 breakpoint->address & 0xFFFFFFFE,
1309                                 breakpoint->length, 1, code);
1310                 if (retval != ERROR_OK)
1311                         return retval;
1312                 breakpoint->set = 0x11; /* Any nice value but 0 */
1313         }
1314
1315         return ERROR_OK;
1316 }
1317
1318 static int cortex_a9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1319 {
1320         int retval;
1321         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1322         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1323         struct cortex_a9_brp * brp_list = cortex_a9->brp_list;
1324
1325         if (!breakpoint->set)
1326         {
1327                 LOG_WARNING("breakpoint not set");
1328                 return ERROR_OK;
1329         }
1330
1331         if (breakpoint->type == BKPT_HARD)
1332         {
1333                 int brp_i = breakpoint->set - 1;
1334                 if ((brp_i < 0) || (brp_i >= cortex_a9->brp_num))
1335                 {
1336                         LOG_DEBUG("Invalid BRP number in breakpoint");
1337                         return ERROR_OK;
1338                 }
1339                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1340                                 brp_list[brp_i].control, brp_list[brp_i].value);
1341                 brp_list[brp_i].used = 0;
1342                 brp_list[brp_i].value = 0;
1343                 brp_list[brp_i].control = 0;
1344                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1345                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1346                                 brp_list[brp_i].control);
1347                 if (retval != ERROR_OK)
1348                         return retval;
1349                 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1350                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1351                                 brp_list[brp_i].value);
1352                 if (retval != ERROR_OK)
1353                         return retval;
1354         }
1355         else
1356         {
1357                 /* restore original instruction (kept in target endianness) */
1358                 if (breakpoint->length == 4)
1359                 {
1360                         retval = target->type->write_memory(target,
1361                                         breakpoint->address & 0xFFFFFFFE,
1362                                         4, 1, breakpoint->orig_instr);
1363                         if (retval != ERROR_OK)
1364                                 return retval;
1365                 }
1366                 else
1367                 {
1368                         retval = target->type->write_memory(target,
1369                                         breakpoint->address & 0xFFFFFFFE,
1370                                         2, 1, breakpoint->orig_instr);
1371                         if (retval != ERROR_OK)
1372                                 return retval;
1373                 }
1374         }
1375         breakpoint->set = 0;
1376
1377         return ERROR_OK;
1378 }
1379
1380 static int cortex_a9_add_breakpoint(struct target *target,
1381                 struct breakpoint *breakpoint)
1382 {
1383         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1384
1385         if ((breakpoint->type == BKPT_HARD) && (cortex_a9->brp_num_available < 1))
1386         {
1387                 LOG_INFO("no hardware breakpoint available");
1388                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1389         }
1390
1391         if (breakpoint->type == BKPT_HARD)
1392                 cortex_a9->brp_num_available--;
1393
1394         return cortex_a9_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1395 }
1396
1397 static int cortex_a9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1398 {
1399         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1400
1401 #if 0
1402 /* It is perfectly possible to remove breakpoints while the target is running */
1403         if (target->state != TARGET_HALTED)
1404         {
1405                 LOG_WARNING("target not halted");
1406                 return ERROR_TARGET_NOT_HALTED;
1407         }
1408 #endif
1409
1410         if (breakpoint->set)
1411         {
1412                 cortex_a9_unset_breakpoint(target, breakpoint);
1413                 if (breakpoint->type == BKPT_HARD)
1414                         cortex_a9->brp_num_available++ ;
1415         }
1416
1417
1418         return ERROR_OK;
1419 }
1420
1421
1422
1423 /*
1424  * Cortex-A9 Reset functions
1425  */
1426
1427 static int cortex_a9_assert_reset(struct target *target)
1428 {
1429         struct armv7a_common *armv7a = target_to_armv7a(target);
1430
1431         LOG_DEBUG(" ");
1432
1433         /* FIXME when halt is requested, make it work somehow... */
1434
1435         /* Issue some kind of warm reset. */
1436         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1437                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1438         } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1439                 /* REVISIT handle "pulls" cases, if there's
1440                  * hardware that needs them to work.
1441                  */
1442                 jtag_add_reset(0, 1);
1443         } else {
1444                 LOG_ERROR("%s: how to reset?", target_name(target));
1445                 return ERROR_FAIL;
1446         }
1447
1448         /* registers are now invalid */
1449         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1450
1451         target->state = TARGET_RESET;
1452
1453         return ERROR_OK;
1454 }
1455
1456 static int cortex_a9_deassert_reset(struct target *target)
1457 {
1458         int retval;
1459
1460         LOG_DEBUG(" ");
1461
1462         /* be certain SRST is off */
1463         jtag_add_reset(0, 0);
1464
1465         retval = cortex_a9_poll(target);
1466         if (retval != ERROR_OK)
1467                 return retval;
1468
1469         if (target->reset_halt) {
1470                 if (target->state != TARGET_HALTED) {
1471                         LOG_WARNING("%s: ran after reset and before halt ...",
1472                                         target_name(target));
1473                         if ((retval = target_halt(target)) != ERROR_OK)
1474                                 return retval;
1475                 }
1476         }
1477
1478         return ERROR_OK;
1479 }
1480
1481 /*
1482  * Cortex-A9 Memory access
1483  *
1484  * This is same Cortex M3 but we must also use the correct
1485  * ap number for every access.
1486  */
1487
1488 static int cortex_a9_read_phys_memory(struct target *target,
1489                 uint32_t address, uint32_t size,
1490                 uint32_t count, uint8_t *buffer)
1491 {
1492         struct armv7a_common *armv7a = target_to_armv7a(target);
1493         struct adiv5_dap *swjdp = &armv7a->dap;
1494         int retval = ERROR_INVALID_ARGUMENTS;
1495         uint8_t apsel = dap_ap_get_select(swjdp);
1496
1497         LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1498
1499         if (count && buffer) {
1500
1501                 if ( apsel == 0) {
1502                         /* read memory  throug AHB-AP */
1503
1504                         switch (size) {
1505                                 case 4:
1506                                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1507                                         break;
1508                                 case 2:
1509                                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1510                                         break;
1511                                 case 1:
1512                                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1513                                         break;
1514                         }
1515
1516                 } else {
1517
1518                         /* read memory  throug APB-AP */
1519
1520                         uint32_t saved_r0, saved_r1;
1521                         int nbytes = count * size;
1522                         uint32_t data;
1523
1524                         /* save registers r0 and r1, we are going to corrupt them  */
1525                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r0, 0);
1526                         if (retval != ERROR_OK)
1527                                 return retval;
1528
1529                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r1, 1);
1530                         if (retval != ERROR_OK)
1531                                 return retval;
1532
1533                         retval = cortex_a9_dap_write_coreregister_u32(target, address, 0);
1534                         if (retval != ERROR_OK)
1535                                 return retval;
1536
1537                         while (nbytes > 0) {
1538
1539                                 /* execute instruction LDRB r1, [r0], 1 (0xe4d01001) */
1540                                 retval = cortex_a9_exec_opcode(target, ARMV4_5_LDRB_IP(1, 0) , NULL);
1541                                 if (retval != ERROR_OK)
1542                                                 return retval;
1543
1544                                 retval = cortex_a9_dap_read_coreregister_u32(target, &data, 1);
1545                                 if (retval != ERROR_OK)
1546                                         return retval;
1547
1548                                 *buffer++ = data;
1549                                 --nbytes;
1550
1551                         }
1552
1553                         /* restore corrupted registers r0 and r1 */
1554                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r0, 0);
1555                         if (retval != ERROR_OK)
1556                                 return retval;
1557
1558                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r1, 1);
1559                         if (retval != ERROR_OK)
1560                                 return retval;
1561
1562                 }
1563         }
1564
1565         return retval;
1566 }
1567
1568 static int cortex_a9_read_memory(struct target *target, uint32_t address,
1569                 uint32_t size, uint32_t count, uint8_t *buffer)
1570 {
1571         int enabled = 0;
1572         uint32_t virt, phys;
1573         int retval;
1574
1575         /* cortex_a9 handles unaligned memory access */
1576
1577         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1578         retval = cortex_a9_mmu(target, &enabled);
1579         if (retval != ERROR_OK)
1580                 return retval;
1581
1582         if (enabled)
1583         {
1584                 virt = address;
1585                 retval = cortex_a9_virt2phys(target, virt, &phys);
1586                 if (retval != ERROR_OK)
1587                         return retval;
1588
1589                 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1590                 address = phys;
1591         }
1592
1593         return cortex_a9_read_phys_memory(target, address, size, count, buffer);
1594 }
1595
1596 static int cortex_a9_write_phys_memory(struct target *target,
1597                 uint32_t address, uint32_t size,
1598                 uint32_t count, uint8_t *buffer)
1599 {
1600         struct armv7a_common *armv7a = target_to_armv7a(target);
1601         struct adiv5_dap *swjdp = &armv7a->dap;
1602         int retval = ERROR_INVALID_ARGUMENTS;
1603
1604         LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1605
1606         if (count && buffer) {
1607                 uint8_t apsel = dap_ap_get_select(swjdp);
1608
1609                 if ( apsel == 0 ) {
1610
1611                         /* write memory  throug AHB-AP */
1612                         switch (size) {
1613                                 case 4:
1614                                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1615                                         break;
1616                                 case 2:
1617                                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1618                                         break;
1619                                 case 1:
1620                                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1621                                         break;
1622                         }
1623
1624                 } else {
1625
1626                         /* read memory  throug APB-AP */
1627
1628                         uint32_t saved_r0, saved_r1;
1629                         int nbytes = count * size;
1630                         uint32_t data;
1631
1632                         /* save registers r0 and r1, we are going to corrupt them  */
1633                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r0, 0);
1634                         if (retval != ERROR_OK)
1635                                 return retval;
1636
1637                         retval = cortex_a9_dap_read_coreregister_u32(target, &saved_r1, 1);
1638                         if (retval != ERROR_OK)
1639                                 return retval;
1640
1641                         retval = cortex_a9_dap_write_coreregister_u32(target, address, 0);
1642                         if (retval != ERROR_OK)
1643                                 return retval;
1644
1645                         while (nbytes > 0) {
1646
1647                                 data = *buffer++;
1648
1649                                 retval = cortex_a9_dap_write_coreregister_u32(target, data, 1);
1650                                 if (retval != ERROR_OK)
1651                                         return retval;
1652
1653                                         /* execute instruction STRB r1, [r0], 1 (0xe4c01001) */
1654                                 retval = cortex_a9_exec_opcode(target, ARMV4_5_STRB_IP(1, 0) , NULL);
1655                                 if (retval != ERROR_OK)
1656                                                 return retval;
1657
1658                                 --nbytes;
1659                         }
1660
1661                         /* restore corrupted registers r0 and r1 */
1662                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r0, 0);
1663                         if (retval != ERROR_OK)
1664                                 return retval;
1665
1666                         retval = cortex_a9_dap_write_coreregister_u32(target, saved_r1, 1);
1667                         if (retval != ERROR_OK)
1668                                 return retval;
1669
1670                         /* we can return here without invalidating D/I-cache because */
1671                         /* access through APB maintains cache coherency              */
1672                         return retval;
1673                 }
1674         }
1675
1676
1677         /* REVISIT this op is generic ARMv7-A/R stuff */
1678         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1679         {
1680                 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1681
1682                 retval = dpm->prepare(dpm);
1683                 if (retval != ERROR_OK)
1684                         return retval;
1685
1686                 /* The Cache handling will NOT work with MMU active, the
1687                  * wrong addresses will be invalidated!
1688                  *
1689                  * For both ICache and DCache, walk all cache lines in the
1690                  * address range. Cortex-A9 has fixed 64 byte line length.
1691                  *
1692                  * REVISIT per ARMv7, these may trigger watchpoints ...
1693                  */
1694
1695                 /* invalidate I-Cache */
1696                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1697                 {
1698                         /* ICIMVAU - Invalidate Cache single entry
1699                          * with MVA to PoU
1700                          *      MCR p15, 0, r0, c7, c5, 1
1701                          */
1702                         for (uint32_t cacheline = address;
1703                                         cacheline < address + size * count;
1704                                         cacheline += 64) {
1705                                 retval = dpm->instr_write_data_r0(dpm,
1706                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1707                                                 cacheline);
1708                                 if (retval != ERROR_OK)
1709                                         return retval;
1710                         }
1711                 }
1712
1713                 /* invalidate D-Cache */
1714                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1715                 {
1716                         /* DCIMVAC - Invalidate data Cache line
1717                          * with MVA to PoC
1718                          *      MCR p15, 0, r0, c7, c6, 1
1719                          */
1720                         for (uint32_t cacheline = address;
1721                                         cacheline < address + size * count;
1722                                         cacheline += 64) {
1723                                 retval = dpm->instr_write_data_r0(dpm,
1724                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1725                                                 cacheline);
1726                                 if (retval != ERROR_OK)
1727                                         return retval;
1728                         }
1729                 }
1730
1731                 /* (void) */ dpm->finish(dpm);
1732         }
1733
1734         return retval;
1735 }
1736
1737 static int cortex_a9_write_memory(struct target *target, uint32_t address,
1738                 uint32_t size, uint32_t count, uint8_t *buffer)
1739 {
1740         int enabled = 0;
1741         uint32_t virt, phys;
1742         int retval;
1743
1744         LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1745         retval = cortex_a9_mmu(target, &enabled);
1746         if (retval != ERROR_OK)
1747                 return retval;
1748
1749         if (enabled)
1750         {
1751                 virt = address;
1752                 retval = cortex_a9_virt2phys(target, virt, &phys);
1753                 if (retval != ERROR_OK)
1754                         return retval;
1755                 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1756                 address = phys;
1757         }
1758
1759         return cortex_a9_write_phys_memory(target, address, size,
1760                         count, buffer);
1761 }
1762
1763 static int cortex_a9_bulk_write_memory(struct target *target, uint32_t address,
1764                 uint32_t count, uint8_t *buffer)
1765 {
1766         return cortex_a9_write_memory(target, address, 4, count, buffer);
1767 }
1768
1769 static int cortex_a9_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1770 {
1771 #if 0
1772         u16 dcrdr;
1773
1774         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1775         *ctrl = (uint8_t)dcrdr;
1776         *value = (uint8_t)(dcrdr >> 8);
1777
1778         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1779
1780         /* write ack back to software dcc register
1781          * signify we have read data */
1782         if (dcrdr & (1 << 0))
1783         {
1784                 dcrdr = 0;
1785                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1786         }
1787 #endif
1788         return ERROR_OK;
1789 }
1790
1791
1792 static int cortex_a9_handle_target_request(void *priv)
1793 {
1794         struct target *target = priv;
1795         struct armv7a_common *armv7a = target_to_armv7a(target);
1796         struct adiv5_dap *swjdp = &armv7a->dap;
1797         int retval;
1798
1799         if (!target_was_examined(target))
1800                 return ERROR_OK;
1801         if (!target->dbg_msg_enabled)
1802                 return ERROR_OK;
1803
1804         if (target->state == TARGET_RUNNING)
1805         {
1806                 uint8_t data = 0;
1807                 uint8_t ctrl = 0;
1808
1809                 retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1810                 if (retval != ERROR_OK)
1811                         return retval;
1812
1813                 /* check if we have data */
1814                 if (ctrl & (1 << 0))
1815                 {
1816                         uint32_t request;
1817
1818                         /* we assume target is quick enough */
1819                         request = data;
1820                         retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1821                         if (retval != ERROR_OK)
1822                                 return retval;
1823                         request |= (data << 8);
1824                         retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1825                         if (retval != ERROR_OK)
1826                                 return retval;
1827                         request |= (data << 16);
1828                         retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1829                         if (retval != ERROR_OK)
1830                                 return retval;
1831                         request |= (data << 24);
1832                         target_request(target, request);
1833                 }
1834         }
1835
1836         return ERROR_OK;
1837 }
1838
1839 /*
1840  * Cortex-A9 target information and configuration
1841  */
1842
1843 static int cortex_a9_examine_first(struct target *target)
1844 {
1845         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1846         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1847         struct adiv5_dap *swjdp = &armv7a->dap;
1848         int i;
1849         int retval = ERROR_OK;
1850         uint32_t didr, ctypr, ttypr, cpuid;
1851
1852         /* We do one extra read to ensure DAP is configured,
1853          * we call ahbap_debugport_init(swjdp) instead
1854          */
1855         retval = ahbap_debugport_init(swjdp);
1856         if (retval != ERROR_OK)
1857                 return retval;
1858
1859         dap_ap_select(swjdp, swjdp_debugap);
1860
1861         /*
1862          * FIXME: assuming omap4430
1863          *
1864          * APB DBGBASE reads 0x80040000, but this points to an empty ROM table.
1865          * 0x80000000 is cpu0 coresight region
1866          */
1867         if (target->coreid > 3) {
1868                 LOG_ERROR("cortex_a9 supports up to 4 cores");
1869                 return ERROR_INVALID_ARGUMENTS;
1870         }
1871         armv7a->debug_base = 0x80000000 |
1872                         ((target->coreid & 0x3) << CORTEX_A9_PADDRDBG_CPU_SHIFT);
1873
1874         retval = mem_ap_read_atomic_u32(swjdp,
1875                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1876         if (retval != ERROR_OK)
1877                 return retval;
1878
1879         if ((retval = mem_ap_read_atomic_u32(swjdp,
1880                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1881         {
1882                 LOG_DEBUG("Examine %s failed", "CPUID");
1883                 return retval;
1884         }
1885
1886         if ((retval = mem_ap_read_atomic_u32(swjdp,
1887                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1888         {
1889                 LOG_DEBUG("Examine %s failed", "CTYPR");
1890                 return retval;
1891         }
1892
1893         if ((retval = mem_ap_read_atomic_u32(swjdp,
1894                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1895         {
1896                 LOG_DEBUG("Examine %s failed", "TTYPR");
1897                 return retval;
1898         }
1899
1900         if ((retval = mem_ap_read_atomic_u32(swjdp,
1901                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1902         {
1903                 LOG_DEBUG("Examine %s failed", "DIDR");
1904                 return retval;
1905         }
1906
1907         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1908         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1909         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1910         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1911
1912         armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1913         retval = cortex_a9_dpm_setup(cortex_a9, didr);
1914         if (retval != ERROR_OK)
1915                 return retval;
1916
1917         /* Setup Breakpoint Register Pairs */
1918         cortex_a9->brp_num = ((didr >> 24) & 0x0F) + 1;
1919         cortex_a9->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1920         cortex_a9->brp_num_available = cortex_a9->brp_num;
1921         cortex_a9->brp_list = calloc(cortex_a9->brp_num, sizeof(struct cortex_a9_brp));
1922 //      cortex_a9->brb_enabled = ????;
1923         for (i = 0; i < cortex_a9->brp_num; i++)
1924         {
1925                 cortex_a9->brp_list[i].used = 0;
1926                 if (i < (cortex_a9->brp_num-cortex_a9->brp_num_context))
1927                         cortex_a9->brp_list[i].type = BRP_NORMAL;
1928                 else
1929                         cortex_a9->brp_list[i].type = BRP_CONTEXT;
1930                 cortex_a9->brp_list[i].value = 0;
1931                 cortex_a9->brp_list[i].control = 0;
1932                 cortex_a9->brp_list[i].BRPn = i;
1933         }
1934
1935         LOG_DEBUG("Configured %i hw breakpoints", cortex_a9->brp_num);
1936
1937         target_set_examined(target);
1938         return ERROR_OK;
1939 }
1940
1941 static int cortex_a9_examine(struct target *target)
1942 {
1943         int retval = ERROR_OK;
1944
1945         /* don't re-probe hardware after each reset */
1946         if (!target_was_examined(target))
1947                 retval = cortex_a9_examine_first(target);
1948
1949         /* Configure core debug access */
1950         if (retval == ERROR_OK)
1951                 retval = cortex_a9_init_debug_access(target);
1952
1953         return retval;
1954 }
1955
1956 /*
1957  *      Cortex-A9 target creation and initialization
1958  */
1959
1960 static int cortex_a9_init_target(struct command_context *cmd_ctx,
1961                 struct target *target)
1962 {
1963         /* examine_first() does a bunch of this */
1964         return ERROR_OK;
1965 }
1966
1967 static int cortex_a9_init_arch_info(struct target *target,
1968                 struct cortex_a9_common *cortex_a9, struct jtag_tap *tap)
1969 {
1970         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1971         struct arm *armv4_5 = &armv7a->armv4_5_common;
1972         struct adiv5_dap *dap = &armv7a->dap;
1973
1974         armv7a->armv4_5_common.dap = dap;
1975
1976         /* Setup struct cortex_a9_common */
1977         cortex_a9->common_magic = CORTEX_A9_COMMON_MAGIC;
1978         armv4_5->arch_info = armv7a;
1979
1980         /* prepare JTAG information for the new target */
1981         cortex_a9->jtag_info.tap = tap;
1982         cortex_a9->jtag_info.scann_size = 4;
1983
1984         /* Leave (only) generic DAP stuff for debugport_init() */
1985         dap->jtag_info = &cortex_a9->jtag_info;
1986         dap->memaccess_tck = 80;
1987
1988         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1989         dap->tar_autoincr_block = (1 << 10);
1990
1991         cortex_a9->fast_reg_read = 0;
1992
1993         /* Set default value */
1994         cortex_a9->current_address_mode = ARM_MODE_ANY;
1995
1996         /* register arch-specific functions */
1997         armv7a->examine_debug_reason = NULL;
1998
1999         armv7a->post_debug_entry = cortex_a9_post_debug_entry;
2000
2001         armv7a->pre_restore_context = NULL;
2002         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
2003         armv7a->armv4_5_mmu.get_ttb = cortex_a9_get_ttb;
2004         armv7a->armv4_5_mmu.read_memory = cortex_a9_read_phys_memory;
2005         armv7a->armv4_5_mmu.write_memory = cortex_a9_write_phys_memory;
2006         armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a9_disable_mmu_caches;
2007         armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a9_enable_mmu_caches;
2008         armv7a->armv4_5_mmu.has_tiny_pages = 1;
2009         armv7a->armv4_5_mmu.mmu_enabled = 0;
2010
2011
2012 //      arm7_9->handle_target_request = cortex_a9_handle_target_request;
2013
2014         /* REVISIT v7a setup should be in a v7a-specific routine */
2015         arm_init_arch_info(target, armv4_5);
2016         armv7a->common_magic = ARMV7_COMMON_MAGIC;
2017
2018         target_register_timer_callback(cortex_a9_handle_target_request, 1, 1, target);
2019
2020         return ERROR_OK;
2021 }
2022
2023 static int cortex_a9_target_create(struct target *target, Jim_Interp *interp)
2024 {
2025         struct cortex_a9_common *cortex_a9 = calloc(1, sizeof(struct cortex_a9_common));
2026
2027         return cortex_a9_init_arch_info(target, cortex_a9, target->tap);
2028 }
2029
2030 static int cortex_a9_get_ttb(struct target *target, uint32_t *result)
2031 {
2032         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2033     struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2034     uint32_t ttb = 0, retval = ERROR_OK;
2035
2036     /* current_address_mode is set inside cortex_a9_virt2phys()
2037        where we can determine if address belongs to user or kernel */
2038     if(cortex_a9->current_address_mode == ARM_MODE_SVC)
2039     {
2040         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2041         retval = armv7a->armv4_5_common.mrc(target, 15,
2042                     0, 1,   /* op1, op2 */
2043                     2, 0,   /* CRn, CRm */
2044                     &ttb);
2045                 if (retval != ERROR_OK)
2046                         return retval;
2047     }
2048     else if(cortex_a9->current_address_mode == ARM_MODE_USR)
2049     {
2050         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2051         retval = armv7a->armv4_5_common.mrc(target, 15,
2052                     0, 0,   /* op1, op2 */
2053                     2, 0,   /* CRn, CRm */
2054                     &ttb);
2055                 if (retval != ERROR_OK)
2056                         return retval;
2057     }
2058     /* we don't know whose address is: user or kernel
2059        we assume that if we are in kernel mode then
2060        address belongs to kernel else if in user mode
2061        - to user */
2062     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
2063     {
2064         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2065         retval = armv7a->armv4_5_common.mrc(target, 15,
2066                     0, 1,   /* op1, op2 */
2067                     2, 0,   /* CRn, CRm */
2068                     &ttb);
2069                 if (retval != ERROR_OK)
2070                         return retval;
2071     }
2072     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
2073     {
2074         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2075         retval = armv7a->armv4_5_common.mrc(target, 15,
2076                     0, 0,   /* op1, op2 */
2077                     2, 0,   /* CRn, CRm */
2078                     &ttb);
2079                 if (retval != ERROR_OK)
2080                         return retval;
2081     }
2082     /* finally we don't know whose ttb to use: user or kernel */
2083     else
2084         LOG_ERROR("Don't know how to get ttb for current mode!!!");
2085
2086     ttb &= 0xffffc000;
2087
2088     *result = ttb;
2089
2090     return ERROR_OK;
2091 }
2092
2093 static int cortex_a9_disable_mmu_caches(struct target *target, int mmu,
2094                 int d_u_cache, int i_cache)
2095 {
2096         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2097         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2098         uint32_t cp15_control;
2099         int retval;
2100
2101         /* read cp15 control register */
2102         retval = armv7a->armv4_5_common.mrc(target, 15,
2103                         0, 0,   /* op1, op2 */
2104                         1, 0,   /* CRn, CRm */
2105                         &cp15_control);
2106         if (retval != ERROR_OK)
2107                 return retval;
2108
2109
2110         if (mmu)
2111                 cp15_control &= ~0x1U;
2112
2113         if (d_u_cache)
2114                 cp15_control &= ~0x4U;
2115
2116         if (i_cache)
2117                 cp15_control &= ~0x1000U;
2118
2119         retval = armv7a->armv4_5_common.mcr(target, 15,
2120                         0, 0,   /* op1, op2 */
2121                         1, 0,   /* CRn, CRm */
2122                         cp15_control);
2123         return retval;
2124 }
2125
2126 static int cortex_a9_enable_mmu_caches(struct target *target, int mmu,
2127                 int d_u_cache, int i_cache)
2128 {
2129         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2130         struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2131         uint32_t cp15_control;
2132         int retval;
2133
2134         /* read cp15 control register */
2135         retval = armv7a->armv4_5_common.mrc(target, 15,
2136                         0, 0,   /* op1, op2 */
2137                         1, 0,   /* CRn, CRm */
2138                         &cp15_control);
2139         if (retval != ERROR_OK)
2140                 return retval;
2141
2142         if (mmu)
2143                 cp15_control |= 0x1U;
2144
2145         if (d_u_cache)
2146                 cp15_control |= 0x4U;
2147
2148         if (i_cache)
2149                 cp15_control |= 0x1000U;
2150
2151         retval = armv7a->armv4_5_common.mcr(target, 15,
2152                         0, 0,   /* op1, op2 */
2153                         1, 0,   /* CRn, CRm */
2154                         cp15_control);
2155         return retval;
2156 }
2157
2158
2159 static int cortex_a9_mmu(struct target *target, int *enabled)
2160 {
2161         if (target->state != TARGET_HALTED) {
2162                 LOG_ERROR("%s: target not halted", __func__);
2163                 return ERROR_TARGET_INVALID;
2164         }
2165
2166         *enabled = target_to_cortex_a9(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
2167         return ERROR_OK;
2168 }
2169
2170 static int cortex_a9_virt2phys(struct target *target,
2171                 uint32_t virt, uint32_t *phys)
2172 {
2173         uint32_t cb;
2174         struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2175         // struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2176         struct armv7a_common *armv7a = target_to_armv7a(target);
2177
2178     /* We assume that virtual address is separated
2179        between user and kernel in Linux style:
2180        0x00000000-0xbfffffff - User space
2181        0xc0000000-0xffffffff - Kernel space */
2182     if( virt < 0xc0000000 ) /* Linux user space */
2183         cortex_a9->current_address_mode = ARM_MODE_USR;
2184     else /* Linux kernel */
2185         cortex_a9->current_address_mode = ARM_MODE_SVC;
2186         uint32_t ret;
2187         int retval = armv4_5_mmu_translate_va(target,
2188                         &armv7a->armv4_5_mmu, virt, &cb, &ret);
2189         if (retval != ERROR_OK)
2190                 return retval;
2191     /* Reset the flag. We don't want someone else to use it by error */
2192     cortex_a9->current_address_mode = ARM_MODE_ANY;
2193
2194         *phys = ret;
2195         return ERROR_OK;
2196 }
2197
2198 COMMAND_HANDLER(cortex_a9_handle_cache_info_command)
2199 {
2200         struct target *target = get_current_target(CMD_CTX);
2201         struct armv7a_common *armv7a = target_to_armv7a(target);
2202
2203         return armv4_5_handle_cache_info_command(CMD_CTX,
2204                         &armv7a->armv4_5_mmu.armv4_5_cache);
2205 }
2206
2207
2208 COMMAND_HANDLER(cortex_a9_handle_dbginit_command)
2209 {
2210         struct target *target = get_current_target(CMD_CTX);
2211         if (!target_was_examined(target))
2212         {
2213                 LOG_ERROR("target not examined yet");
2214                 return ERROR_FAIL;
2215         }
2216
2217         return cortex_a9_init_debug_access(target);
2218 }
2219
2220 static const struct command_registration cortex_a9_exec_command_handlers[] = {
2221         {
2222                 .name = "cache_info",
2223                 .handler = cortex_a9_handle_cache_info_command,
2224                 .mode = COMMAND_EXEC,
2225                 .help = "display information about target caches",
2226         },
2227         {
2228                 .name = "dbginit",
2229                 .handler = cortex_a9_handle_dbginit_command,
2230                 .mode = COMMAND_EXEC,
2231                 .help = "Initialize core debug",
2232         },
2233         COMMAND_REGISTRATION_DONE
2234 };
2235 static const struct command_registration cortex_a9_command_handlers[] = {
2236         {
2237                 .chain = arm_command_handlers,
2238         },
2239         {
2240                 .chain = armv7a_command_handlers,
2241         },
2242         {
2243                 .name = "cortex_a9",
2244                 .mode = COMMAND_ANY,
2245                 .help = "Cortex-A9 command group",
2246                 .chain = cortex_a9_exec_command_handlers,
2247         },
2248         COMMAND_REGISTRATION_DONE
2249 };
2250
2251 struct target_type cortexa9_target = {
2252         .name = "cortex_a9",
2253
2254         .poll = cortex_a9_poll,
2255         .arch_state = armv7a_arch_state,
2256
2257         .target_request_data = NULL,
2258
2259         .halt = cortex_a9_halt,
2260         .resume = cortex_a9_resume,
2261         .step = cortex_a9_step,
2262
2263         .assert_reset = cortex_a9_assert_reset,
2264         .deassert_reset = cortex_a9_deassert_reset,
2265         .soft_reset_halt = NULL,
2266
2267         /* REVISIT allow exporting VFP3 registers ... */
2268         .get_gdb_reg_list = arm_get_gdb_reg_list,
2269
2270         .read_memory = cortex_a9_read_memory,
2271         .write_memory = cortex_a9_write_memory,
2272         .bulk_write_memory = cortex_a9_bulk_write_memory,
2273
2274         .checksum_memory = arm_checksum_memory,
2275         .blank_check_memory = arm_blank_check_memory,
2276
2277         .run_algorithm = armv4_5_run_algorithm,
2278
2279         .add_breakpoint = cortex_a9_add_breakpoint,
2280         .remove_breakpoint = cortex_a9_remove_breakpoint,
2281         .add_watchpoint = NULL,
2282         .remove_watchpoint = NULL,
2283
2284         .commands = cortex_a9_command_handlers,
2285         .target_create = cortex_a9_target_create,
2286         .init_target = cortex_a9_init_target,
2287         .examine = cortex_a9_examine,
2288
2289         .read_phys_memory = cortex_a9_read_phys_memory,
2290         .write_phys_memory = cortex_a9_write_phys_memory,
2291         .mmu = cortex_a9_mmu,
2292         .virt2phys = cortex_a9_virt2phys,
2293 };