]> git.sur5r.net Git - openocd/blob - src/target/cortex_m3.c
target: remove needless "extern"s
[openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  */
46
47
48 /* forward declarations */
49 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
50 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
51 static void cortex_m3_enable_watchpoints(struct target *target);
52 static int cortex_m3_store_core_reg_u32(struct target *target,
53                 enum armv7m_regtype type, uint32_t num, uint32_t value);
54
55 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
56                 uint32_t *value, int regnum)
57 {
58         int retval;
59         uint32_t dcrdr;
60
61         /* because the DCB_DCRDR is used for the emulated dcc channel
62          * we have to save/restore the DCB_DCRDR when used */
63
64         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
65
66         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
67
68         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
69         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
70         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
71
72         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
73         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
74         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
75
76         retval = swjdp_transaction_endcheck(swjdp);
77
78         /* restore DCB_DCRDR - this needs to be in a seperate
79          * transaction otherwise the emulated DCC channel breaks */
80         if (retval == ERROR_OK)
81                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
82
83         return retval;
84 }
85
86 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
87                 uint32_t value, int regnum)
88 {
89         int retval;
90         uint32_t dcrdr;
91
92         /* because the DCB_DCRDR is used for the emulated dcc channel
93          * we have to save/restore the DCB_DCRDR when used */
94
95         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
96
97         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
98
99         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
100         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
101         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
102
103         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
104         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
105         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
106
107         retval = swjdp_transaction_endcheck(swjdp);
108
109         /* restore DCB_DCRDR - this needs to be in a seperate
110          * transaction otherwise the emulated DCC channel breaks */
111         if (retval == ERROR_OK)
112                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
113
114         return retval;
115 }
116
117 static int cortex_m3_write_debug_halt_mask(struct target *target,
118                 uint32_t mask_on, uint32_t mask_off)
119 {
120         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
121         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
122
123         /* mask off status bits */
124         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
125         /* create new register mask */
126         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
127
128         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
129 }
130
131 static int cortex_m3_clear_halt(struct target *target)
132 {
133         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
134         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
135
136         /* clear step if any */
137         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
138
139         /* Read Debug Fault Status Register */
140         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
141         /* Clear Debug Fault Status */
142         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
143         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
144
145         return ERROR_OK;
146 }
147
148 static int cortex_m3_single_step_core(struct target *target)
149 {
150         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
151         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
152         uint32_t dhcsr_save;
153
154         /* backup dhcsr reg */
155         dhcsr_save = cortex_m3->dcb_dhcsr;
156
157         /* mask interrupts if not done already */
158         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
159                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
160         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
161         LOG_DEBUG(" ");
162
163         /* restore dhcsr reg */
164         cortex_m3->dcb_dhcsr = dhcsr_save;
165         cortex_m3_clear_halt(target);
166
167         return ERROR_OK;
168 }
169
170 static int cortex_m3_endreset_event(struct target *target)
171 {
172         int i;
173         uint32_t dcb_demcr;
174         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
175         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
176         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
177         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
178
179         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
180         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
181
182         /* this regsiter is used for emulated dcc channel */
183         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
184
185         /* Enable debug requests */
186         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
187         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
188                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
189
190         /* clear any interrupt masking */
191         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
192
193         /* Enable trace and dwt */
194         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
195         /* Monitor bus faults */
196         mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
197
198         /* Enable FPB */
199         target_write_u32(target, FP_CTRL, 3);
200         cortex_m3->fpb_enabled = 1;
201
202         /* Restore FPB registers */
203         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
204         {
205                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
206         }
207
208         /* Restore DWT registers */
209         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
210         {
211                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
212                                 dwt_list[i].comp);
213                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
214                                 dwt_list[i].mask);
215                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
216                                 dwt_list[i].function);
217         }
218         swjdp_transaction_endcheck(swjdp);
219
220         register_cache_invalidate(cortex_m3->armv7m.core_cache);
221
222         /* make sure we have latest dhcsr flags */
223         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
224
225         return ERROR_OK;
226 }
227
228 static int cortex_m3_examine_debug_reason(struct target *target)
229 {
230         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
231
232         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
233         /* only check the debug reason if we don't know it already */
234
235         if ((target->debug_reason != DBG_REASON_DBGRQ)
236                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
237         {
238                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
239                 {
240                         target->debug_reason = DBG_REASON_BREAKPOINT;
241                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
242                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
243                 }
244                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
245                         target->debug_reason = DBG_REASON_WATCHPOINT;
246                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
247                         target->debug_reason = DBG_REASON_BREAKPOINT;
248                 else /* EXTERNAL, HALTED */
249                         target->debug_reason = DBG_REASON_UNDEFINED;
250         }
251
252         return ERROR_OK;
253 }
254
255 static int cortex_m3_examine_exception_reason(struct target *target)
256 {
257         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
258         struct armv7m_common *armv7m = target_to_armv7m(target);
259         struct swjdp_common *swjdp = &armv7m->swjdp_info;
260
261         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
262         switch (armv7m->exception_number)
263         {
264                 case 2: /* NMI */
265                         break;
266                 case 3: /* Hard Fault */
267                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
268                         if (except_sr & 0x40000000)
269                         {
270                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
271                         }
272                         break;
273                 case 4: /* Memory Management */
274                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
275                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
276                         break;
277                 case 5: /* Bus Fault */
278                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
279                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
280                         break;
281                 case 6: /* Usage Fault */
282                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
283                         break;
284                 case 11:        /* SVCall */
285                         break;
286                 case 12:        /* Debug Monitor */
287                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
288                         break;
289                 case 14:        /* PendSV */
290                         break;
291                 case 15:        /* SysTick */
292                         break;
293                 default:
294                         except_sr = 0;
295                         break;
296         }
297         swjdp_transaction_endcheck(swjdp);
298         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
299                 shcsr, except_sr, cfsr, except_ar);
300         return ERROR_OK;
301 }
302
303 static int cortex_m3_debug_entry(struct target *target)
304 {
305         int i;
306         uint32_t xPSR;
307         int retval;
308         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
309         struct armv7m_common *armv7m = &cortex_m3->armv7m;
310         struct swjdp_common *swjdp = &armv7m->swjdp_info;
311
312         LOG_DEBUG(" ");
313
314         cortex_m3_clear_halt(target);
315         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
316
317         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
318                 return retval;
319
320         /* Examine target state and mode */
321         /* First load register acessible through core debug port*/
322         int num_regs = armv7m->core_cache->num_regs;
323
324         for (i = 0; i < num_regs; i++)
325         {
326                 if (!armv7m->core_cache->reg_list[i].valid)
327                         armv7m->read_core_reg(target, i);
328         }
329
330         xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
331
332 #ifdef ARMV7_GDB_HACKS
333         /* FIXME this breaks on scan chains with more than one Cortex-M3.
334          * Instead, each CM3 should have its own dummy value...
335          */
336         /* copy real xpsr reg for gdb, setting thumb bit */
337         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
338         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
339         armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
340         armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
341 #endif
342
343         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
344         if (xPSR & 0xf00)
345         {
346                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
347                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
348         }
349
350         /* Are we in an exception handler */
351         if (xPSR & 0x1FF)
352         {
353                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
354                 armv7m->exception_number = (xPSR & 0x1FF);
355         }
356         else
357         {
358                 armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
359                 armv7m->exception_number = 0;
360         }
361
362         if (armv7m->exception_number)
363         {
364                 cortex_m3_examine_exception_reason(target);
365         }
366
367         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
368                 armv7m_mode_strings[armv7m->core_mode],
369                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
370                 target_state_name(target));
371
372         if (armv7m->post_debug_entry)
373                 armv7m->post_debug_entry(target);
374
375         return ERROR_OK;
376 }
377
378 static int cortex_m3_poll(struct target *target)
379 {
380         int retval;
381         enum target_state prev_target_state = target->state;
382         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
383         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
384
385         /* Read from Debug Halting Control and Status Register */
386         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
387         if (retval != ERROR_OK)
388         {
389                 target->state = TARGET_UNKNOWN;
390                 return retval;
391         }
392
393         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
394         {
395                 /* check if still in reset */
396                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
397
398                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
399                 {
400                         target->state = TARGET_RESET;
401                         return ERROR_OK;
402                 }
403         }
404
405         if (target->state == TARGET_RESET)
406         {
407                 /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
408                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
409                 cortex_m3_endreset_event(target);
410                 target->state = TARGET_RUNNING;
411                 prev_target_state = TARGET_RUNNING;
412         }
413
414         if (cortex_m3->dcb_dhcsr & S_HALT)
415         {
416                 target->state = TARGET_HALTED;
417
418                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
419                 {
420                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
421                                 return retval;
422
423                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
424                 }
425                 if (prev_target_state == TARGET_DEBUG_RUNNING)
426                 {
427                         LOG_DEBUG(" ");
428                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
429                                 return retval;
430
431                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
432                 }
433         }
434
435         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
436          * How best to model low power modes?
437          */
438
439         if (target->state == TARGET_UNKNOWN)
440         {
441                 /* check if processor is retiring instructions */
442                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
443                 {
444                         target->state = TARGET_RUNNING;
445                         return ERROR_OK;
446                 }
447         }
448
449         return ERROR_OK;
450 }
451
452 static int cortex_m3_halt(struct target *target)
453 {
454         LOG_DEBUG("target->state: %s",
455                 target_state_name(target));
456
457         if (target->state == TARGET_HALTED)
458         {
459                 LOG_DEBUG("target was already halted");
460                 return ERROR_OK;
461         }
462
463         if (target->state == TARGET_UNKNOWN)
464         {
465                 LOG_WARNING("target was in unknown state when halt was requested");
466         }
467
468         if (target->state == TARGET_RESET)
469         {
470                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
471                 {
472                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
473                         return ERROR_TARGET_FAILURE;
474                 }
475                 else
476                 {
477                         /* we came here in a reset_halt or reset_init sequence
478                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
479                          */
480                         target->debug_reason = DBG_REASON_DBGRQ;
481
482                         return ERROR_OK;
483                 }
484         }
485
486         /* Write to Debug Halting Control and Status Register */
487         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
488
489         target->debug_reason = DBG_REASON_DBGRQ;
490
491         return ERROR_OK;
492 }
493
494 static int cortex_m3_soft_reset_halt(struct target *target)
495 {
496         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
497         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
498         uint32_t dcb_dhcsr = 0;
499         int retval, timeout = 0;
500
501         /* Enter debug state on reset, cf. end_reset_event() */
502         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
503
504         /* Request a reset */
505         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
506         target->state = TARGET_RESET;
507
508         /* registers are now invalid */
509         register_cache_invalidate(cortex_m3->armv7m.core_cache);
510
511         while (timeout < 100)
512         {
513                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
514                 if (retval == ERROR_OK)
515                 {
516                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
517                         if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
518                         {
519                                 LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
520                                 cortex_m3_poll(target);
521                                 return ERROR_OK;
522                         }
523                         else
524                                 LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
525                 }
526                 timeout++;
527                 alive_sleep(1);
528         }
529
530         return ERROR_OK;
531 }
532
533 static void cortex_m3_enable_breakpoints(struct target *target)
534 {
535         struct breakpoint *breakpoint = target->breakpoints;
536
537         /* set any pending breakpoints */
538         while (breakpoint)
539         {
540                 if (breakpoint->set == 0)
541                         cortex_m3_set_breakpoint(target, breakpoint);
542                 breakpoint = breakpoint->next;
543         }
544 }
545
546 static int cortex_m3_resume(struct target *target, int current,
547                 uint32_t address, int handle_breakpoints, int debug_execution)
548 {
549         struct armv7m_common *armv7m = target_to_armv7m(target);
550         struct breakpoint *breakpoint = NULL;
551         uint32_t resume_pc;
552
553         if (target->state != TARGET_HALTED)
554         {
555                 LOG_WARNING("target not halted");
556                 return ERROR_TARGET_NOT_HALTED;
557         }
558
559         if (!debug_execution)
560         {
561                 target_free_all_working_areas(target);
562                 cortex_m3_enable_breakpoints(target);
563                 cortex_m3_enable_watchpoints(target);
564         }
565
566         if (debug_execution)
567         {
568                 /* Disable interrupts */
569                 /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
570                  * This is probably the same issue as Cortex-M3 Errata  377493:
571                  * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
572                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
573                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
574                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
575
576                 /* Make sure we are in Thumb mode */
577                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
578                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
579                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
580                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
581         }
582
583         /* current = 1: continue on current pc, otherwise continue at <address> */
584         if (!current)
585         {
586                 buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
587                 armv7m->core_cache->reg_list[15].dirty = 1;
588                 armv7m->core_cache->reg_list[15].valid = 1;
589         }
590
591         resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
592
593         armv7m_restore_context(target);
594
595         /* the front-end may request us not to handle breakpoints */
596         if (handle_breakpoints)
597         {
598                 /* Single step past breakpoint at current address */
599                 if ((breakpoint = breakpoint_find(target, resume_pc)))
600                 {
601                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
602                                           breakpoint->address,
603                                           breakpoint->unique_id);
604                         cortex_m3_unset_breakpoint(target, breakpoint);
605                         cortex_m3_single_step_core(target);
606                         cortex_m3_set_breakpoint(target, breakpoint);
607                 }
608         }
609
610         /* Restart core */
611         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
612
613         target->debug_reason = DBG_REASON_NOTHALTED;
614
615         /* registers are now invalid */
616         register_cache_invalidate(armv7m->core_cache);
617
618         if (!debug_execution)
619         {
620                 target->state = TARGET_RUNNING;
621                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
622                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
623         }
624         else
625         {
626                 target->state = TARGET_DEBUG_RUNNING;
627                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
628                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
629         }
630
631         return ERROR_OK;
632 }
633
634 /* int irqstepcount = 0; */
635 static int cortex_m3_step(struct target *target, int current,
636                 uint32_t address, int handle_breakpoints)
637 {
638         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
639         struct armv7m_common *armv7m = &cortex_m3->armv7m;
640         struct swjdp_common *swjdp = &armv7m->swjdp_info;
641         struct breakpoint *breakpoint = NULL;
642
643         if (target->state != TARGET_HALTED)
644         {
645                 LOG_WARNING("target not halted");
646                 return ERROR_TARGET_NOT_HALTED;
647         }
648
649         /* current = 1: continue on current pc, otherwise continue at <address> */
650         if (!current)
651                 buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
652                                 0, 32, address);
653
654         /* the front-end may request us not to handle breakpoints */
655         if (handle_breakpoints) {
656                 breakpoint = breakpoint_find(target, buf_get_u32(armv7m
657                                 ->core_cache->reg_list[15].value, 0, 32));
658                 if (breakpoint)
659                         cortex_m3_unset_breakpoint(target, breakpoint);
660         }
661
662         target->debug_reason = DBG_REASON_SINGLESTEP;
663
664         armv7m_restore_context(target);
665
666         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
667
668         /* set step and clear halt */
669         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
670         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
671
672         /* registers are now invalid */
673         register_cache_invalidate(cortex_m3->armv7m.core_cache);
674
675         if (breakpoint)
676                 cortex_m3_set_breakpoint(target, breakpoint);
677
678         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
679
680         cortex_m3_debug_entry(target);
681         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
682
683         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
684         return ERROR_OK;
685 }
686
687 static int cortex_m3_assert_reset(struct target *target)
688 {
689         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
690         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
691         int assert_srst = 1;
692
693         LOG_DEBUG("target->state: %s",
694                 target_state_name(target));
695
696         enum reset_types jtag_reset_config = jtag_get_reset_config();
697
698         /*
699          * We can reset Cortex-M3 targets using just the NVIC without
700          * requiring SRST, getting a SoC reset (or a core-only reset)
701          * instead of a system reset.
702          */
703         if (!(jtag_reset_config & RESET_HAS_SRST))
704                 assert_srst = 0;
705
706         /* Enable debug requests */
707         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
708         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
709                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
710
711         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
712
713         if (!target->reset_halt)
714         {
715                 /* Set/Clear C_MASKINTS in a separate operation */
716                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
717                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
718
719                 /* clear any debug flags before resuming */
720                 cortex_m3_clear_halt(target);
721
722                 /* clear C_HALT in dhcsr reg */
723                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
724
725                 /* Enter debug state on reset, cf. end_reset_event() */
726                 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
727         }
728         else
729         {
730                 /* Enter debug state on reset, cf. end_reset_event() */
731                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
732         }
733
734         /*
735          * When nRST is asserted on most Stellaris devices, it clears some of
736          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
737          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
738          * chips.  (Only power-on reset should affect debug state, beyond a
739          * few specified bits; not the chip's nRST input, wired to SRST.)
740          *
741          * REVISIT current errata specs don't seem to cover this issue.
742          * Do we have more details than this email?
743          *   https://lists.berlios.de/pipermail
744          *      /openocd-development/2008-August/003065.html
745          */
746         if (strcmp(target->variant, "lm3s") == 0)
747         {
748                 /* Check for silicon revisions with the issue. */
749                 uint32_t did0;
750
751                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
752                 {
753                         switch ((did0 >> 16) & 0xff)
754                         {
755                                 case 0:
756                                         /* all Sandstorm suffer issue */
757                                         assert_srst = 0;
758                                         break;
759
760                                 case 1:
761                                 case 3:
762                                         /* Fury and DustDevil rev A have
763                                          * this nRST problem.  It should
764                                          * be fixed in rev B silicon.
765                                          */
766                                         if (((did0 >> 8) & 0xff) == 0)
767                                                 assert_srst = 0;
768                                         break;
769                                 case 4:
770                                         /* Tempest should be fine. */
771                                         break;
772                         }
773                 }
774         }
775
776         if (assert_srst)
777         {
778                 /* default to asserting srst */
779                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
780                 {
781                         jtag_add_reset(1, 1);
782                 }
783                 else
784                 {
785                         jtag_add_reset(0, 1);
786                 }
787         }
788         else
789         {
790                 /* Use a standard Cortex-M3 software reset mechanism.
791                  * SYSRESETREQ will reset SoC peripherals outside the
792                  * core, like watchdog timers, if the SoC wires it up
793                  * correctly.  Else VECRESET can reset just the core.
794                  */
795                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
796                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
797                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
798
799                 {
800                         /* I do not know why this is necessary, but it
801                          * fixes strange effects (step/resume cause NMI
802                          * after reset) on LM3S6918 -- Michael Schwingen
803                          */
804                         uint32_t tmp;
805                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
806                 }
807         }
808
809         target->state = TARGET_RESET;
810         jtag_add_sleep(50000);
811
812         register_cache_invalidate(cortex_m3->armv7m.core_cache);
813
814         if (target->reset_halt)
815         {
816                 int retval;
817                 if ((retval = target_halt(target)) != ERROR_OK)
818                         return retval;
819         }
820
821         return ERROR_OK;
822 }
823
824 static int cortex_m3_deassert_reset(struct target *target)
825 {
826         LOG_DEBUG("target->state: %s",
827                 target_state_name(target));
828
829         /* deassert reset lines */
830         jtag_add_reset(0, 0);
831
832         return ERROR_OK;
833 }
834
835 static int
836 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
837 {
838         int retval;
839         int fp_num = 0;
840         uint32_t hilo;
841         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
842         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
843
844         if (breakpoint->set)
845         {
846                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
847                 return ERROR_OK;
848         }
849
850         if (cortex_m3->auto_bp_type)
851         {
852                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
853         }
854
855         if (breakpoint->type == BKPT_HARD)
856         {
857                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
858                         fp_num++;
859                 if (fp_num >= cortex_m3->fp_num_code)
860                 {
861                         LOG_ERROR("Can not find free FPB Comparator!");
862                         return ERROR_FAIL;
863                 }
864                 breakpoint->set = fp_num + 1;
865                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
866                 comparator_list[fp_num].used = 1;
867                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
868                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
869                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
870                 if (!cortex_m3->fpb_enabled)
871                 {
872                         LOG_DEBUG("FPB wasn't enabled, do it now");
873                         target_write_u32(target, FP_CTRL, 3);
874                 }
875         }
876         else if (breakpoint->type == BKPT_SOFT)
877         {
878                 uint8_t code[4];
879                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
880                 if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
881                 {
882                         return retval;
883                 }
884                 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
885                 {
886                         return retval;
887                 }
888                 breakpoint->set = 0x11; /* Any nice value but 0 */
889         }
890
891         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
892                           breakpoint->unique_id,
893                           (int)(breakpoint->type),
894                           breakpoint->address,
895                           breakpoint->length,
896                           breakpoint->set);
897
898         return ERROR_OK;
899 }
900
901 static int
902 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
903 {
904         int retval;
905         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
906         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
907
908         if (!breakpoint->set)
909         {
910                 LOG_WARNING("breakpoint not set");
911                 return ERROR_OK;
912         }
913
914         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
915                           breakpoint->unique_id,
916                           (int)(breakpoint->type),
917                           breakpoint->address,
918                           breakpoint->length,
919                           breakpoint->set);
920
921         if (breakpoint->type == BKPT_HARD)
922         {
923                 int fp_num = breakpoint->set - 1;
924                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
925                 {
926                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
927                         return ERROR_OK;
928                 }
929                 comparator_list[fp_num].used = 0;
930                 comparator_list[fp_num].fpcr_value = 0;
931                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
932         }
933         else
934         {
935                 /* restore original instruction (kept in target endianness) */
936                 if (breakpoint->length == 4)
937                 {
938                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
939                         {
940                                 return retval;
941                         }
942                 }
943                 else
944                 {
945                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
946                         {
947                                 return retval;
948                         }
949                 }
950         }
951         breakpoint->set = 0;
952
953         return ERROR_OK;
954 }
955
956 static int
957 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
958 {
959         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
960
961         if (cortex_m3->auto_bp_type)
962         {
963                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
964 #ifdef ARMV7_GDB_HACKS
965                 if (breakpoint->length != 2) {
966                         /* XXX Hack: Replace all breakpoints with length != 2 with
967                          * a hardware breakpoint. */
968                         breakpoint->type = BKPT_HARD;
969                         breakpoint->length = 2;
970                 }
971 #endif
972         }
973
974         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
975         {
976                 LOG_INFO("flash patch comparator requested outside code memory region");
977                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
978         }
979
980         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
981         {
982                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
983                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
984         }
985
986         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
987         {
988                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
989                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
990         }
991
992         if ((breakpoint->length != 2))
993         {
994                 LOG_INFO("only breakpoints of two bytes length supported");
995                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
996         }
997
998         if (breakpoint->type == BKPT_HARD)
999                 cortex_m3->fp_code_available--;
1000         cortex_m3_set_breakpoint(target, breakpoint);
1001
1002         return ERROR_OK;
1003 }
1004
1005 static int
1006 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1007 {
1008         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1009
1010         /* REVISIT why check? FBP can be updated with core running ... */
1011         if (target->state != TARGET_HALTED)
1012         {
1013                 LOG_WARNING("target not halted");
1014                 return ERROR_TARGET_NOT_HALTED;
1015         }
1016
1017         if (cortex_m3->auto_bp_type)
1018         {
1019                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1020         }
1021
1022         if (breakpoint->set)
1023         {
1024                 cortex_m3_unset_breakpoint(target, breakpoint);
1025         }
1026
1027         if (breakpoint->type == BKPT_HARD)
1028                 cortex_m3->fp_code_available++;
1029
1030         return ERROR_OK;
1031 }
1032
1033 static int
1034 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1035 {
1036         int dwt_num = 0;
1037         uint32_t mask, temp;
1038         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1039
1040         /* watchpoint params were validated earlier */
1041         mask = 0;
1042         temp = watchpoint->length;
1043         while (temp) {
1044                 temp >>= 1;
1045                 mask++;
1046         }
1047         mask--;
1048
1049         /* REVISIT Don't fully trust these "not used" records ... users
1050          * may set up breakpoints by hand, e.g. dual-address data value
1051          * watchpoint using comparator #1; comparator #0 matching cycle
1052          * count; send data trace info through ITM and TPIU; etc
1053          */
1054         struct cortex_m3_dwt_comparator *comparator;
1055
1056         for (comparator = cortex_m3->dwt_comparator_list;
1057                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1058                         comparator++, dwt_num++)
1059                 continue;
1060         if (dwt_num >= cortex_m3->dwt_num_comp)
1061         {
1062                 LOG_ERROR("Can not find free DWT Comparator");
1063                 return ERROR_FAIL;
1064         }
1065         comparator->used = 1;
1066         watchpoint->set = dwt_num + 1;
1067
1068         comparator->comp = watchpoint->address;
1069         target_write_u32(target, comparator->dwt_comparator_address + 0,
1070                         comparator->comp);
1071
1072         comparator->mask = mask;
1073         target_write_u32(target, comparator->dwt_comparator_address + 4,
1074                         comparator->mask);
1075
1076         switch (watchpoint->rw) {
1077         case WPT_READ:
1078                 comparator->function = 5;
1079                 break;
1080         case WPT_WRITE:
1081                 comparator->function = 6;
1082                 break;
1083         case WPT_ACCESS:
1084                 comparator->function = 7;
1085                 break;
1086         }
1087         target_write_u32(target, comparator->dwt_comparator_address + 8,
1088                         comparator->function);
1089
1090         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1091                         watchpoint->unique_id, dwt_num,
1092                         (unsigned) comparator->comp,
1093                         (unsigned) comparator->mask,
1094                         (unsigned) comparator->function);
1095         return ERROR_OK;
1096 }
1097
1098 static int
1099 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1100 {
1101         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1102         struct cortex_m3_dwt_comparator *comparator;
1103         int dwt_num;
1104
1105         if (!watchpoint->set)
1106         {
1107                 LOG_WARNING("watchpoint (wpid: %d) not set",
1108                                 watchpoint->unique_id);
1109                 return ERROR_OK;
1110         }
1111
1112         dwt_num = watchpoint->set - 1;
1113
1114         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1115                         watchpoint->unique_id, dwt_num,
1116                         (unsigned) watchpoint->address);
1117
1118         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1119         {
1120                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1121                 return ERROR_OK;
1122         }
1123
1124         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1125         comparator->used = 0;
1126         comparator->function = 0;
1127         target_write_u32(target, comparator->dwt_comparator_address + 8,
1128                         comparator->function);
1129
1130         watchpoint->set = 0;
1131
1132         return ERROR_OK;
1133 }
1134
1135 static int
1136 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1137 {
1138         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1139
1140         if (cortex_m3->dwt_comp_available < 1)
1141         {
1142                 LOG_DEBUG("no comparators?");
1143                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1144         }
1145
1146         /* hardware doesn't support data value masking */
1147         if (watchpoint->mask != ~(uint32_t)0) {
1148                 LOG_DEBUG("watchpoint value masks not supported");
1149                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1150         }
1151
1152         /* hardware allows address masks of up to 32K */
1153         unsigned mask;
1154
1155         for (mask = 0; mask < 16; mask++) {
1156                 if ((1u << mask) == watchpoint->length)
1157                         break;
1158         }
1159         if (mask == 16) {
1160                 LOG_DEBUG("unsupported watchpoint length");
1161                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1162         }
1163         if (watchpoint->address & ((1 << mask) - 1)) {
1164                 LOG_DEBUG("watchpoint address is unaligned");
1165                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1166         }
1167
1168         /* Caller doesn't seem to be able to describe watching for data
1169          * values of zero; that flags "no value".
1170          *
1171          * REVISIT This DWT may well be able to watch for specific data
1172          * values.  Requires comparator #1 to set DATAVMATCH and match
1173          * the data, and another comparator (DATAVADDR0) matching addr.
1174          */
1175         if (watchpoint->value) {
1176                 LOG_DEBUG("data value watchpoint not YET supported");
1177                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1178         }
1179
1180         cortex_m3->dwt_comp_available--;
1181         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1182
1183         return ERROR_OK;
1184 }
1185
1186 static int
1187 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1188 {
1189         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1190
1191         /* REVISIT why check? DWT can be updated with core running ... */
1192         if (target->state != TARGET_HALTED)
1193         {
1194                 LOG_WARNING("target not halted");
1195                 return ERROR_TARGET_NOT_HALTED;
1196         }
1197
1198         if (watchpoint->set)
1199         {
1200                 cortex_m3_unset_watchpoint(target, watchpoint);
1201         }
1202
1203         cortex_m3->dwt_comp_available++;
1204         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1205
1206         return ERROR_OK;
1207 }
1208
1209 static void cortex_m3_enable_watchpoints(struct target *target)
1210 {
1211         struct watchpoint *watchpoint = target->watchpoints;
1212
1213         /* set any pending watchpoints */
1214         while (watchpoint)
1215         {
1216                 if (watchpoint->set == 0)
1217                         cortex_m3_set_watchpoint(target, watchpoint);
1218                 watchpoint = watchpoint->next;
1219         }
1220 }
1221
1222 static int cortex_m3_load_core_reg_u32(struct target *target,
1223                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1224 {
1225         int retval;
1226         struct armv7m_common *armv7m = target_to_armv7m(target);
1227         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1228
1229         /* NOTE:  we "know" here that the register identifiers used
1230          * in the v7m header match the Cortex-M3 Debug Core Register
1231          * Selector values for R0..R15, xPSR, MSP, and PSP.
1232          */
1233         switch (num) {
1234         case 0 ... 18:
1235                 /* read a normal core register */
1236                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1237
1238                 if (retval != ERROR_OK)
1239                 {
1240                         LOG_ERROR("JTAG failure %i",retval);
1241                         return ERROR_JTAG_DEVICE_ERROR;
1242                 }
1243                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1244                 break;
1245
1246         case ARMV7M_PRIMASK:
1247         case ARMV7M_BASEPRI:
1248         case ARMV7M_FAULTMASK:
1249         case ARMV7M_CONTROL:
1250                 /* Cortex-M3 packages these four registers as bitfields
1251                  * in one Debug Core register.  So say r0 and r2 docs;
1252                  * it was removed from r1 docs, but still works.
1253                  */
1254                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1255
1256                 switch (num)
1257                 {
1258                         case ARMV7M_PRIMASK:
1259                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1260                                 break;
1261
1262                         case ARMV7M_BASEPRI:
1263                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1264                                 break;
1265
1266                         case ARMV7M_FAULTMASK:
1267                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1268                                 break;
1269
1270                         case ARMV7M_CONTROL:
1271                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1272                                 break;
1273                 }
1274
1275                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1276                 break;
1277
1278         default:
1279                 return ERROR_INVALID_ARGUMENTS;
1280         }
1281
1282         return ERROR_OK;
1283 }
1284
1285 static int cortex_m3_store_core_reg_u32(struct target *target,
1286                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1287 {
1288         int retval;
1289         uint32_t reg;
1290         struct armv7m_common *armv7m = target_to_armv7m(target);
1291         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1292
1293 #ifdef ARMV7_GDB_HACKS
1294         /* If the LR register is being modified, make sure it will put us
1295          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1296          * hack to deal with the fact that gdb will sometimes "forge"
1297          * return addresses, and doesn't set the LSB correctly (i.e., when
1298          * printing expressions containing function calls, it sets LR = 0.)
1299          * Valid exception return codes have bit 0 set too.
1300          */
1301         if (num == ARMV7M_R14)
1302                 value |= 0x01;
1303 #endif
1304
1305         /* NOTE:  we "know" here that the register identifiers used
1306          * in the v7m header match the Cortex-M3 Debug Core Register
1307          * Selector values for R0..R15, xPSR, MSP, and PSP.
1308          */
1309         switch (num) {
1310         case 0 ... 18:
1311                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1312                 if (retval != ERROR_OK)
1313                 {
1314                         LOG_ERROR("JTAG failure %i", retval);
1315                         armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
1316                         return ERROR_JTAG_DEVICE_ERROR;
1317                 }
1318                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1319                 break;
1320
1321         case ARMV7M_PRIMASK:
1322         case ARMV7M_BASEPRI:
1323         case ARMV7M_FAULTMASK:
1324         case ARMV7M_CONTROL:
1325                 /* Cortex-M3 packages these four registers as bitfields
1326                  * in one Debug Core register.  So say r0 and r2 docs;
1327                  * it was removed from r1 docs, but still works.
1328                  */
1329                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1330
1331                 switch (num)
1332                 {
1333                         case ARMV7M_PRIMASK:
1334                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1335                                 break;
1336
1337                         case ARMV7M_BASEPRI:
1338                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1339                                 break;
1340
1341                         case ARMV7M_FAULTMASK:
1342                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1343                                 break;
1344
1345                         case ARMV7M_CONTROL:
1346                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1347                                 break;
1348                 }
1349
1350                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1351
1352                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1353                 break;
1354
1355         default:
1356                 return ERROR_INVALID_ARGUMENTS;
1357         }
1358
1359         return ERROR_OK;
1360 }
1361
1362 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1363                 uint32_t size, uint32_t count, uint8_t *buffer)
1364 {
1365         struct armv7m_common *armv7m = target_to_armv7m(target);
1366         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1367         int retval = ERROR_INVALID_ARGUMENTS;
1368
1369         /* cortex_m3 handles unaligned memory access */
1370         if (count && buffer) {
1371                 switch (size) {
1372                 case 4:
1373                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1374                         break;
1375                 case 2:
1376                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1377                         break;
1378                 case 1:
1379                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1380                         break;
1381                 }
1382         }
1383
1384         return retval;
1385 }
1386
1387 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1388                 uint32_t size, uint32_t count, uint8_t *buffer)
1389 {
1390         struct armv7m_common *armv7m = target_to_armv7m(target);
1391         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1392         int retval = ERROR_INVALID_ARGUMENTS;
1393
1394         if (count && buffer) {
1395                 switch (size) {
1396                 case 4:
1397                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1398                         break;
1399                 case 2:
1400                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1401                         break;
1402                 case 1:
1403                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1404                         break;
1405                 }
1406         }
1407
1408         return retval;
1409 }
1410
1411 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1412                 uint32_t count, uint8_t *buffer)
1413 {
1414         return cortex_m3_write_memory(target, address, 4, count, buffer);
1415 }
1416
1417 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1418                 struct target *target)
1419 {
1420         armv7m_build_reg_cache(target);
1421         return ERROR_OK;
1422 }
1423
1424 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1425  * on r/w if the core is not running, and clear on resume or reset ... or
1426  * at least, in a post_restore_context() method.
1427  */
1428
1429 struct dwt_reg_state {
1430         struct target   *target;
1431         uint32_t        addr;
1432         uint32_t        value;  /* scratch/cache */
1433 };
1434
1435 static int cortex_m3_dwt_get_reg(struct reg *reg)
1436 {
1437         struct dwt_reg_state *state = reg->arch_info;
1438
1439         return target_read_u32(state->target, state->addr, &state->value);
1440 }
1441
1442 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1443 {
1444         struct dwt_reg_state *state = reg->arch_info;
1445
1446         return target_write_u32(state->target, state->addr,
1447                         buf_get_u32(buf, 0, reg->size));
1448 }
1449
1450 struct dwt_reg {
1451         uint32_t        addr;
1452         char            *name;
1453         unsigned        size;
1454 };
1455
1456 static struct dwt_reg dwt_base_regs[] = {
1457         { DWT_CTRL, "dwt_ctrl", 32, },
1458         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1459         /* plus some 8 bit counters, useful for profiling with TPIU */
1460 };
1461
1462 static struct dwt_reg dwt_comp[] = {
1463 #define DWT_COMPARATOR(i) \
1464                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1465                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1466                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1467         DWT_COMPARATOR(0),
1468         DWT_COMPARATOR(1),
1469         DWT_COMPARATOR(2),
1470         DWT_COMPARATOR(3),
1471 #undef DWT_COMPARATOR
1472 };
1473
1474 static const struct reg_arch_type dwt_reg_type = {
1475         .get = cortex_m3_dwt_get_reg,
1476         .set = cortex_m3_dwt_set_reg,
1477 };
1478
1479 static void
1480 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1481 {
1482         struct dwt_reg_state *state;
1483
1484         state = calloc(1, sizeof *state);
1485         if (!state)
1486                 return;
1487         state->addr = d->addr;
1488         state->target = t;
1489
1490         r->name = d->name;
1491         r->size = d->size;
1492         r->value = &state->value;
1493         r->arch_info = state;
1494         r->type = &dwt_reg_type;
1495 }
1496
1497 static void
1498 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1499 {
1500         uint32_t dwtcr;
1501         struct reg_cache *cache;
1502         struct cortex_m3_dwt_comparator *comparator;
1503         int reg, i;
1504
1505         target_read_u32(target, DWT_CTRL, &dwtcr);
1506         if (!dwtcr) {
1507                 LOG_DEBUG("no DWT");
1508                 return;
1509         }
1510
1511         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1512         cm3->dwt_comp_available = cm3->dwt_num_comp;
1513         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1514                         sizeof(struct cortex_m3_dwt_comparator));
1515         if (!cm3->dwt_comparator_list) {
1516 fail0:
1517                 cm3->dwt_num_comp = 0;
1518                 LOG_ERROR("out of mem");
1519                 return;
1520         }
1521
1522         cache = calloc(1, sizeof *cache);
1523         if (!cache) {
1524 fail1:
1525                 free(cm3->dwt_comparator_list);
1526                 goto fail0;
1527         }
1528         cache->name = "cortex-m3 dwt registers";
1529         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1530         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1531         if (!cache->reg_list) {
1532                 free(cache);
1533                 goto fail1;
1534         }
1535
1536         for (reg = 0; reg < 2; reg++)
1537                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1538                                 dwt_base_regs + reg);
1539
1540         comparator = cm3->dwt_comparator_list;
1541         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1542                 int j;
1543
1544                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1545                 for (j = 0; j < 3; j++, reg++)
1546                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1547                                         dwt_comp + 3 * i + j);
1548         }
1549
1550         *register_get_last_cache_p(&target->reg_cache) = cache;
1551         cm3->dwt_cache = cache;
1552
1553         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1554                         dwtcr, cm3->dwt_num_comp,
1555                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1556
1557         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1558          * implement single-address data value watchpoints ... so we
1559          * won't need to check it later, when asked to set one up.
1560          */
1561 }
1562
1563 static int cortex_m3_examine(struct target *target)
1564 {
1565         int retval;
1566         uint32_t cpuid, fpcr;
1567         int i;
1568         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1569         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1570
1571         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1572                 return retval;
1573
1574         if (!target_was_examined(target))
1575         {
1576                 target_set_examined(target);
1577
1578                 /* Read from Device Identification Registers */
1579                 retval = target_read_u32(target, CPUID, &cpuid);
1580                 if (retval != ERROR_OK)
1581                         return retval;
1582
1583                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1584                         LOG_DEBUG("CORTEX-M3 processor detected");
1585                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1586
1587                 /* NOTE: FPB and DWT are both optional. */
1588
1589                 /* Setup FPB */
1590                 target_read_u32(target, FP_CTRL, &fpcr);
1591                 cortex_m3->auto_bp_type = 1;
1592                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1593                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1594                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1595                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1596                 cortex_m3->fpb_enabled = fpcr & 1;
1597                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1598                 {
1599                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1600                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1601                 }
1602                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1603
1604                 /* Setup DWT */
1605                 cortex_m3_dwt_setup(cortex_m3, target);
1606
1607                 /* These hardware breakpoints only work for code in flash! */
1608                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1609                                 target_name(target),
1610                                 cortex_m3->fp_num_code,
1611                                 cortex_m3->dwt_num_comp);
1612         }
1613
1614         return ERROR_OK;
1615 }
1616
1617 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1618 {
1619         uint16_t dcrdr;
1620
1621         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1622         *ctrl = (uint8_t)dcrdr;
1623         *value = (uint8_t)(dcrdr >> 8);
1624
1625         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1626
1627         /* write ack back to software dcc register
1628          * signify we have read data */
1629         if (dcrdr & (1 << 0))
1630         {
1631                 dcrdr = 0;
1632                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1633         }
1634
1635         return ERROR_OK;
1636 }
1637
1638 static int cortex_m3_target_request_data(struct target *target,
1639                 uint32_t size, uint8_t *buffer)
1640 {
1641         struct armv7m_common *armv7m = target_to_armv7m(target);
1642         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1643         uint8_t data;
1644         uint8_t ctrl;
1645         uint32_t i;
1646
1647         for (i = 0; i < (size * 4); i++)
1648         {
1649                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1650                 buffer[i] = data;
1651         }
1652
1653         return ERROR_OK;
1654 }
1655
1656 static int cortex_m3_handle_target_request(void *priv)
1657 {
1658         struct target *target = priv;
1659         if (!target_was_examined(target))
1660                 return ERROR_OK;
1661         struct armv7m_common *armv7m = target_to_armv7m(target);
1662         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1663
1664         if (!target->dbg_msg_enabled)
1665                 return ERROR_OK;
1666
1667         if (target->state == TARGET_RUNNING)
1668         {
1669                 uint8_t data;
1670                 uint8_t ctrl;
1671
1672                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1673
1674                 /* check if we have data */
1675                 if (ctrl & (1 << 0))
1676                 {
1677                         uint32_t request;
1678
1679                         /* we assume target is quick enough */
1680                         request = data;
1681                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1682                         request |= (data << 8);
1683                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1684                         request |= (data << 16);
1685                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1686                         request |= (data << 24);
1687                         target_request(target, request);
1688                 }
1689         }
1690
1691         return ERROR_OK;
1692 }
1693
1694 static int cortex_m3_init_arch_info(struct target *target,
1695                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1696 {
1697         int retval;
1698         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1699
1700         armv7m_init_arch_info(target, armv7m);
1701
1702         /* prepare JTAG information for the new target */
1703         cortex_m3->jtag_info.tap = tap;
1704         cortex_m3->jtag_info.scann_size = 4;
1705
1706         armv7m->swjdp_info.dp_select_value = -1;
1707         armv7m->swjdp_info.ap_csw_value = -1;
1708         armv7m->swjdp_info.ap_tar_value = -1;
1709         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1710         armv7m->swjdp_info.memaccess_tck = 8;
1711         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1712
1713         /* register arch-specific functions */
1714         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1715
1716         armv7m->post_debug_entry = NULL;
1717
1718         armv7m->pre_restore_context = NULL;
1719         armv7m->post_restore_context = NULL;
1720
1721         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1722         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1723
1724         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1725
1726         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1727         {
1728                 return retval;
1729         }
1730
1731         return ERROR_OK;
1732 }
1733
1734 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1735 {
1736         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1737
1738         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1739         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1740
1741         return ERROR_OK;
1742 }
1743
1744 /*--------------------------------------------------------------------------*/
1745
1746 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1747                 struct cortex_m3_common *cm3)
1748 {
1749         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1750                 command_print(cmd_ctx, "target is not a Cortex-M3");
1751                 return ERROR_TARGET_INVALID;
1752         }
1753         return ERROR_OK;
1754 }
1755
1756 /*
1757  * Only stuff below this line should need to verify that its target
1758  * is a Cortex-M3.  Everything else should have indirected through the
1759  * cortexm3_target structure, which is only used with CM3 targets.
1760  */
1761
1762 /*
1763  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1764  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1765  * that *only* Thumb2 disassembly matters.  There are also some small
1766  * additions to Thumb2 that are specific to ARMv7-M.
1767  */
1768 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1769 {
1770         int retval;
1771         struct target *target = get_current_target(CMD_CTX);
1772         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1773         uint32_t address;
1774         unsigned long count = 1;
1775         struct arm_instruction cur_instruction;
1776
1777         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1778         if (retval != ERROR_OK)
1779                 return retval;
1780
1781         errno = 0;
1782         switch (CMD_ARGC) {
1783         case 2:
1784                 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], count);
1785                 /* FALL THROUGH */
1786         case 1:
1787                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1788                 break;
1789         default:
1790                 command_print(CMD_CTX,
1791                         "usage: cortex_m3 disassemble <address> [<count>]");
1792                 return ERROR_OK;
1793         }
1794
1795         while (count--) {
1796                 retval = thumb2_opcode(target, address, &cur_instruction);
1797                 if (retval != ERROR_OK)
1798                         return retval;
1799                 command_print(CMD_CTX, "%s", cur_instruction.text);
1800                 address += cur_instruction.instruction_size;
1801         }
1802
1803         return ERROR_OK;
1804 }
1805
1806 static const struct {
1807         char name[10];
1808         unsigned mask;
1809 } vec_ids[] = {
1810         { "hard_err",   VC_HARDERR, },
1811         { "int_err",    VC_INTERR, },
1812         { "bus_err",    VC_BUSERR, },
1813         { "state_err",  VC_STATERR, },
1814         { "chk_err",    VC_CHKERR, },
1815         { "nocp_err",   VC_NOCPERR, },
1816         { "mm_err",     VC_MMERR, },
1817         { "reset",      VC_CORERESET, },
1818 };
1819
1820 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1821 {
1822         struct target *target = get_current_target(CMD_CTX);
1823         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1824         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1825         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1826         uint32_t demcr = 0;
1827         int retval;
1828
1829         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1830         if (retval != ERROR_OK)
1831                 return retval;
1832
1833         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1834
1835         if (CMD_ARGC > 0) {
1836                 unsigned catch = 0;
1837
1838                 if (CMD_ARGC == 1) {
1839                         if (strcmp(CMD_ARGV[0], "all") == 0) {
1840                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1841                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1842                                         | VC_MMERR | VC_CORERESET;
1843                                 goto write;
1844                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1845                                 goto write;
1846                         }
1847                 }
1848                 while (CMD_ARGC-- > 0) {
1849                         unsigned i;
1850                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1851                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1852                                         continue;
1853                                 catch |= vec_ids[i].mask;
1854                                 break;
1855                         }
1856                         if (i == ARRAY_SIZE(vec_ids)) {
1857                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
1858                                 return ERROR_INVALID_ARGUMENTS;
1859                         }
1860                 }
1861 write:
1862                 demcr &= ~0xffff;
1863                 demcr |= catch;
1864
1865                 /* write, but don't assume it stuck */
1866                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1867                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1868         }
1869
1870         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
1871         {
1872                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
1873                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1874         }
1875
1876         return ERROR_OK;
1877 }
1878
1879 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1880 {
1881         struct target *target = get_current_target(CMD_CTX);
1882         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1883         int retval;
1884
1885         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1886         if (retval != ERROR_OK)
1887                 return retval;
1888
1889         if (target->state != TARGET_HALTED)
1890         {
1891                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
1892                 return ERROR_OK;
1893         }
1894
1895         if (CMD_ARGC > 0)
1896         {
1897                 bool enable;
1898                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1899                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
1900                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
1901                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
1902         }
1903
1904         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
1905                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
1906
1907         return ERROR_OK;
1908 }
1909
1910 static const struct command_registration cortex_m3_exec_command_handlers[] = {
1911         {
1912                 .name = "disassemble",
1913                 .handler = &handle_cortex_m3_disassemble_command,
1914                 .mode = COMMAND_EXEC,
1915                 .help = "disassemble Thumb2 instructions",
1916                 .usage = "<address> [<count>]",
1917         },
1918         {
1919                 .name = "maskisr",
1920                 .handler = &handle_cortex_m3_mask_interrupts_command,
1921                 .mode = COMMAND_EXEC,
1922                 .help = "mask cortex_m3 interrupts",
1923                 .usage = "['on'|'off']",
1924         },
1925         {
1926                 .name = "vector_catch",
1927                 .handler = &handle_cortex_m3_vector_catch_command,
1928                 .mode = COMMAND_EXEC,
1929                 .help = "catch hardware vectors",
1930                 .usage = "['all'|'none'|<list>]",
1931         },
1932         COMMAND_REGISTRATION_DONE
1933 };
1934 static const struct command_registration cortex_m3_command_handlers[] = {
1935         {
1936                 .chain = armv7m_command_handlers,
1937         },
1938         {
1939                 .name = "cortex_m3",
1940                 .mode = COMMAND_ANY,
1941                 .help = "Cortex-M3 command group",
1942                 .chain = cortex_m3_exec_command_handlers,
1943         },
1944         COMMAND_REGISTRATION_DONE
1945 };
1946
1947 struct target_type cortexm3_target =
1948 {
1949         .name = "cortex_m3",
1950
1951         .poll = cortex_m3_poll,
1952         .arch_state = armv7m_arch_state,
1953
1954         .target_request_data = cortex_m3_target_request_data,
1955
1956         .halt = cortex_m3_halt,
1957         .resume = cortex_m3_resume,
1958         .step = cortex_m3_step,
1959
1960         .assert_reset = cortex_m3_assert_reset,
1961         .deassert_reset = cortex_m3_deassert_reset,
1962         .soft_reset_halt = cortex_m3_soft_reset_halt,
1963
1964         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
1965
1966         .read_memory = cortex_m3_read_memory,
1967         .write_memory = cortex_m3_write_memory,
1968         .bulk_write_memory = cortex_m3_bulk_write_memory,
1969         .checksum_memory = armv7m_checksum_memory,
1970         .blank_check_memory = armv7m_blank_check_memory,
1971
1972         .run_algorithm = armv7m_run_algorithm,
1973
1974         .add_breakpoint = cortex_m3_add_breakpoint,
1975         .remove_breakpoint = cortex_m3_remove_breakpoint,
1976         .add_watchpoint = cortex_m3_add_watchpoint,
1977         .remove_watchpoint = cortex_m3_remove_watchpoint,
1978
1979         .commands = cortex_m3_command_handlers,
1980         .target_create = cortex_m3_target_create,
1981         .init_target = cortex_m3_init_target,
1982         .examine = cortex_m3_examine,
1983 };